2 * Resizable virtual memory filesystem for Linux.
4 * Copyright (C) 2000 Linus Torvalds.
6 * 2000-2001 Christoph Rohland
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
21 * This file is released under the GPL.
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
32 #include <linux/random.h>
33 #include <linux/sched/signal.h>
34 #include <linux/export.h>
35 #include <linux/swap.h>
36 #include <linux/uio.h>
37 #include <linux/khugepaged.h>
38 #include <linux/hugetlb.h>
40 #include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */
42 static struct vfsmount
*shm_mnt
;
46 * This virtual memory filesystem is heavily based on the ramfs. It
47 * extends ramfs by the ability to use swap and honor resource limits
48 * which makes it a completely usable filesystem.
51 #include <linux/xattr.h>
52 #include <linux/exportfs.h>
53 #include <linux/posix_acl.h>
54 #include <linux/posix_acl_xattr.h>
55 #include <linux/mman.h>
56 #include <linux/string.h>
57 #include <linux/slab.h>
58 #include <linux/backing-dev.h>
59 #include <linux/shmem_fs.h>
60 #include <linux/writeback.h>
61 #include <linux/blkdev.h>
62 #include <linux/pagevec.h>
63 #include <linux/percpu_counter.h>
64 #include <linux/falloc.h>
65 #include <linux/splice.h>
66 #include <linux/security.h>
67 #include <linux/swapops.h>
68 #include <linux/mempolicy.h>
69 #include <linux/namei.h>
70 #include <linux/ctype.h>
71 #include <linux/migrate.h>
72 #include <linux/highmem.h>
73 #include <linux/seq_file.h>
74 #include <linux/magic.h>
75 #include <linux/syscalls.h>
76 #include <linux/fcntl.h>
77 #include <uapi/linux/memfd.h>
78 #include <linux/userfaultfd_k.h>
79 #include <linux/rmap.h>
80 #include <linux/uuid.h>
82 #include <linux/uaccess.h>
83 #include <asm/pgtable.h>
87 #define BLOCKS_PER_PAGE (PAGE_SIZE/512)
88 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT)
90 /* Pretend that each entry is of this size in directory's i_size */
91 #define BOGO_DIRENT_SIZE 20
93 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
94 #define SHORT_SYMLINK_LEN 128
97 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
98 * inode->i_private (with i_mutex making sure that it has only one user at
99 * a time): we would prefer not to enlarge the shmem inode just for that.
101 struct shmem_falloc
{
102 wait_queue_head_t
*waitq
; /* faults into hole wait for punch to end */
103 pgoff_t start
; /* start of range currently being fallocated */
104 pgoff_t next
; /* the next page offset to be fallocated */
105 pgoff_t nr_falloced
; /* how many new pages have been fallocated */
106 pgoff_t nr_unswapped
; /* how often writepage refused to swap out */
110 static unsigned long shmem_default_max_blocks(void)
112 return totalram_pages
/ 2;
115 static unsigned long shmem_default_max_inodes(void)
117 return min(totalram_pages
- totalhigh_pages
, totalram_pages
/ 2);
121 static bool shmem_should_replace_page(struct page
*page
, gfp_t gfp
);
122 static int shmem_replace_page(struct page
**pagep
, gfp_t gfp
,
123 struct shmem_inode_info
*info
, pgoff_t index
);
124 static int shmem_getpage_gfp(struct inode
*inode
, pgoff_t index
,
125 struct page
**pagep
, enum sgp_type sgp
,
126 gfp_t gfp
, struct vm_area_struct
*vma
,
127 struct vm_fault
*vmf
, vm_fault_t
*fault_type
);
129 int shmem_getpage(struct inode
*inode
, pgoff_t index
,
130 struct page
**pagep
, enum sgp_type sgp
)
132 return shmem_getpage_gfp(inode
, index
, pagep
, sgp
,
133 mapping_gfp_mask(inode
->i_mapping
), NULL
, NULL
, NULL
);
136 static inline struct shmem_sb_info
*SHMEM_SB(struct super_block
*sb
)
138 return sb
->s_fs_info
;
142 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
143 * for shared memory and for shared anonymous (/dev/zero) mappings
144 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
145 * consistent with the pre-accounting of private mappings ...
147 static inline int shmem_acct_size(unsigned long flags
, loff_t size
)
149 return (flags
& VM_NORESERVE
) ?
150 0 : security_vm_enough_memory_mm(current
->mm
, VM_ACCT(size
));
153 static inline void shmem_unacct_size(unsigned long flags
, loff_t size
)
155 if (!(flags
& VM_NORESERVE
))
156 vm_unacct_memory(VM_ACCT(size
));
159 static inline int shmem_reacct_size(unsigned long flags
,
160 loff_t oldsize
, loff_t newsize
)
162 if (!(flags
& VM_NORESERVE
)) {
163 if (VM_ACCT(newsize
) > VM_ACCT(oldsize
))
164 return security_vm_enough_memory_mm(current
->mm
,
165 VM_ACCT(newsize
) - VM_ACCT(oldsize
));
166 else if (VM_ACCT(newsize
) < VM_ACCT(oldsize
))
167 vm_unacct_memory(VM_ACCT(oldsize
) - VM_ACCT(newsize
));
173 * ... whereas tmpfs objects are accounted incrementally as
174 * pages are allocated, in order to allow large sparse files.
175 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
176 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
178 static inline int shmem_acct_block(unsigned long flags
, long pages
)
180 if (!(flags
& VM_NORESERVE
))
183 return security_vm_enough_memory_mm(current
->mm
,
184 pages
* VM_ACCT(PAGE_SIZE
));
187 static inline void shmem_unacct_blocks(unsigned long flags
, long pages
)
189 if (flags
& VM_NORESERVE
)
190 vm_unacct_memory(pages
* VM_ACCT(PAGE_SIZE
));
193 static inline bool shmem_inode_acct_block(struct inode
*inode
, long pages
)
195 struct shmem_inode_info
*info
= SHMEM_I(inode
);
196 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
198 if (shmem_acct_block(info
->flags
, pages
))
201 if (sbinfo
->max_blocks
) {
202 if (percpu_counter_compare(&sbinfo
->used_blocks
,
203 sbinfo
->max_blocks
- pages
) > 0)
205 percpu_counter_add(&sbinfo
->used_blocks
, pages
);
211 shmem_unacct_blocks(info
->flags
, pages
);
215 static inline void shmem_inode_unacct_blocks(struct inode
*inode
, long pages
)
217 struct shmem_inode_info
*info
= SHMEM_I(inode
);
218 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
220 if (sbinfo
->max_blocks
)
221 percpu_counter_sub(&sbinfo
->used_blocks
, pages
);
222 shmem_unacct_blocks(info
->flags
, pages
);
225 static const struct super_operations shmem_ops
;
226 static const struct address_space_operations shmem_aops
;
227 static const struct file_operations shmem_file_operations
;
228 static const struct inode_operations shmem_inode_operations
;
229 static const struct inode_operations shmem_dir_inode_operations
;
230 static const struct inode_operations shmem_special_inode_operations
;
231 static const struct vm_operations_struct shmem_vm_ops
;
232 static struct file_system_type shmem_fs_type
;
234 bool vma_is_shmem(struct vm_area_struct
*vma
)
236 return vma
->vm_ops
== &shmem_vm_ops
;
239 static LIST_HEAD(shmem_swaplist
);
240 static DEFINE_MUTEX(shmem_swaplist_mutex
);
242 static int shmem_reserve_inode(struct super_block
*sb
)
244 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
245 if (sbinfo
->max_inodes
) {
246 spin_lock(&sbinfo
->stat_lock
);
247 if (!sbinfo
->free_inodes
) {
248 spin_unlock(&sbinfo
->stat_lock
);
251 sbinfo
->free_inodes
--;
252 spin_unlock(&sbinfo
->stat_lock
);
257 static void shmem_free_inode(struct super_block
*sb
)
259 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
260 if (sbinfo
->max_inodes
) {
261 spin_lock(&sbinfo
->stat_lock
);
262 sbinfo
->free_inodes
++;
263 spin_unlock(&sbinfo
->stat_lock
);
268 * shmem_recalc_inode - recalculate the block usage of an inode
269 * @inode: inode to recalc
271 * We have to calculate the free blocks since the mm can drop
272 * undirtied hole pages behind our back.
