Merge tag 'for-linus' of git://github.com/openrisc/linux
[linux/fpc-iii.git] / kernel / relay.c
blob72fe443ea78f0f7cc8f2668b356ddf4c7d9f2bd8
1 /*
2 * Public API and common code for kernel->userspace relay file support.
4 * See Documentation/filesystems/relay.rst for an overview.
6 * Copyright (C) 2002-2005 - Tom Zanussi (zanussi@us.ibm.com), IBM Corp
7 * Copyright (C) 1999-2005 - Karim Yaghmour (karim@opersys.com)
9 * Moved to kernel/relay.c by Paul Mundt, 2006.
10 * November 2006 - CPU hotplug support by Mathieu Desnoyers
11 * (mathieu.desnoyers@polymtl.ca)
13 * This file is released under the GPL.
15 #include <linux/errno.h>
16 #include <linux/stddef.h>
17 #include <linux/slab.h>
18 #include <linux/export.h>
19 #include <linux/string.h>
20 #include <linux/relay.h>
21 #include <linux/vmalloc.h>
22 #include <linux/mm.h>
23 #include <linux/cpu.h>
24 #include <linux/splice.h>
26 /* list of open channels, for cpu hotplug */
27 static DEFINE_MUTEX(relay_channels_mutex);
28 static LIST_HEAD(relay_channels);
31 * close() vm_op implementation for relay file mapping.
33 static void relay_file_mmap_close(struct vm_area_struct *vma)
35 struct rchan_buf *buf = vma->vm_private_data;
36 buf->chan->cb->buf_unmapped(buf, vma->vm_file);
40 * fault() vm_op implementation for relay file mapping.
42 static vm_fault_t relay_buf_fault(struct vm_fault *vmf)
44 struct page *page;
45 struct rchan_buf *buf = vmf->vma->vm_private_data;
46 pgoff_t pgoff = vmf->pgoff;
48 if (!buf)
49 return VM_FAULT_OOM;
51 page = vmalloc_to_page(buf->start + (pgoff << PAGE_SHIFT));
52 if (!page)
53 return VM_FAULT_SIGBUS;
54 get_page(page);
55 vmf->page = page;
57 return 0;
61 * vm_ops for relay file mappings.
63 static const struct vm_operations_struct relay_file_mmap_ops = {
64 .fault = relay_buf_fault,
65 .close = relay_file_mmap_close,
69 * allocate an array of pointers of struct page
71 static struct page **relay_alloc_page_array(unsigned int n_pages)
73 const size_t pa_size = n_pages * sizeof(struct page *);
74 if (pa_size > PAGE_SIZE)
75 return vzalloc(pa_size);
76 return kzalloc(pa_size, GFP_KERNEL);
80 * free an array of pointers of struct page
82 static void relay_free_page_array(struct page **array)
84 kvfree(array);
87 /**
88 * relay_mmap_buf: - mmap channel buffer to process address space
89 * @buf: relay channel buffer
90 * @vma: vm_area_struct describing memory to be mapped
92 * Returns 0 if ok, negative on error
94 * Caller should already have grabbed mmap_lock.
96 static int relay_mmap_buf(struct rchan_buf *buf, struct vm_area_struct *vma)
98 unsigned long length = vma->vm_end - vma->vm_start;
99 struct file *filp = vma->vm_file;
101 if (!buf)
102 return -EBADF;
104 if (length != (unsigned long)buf->chan->alloc_size)
105 return -EINVAL;
107 vma->vm_ops = &relay_file_mmap_ops;
108 vma->vm_flags |= VM_DONTEXPAND;
109 vma->vm_private_data = buf;
110 buf->chan->cb->buf_mapped(buf, filp);
112 return 0;
116 * relay_alloc_buf - allocate a channel buffer
117 * @buf: the buffer struct
118 * @size: total size of the buffer
120 * Returns a pointer to the resulting buffer, %NULL if unsuccessful. The
121 * passed in size will get page aligned, if it isn't already.
123 static void *relay_alloc_buf(struct rchan_buf *buf, size_t *size)
125 void *mem;
126 unsigned int i, j, n_pages;
128 *size = PAGE_ALIGN(*size);
129 n_pages = *size >> PAGE_SHIFT;
131 buf->page_array = relay_alloc_page_array(n_pages);
132 if (!buf->page_array)
133 return NULL;
135 for (i = 0; i < n_pages; i++) {
136 buf->page_array[i] = alloc_page(GFP_KERNEL);
137 if (unlikely(!buf->page_array[i]))
138 goto depopulate;
139 set_page_private(buf->page_array[i], (unsigned long)buf);
141 mem = vmap(buf->page_array, n_pages, VM_MAP, PAGE_KERNEL);
142 if (!mem)
143 goto depopulate;
145 memset(mem, 0, *size);
146 buf->page_count = n_pages;
147 return mem;
149 depopulate:
150 for (j = 0; j < i; j++)
151 __free_page(buf->page_array[j]);
152 relay_free_page_array(buf->page_array);
153 return NULL;
157 * relay_create_buf - allocate and initialize a channel buffer
158 * @chan: the relay channel
160 * Returns channel buffer if successful, %NULL otherwise.