274 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
275 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
277 * It has to be called with the spinlock held.
279 static void shmem_recalc_inode(struct inode
*inode
)
281 struct shmem_inode_info
*info
= SHMEM_I(inode
);
284 freed
= info
->alloced
- info
->swapped
- inode
->i_mapping
->nrpages
;
286 info
->alloced
-= freed
;
287 inode
->i_blocks
-= freed
* BLOCKS_PER_PAGE
;
288 shmem_inode_unacct_blocks(inode
, freed
);
292 bool shmem_charge(struct inode
*inode
, long pages
)
294 struct shmem_inode_info
*info
= SHMEM_I(inode
);
297 if (!shmem_inode_acct_block(inode
, pages
))
300 spin_lock_irqsave(&info
->lock
, flags
);
301 info
->alloced
+= pages
;
302 inode
->i_blocks
+= pages
* BLOCKS_PER_PAGE
;
303 shmem_recalc_inode(inode
);
304 spin_unlock_irqrestore(&info
->lock
, flags
);
305 inode
->i_mapping
->nrpages
+= pages
;
310 void shmem_uncharge(struct inode
*inode
, long pages
)
312 struct shmem_inode_info
*info
= SHMEM_I(inode
);
315 spin_lock_irqsave(&info
->lock
, flags
);
316 info
->alloced
-= pages
;
317 inode
->i_blocks
-= pages
* BLOCKS_PER_PAGE
;
318 shmem_recalc_inode(inode
);
319 spin_unlock_irqrestore(&info
->lock
, flags
);
321 shmem_inode_unacct_blocks(inode
, pages
);
325 * Replace item expected in xarray by a new item, while holding xa_lock.
327 static int shmem_replace_entry(struct address_space
*mapping
,
328 pgoff_t index
, void *expected
, void *replacement
)
330 XA_STATE(xas
, &mapping
->i_pages
, index
);
333 VM_BUG_ON(!expected
);
334 VM_BUG_ON(!replacement
);
335 item
= xas_load(&xas
);
336 if (item
!= expected
)
338 xas_store(&xas
, replacement
);
343 * Sometimes, before we decide whether to proceed or to fail, we must check
344 * that an entry was not already brought back from swap by a racing thread.
346 * Checking page is not enough: by the time a SwapCache page is locked, it
347 * might be reused, and again be SwapCache, using the same swap as before.
349 static bool shmem_confirm_swap(struct address_space
*mapping
,
350 pgoff_t index
, swp_entry_t swap
)
352 return xa_load(&mapping
->i_pages
, index
) == swp_to_radix_entry(swap
);
356 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
359 * disables huge pages for the mount;
361 * enables huge pages for the mount;
362 * SHMEM_HUGE_WITHIN_SIZE:
363 * only allocate huge pages if the page will be fully within i_size,
364 * also respect fadvise()/madvise() hints;
366 * only allocate huge pages if requested with fadvise()/madvise();
369 #define SHMEM_HUGE_NEVER 0
370 #define SHMEM_HUGE_ALWAYS 1
371 #define SHMEM_HUGE_WITHIN_SIZE 2
372 #define SHMEM_HUGE_ADVISE 3
376 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
379 * disables huge on shm_mnt and all mounts, for emergency use;
381 * enables huge on shm_mnt and all mounts, w/o needing option, for testing;
384 #define SHMEM_HUGE_DENY (-1)
385 #define SHMEM_HUGE_FORCE (-2)
387 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
388 /* ifdef here to avoid bloating shmem.o when not necessary */
390 static int shmem_huge __read_mostly
;
392 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
393 static int shmem_parse_huge(const char *str
)
395 if (!strcmp(str
, "never"))
396 return SHMEM_HUGE_NEVER
;
397 if (!strcmp(str
, "always"))
398 return SHMEM_HUGE_ALWAYS
;
399 if (!strcmp(str
, "within_size"))
400 return SHMEM_HUGE_WITHIN_SIZE
;
401 if (!strcmp(str
, "advise"))
402 return SHMEM_HUGE_ADVISE
;
403 if (!strcmp(str
, "deny"))
404 return SHMEM_HUGE_DENY
;
405 if (!strcmp(str
, "force"))
406 return SHMEM_HUGE_FORCE
;
410 static const char *shmem_format_huge(int huge
)
413 case SHMEM_HUGE_NEVER
:
415 case SHMEM_HUGE_ALWAYS
:
417 case SHMEM_HUGE_WITHIN_SIZE
:
418 return "within_size";
419 case SHMEM_HUGE_ADVISE
:
421 case SHMEM_HUGE_DENY
:
423 case SHMEM_HUGE_FORCE
:
432 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info
*sbinfo
,
433 struct shrink_control
*sc
, unsigned long nr_to_split
)
435 LIST_HEAD(list
), *pos
, *next
;
436 LIST_HEAD(to_remove
);
438 struct shmem_inode_info
*info
;
440 unsigned long batch
= sc
? sc
->nr_to_scan
: 128;
441 int removed
= 0, split
= 0;
443 if (list_empty(&sbinfo
->shrinklist
))
446 spin_lock(&sbinfo
->shrinklist_lock
);
447 list_for_each_safe(pos
, next
, &sbinfo
->shrinklist
) {
448 info
= list_entry(pos
, struct shmem_inode_info
, shrinklist
);
451 inode
= igrab(&info
->vfs_inode
);
453 /* inode is about to be evicted */
455 list_del_init(&info
->shrinklist
);
460 /* Check if there's anything to gain */
461 if (round_up(inode
->i_size
, PAGE_SIZE
) ==
462 round_up(inode
->i_size
, HPAGE_PMD_SIZE
)) {
463 list_move(&info
->shrinklist
, &to_remove
);
468 list_move(&info
->shrinklist
, &list
);
473 spin_unlock(&sbinfo
->shrinklist_lock
);
475 list_for_each_safe(pos
, next
, &to_remove
) {
476 info
= list_entry(pos
, struct shmem_inode_info
, shrinklist
);
477 inode
= &info
->vfs_inode
;
478 list_del_init(&info
->shrinklist
);
482 list_for_each_safe(pos
, next
, &list
) {
485 info
= list_entry(pos
, struct shmem_inode_info
, shrinklist
);
486 inode
= &info
->vfs_inode
;
488 if (nr_to_split
&& split
>= nr_to_split
)
491 page
= find_get_page(inode
->i_mapping
,
492 (inode
->i_size
& HPAGE_PMD_MASK
) >> PAGE_SHIFT
);
496 /* No huge page at the end of the file: nothing to split */
497 if (!PageTransHuge(page
)) {
503 * Leave the inode on the list if we failed to lock
504 * the page at this time.
506 * Waiting for the lock may lead to deadlock in the
509 if (!trylock_page(page
)) {
514 ret
= split_huge_page(page
);
518 /* If split failed leave the inode on the list */
524 list_del_init(&info
->shrinklist
);
530 spin_lock(&sbinfo
->shrinklist_lock
);
531 list_splice_tail(&list
, &sbinfo
->shrinklist
);
532 sbinfo
->shrinklist_len
-= removed
;
533 spin_unlock(&sbinfo
->shrinklist_lock
);
538 static long shmem_unused_huge_scan(struct super_block
*sb
,
539 struct shrink_control
*sc
)
541 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
543 if (!READ_ONCE(sbinfo
->shrinklist_len
))
546 return shmem_unused_huge_shrink(sbinfo
, sc
, 0);
549 static long shmem_unused_huge_count(struct super_block
*sb
,
550 struct shrink_control
*sc
)
552 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
553 return READ_ONCE(sbinfo
->shrinklist_len
);
555 #else /* !CONFIG_TRANSPARENT_HUGE_PAGECACHE */
557 #define shmem_huge SHMEM_HUGE_DENY
559 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info
*sbinfo
,
560 struct shrink_control
*sc
, unsigned long nr_to_split
)
564 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
566 static inline bool is_huge_enabled(struct shmem_sb_info
*sbinfo
)
568 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE
) &&
569 (shmem_huge
== SHMEM_HUGE_FORCE
|| sbinfo
->huge
) &&
570 shmem_huge
!= SHMEM_HUGE_DENY
)
576 * Like add_to_page_cache_locked, but error if expected item has gone.
578 static int shmem_add_to_page_cache(struct page
*page
,
579 struct address_space
*mapping
,
580 pgoff_t index
, void *expected
)
582 int error
, nr
= hpage_nr_pages(page
);
584 VM_BUG_ON_PAGE(PageTail(page
), page
);
585 VM_BUG_ON_PAGE(index
!= round_down(index
, nr
), page
);
586 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
587 VM_BUG_ON_PAGE(!PageSwapBacked(page
), page
);
588 VM_BUG_ON(expected
&& PageTransHuge(page
));
590 page_ref_add(page
, nr
);
591 page
->mapping
= mapping
;
594 xa_lock_irq(&mapping
->i_pages
);
595 if (PageTransHuge(page
)) {
596 void __rcu
**results
;
601 if (radix_tree_gang_lookup_slot(&mapping
->i_pages
,
602 &results
, &idx
, index
, 1) &&
603 idx
< index
+ HPAGE_PMD_NR
) {
608 for (i
= 0; i
< HPAGE_PMD_NR
; i
++) {
609 error
= radix_tree_insert(&mapping
->i_pages
,
610 index
+ i
, page
+ i
);
613 count_vm_event(THP_FILE_ALLOC
);
615 } else if (!expected
) {
616 error
= radix_tree_insert(&mapping
->i_pages
, index
, page
);
618 error
= shmem_replace_entry(mapping
, index
, expected
, page
);
622 mapping
->nrpages
+= nr
;
623 if (PageTransHuge(page
))
624 __inc_node_page_state(page
, NR_SHMEM_THPS
);
625 __mod_node_page_state(page_pgdat(page
), NR_FILE_PAGES
, nr
);
626 __mod_node_page_state(page_pgdat(page
), NR_SHMEM
, nr
);
627 xa_unlock_irq(&mapping
->i_pages
);
629 page
->mapping
= NULL
;
630 xa_unlock_irq(&mapping
->i_pages
);
631 page_ref_sub(page
, nr
);
637 * Like delete_from_page_cache, but substitutes swap for page.
639 static void shmem_delete_from_page_cache(struct page
*page
, void *radswap
)
641 struct address_space
*mapping
= page
->mapping
;
644 VM_BUG_ON_PAGE(PageCompound(page
), page
);
646 xa_lock_irq(&mapping
->i_pages
);
647 error
= shmem_replace_entry(mapping
, page
->index
, page
, radswap
);
648 page
->mapping
= NULL
;
650 __dec_node_page_state(page
, NR_FILE_PAGES
);
651 __dec_node_page_state(page
, NR_SHMEM
);
652 xa_unlock_irq(&mapping
->i_pages
);
658 * Remove swap entry from radix tree, free the swap and its page cache.
660 static int shmem_free_swap(struct address_space
*mapping
,
661 pgoff_t index
, void *radswap
)
665 xa_lock_irq(&mapping
->i_pages
);
666 old
= radix_tree_delete_item(&mapping
->i_pages
, index
, radswap
);
667 xa_unlock_irq(&mapping
->i_pages
);
670 free_swap_and_cache(radix_to_swp_entry(radswap
));
675 * Determine (in bytes) how many of the shmem object's pages mapped by the
676 * given offsets are swapped out.
678 * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
679 * as long as the inode doesn't go away and racy results are not a problem.
681 unsigned long shmem_partial_swap_usage(struct address_space
*mapping
,
682 pgoff_t start
, pgoff_t end
)
684 struct radix_tree_iter iter
;
687 unsigned long swapped
= 0;
691 radix_tree_for_each_slot(slot
, &mapping
->i_pages
, &iter
, start
) {
692 if (iter
.index
>= end
)
695 page
= radix_tree_deref_slot(slot
);
697 if (radix_tree_deref_retry(page
)) {
698 slot
= radix_tree_iter_retry(&iter
);
702 if (xa_is_value(page
))
705 if (need_resched()) {
706 slot
= radix_tree_iter_resume(slot
, &iter
);
713 return swapped
<< PAGE_SHIFT
;
717 * Determine (in bytes) how many of the shmem object's pages mapped by the
718 * given vma is swapped out.
720 * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
721 * as long as the inode doesn't go away and racy results are not a problem.
723 unsigned long shmem_swap_usage(struct vm_area_struct
*vma
)
725 struct inode
*inode
= file_inode(vma
->vm_file
);
726 struct shmem_inode_info
*info
= SHMEM_I(inode
);
727 struct address_space
*mapping
= inode
->i_mapping
;
728 unsigned long swapped
;
730 /* Be careful as we don't hold info->lock */
731 swapped
= READ_ONCE(info
->swapped
);
734 * The easier cases are when the shmem object has nothing in swap, or
735 * the vma maps it whole. Then we can simply use the stats that we
741 if (!vma
->vm_pgoff
&& vma
->vm_end
- vma
->vm_start
>= inode
->i_size
)
742 return swapped
<< PAGE_SHIFT
;
744 /* Here comes the more involved part */
745 return shmem_partial_swap_usage(mapping
,
746 linear_page_index(vma
, vma
->vm_start
),
747 linear_page_index(vma
, vma
->vm_end
));
751 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
753 void shmem_unlock_mapping(struct address_space
*mapping
)
756 pgoff_t indices
[PAGEVEC_SIZE
];
761 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
763 while (!mapping_unevictable(mapping
)) {
765 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
766 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
768 pvec
.nr
= find_get_entries(mapping
, index
,
769 PAGEVEC_SIZE
, pvec
.pages
, indices
);
772 index
= indices
[pvec
.nr
- 1] + 1;
773 pagevec_remove_exceptionals(&pvec
);
774 check_move_unevictable_pages(pvec
.pages
, pvec
.nr
);
775 pagevec_release(&pvec
);
781 * Remove range of pages and swap entries from radix tree, and free them.