162 static struct rchan_buf *relay_create_buf(struct rchan *chan)
164 struct rchan_buf *buf;
166 if (chan->n_subbufs > KMALLOC_MAX_SIZE / sizeof(size_t *))
167 return NULL;
169 buf = kzalloc(sizeof(struct rchan_buf), GFP_KERNEL);
170 if (!buf)
171 return NULL;
172 buf->padding = kmalloc_array(chan->n_subbufs, sizeof(size_t *),
173 GFP_KERNEL);
174 if (!buf->padding)
175 goto free_buf;
177 buf->start = relay_alloc_buf(buf, &chan->alloc_size);
178 if (!buf->start)
179 goto free_buf;
181 buf->chan = chan;
182 kref_get(&buf->chan->kref);
183 return buf;
185 free_buf:
186 kfree(buf->padding);
187 kfree(buf);
188 return NULL;
192 * relay_destroy_channel - free the channel struct
193 * @kref: target kernel reference that contains the relay channel
195 * Should only be called from kref_put().
197 static void relay_destroy_channel(struct kref *kref)
199 struct rchan *chan = container_of(kref, struct rchan, kref);
200 kfree(chan);
204 * relay_destroy_buf - destroy an rchan_buf struct and associated buffer
205 * @buf: the buffer struct
207 static void relay_destroy_buf(struct rchan_buf *buf)
209 struct rchan *chan = buf->chan;
210 unsigned int i;
212 if (likely(buf->start)) {
213 vunmap(buf->start);
214 for (i = 0; i < buf->page_count; i++)
215 __free_page(buf->page_array[i]);
216 relay_free_page_array(buf->page_array);
218 *per_cpu_ptr(chan->buf, buf->cpu) = NULL;
219 kfree(buf->padding);
220 kfree(buf);
221 kref_put(&chan->kref, relay_destroy_channel);
225 * relay_remove_buf - remove a channel buffer
226 * @kref: target kernel reference that contains the relay buffer
228 * Removes the file from the filesystem, which also frees the
229 * rchan_buf_struct and the channel buffer. Should only be called from
230 * kref_put().
232 static void relay_remove_buf(struct kref *kref)
234 struct rchan_buf *buf = container_of(kref, struct rchan_buf, kref);
235 relay_destroy_buf(buf);
239 * relay_buf_empty - boolean, is the channel buffer empty?
240 * @buf: channel buffer
242 * Returns 1 if the buffer is empty, 0 otherwise.
244 static int relay_buf_empty(struct rchan_buf *buf)
246 return (buf->subbufs_produced - buf->subbufs_consumed) ? 0 : 1;
250 * relay_buf_full - boolean, is the channel buffer full?
251 * @buf: channel buffer
253 * Returns 1 if the buffer is full, 0 otherwise.
255 int relay_buf_full(struct rchan_buf *buf)
257 size_t ready = buf->subbufs_produced - buf->subbufs_consumed;
258 return (ready >= buf->chan->n_subbufs) ? 1 : 0;
260 EXPORT_SYMBOL_GPL(relay_buf_full);
263 * High-level relay kernel API and associated functions.
267 * rchan_callback implementations defining default channel behavior. Used
268 * in place of corresponding NULL values in client callback struct.
272 * subbuf_start() default callback. Does nothing.
274 static int subbuf_start_default_callback (struct rchan_buf *buf,
275 void *subbuf,
276 void *prev_subbuf,
277 size_t prev_padding)
279 if (relay_buf_full(buf))
280 return 0;
282 return 1;
286 * buf_mapped() default callback. Does nothing.
288 static void buf_mapped_default_callback(struct rchan_buf *buf,
289 struct file *filp)
294 * buf_unmapped() default callback. Does nothing.
296 static void buf_unmapped_default_callback(struct rchan_buf *buf,
297 struct file *filp)
302 * create_buf_file_create() default callback. Does nothing.
304 static struct dentry *create_buf_file_default_callback(const char *filename,
305 struct dentry *parent,
306 umode_t mode,
307 struct rchan_buf *buf,
308 int *is_global)
310 return NULL;
314 * remove_buf_file() default callback. Does nothing.
316 static int remove_buf_file_default_callback(struct dentry *dentry)
318 return -EINVAL;
321 /* relay channel default callbacks */
322 static struct rchan_callbacks default_channel_callbacks = {
323 .subbuf_start = subbuf_start_default_callback,
324 .buf_mapped = buf_mapped_default_callback,
325 .buf_unmapped = buf_unmapped_default_callback,
326 .create_buf_file = create_buf_file_default_callback,
327 .remove_buf_file = remove_buf_file_default_callback,
331 * wakeup_readers - wake up readers waiting on a channel
332 * @work: contains the channel buffer
334 * This is the function used to defer reader waking
336 static void wakeup_readers(struct irq_work *work)
338 struct rchan_buf *buf;
340 buf = container_of(work, struct rchan_buf, wakeup_work);
341 wake_up_interruptible(&buf->read_wait);
345 * __relay_reset - reset a channel buffer
346 * @buf: the channel buffer
347 * @init: 1 if this is a first-time initialization
349 * See relay_reset() for description of effect.