782 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
784 static void shmem_undo_range(struct inode
*inode
, loff_t lstart
, loff_t lend
,
787 struct address_space
*mapping
= inode
->i_mapping
;
788 struct shmem_inode_info
*info
= SHMEM_I(inode
);
789 pgoff_t start
= (lstart
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
790 pgoff_t end
= (lend
+ 1) >> PAGE_SHIFT
;
791 unsigned int partial_start
= lstart
& (PAGE_SIZE
- 1);
792 unsigned int partial_end
= (lend
+ 1) & (PAGE_SIZE
- 1);
794 pgoff_t indices
[PAGEVEC_SIZE
];
795 long nr_swaps_freed
= 0;
800 end
= -1; /* unsigned, so actually very big */
804 while (index
< end
) {
805 pvec
.nr
= find_get_entries(mapping
, index
,
806 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
),
807 pvec
.pages
, indices
);
810 for (i
= 0; i
< pagevec_count(&pvec
); i
++) {
811 struct page
*page
= pvec
.pages
[i
];
817 if (xa_is_value(page
)) {
820 nr_swaps_freed
+= !shmem_free_swap(mapping
,
825 VM_BUG_ON_PAGE(page_to_pgoff(page
) != index
, page
);
827 if (!trylock_page(page
))
830 if (PageTransTail(page
)) {
831 /* Middle of THP: zero out the page */
832 clear_highpage(page
);
835 } else if (PageTransHuge(page
)) {
836 if (index
== round_down(end
, HPAGE_PMD_NR
)) {
838 * Range ends in the middle of THP:
841 clear_highpage(page
);
845 index
+= HPAGE_PMD_NR
- 1;
846 i
+= HPAGE_PMD_NR
- 1;
849 if (!unfalloc
|| !PageUptodate(page
)) {
850 VM_BUG_ON_PAGE(PageTail(page
), page
);
851 if (page_mapping(page
) == mapping
) {
852 VM_BUG_ON_PAGE(PageWriteback(page
), page
);
853 truncate_inode_page(mapping
, page
);
858 pagevec_remove_exceptionals(&pvec
);
859 pagevec_release(&pvec
);
865 struct page
*page
= NULL
;
866 shmem_getpage(inode
, start
- 1, &page
, SGP_READ
);
868 unsigned int top
= PAGE_SIZE
;
873 zero_user_segment(page
, partial_start
, top
);
874 set_page_dirty(page
);
880 struct page
*page
= NULL
;
881 shmem_getpage(inode
, end
, &page
, SGP_READ
);
883 zero_user_segment(page
, 0, partial_end
);
884 set_page_dirty(page
);
893 while (index
< end
) {
896 pvec
.nr
= find_get_entries(mapping
, index
,
897 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
),
898 pvec
.pages
, indices
);
900 /* If all gone or hole-punch or unfalloc, we're done */
901 if (index
== start
|| end
!= -1)
903 /* But if truncating, restart to make sure all gone */
907 for (i
= 0; i
< pagevec_count(&pvec
); i
++) {
908 struct page
*page
= pvec
.pages
[i
];
914 if (xa_is_value(page
)) {
917 if (shmem_free_swap(mapping
, index
, page
)) {
918 /* Swap was replaced by page: retry */
928 if (PageTransTail(page
)) {
929 /* Middle of THP: zero out the page */
930 clear_highpage(page
);
933 * Partial thp truncate due 'start' in middle
934 * of THP: don't need to look on these pages
935 * again on !pvec.nr restart.
937 if (index
!= round_down(end
, HPAGE_PMD_NR
))
940 } else if (PageTransHuge(page
)) {
941 if (index
== round_down(end
, HPAGE_PMD_NR
)) {
943 * Range ends in the middle of THP:
946 clear_highpage(page
);
950 index
+= HPAGE_PMD_NR
- 1;
951 i
+= HPAGE_PMD_NR
- 1;
954 if (!unfalloc
|| !PageUptodate(page
)) {
955 VM_BUG_ON_PAGE(PageTail(page
), page
);
956 if (page_mapping(page
) == mapping
) {
957 VM_BUG_ON_PAGE(PageWriteback(page
), page
);
958 truncate_inode_page(mapping
, page
);
960 /* Page was replaced by swap: retry */
968 pagevec_remove_exceptionals(&pvec
);
969 pagevec_release(&pvec
);
973 spin_lock_irq(&info
->lock
);
974 info
->swapped
-= nr_swaps_freed
;
975 shmem_recalc_inode(inode
);
976 spin_unlock_irq(&info
->lock
);
979 void shmem_truncate_range(struct inode
*inode
, loff_t lstart
, loff_t lend
)
981 shmem_undo_range(inode
, lstart
, lend
, false);
982 inode
->i_ctime
= inode
->i_mtime
= current_time(inode
);
984 EXPORT_SYMBOL_GPL(shmem_truncate_range
);
986 static int shmem_getattr(const struct path
*path
, struct kstat
*stat
,
987 u32 request_mask
, unsigned int query_flags
)
989 struct inode
*inode
= path
->dentry
->d_inode
;
990 struct shmem_inode_info
*info
= SHMEM_I(inode
);
991 struct shmem_sb_info
*sb_info
= SHMEM_SB(inode
->i_sb
);
993 if (info
->alloced
- info
->swapped
!= inode
->i_mapping
->nrpages
) {
994 spin_lock_irq(&info
->lock
);
995 shmem_recalc_inode(inode
);
996 spin_unlock_irq(&info
->lock
);
998 generic_fillattr(inode
, stat
);
1000 if (is_huge_enabled(sb_info
))
1001 stat
->blksize
= HPAGE_PMD_SIZE
;
1006 static int shmem_setattr(struct dentry
*dentry
, struct iattr
*attr
)
1008 struct inode
*inode
= d_inode(dentry
);
1009 struct shmem_inode_info
*info
= SHMEM_I(inode
);
1010 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
1013 error
= setattr_prepare(dentry
, attr
);
1017 if (S_ISREG(inode
->i_mode
) && (attr
->ia_valid
& ATTR_SIZE
)) {
1018 loff_t oldsize
= inode
->i_size
;
1019 loff_t newsize
= attr
->ia_size
;
1021 /* protected by i_mutex */
1022 if ((newsize
< oldsize
&& (info
->seals
& F_SEAL_SHRINK
)) ||
1023 (newsize
> oldsize
&& (info
->seals
& F_SEAL_GROW
)))
1026 if (newsize
!= oldsize
) {
1027 error
= shmem_reacct_size(SHMEM_I(inode
)->flags
,
1031 i_size_write(inode
, newsize
);
1032 inode
->i_ctime
= inode
->i_mtime
= current_time(inode
);
1034 if (newsize
<= oldsize
) {
1035 loff_t holebegin
= round_up(newsize
, PAGE_SIZE
);
1036 if (oldsize
> holebegin
)
1037 unmap_mapping_range(inode
->i_mapping
,
1040 shmem_truncate_range(inode
,
1041 newsize
, (loff_t
)-1);
1042 /* unmap again to remove racily COWed private pages */
1043 if (oldsize
> holebegin
)
1044 unmap_mapping_range(inode
->i_mapping
,
1048 * Part of the huge page can be beyond i_size: subject
1049 * to shrink under memory pressure.
1051 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE
)) {
1052 spin_lock(&sbinfo
->shrinklist_lock
);
1054 * _careful to defend against unlocked access to
1055 * ->shrink_list in shmem_unused_huge_shrink()
1057 if (list_empty_careful(&info
->shrinklist
)) {
1058 list_add_tail(&info
->shrinklist
,
1059 &sbinfo
->shrinklist
);
1060 sbinfo
->shrinklist_len
++;
1062 spin_unlock(&sbinfo
->shrinklist_lock
);
1067 setattr_copy(inode
, attr
);
1068 if (attr
->ia_valid
& ATTR_MODE
)
1069 error
= posix_acl_chmod(inode
, inode
->i_mode
);
1073 static void shmem_evict_inode(struct inode
*inode
)
1075 struct shmem_inode_info
*info
= SHMEM_I(inode
);
1076 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
1078 if (inode
->i_mapping
->a_ops
== &shmem_aops
) {
1079 shmem_unacct_size(info
->flags
, inode
->i_size
);
1081 shmem_truncate_range(inode
, 0, (loff_t
)-1);
1082 if (!list_empty(&info
->shrinklist
)) {
1083 spin_lock(&sbinfo
->shrinklist_lock
);
1084 if (!list_empty(&info
->shrinklist
)) {
1085 list_del_init(&info
->shrinklist
);
1086 sbinfo
->shrinklist_len
--;
1088 spin_unlock(&sbinfo
->shrinklist_lock
);
1090 if (!list_empty(&info
->swaplist
)) {
1091 mutex_lock(&shmem_swaplist_mutex
);
1092 list_del_init(&info
->swaplist
);
1093 mutex_unlock(&shmem_swaplist_mutex
);
1097 simple_xattrs_free(&info
->xattrs
);
1098 WARN_ON(inode
->i_blocks
);
1099 shmem_free_inode(inode
->i_sb
);
1103 static unsigned long find_swap_entry(struct xarray
*xa
, void *item
)
1105 XA_STATE(xas
, xa
, 0);
1106 unsigned int checked
= 0;
1110 xas_for_each(&xas
, entry
, ULONG_MAX
) {
1111 if (xas_retry(&xas
, entry
))
1116 if ((checked
% XA_CHECK_SCHED
) != 0)
1123 return entry
? xas
.xa_index
: -1;
1127 * If swap found in inode, free it and move page from swapcache to filecache.