351 static void __relay_reset(struct rchan_buf *buf, unsigned int init)
353 size_t i;
355 if (init) {
356 init_waitqueue_head(&buf->read_wait);
357 kref_init(&buf->kref);
358 init_irq_work(&buf->wakeup_work, wakeup_readers);
359 } else {
360 irq_work_sync(&buf->wakeup_work);
363 buf->subbufs_produced = 0;
364 buf->subbufs_consumed = 0;
365 buf->bytes_consumed = 0;
366 buf->finalized = 0;
367 buf->data = buf->start;
368 buf->offset = 0;
370 for (i = 0; i < buf->chan->n_subbufs; i++)
371 buf->padding[i] = 0;
373 buf->chan->cb->subbuf_start(buf, buf->data, NULL, 0);
377 * relay_reset - reset the channel
378 * @chan: the channel
380 * This has the effect of erasing all data from all channel buffers
381 * and restarting the channel in its initial state. The buffers
382 * are not freed, so any mappings are still in effect.
384 * NOTE. Care should be taken that the channel isn't actually
385 * being used by anything when this call is made.
387 void relay_reset(struct rchan *chan)
389 struct rchan_buf *buf;
390 unsigned int i;
392 if (!chan)
393 return;
395 if (chan->is_global && (buf = *per_cpu_ptr(chan->buf, 0))) {
396 __relay_reset(buf, 0);
397 return;
400 mutex_lock(&relay_channels_mutex);
401 for_each_possible_cpu(i)
402 if ((buf = *per_cpu_ptr(chan->buf, i)))
403 __relay_reset(buf, 0);
404 mutex_unlock(&relay_channels_mutex);
406 EXPORT_SYMBOL_GPL(relay_reset);
408 static inline void relay_set_buf_dentry(struct rchan_buf *buf,
409 struct dentry *dentry)
411 buf->dentry = dentry;
412 d_inode(buf->dentry)->i_size = buf->early_bytes;
415 static struct dentry *relay_create_buf_file(struct rchan *chan,
416 struct rchan_buf *buf,
417 unsigned int cpu)
419 struct dentry *dentry;
420 char *tmpname;
422 tmpname = kzalloc(NAME_MAX + 1, GFP_KERNEL);
423 if (!tmpname)
424 return NULL;
425 snprintf(tmpname, NAME_MAX, "%s%d", chan->base_filename, cpu);
427 /* Create file in fs */
428 dentry = chan->cb->create_buf_file(tmpname, chan->parent,
429 S_IRUSR, buf,
430 &chan->is_global);
431 if (IS_ERR(dentry))
432 dentry = NULL;
434 kfree(tmpname);
436 return dentry;
440 * relay_open_buf - create a new relay channel buffer
442 * used by relay_open() and CPU hotplug.
444 static struct rchan_buf *relay_open_buf(struct rchan *chan, unsigned int cpu)
446 struct rchan_buf *buf = NULL;
447 struct dentry *dentry;
449 if (chan->is_global)
450 return *per_cpu_ptr(chan->buf, 0);
452 buf = relay_create_buf(chan);
453 if (!buf)
454 return NULL;
456 if (chan->has_base_filename) {
457 dentry = relay_create_buf_file(chan, buf, cpu);
458 if (!dentry)
459 goto free_buf;
460 relay_set_buf_dentry(buf, dentry);
461 } else {
462 /* Only retrieve global info, nothing more, nothing less */
463 dentry = chan->cb->create_buf_file(NULL, NULL,
464 S_IRUSR, buf,
465 &chan->is_global);
466 if (IS_ERR_OR_NULL(dentry))
467 goto free_buf;
470 buf->cpu = cpu;
471 __relay_reset(buf, 1);
473 if(chan->is_global) {
474 *per_cpu_ptr(chan->buf, 0) = buf;
475 buf->cpu = 0;
478 return buf;
480 free_buf:
481 relay_destroy_buf(buf);
482 return NULL;
486 * relay_close_buf - close a channel buffer
487 * @buf: channel buffer
489 * Marks the buffer finalized and restores the default callbacks.
490 * The channel buffer and channel buffer data structure are then freed
491 * automatically when the last reference is given up.
493 static void relay_close_buf(struct rchan_buf *buf)
495 buf->finalized = 1;
496 irq_work_sync(&buf->wakeup_work);
497 buf->chan->cb->remove_buf_file(buf->dentry);
498 kref_put(&buf->kref, relay_remove_buf);
501 static void setup_callbacks(struct rchan *chan,
502 struct rchan_callbacks *cb)
504 if (!cb) {
505 chan->cb = &default_channel_callbacks;
506 return;
509 if (!cb->subbuf_start)
510 cb->subbuf_start = subbuf_start_default_callback;
511 if (!cb->buf_mapped)
512 cb->buf_mapped = buf_mapped_default_callback;
513 if (!cb->buf_unmapped)
514 cb->buf_unmapped = buf_unmapped_default_callback;
515 if (!cb->create_buf_file)
516 cb->create_buf_file = create_buf_file_default_callback;
517 if (!cb->remove_buf_file)
518 cb->remove_buf_file = remove_buf_file_default_callback;
519 chan->cb = cb;
522 int relay_prepare_cpu(unsigned int cpu)
524 struct rchan *chan;
525 struct rchan_buf *buf;
527 mutex_lock(&relay_channels_mutex);
528 list_for_each_entry(chan, &relay_channels, list) {
529 if ((buf = *per_cpu_ptr(chan->buf, cpu)))
530 continue;
531 buf = relay_open_buf(chan, cpu);
532 if (!buf) {
533 pr_err("relay: cpu %d buffer creation failed\n", cpu);
534 mutex_unlock(&relay_channels_mutex);
535 return -ENOMEM;
537 *per_cpu_ptr(chan->buf, cpu) = buf;
539 mutex_unlock(&relay_channels_mutex);
540 return 0;
544 * relay_open - create a new relay channel
545 * @base_filename: base name of files to create, %NULL for buffering only
546 * @parent: dentry of parent directory, %NULL for root directory or buffer
547 * @subbuf_size: size of sub-buffers
548 * @n_subbufs: number of sub-buffers
549 * @cb: client callback functions
550 * @private_data: user-defined data
552 * Returns channel pointer if successful, %NULL otherwise.
554 * Creates a channel buffer for each cpu using the sizes and
555 * attributes specified. The created channel buffer files
556 * will be named base_filename0...base_filenameN-1. File
557 * permissions will be %S_IRUSR.
559 * If opening a buffer (@parent = NULL) that you later wish to register
560 * in a filesystem, call relay_late_setup_files() once the @parent dentry
561 * is available.
563 struct rchan *relay_open(const char *base_filename,
564 struct dentry *parent,
565 size_t subbuf_size,
566 size_t n_subbufs,
567 struct rchan_callbacks *cb,
568 void *private_data)
570 unsigned int i;
571 struct rchan *chan;
572 struct rchan_buf *buf;
574 if (!(subbuf_size && n_subbufs))
575 return NULL;
576 if (subbuf_size > UINT_MAX / n_subbufs)
577 return NULL;
579 chan = kzalloc(sizeof(struct rchan), GFP_KERNEL);
580 if (!chan)
581 return NULL;
583 chan->buf = alloc_percpu(struct rchan_buf *);
584 if (!chan->buf) {
585 kfree(chan);
586 return NULL;
589 chan->version = RELAYFS_CHANNEL_VERSION;
590 chan->n_subbufs = n_subbufs;
591 chan->subbuf_size = subbuf_size;
592 chan->alloc_size = PAGE_ALIGN(subbuf_size * n_subbufs);
593 chan->parent = parent;
594 chan->private_data = private_data;
595 if (base_filename) {
596 chan->has_base_filename = 1;
597 strlcpy(chan->base_filename, base_filename, NAME_MAX);
599 setup_callbacks(chan, cb);
600 kref_init(&chan->kref);
602 mutex_lock(&relay_channels_mutex);
603 for_each_online_cpu(i) {
604 buf = relay_open_buf(chan, i);
605 if (!buf)
606 goto free_bufs;
607 *per_cpu_ptr(chan->buf, i) = buf;
609 list_add(&chan->list, &relay_channels);
610 mutex_unlock(&relay_channels_mutex);
612 return chan;
614 free_bufs:
615 for_each_possible_cpu(i) {
616 if ((buf = *per_cpu_ptr(chan->buf, i)))
617 relay_close_buf(buf);
620 kref_put(&chan->kref, relay_destroy_channel);
621 mutex_unlock(&relay_channels_mutex);
622 return NULL;
624 EXPORT_SYMBOL_GPL(relay_open);
626 struct rchan_percpu_buf_dispatcher {
627 struct rchan_buf *buf;
628 struct dentry *dentry;
631 /* Called in atomic context. */
632 static void __relay_set_buf_dentry(void *info)
634 struct rchan_percpu_buf_dispatcher *p = info;
636 relay_set_buf_dentry(p->buf, p->dentry);
640 * relay_late_setup_files - triggers file creation
641 * @chan: channel to operate on
642 * @base_filename: base name of files to create
643 * @parent: dentry of parent directory, %NULL for root directory
645 * Returns 0 if successful, non-zero otherwise.
647 * Use to setup files for a previously buffer-only channel created
648 * by relay_open() with a NULL parent dentry.
650 * For example, this is useful for perfomring early tracing in kernel,
651 * before VFS is up and then exposing the early results once the dentry
652 * is available.
654 int relay_late_setup_files(struct rchan *chan,
655 const char *base_filename,
656 struct dentry *parent)
658 int err = 0;
659 unsigned int i, curr_cpu;
660 unsigned long flags;
661 struct dentry *dentry;
662 struct rchan_buf *buf;
663 struct rchan_percpu_buf_dispatcher disp;
665 if (!chan || !base_filename)
666 return -EINVAL;
668 strlcpy(chan->base_filename, base_filename, NAME_MAX);
670 mutex_lock(&relay_channels_mutex);
671 /* Is chan already set up? */
672 if (unlikely(chan->has_base_filename)) {
673 mutex_unlock(&relay_channels_mutex);
674 return -EEXIST;
676 chan->has_base_filename = 1;
677 chan->parent = parent;
679 if (chan->is_global) {
680 err = -EINVAL;
681 buf = *per_cpu_ptr(chan->buf, 0);
682 if (!WARN_ON_ONCE(!buf)) {
683 dentry = relay_create_buf_file(chan, buf, 0);
684 if (dentry && !WARN_ON_ONCE(!chan->is_global)) {
685 relay_set_buf_dentry(buf, dentry);
686 err = 0;
689 mutex_unlock(&relay_channels_mutex);
690 return err;
693 curr_cpu = get_cpu();
695 * The CPU hotplug notifier ran before us and created buffers with
696 * no files associated. So it's safe to call relay_setup_buf_file()
697 * on all currently online CPUs.