1129 static int shmem_unuse_inode(struct shmem_inode_info
*info
,
1130 swp_entry_t swap
, struct page
**pagep
)
1132 struct address_space
*mapping
= info
->vfs_inode
.i_mapping
;
1138 radswap
= swp_to_radix_entry(swap
);
1139 index
= find_swap_entry(&mapping
->i_pages
, radswap
);
1141 return -EAGAIN
; /* tell shmem_unuse we found nothing */
1144 * Move _head_ to start search for next from here.
1145 * But be careful: shmem_evict_inode checks list_empty without taking
1146 * mutex, and there's an instant in list_move_tail when info->swaplist
1147 * would appear empty, if it were the only one on shmem_swaplist.
1149 if (shmem_swaplist
.next
!= &info
->swaplist
)
1150 list_move_tail(&shmem_swaplist
, &info
->swaplist
);
1152 gfp
= mapping_gfp_mask(mapping
);
1153 if (shmem_should_replace_page(*pagep
, gfp
)) {
1154 mutex_unlock(&shmem_swaplist_mutex
);
1155 error
= shmem_replace_page(pagep
, gfp
, info
, index
);
1156 mutex_lock(&shmem_swaplist_mutex
);
1158 * We needed to drop mutex to make that restrictive page
1159 * allocation, but the inode might have been freed while we
1160 * dropped it: although a racing shmem_evict_inode() cannot
1161 * complete without emptying the radix_tree, our page lock
1162 * on this swapcache page is not enough to prevent that -
1163 * free_swap_and_cache() of our swap entry will only
1164 * trylock_page(), removing swap from radix_tree whatever.
1166 * We must not proceed to shmem_add_to_page_cache() if the
1167 * inode has been freed, but of course we cannot rely on
1168 * inode or mapping or info to check that. However, we can
1169 * safely check if our swap entry is still in use (and here
1170 * it can't have got reused for another page): if it's still
1171 * in use, then the inode cannot have been freed yet, and we
1172 * can safely proceed (if it's no longer in use, that tells
1173 * nothing about the inode, but we don't need to unuse swap).
1175 if (!page_swapcount(*pagep
))
1180 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
1181 * but also to hold up shmem_evict_inode(): so inode cannot be freed
1182 * beneath us (pagelock doesn't help until the page is in pagecache).
1185 error
= shmem_add_to_page_cache(*pagep
, mapping
, index
,
1187 if (error
!= -ENOMEM
) {
1189 * Truncation and eviction use free_swap_and_cache(), which
1190 * only does trylock page: if we raced, best clean up here.
1192 delete_from_swap_cache(*pagep
);
1193 set_page_dirty(*pagep
);
1195 spin_lock_irq(&info
->lock
);
1197 spin_unlock_irq(&info
->lock
);
1205 * Search through swapped inodes to find and replace swap by page.
1207 int shmem_unuse(swp_entry_t swap
, struct page
*page
)
1209 struct list_head
*this, *next
;
1210 struct shmem_inode_info
*info
;
1211 struct mem_cgroup
*memcg
;
1215 * There's a faint possibility that swap page was replaced before
1216 * caller locked it: caller will come back later with the right page.
1218 if (unlikely(!PageSwapCache(page
) || page_private(page
) != swap
.val
))
1222 * Charge page using GFP_KERNEL while we can wait, before taking
1223 * the shmem_swaplist_mutex which might hold up shmem_writepage().
1224 * Charged back to the user (not to caller) when swap account is used.
1226 error
= mem_cgroup_try_charge_delay(page
, current
->mm
, GFP_KERNEL
,
1230 /* No radix_tree_preload: swap entry keeps a place for page in tree */
1233 mutex_lock(&shmem_swaplist_mutex
);
1234 list_for_each_safe(this, next
, &shmem_swaplist
) {
1235 info
= list_entry(this, struct shmem_inode_info
, swaplist
);
1237 error
= shmem_unuse_inode(info
, swap
, &page
);
1239 list_del_init(&info
->swaplist
);
1241 if (error
!= -EAGAIN
)
1243 /* found nothing in this: move on to search the next */
1245 mutex_unlock(&shmem_swaplist_mutex
);
1248 if (error
!= -ENOMEM
)
1250 mem_cgroup_cancel_charge(page
, memcg
, false);
1252 mem_cgroup_commit_charge(page
, memcg
, true, false);
1260 * Move the page from the page cache to the swap cache.
1262 static int shmem_writepage(struct page
*page
, struct writeback_control
*wbc
)
1264 struct shmem_inode_info
*info
;
1265 struct address_space
*mapping
;
1266 struct inode
*inode
;
1270 VM_BUG_ON_PAGE(PageCompound(page
), page
);
1271 BUG_ON(!PageLocked(page
));
1272 mapping
= page
->mapping
;
1273 index
= page
->index
;
1274 inode
= mapping
->host
;
1275 info
= SHMEM_I(inode
);
1276 if (info
->flags
& VM_LOCKED
)
1278 if (!total_swap_pages
)
1282 * Our capabilities prevent regular writeback or sync from ever calling
1283 * shmem_writepage; but a stacking filesystem might use ->writepage of
1284 * its underlying filesystem, in which case tmpfs should write out to
1285 * swap only in response to memory pressure, and not for the writeback
1288 if (!wbc
->for_reclaim
) {
1289 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
1294 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1295 * value into swapfile.c, the only way we can correctly account for a
1296 * fallocated page arriving here is now to initialize it and write it.
1298 * That's okay for a page already fallocated earlier, but if we have
1299 * not yet completed the fallocation, then (a) we want to keep track
1300 * of this page in case we have to undo it, and (b) it may not be a
1301 * good idea to continue anyway, once we're pushing into swap. So
1302 * reactivate the page, and let shmem_fallocate() quit when too many.
1304 if (!PageUptodate(page
)) {
1305 if (inode
->i_private
) {
1306 struct shmem_falloc
*shmem_falloc
;
1307 spin_lock(&inode
->i_lock
);
1308 shmem_falloc
= inode
->i_private
;
1310 !shmem_falloc
->waitq
&&
1311 index
>= shmem_falloc
->start
&&
1312 index
< shmem_falloc
->next
)
1313 shmem_falloc
->nr_unswapped
++;
1315 shmem_falloc
= NULL
;
1316 spin_unlock(&inode
->i_lock
);
1320 clear_highpage(page
);
1321 flush_dcache_page(page
);
1322 SetPageUptodate(page
);
1325 swap
= get_swap_page(page
);
1330 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1331 * if it's not already there. Do it now before the page is
1332 * moved to swap cache, when its pagelock no longer protects
1333 * the inode from eviction. But don't unlock the mutex until
1334 * we've incremented swapped, because shmem_unuse_inode() will
1335 * prune a !swapped inode from the swaplist under this mutex.