699 for_each_online_cpu(i) {
700 buf = *per_cpu_ptr(chan->buf, i);
701 if (unlikely(!buf)) {
702 WARN_ONCE(1, KERN_ERR "CPU has no buffer!\n");
703 err = -EINVAL;
704 break;
707 dentry = relay_create_buf_file(chan, buf, i);
708 if (unlikely(!dentry)) {
709 err = -EINVAL;
710 break;
713 if (curr_cpu == i) {
714 local_irq_save(flags);
715 relay_set_buf_dentry(buf, dentry);
716 local_irq_restore(flags);
717 } else {
718 disp.buf = buf;
719 disp.dentry = dentry;
720 smp_mb();
721 /* relay_channels_mutex must be held, so wait. */
722 err = smp_call_function_single(i,
723 __relay_set_buf_dentry,
724 &disp, 1);
726 if (unlikely(err))
727 break;
729 put_cpu();
730 mutex_unlock(&relay_channels_mutex);
732 return err;
734 EXPORT_SYMBOL_GPL(relay_late_setup_files);
737 * relay_switch_subbuf - switch to a new sub-buffer
738 * @buf: channel buffer
739 * @length: size of current event
741 * Returns either the length passed in or 0 if full.
743 * Performs sub-buffer-switch tasks such as invoking callbacks,
744 * updating padding counts, waking up readers, etc.
746 size_t relay_switch_subbuf(struct rchan_buf *buf, size_t length)
748 void *old, *new;
749 size_t old_subbuf, new_subbuf;
751 if (unlikely(length > buf->chan->subbuf_size))
752 goto toobig;
754 if (buf->offset != buf->chan->subbuf_size + 1) {
755 buf->prev_padding = buf->chan->subbuf_size - buf->offset;
756 old_subbuf = buf->subbufs_produced % buf->chan->n_subbufs;
757 buf->padding[old_subbuf] = buf->prev_padding;
758 buf->subbufs_produced++;
759 if (buf->dentry)
760 d_inode(buf->dentry)->i_size +=
761 buf->chan->subbuf_size -
762 buf->padding[old_subbuf];
763 else
764 buf->early_bytes += buf->chan->subbuf_size -
765 buf->padding[old_subbuf];
766 smp_mb();
767 if (waitqueue_active(&buf->read_wait)) {
769 * Calling wake_up_interruptible() from here
770 * will deadlock if we happen to be logging
771 * from the scheduler (trying to re-grab
772 * rq->lock), so defer it.
774 irq_work_queue(&buf->wakeup_work);
778 old = buf->data;
779 new_subbuf = buf->subbufs_produced % buf->chan->n_subbufs;
780 new = buf->start + new_subbuf * buf->chan->subbuf_size;
781 buf->offset = 0;
782 if (!buf->chan->cb->subbuf_start(buf, new, old, buf->prev_padding)) {
783 buf->offset = buf->chan->subbuf_size + 1;
784 return 0;
786 buf->data = new;
787 buf->padding[new_subbuf] = 0;
789 if (unlikely(length + buf->offset > buf->chan->subbuf_size))
790 goto toobig;
792 return length;
794 toobig:
795 buf->chan->last_toobig = length;
796 return 0;
798 EXPORT_SYMBOL_GPL(relay_switch_subbuf);
801 * relay_subbufs_consumed - update the buffer's sub-buffers-consumed count
802 * @chan: the channel
803 * @cpu: the cpu associated with the channel buffer to update
804 * @subbufs_consumed: number of sub-buffers to add to current buf's count
806 * Adds to the channel buffer's consumed sub-buffer count.
807 * subbufs_consumed should be the number of sub-buffers newly consumed,
808 * not the total consumed.
810 * NOTE. Kernel clients don't need to call this function if the channel
811 * mode is 'overwrite'.
813 void relay_subbufs_consumed(struct rchan *chan,
814 unsigned int cpu,
815 size_t subbufs_consumed)
817 struct rchan_buf *buf;
819 if (!chan || cpu >= NR_CPUS)
820 return;
822 buf = *per_cpu_ptr(chan->buf, cpu);
823 if (!buf || subbufs_consumed > chan->n_subbufs)
824 return;
826 if (subbufs_consumed > buf->subbufs_produced - buf->subbufs_consumed)
827 buf->subbufs_consumed = buf->subbufs_produced;
828 else
829 buf->subbufs_consumed += subbufs_consumed;
831 EXPORT_SYMBOL_GPL(relay_subbufs_consumed);
834 * relay_close - close the channel
835 * @chan: the channel
837 * Closes all channel buffers and frees the channel.
839 void relay_close(struct rchan *chan)
841 struct rchan_buf *buf;
842 unsigned int i;
844 if (!chan)
845 return;
847 mutex_lock(&relay_channels_mutex);
848 if (chan->is_global && (buf = *per_cpu_ptr(chan->buf, 0)))
849 relay_close_buf(buf);
850 else
851 for_each_possible_cpu(i)
852 if ((buf = *per_cpu_ptr(chan->buf, i)))
853 relay_close_buf(buf);
855 if (chan->last_toobig)
856 printk(KERN_WARNING "relay: one or more items not logged "
857 "[item size (%zd) > sub-buffer size (%zd)]\n",
858 chan->last_toobig, chan->subbuf_size);
860 list_del(&chan->list);
861 kref_put(&chan->kref, relay_destroy_channel);
862 mutex_unlock(&relay_channels_mutex);
864 EXPORT_SYMBOL_GPL(relay_close);
867 * relay_flush - close the channel
868 * @chan: the channel
870 * Flushes all channel buffers, i.e. forces buffer switch.
872 void relay_flush(struct rchan *chan)
874 struct rchan_buf *buf;
875 unsigned int i;
877 if (!chan)
878 return;
880 if (chan->is_global && (buf = *per_cpu_ptr(chan->buf, 0))) {
881 relay_switch_subbuf(buf, 0);
882 return;
885 mutex_lock(&relay_channels_mutex);
886 for_each_possible_cpu(i)
887 if ((buf = *per_cpu_ptr(chan->buf, i)))
888 relay_switch_subbuf(buf, 0);
889 mutex_unlock(&relay_channels_mutex);
891 EXPORT_SYMBOL_GPL(relay_flush);
894 * relay_file_open - open file op for relay files
895 * @inode: the inode
896 * @filp: the file
898 * Increments the channel buffer refcount.
900 static int relay_file_open(struct inode *inode, struct file *filp)
902 struct rchan_buf *buf = inode->i_private;
903 kref_get(&buf->kref);
904 filp->private_data = buf;
906 return nonseekable_open(inode, filp);
910 * relay_file_mmap - mmap file op for relay files
911 * @filp: the file
912 * @vma: the vma describing what to map
914 * Calls upon relay_mmap_buf() to map the file into user space.
916 static int relay_file_mmap(struct file *filp, struct vm_area_struct *vma)
918 struct rchan_buf *buf = filp->private_data;
919 return relay_mmap_buf(buf, vma);
923 * relay_file_poll - poll file op for relay files
924 * @filp: the file
925 * @wait: poll table
927 * Poll implemention.
929 static __poll_t relay_file_poll(struct file *filp, poll_table *wait)
931 __poll_t mask = 0;
932 struct rchan_buf *buf = filp->private_data;
934 if (buf->finalized)
935 return EPOLLERR;
937 if (filp->f_mode & FMODE_READ) {
938 poll_wait(filp, &buf->read_wait, wait);
939 if (!relay_buf_empty(buf))
940 mask |= EPOLLIN | EPOLLRDNORM;
943 return mask;
947 * relay_file_release - release file op for relay files
948 * @inode: the inode
949 * @filp: the file
951 * Decrements the channel refcount, as the filesystem is
952 * no longer using it.
954 static int relay_file_release(struct inode *inode, struct file *filp)
956 struct rchan_buf *buf = filp->private_data;
957 kref_put(&buf->kref, relay_remove_buf);
959 return 0;
963 * relay_file_read_consume - update the consumed count for the buffer
965 static void relay_file_read_consume(struct rchan_buf *buf,
966 size_t read_pos,
967 size_t bytes_consumed)
969 size_t subbuf_size = buf->chan->subbuf_size;
970 size_t n_subbufs = buf->chan->n_subbufs;
971 size_t read_subbuf;
973 if (buf->subbufs_produced == buf->subbufs_consumed &&
974 buf->offset == buf->bytes_consumed)
975 return;
977 if (buf->bytes_consumed + bytes_consumed > subbuf_size) {
978 relay_subbufs_consumed(buf->chan, buf->cpu, 1);
979 buf->bytes_consumed = 0;
982 buf->bytes_consumed += bytes_consumed;
983 if (!read_pos)
984 read_subbuf = buf->subbufs_consumed % n_subbufs;
985 else
986 read_subbuf = read_pos / buf->chan->subbuf_size;
987 if (buf->bytes_consumed + buf->padding[read_subbuf] == subbuf_size) {
988 if ((read_subbuf == buf->subbufs_produced % n_subbufs) &&
989 (buf->offset == subbuf_size))
990 return;
991 relay_subbufs_consumed(buf->chan, buf->cpu, 1);
992 buf->bytes_consumed = 0;
997 * relay_file_read_avail - boolean, are there unconsumed bytes available?