1337 mutex_lock(&shmem_swaplist_mutex
);
1338 if (list_empty(&info
->swaplist
))
1339 list_add_tail(&info
->swaplist
, &shmem_swaplist
);
1341 if (add_to_swap_cache(page
, swap
, GFP_ATOMIC
) == 0) {
1342 spin_lock_irq(&info
->lock
);
1343 shmem_recalc_inode(inode
);
1345 spin_unlock_irq(&info
->lock
);
1347 swap_shmem_alloc(swap
);
1348 shmem_delete_from_page_cache(page
, swp_to_radix_entry(swap
));
1350 mutex_unlock(&shmem_swaplist_mutex
);
1351 BUG_ON(page_mapped(page
));
1352 swap_writepage(page
, wbc
);
1356 mutex_unlock(&shmem_swaplist_mutex
);
1357 put_swap_page(page
, swap
);
1359 set_page_dirty(page
);
1360 if (wbc
->for_reclaim
)
1361 return AOP_WRITEPAGE_ACTIVATE
; /* Return with page locked */
1366 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1367 static void shmem_show_mpol(struct seq_file
*seq
, struct mempolicy
*mpol
)
1371 if (!mpol
|| mpol
->mode
== MPOL_DEFAULT
)
1372 return; /* show nothing */
1374 mpol_to_str(buffer
, sizeof(buffer
), mpol
);
1376 seq_printf(seq
, ",mpol=%s", buffer
);
1379 static struct mempolicy
*shmem_get_sbmpol(struct shmem_sb_info
*sbinfo
)
1381 struct mempolicy
*mpol
= NULL
;
1383 spin_lock(&sbinfo
->stat_lock
); /* prevent replace/use races */
1384 mpol
= sbinfo
->mpol
;
1386 spin_unlock(&sbinfo
->stat_lock
);
1390 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1391 static inline void shmem_show_mpol(struct seq_file
*seq
, struct mempolicy
*mpol
)
1394 static inline struct mempolicy
*shmem_get_sbmpol(struct shmem_sb_info
*sbinfo
)
1398 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1400 #define vm_policy vm_private_data
1403 static void shmem_pseudo_vma_init(struct vm_area_struct
*vma
,
1404 struct shmem_inode_info
*info
, pgoff_t index
)
1406 /* Create a pseudo vma that just contains the policy */
1407 vma_init(vma
, NULL
);
1408 /* Bias interleave by inode number to distribute better across nodes */
1409 vma
->vm_pgoff
= index
+ info
->vfs_inode
.i_ino
;
1410 vma
->vm_policy
= mpol_shared_policy_lookup(&info
->policy
, index
);
1413 static void shmem_pseudo_vma_destroy(struct vm_area_struct
*vma
)
1415 /* Drop reference taken by mpol_shared_policy_lookup() */
1416 mpol_cond_put(vma
->vm_policy
);
1419 static struct page
*shmem_swapin(swp_entry_t swap
, gfp_t gfp
,
1420 struct shmem_inode_info
*info
, pgoff_t index
)
1422 struct vm_area_struct pvma
;
1424 struct vm_fault vmf
;
1426 shmem_pseudo_vma_init(&pvma
, info
, index
);
1429 page
= swap_cluster_readahead(swap
, gfp
, &vmf
);
1430 shmem_pseudo_vma_destroy(&pvma
);
1435 static struct page
*shmem_alloc_hugepage(gfp_t gfp
,
1436 struct shmem_inode_info
*info
, pgoff_t index
)
1438 struct vm_area_struct pvma
;
1439 struct inode
*inode
= &info
->vfs_inode
;
1440 struct address_space
*mapping
= inode
->i_mapping
;
1441 pgoff_t idx
, hindex
;
1442 void __rcu
**results
;
1445 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE
))
1448 hindex
= round_down(index
, HPAGE_PMD_NR
);
1450 if (radix_tree_gang_lookup_slot(&mapping
->i_pages
, &results
, &idx
,
1451 hindex
, 1) && idx
< hindex
+ HPAGE_PMD_NR
) {
1457 shmem_pseudo_vma_init(&pvma
, info
, hindex
);
1458 page
= alloc_pages_vma(gfp
| __GFP_COMP
| __GFP_NORETRY
| __GFP_NOWARN
,
1459 HPAGE_PMD_ORDER
, &pvma
, 0, numa_node_id(), true);
1460 shmem_pseudo_vma_destroy(&pvma
);
1462 prep_transhuge_page(page
);
1466 static struct page
*shmem_alloc_page(gfp_t gfp
,
1467 struct shmem_inode_info
*info
, pgoff_t index
)
1469 struct vm_area_struct pvma
;
1472 shmem_pseudo_vma_init(&pvma
, info
, index
);
1473 page
= alloc_page_vma(gfp
, &pvma
, 0);
1474 shmem_pseudo_vma_destroy(&pvma
);
1479 static struct page
*shmem_alloc_and_acct_page(gfp_t gfp
,
1480 struct inode
*inode
,
1481 pgoff_t index
, bool huge
)
1483 struct shmem_inode_info
*info
= SHMEM_I(inode
);
1488 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE
))
1490 nr
= huge
? HPAGE_PMD_NR
: 1;
1492 if (!shmem_inode_acct_block(inode
, nr
))
1496 page
= shmem_alloc_hugepage(gfp
, info
, index
);
1498 page
= shmem_alloc_page(gfp
, info
, index
);
1500 __SetPageLocked(page
);
1501 __SetPageSwapBacked(page
);
1506 shmem_inode_unacct_blocks(inode
, nr
);
1508 return ERR_PTR(err
);
1512 * When a page is moved from swapcache to shmem filecache (either by the
1513 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1514 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1515 * ignorance of the mapping it belongs to. If that mapping has special
1516 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1517 * we may need to copy to a suitable page before moving to filecache.
1519 * In a future release, this may well be extended to respect cpuset and
1520 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1521 * but for now it is a simple matter of zone.
1523 static bool shmem_should_replace_page(struct page
*page
, gfp_t gfp
)
1525 return page_zonenum(page
) > gfp_zone(gfp
);
1528 static int shmem_replace_page(struct page
**pagep
, gfp_t gfp
,
1529 struct shmem_inode_info
*info
, pgoff_t index
)
1531 struct page
*oldpage
, *newpage
;
1532 struct address_space
*swap_mapping
;
1537 swap_index
= page_private(oldpage
);
1538 swap_mapping
= page_mapping(oldpage
);
1541 * We have arrived here because our zones are constrained, so don't
1542 * limit chance of success by further cpuset and node constraints.
1544 gfp
&= ~GFP_CONSTRAINT_MASK
;
1545 newpage
= shmem_alloc_page(gfp
, info
, index
);
1550 copy_highpage(newpage
, oldpage
);
1551 flush_dcache_page(newpage
);
1553 __SetPageLocked(newpage
);
1554 __SetPageSwapBacked(newpage
);
1555 SetPageUptodate(newpage
);
1556 set_page_private(newpage
, swap_index
);
1557 SetPageSwapCache(newpage
);
1560 * Our caller will very soon move newpage out of swapcache, but it's
1561 * a nice clean interface for us to replace oldpage by newpage there.
1563 xa_lock_irq(&swap_mapping
->i_pages
);
1564 error
= shmem_replace_entry(swap_mapping
, swap_index
, oldpage
, newpage
);
1566 __inc_node_page_state(newpage
, NR_FILE_PAGES
);
1567 __dec_node_page_state(oldpage
, NR_FILE_PAGES
);
1569 xa_unlock_irq(&swap_mapping
->i_pages
);
1571 if (unlikely(error
)) {
1573 * Is this possible? I think not, now that our callers check
1574 * both PageSwapCache and page_private after getting page lock;
1575 * but be defensive. Reverse old to newpage for clear and free.
1579 mem_cgroup_migrate(oldpage
, newpage
);
1580 lru_cache_add_anon(newpage
);
1584 ClearPageSwapCache(oldpage
);
1585 set_page_private(oldpage
, 0);
1587 unlock_page(oldpage
);
1594 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1596 * If we allocate a new one we do not mark it dirty. That's up to the
1597 * vm. If we swap it in we mark it dirty since we also free the swap
1598 * entry since a page cannot live in both the swap and page cache.
1600 * fault_mm and fault_type are only supplied by shmem_fault:
1601 * otherwise they are NULL.
1603 static int shmem_getpage_gfp(struct inode
*inode
, pgoff_t index
,
1604 struct page
**pagep
, enum sgp_type sgp
, gfp_t gfp
,
1605 struct vm_area_struct
*vma
, struct vm_fault
*vmf
,
1606 vm_fault_t
*fault_type
)
1608 struct address_space
*mapping
= inode
->i_mapping
;
1609 struct shmem_inode_info
*info
= SHMEM_I(inode
);
1610 struct shmem_sb_info
*sbinfo
;
1611 struct mm_struct
*charge_mm
;
1612 struct mem_cgroup
*memcg
;
1615 enum sgp_type sgp_huge
= sgp
;
1616 pgoff_t hindex
= index
;
1621 if (index
> (MAX_LFS_FILESIZE
>> PAGE_SHIFT
))
1623 if (sgp
== SGP_NOHUGE
|| sgp
== SGP_HUGE
)
1627 page
= find_lock_entry(mapping
, index
);
1628 if (xa_is_value(page
)) {
1629 swap
= radix_to_swp_entry(page
);
1633 if (sgp
<= SGP_CACHE
&&
1634 ((loff_t
)index
<< PAGE_SHIFT
) >= i_size_read(inode
)) {
1639 if (page
&& sgp
== SGP_WRITE
)
1640 mark_page_accessed(page
);
1642 /* fallocated page? */
1643 if (page
&& !PageUptodate(page
)) {
1644 if (sgp
!= SGP_READ
)
1650 if (page
|| (sgp
== SGP_READ
&& !swap
.val
)) {
1656 * Fast cache lookup did not find it:
1657 * bring it back from swap or allocate.
1659 sbinfo
= SHMEM_SB(inode
->i_sb
);
1660 charge_mm
= vma
? vma
->vm_mm
: current
->mm
;
1663 /* Look it up and read it in.. */
1664 page
= lookup_swap_cache(swap
, NULL
, 0);
1666 /* Or update major stats only when swapin succeeds?? */
1668 *fault_type
|= VM_FAULT_MAJOR
;
1669 count_vm_event(PGMAJFAULT
);
1670 count_memcg_event_mm(charge_mm
, PGMAJFAULT
);
1672 /* Here we actually start the io */
1673 page
= shmem_swapin(swap
, gfp
, info
, index
);
1680 /* We have to do this with page locked to prevent races */
1682 if (!PageSwapCache(page
) || page_private(page
) != swap
.val
||
1683 !shmem_confirm_swap(mapping
, index
, swap
)) {
1684 error
= -EEXIST
; /* try again */
1687 if (!PageUptodate(page
)) {
1691 wait_on_page_writeback(page
);
1693 if (shmem_should_replace_page(page
, gfp
)) {
1694 error
= shmem_replace_page(&page
, gfp
, info
, index
);
1699 error
= mem_cgroup_try_charge_delay(page
, charge_mm
, gfp
, &memcg
,
1702 error
= shmem_add_to_page_cache(page
, mapping
, index
,
1703 swp_to_radix_entry(swap
));
1705 * We already confirmed swap under page lock, and make
1706 * no memory allocation here, so usually no possibility
1707 * of error; but free_swap_and_cache() only trylocks a
1708 * page, so it is just possible that the entry has been
1709 * truncated or holepunched since swap was confirmed.
1710 * shmem_undo_range() will have done some of the
1711 * unaccounting, now delete_from_swap_cache() will do
1713 * Reset swap.val? No, leave it so "failed" goes back to
1714 * "repeat": reading a hole and writing should succeed.
1717 mem_cgroup_cancel_charge(page
, memcg
, false);
1718 delete_from_swap_cache(page
);
1724 mem_cgroup_commit_charge(page
, memcg
, true, false);
1726 spin_lock_irq(&info
->lock
);
1728 shmem_recalc_inode(inode
);
1729 spin_unlock_irq(&info
->lock
);
1731 if (sgp
== SGP_WRITE
)
1732 mark_page_accessed(page
);
1734 delete_from_swap_cache(page
);
1735 set_page_dirty(page
);
1739 if (vma
&& userfaultfd_missing(vma
)) {
1740 *fault_type
= handle_userfault(vmf
, VM_UFFD_MISSING
);
1744 /* shmem_symlink() */
1745 if (mapping
->a_ops
!= &shmem_aops
)
1747 if (shmem_huge
== SHMEM_HUGE_DENY
|| sgp_huge
== SGP_NOHUGE
)
1749 if (shmem_huge
== SHMEM_HUGE_FORCE
)
1751 switch (sbinfo
->huge
) {
1754 case SHMEM_HUGE_NEVER
:
1756 case SHMEM_HUGE_WITHIN_SIZE
:
1757 off
= round_up(index
, HPAGE_PMD_NR
);
1758 i_size
= round_up(i_size_read(inode
), PAGE_SIZE
);
1759 if (i_size
>= HPAGE_PMD_SIZE
&&
1760 i_size
>> PAGE_SHIFT
>= off
)
1763 case SHMEM_HUGE_ADVISE
:
1764 if (sgp_huge
== SGP_HUGE
)
1766 /* TODO: implement fadvise() hints */
1771 page
= shmem_alloc_and_acct_page(gfp
, inode
, index
, true);
1773 alloc_nohuge
: page
= shmem_alloc_and_acct_page(gfp
, inode
,
1778 error
= PTR_ERR(page
);
1780 if (error
!= -ENOSPC
)
1783 * Try to reclaim some spece by splitting a huge page
1784 * beyond i_size on the filesystem.
1788 ret
= shmem_unused_huge_shrink(sbinfo
, NULL
, 1);
1789 if (ret
== SHRINK_STOP
)
1797 if (PageTransHuge(page
))
1798 hindex
= round_down(index
, HPAGE_PMD_NR
);
1802 if (sgp
== SGP_WRITE
)
1803 __SetPageReferenced(page
);
1805 error
= mem_cgroup_try_charge_delay(page
, charge_mm
, gfp
, &memcg
,
1806 PageTransHuge(page
));
1809 error
= radix_tree_maybe_preload_order(gfp
& GFP_RECLAIM_MASK
,
1810 compound_order(page
));
1812 error
= shmem_add_to_page_cache(page
, mapping
, hindex
,
1814 radix_tree_preload_end();
1817 mem_cgroup_cancel_charge(page
, memcg
,
1818 PageTransHuge(page
));
1821 mem_cgroup_commit_charge(page
, memcg
, false,
1822 PageTransHuge(page
));
1823 lru_cache_add_anon(page
);
1825 spin_lock_irq(&info
->lock
);
1826 info
->alloced
+= 1 << compound_order(page
);
1827 inode
->i_blocks
+= BLOCKS_PER_PAGE
<< compound_order(page
);
1828 shmem_recalc_inode(inode
);
1829 spin_unlock_irq(&info
->lock
);
1832 if (PageTransHuge(page
) &&
1833 DIV_ROUND_UP(i_size_read(inode
), PAGE_SIZE
) <
1834 hindex
+ HPAGE_PMD_NR
- 1) {
1836 * Part of the huge page is beyond i_size: subject
1837 * to shrink under memory pressure.
1839 spin_lock(&sbinfo
->shrinklist_lock
);
1841 * _careful to defend against unlocked access to
1842 * ->shrink_list in shmem_unused_huge_shrink()
1844 if (list_empty_careful(&info
->shrinklist
)) {
1845 list_add_tail(&info
->shrinklist
,
1846 &sbinfo
->shrinklist
);
1847 sbinfo
->shrinklist_len
++;
1849 spin_unlock(&sbinfo
->shrinklist_lock
);
1853 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1855 if (sgp
== SGP_FALLOC
)
1859 * Let SGP_WRITE caller clear ends if write does not fill page;
1860 * but SGP_FALLOC on a page fallocated earlier must initialize
1861 * it now, lest undo on failure cancel our earlier guarantee.