999 static int relay_file_read_avail(struct rchan_buf *buf)
1001 size_t subbuf_size = buf->chan->subbuf_size;
1002 size_t n_subbufs = buf->chan->n_subbufs;
1003 size_t produced = buf->subbufs_produced;
1004 size_t consumed = buf->subbufs_consumed;
1006 relay_file_read_consume(buf, 0, 0);
1008 consumed = buf->subbufs_consumed;
1010 if (unlikely(buf->offset > subbuf_size)) {
1011 if (produced == consumed)
1012 return 0;
1013 return 1;
1016 if (unlikely(produced - consumed >= n_subbufs)) {
1017 consumed = produced - n_subbufs + 1;
1018 buf->subbufs_consumed = consumed;
1019 buf->bytes_consumed = 0;
1022 produced = (produced % n_subbufs) * subbuf_size + buf->offset;
1023 consumed = (consumed % n_subbufs) * subbuf_size + buf->bytes_consumed;
1025 if (consumed > produced)
1026 produced += n_subbufs * subbuf_size;
1028 if (consumed == produced) {
1029 if (buf->offset == subbuf_size &&
1030 buf->subbufs_produced > buf->subbufs_consumed)
1031 return 1;
1032 return 0;
1035 return 1;
1039 * relay_file_read_subbuf_avail - return bytes available in sub-buffer
1040 * @read_pos: file read position
1041 * @buf: relay channel buffer
1043 static size_t relay_file_read_subbuf_avail(size_t read_pos,
1044 struct rchan_buf *buf)
1046 size_t padding, avail = 0;
1047 size_t read_subbuf, read_offset, write_subbuf, write_offset;
1048 size_t subbuf_size = buf->chan->subbuf_size;
1050 write_subbuf = (buf->data - buf->start) / subbuf_size;
1051 write_offset = buf->offset > subbuf_size ? subbuf_size : buf->offset;
1052 read_subbuf = read_pos / subbuf_size;
1053 read_offset = read_pos % subbuf_size;
1054 padding = buf->padding[read_subbuf];
1056 if (read_subbuf == write_subbuf) {
1057 if (read_offset + padding < write_offset)
1058 avail = write_offset - (read_offset + padding);
1059 } else
1060 avail = (subbuf_size - padding) - read_offset;
1062 return avail;
1066 * relay_file_read_start_pos - find the first available byte to read
1067 * @buf: relay channel buffer
1069 * If the read_pos is in the middle of padding, return the
1070 * position of the first actually available byte, otherwise
1071 * return the original value.
1073 static size_t relay_file_read_start_pos(struct rchan_buf *buf)
1075 size_t read_subbuf, padding, padding_start, padding_end;
1076 size_t subbuf_size = buf->chan->subbuf_size;
1077 size_t n_subbufs = buf->chan->n_subbufs;
1078 size_t consumed = buf->subbufs_consumed % n_subbufs;
1079 size_t read_pos = consumed * subbuf_size + buf->bytes_consumed;
1081 read_subbuf = read_pos / subbuf_size;
1082 padding = buf->padding[read_subbuf];
1083 padding_start = (read_subbuf + 1) * subbuf_size - padding;
1084 padding_end = (read_subbuf + 1) * subbuf_size;
1085 if (read_pos >= padding_start && read_pos < padding_end) {
1086 read_subbuf = (read_subbuf + 1) % n_subbufs;
1087 read_pos = read_subbuf * subbuf_size;
1090 return read_pos;
1094 * relay_file_read_end_pos - return the new read position
1095 * @read_pos: file read position
1096 * @buf: relay channel buffer
1097 * @count: number of bytes to be read
1099 static size_t relay_file_read_end_pos(struct rchan_buf *buf,
1100 size_t read_pos,
1101 size_t count)
1103 size_t read_subbuf, padding, end_pos;
1104 size_t subbuf_size = buf->chan->subbuf_size;
1105 size_t n_subbufs = buf->chan->n_subbufs;
1107 read_subbuf = read_pos / subbuf_size;
1108 padding = buf->padding[read_subbuf];
1109 if (read_pos % subbuf_size + count + padding == subbuf_size)
1110 end_pos = (read_subbuf + 1) * subbuf_size;
1111 else
1112 end_pos = read_pos + count;
1113 if (end_pos >= subbuf_size * n_subbufs)
1114 end_pos = 0;
1116 return end_pos;
1119 static ssize_t relay_file_read(struct file *filp,
1120 char __user *buffer,
1121 size_t count,
1122 loff_t *ppos)
1124 struct rchan_buf *buf = filp->private_data;
1125 size_t read_start, avail;
1126 size_t written = 0;
1127 int ret;
1129 if (!count)
1130 return 0;
1132 inode_lock(file_inode(filp));
1133 do {
1134 void *from;
1136 if (!relay_file_read_avail(buf))
1137 break;
1139 read_start = relay_file_read_start_pos(buf);
1140 avail = relay_file_read_subbuf_avail(read_start, buf);
1141 if (!avail)
1142 break;
1144 avail = min(count, avail);
1145 from = buf->start + read_start;
1146 ret = avail;
1147 if (copy_to_user(buffer, from, avail))
1148 break;
1150 buffer += ret;
1151 written += ret;
1152 count -= ret;
1154 relay_file_read_consume(buf, read_start, ret);
1155 *ppos = relay_file_read_end_pos(buf, read_start, ret);
1156 } while (count);
1157 inode_unlock(file_inode(filp));
1159 return written;
1162 static void relay_consume_bytes(struct rchan_buf *rbuf, int bytes_consumed)
1164 rbuf->bytes_consumed += bytes_consumed;
1166 if (rbuf->bytes_consumed >= rbuf->chan->subbuf_size) {
1167 relay_subbufs_consumed(rbuf->chan, rbuf->cpu, 1);
1168 rbuf->bytes_consumed %= rbuf->chan->subbuf_size;
1172 static void relay_pipe_buf_release(struct pipe_inode_info *pipe,
1173 struct pipe_buffer *buf)
1175 struct rchan_buf *rbuf;
1177 rbuf = (struct rchan_buf *)page_private(buf->page);
1178 relay_consume_bytes(rbuf, buf->private);
1181 static const struct pipe_buf_operations relay_pipe_buf_ops = {
1182 .release = relay_pipe_buf_release,
1183 .try_steal = generic_pipe_buf_try_steal,
1184 .get = generic_pipe_buf_get,
1187 static void relay_page_release(struct splice_pipe_desc *spd, unsigned int i)
1192 * subbuf_splice_actor - splice up to one subbuf's worth of data
1194 static ssize_t subbuf_splice_actor(struct file *in,
1195 loff_t *ppos,
1196 struct pipe_inode_info *pipe,
1197 size_t len,
1198 unsigned int flags,
1199 int *nonpad_ret)
1201 unsigned int pidx, poff, total_len, subbuf_pages, nr_pages;
1202 struct rchan_buf *rbuf = in->private_data;
1203 unsigned int subbuf_size = rbuf->chan->subbuf_size;
1204 uint64_t pos = (uint64_t) *ppos;
1205 uint32_t alloc_size = (uint32_t) rbuf->chan->alloc_size;
1206 size_t read_start = (size_t) do_div(pos, alloc_size);
1207 size_t read_subbuf = read_start / subbuf_size;
1208 size_t padding = rbuf->padding[read_subbuf];
1209 size_t nonpad_end = read_subbuf * subbuf_size + subbuf_size - padding;
1210 struct page *pages[PIPE_DEF_BUFFERS];
1211 struct partial_page partial[PIPE_DEF_BUFFERS];
1212 struct splice_pipe_desc spd = {
1213 .pages = pages,
1214 .nr_pages = 0,
1215 .nr_pages_max = PIPE_DEF_BUFFERS,
1216 .partial = partial,
1217 .ops = &relay_pipe_buf_ops,
1218 .spd_release = relay_page_release,
1220 ssize_t ret;
1222 if (rbuf->subbufs_produced == rbuf->subbufs_consumed)
1223 return 0;
1224 if (splice_grow_spd(pipe, &spd))
1225 return -ENOMEM;
1228 * Adjust read len, if longer than what is available
1230 if (len > (subbuf_size - read_start % subbuf_size))
1231 len = subbuf_size - read_start % subbuf_size;
1233 subbuf_pages = rbuf->chan->alloc_size >> PAGE_SHIFT;
1234 pidx = (read_start / PAGE_SIZE) % subbuf_pages;
1235 poff = read_start & ~PAGE_MASK;
1236 nr_pages = min_t(unsigned int, subbuf_pages, spd.nr_pages_max);
1238 for (total_len = 0; spd.nr_pages < nr_pages; spd.nr_pages++) {
1239 unsigned int this_len, this_end, private;
1240 unsigned int cur_pos = read_start + total_len;
1242 if (!len)
1243 break;
1245 this_len = min_t(unsigned long, len, PAGE_SIZE - poff);
1246 private = this_len;
1248 spd.pages[spd.nr_pages] = rbuf->page_array[pidx];
1249 spd.partial[spd.nr_pages].offset = poff;
1251 this_end = cur_pos + this_len;
1252 if (this_end >= nonpad_end) {
1253 this_len = nonpad_end - cur_pos;
1254 private = this_len + padding;
1256 spd.partial[spd.nr_pages].len = this_len;
1257 spd.partial[spd.nr_pages].private = private;
1259 len -= this_len;
1260 total_len += this_len;
1261 poff = 0;
1262 pidx = (pidx + 1) % subbuf_pages;
1264 if (this_end >= nonpad_end) {
1265 spd.nr_pages++;
1266 break;
1270 ret = 0;
1271 if (!spd.nr_pages)
1272 goto out;
1274 ret = *nonpad_ret = splice_to_pipe(pipe, &spd);
1275 if (ret < 0 || ret < total_len)
1276 goto out;
1278 if (read_start + ret == nonpad_end)
1279 ret += padding;
1281 out:
1282 splice_shrink_spd(&spd);
1283 return ret;
1286 static ssize_t relay_file_splice_read(struct file *in,
1287 loff_t *ppos,
1288 struct pipe_inode_info *pipe,
1289 size_t len,
1290 unsigned int flags)
1292 ssize_t spliced;
1293 int ret;
1294 int nonpad_ret = 0;
1296 ret = 0;
1297 spliced = 0;
1299 while (len && !spliced) {
1300 ret = subbuf_splice_actor(in, ppos, pipe, len, flags, &nonpad_ret);
1301 if (ret < 0)
1302 break;
1303 else if (!ret) {
1304 if (flags & SPLICE_F_NONBLOCK)
1305 ret = -EAGAIN;
1306 break;
1309 *ppos += ret;
1310 if (ret > len)
1311 len = 0;
1312 else
1313 len -= ret;
1314 spliced += nonpad_ret;
1315 nonpad_ret = 0;
1318 if (spliced)
1319 return spliced;
1321 return ret;
1324 const struct file_operations relay_file_operations = {
1325 .open = relay_file_open,
1326 .poll = relay_file_poll,
1327 .mmap = relay_file_mmap,
1328 .read = relay_file_read,
1329 .llseek = no_llseek,
1330 .release = relay_file_release,
1331 .splice_read = relay_file_splice_read,
1333 EXPORT_SYMBOL_GPL(relay_file_operations);