1863 if (sgp
!= SGP_WRITE
&& !PageUptodate(page
)) {
1864 struct page
*head
= compound_head(page
);
1867 for (i
= 0; i
< (1 << compound_order(head
)); i
++) {
1868 clear_highpage(head
+ i
);
1869 flush_dcache_page(head
+ i
);
1871 SetPageUptodate(head
);
1875 /* Perhaps the file has been truncated since we checked */
1876 if (sgp
<= SGP_CACHE
&&
1877 ((loff_t
)index
<< PAGE_SHIFT
) >= i_size_read(inode
)) {
1879 ClearPageDirty(page
);
1880 delete_from_page_cache(page
);
1881 spin_lock_irq(&info
->lock
);
1882 shmem_recalc_inode(inode
);
1883 spin_unlock_irq(&info
->lock
);
1888 *pagep
= page
+ index
- hindex
;
1895 shmem_inode_unacct_blocks(inode
, 1 << compound_order(page
));
1897 if (PageTransHuge(page
)) {
1903 if (swap
.val
&& !shmem_confirm_swap(mapping
, index
, swap
))
1910 if (error
== -ENOSPC
&& !once
++) {
1911 spin_lock_irq(&info
->lock
);
1912 shmem_recalc_inode(inode
);
1913 spin_unlock_irq(&info
->lock
);
1916 if (error
== -EEXIST
) /* from above or from radix_tree_insert */
1922 * This is like autoremove_wake_function, but it removes the wait queue
1923 * entry unconditionally - even if something else had already woken the
1926 static int synchronous_wake_function(wait_queue_entry_t
*wait
, unsigned mode
, int sync
, void *key
)
1928 int ret
= default_wake_function(wait
, mode
, sync
, key
);
1929 list_del_init(&wait
->entry
);
1933 static vm_fault_t
shmem_fault(struct vm_fault
*vmf
)
1935 struct vm_area_struct
*vma
= vmf
->vma
;
1936 struct inode
*inode
= file_inode(vma
->vm_file
);
1937 gfp_t gfp
= mapping_gfp_mask(inode
->i_mapping
);
1940 vm_fault_t ret
= VM_FAULT_LOCKED
;
1943 * Trinity finds that probing a hole which tmpfs is punching can
1944 * prevent the hole-punch from ever completing: which in turn
1945 * locks writers out with its hold on i_mutex. So refrain from
1946 * faulting pages into the hole while it's being punched. Although
1947 * shmem_undo_range() does remove the additions, it may be unable to
1948 * keep up, as each new page needs its own unmap_mapping_range() call,
1949 * and the i_mmap tree grows ever slower to scan if new vmas are added.
1951 * It does not matter if we sometimes reach this check just before the
1952 * hole-punch begins, so that one fault then races with the punch:
1953 * we just need to make racing faults a rare case.
1955 * The implementation below would be much simpler if we just used a
1956 * standard mutex or completion: but we cannot take i_mutex in fault,
1957 * and bloating every shmem inode for this unlikely case would be sad.
1959 if (unlikely(inode
->i_private
)) {
1960 struct shmem_falloc
*shmem_falloc
;
1962 spin_lock(&inode
->i_lock
);
1963 shmem_falloc
= inode
->i_private
;
1965 shmem_falloc
->waitq
&&
1966 vmf
->pgoff
>= shmem_falloc
->start
&&
1967 vmf
->pgoff
< shmem_falloc
->next
) {
1968 wait_queue_head_t
*shmem_falloc_waitq
;
1969 DEFINE_WAIT_FUNC(shmem_fault_wait
, synchronous_wake_function
);
1971 ret
= VM_FAULT_NOPAGE
;
1972 if ((vmf
->flags
& FAULT_FLAG_ALLOW_RETRY
) &&
1973 !(vmf
->flags
& FAULT_FLAG_RETRY_NOWAIT
)) {
1974 /* It's polite to up mmap_sem if we can */
1975 up_read(&vma
->vm_mm
->mmap_sem
);
1976 ret
= VM_FAULT_RETRY
;
1979 shmem_falloc_waitq
= shmem_falloc
->waitq
;
1980 prepare_to_wait(shmem_falloc_waitq
, &shmem_fault_wait
,
1981 TASK_UNINTERRUPTIBLE
);
1982 spin_unlock(&inode
->i_lock
);
1986 * shmem_falloc_waitq points into the shmem_fallocate()
1987 * stack of the hole-punching task: shmem_falloc_waitq
1988 * is usually invalid by the time we reach here, but
1989 * finish_wait() does not dereference it in that case;
1990 * though i_lock needed lest racing with wake_up_all().
1992 spin_lock(&inode
->i_lock
);
1993 finish_wait(shmem_falloc_waitq
, &shmem_fault_wait
);
1994 spin_unlock(&inode
->i_lock
);
1997 spin_unlock(&inode
->i_lock
);
2002 if ((vma
->vm_flags
& VM_NOHUGEPAGE
) ||
2003 test_bit(MMF_DISABLE_THP
, &vma
->vm_mm
->flags
))
2005 else if (vma
->vm_flags
& VM_HUGEPAGE
)
2008 err
= shmem_getpage_gfp(inode
, vmf
->pgoff
, &vmf
->page
, sgp
,
2009 gfp
, vma
, vmf
, &ret
);
2011 return vmf_error(err
);
2015 unsigned long shmem_get_unmapped_area(struct file
*file
,
2016 unsigned long uaddr
, unsigned long len
,
2017 unsigned long pgoff
, unsigned long flags
)
2019 unsigned long (*get_area
)(struct file
*,
2020 unsigned long, unsigned long, unsigned long, unsigned long);
2022 unsigned long offset
;
2023 unsigned long inflated_len
;
2024 unsigned long inflated_addr
;
2025 unsigned long inflated_offset
;
2027 if (len
> TASK_SIZE
)
2030 get_area
= current
->mm
->get_unmapped_area
;
2031 addr
= get_area(file
, uaddr
, len
, pgoff
, flags
);
2033 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE
))
2035 if (IS_ERR_VALUE(addr
))
2037 if (addr
& ~PAGE_MASK
)
2039 if (addr
> TASK_SIZE
- len
)
2042 if (shmem_huge
== SHMEM_HUGE_DENY
)
2044 if (len
< HPAGE_PMD_SIZE
)
2046 if (flags
& MAP_FIXED
)
2049 * Our priority is to support MAP_SHARED mapped hugely;
2050 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2051 * But if caller specified an address hint, respect that as before.
2056 if (shmem_huge
!= SHMEM_HUGE_FORCE
) {
2057 struct super_block
*sb
;
2060 VM_BUG_ON(file
->f_op
!= &shmem_file_operations
);
2061 sb
= file_inode(file
)->i_sb
;
2064 * Called directly from mm/mmap.c, or drivers/char/mem.c
2065 * for "/dev/zero", to create a shared anonymous object.
2067 if (IS_ERR(shm_mnt
))
2069 sb
= shm_mnt
->mnt_sb
;
2071 if (SHMEM_SB(sb
)->huge
== SHMEM_HUGE_NEVER
)
2075 offset
= (pgoff
<< PAGE_SHIFT
) & (HPAGE_PMD_SIZE
-1);
2076 if (offset
&& offset
+ len
< 2 * HPAGE_PMD_SIZE
)
2078 if ((addr
& (HPAGE_PMD_SIZE
-1)) == offset
)
2081 inflated_len
= len
+ HPAGE_PMD_SIZE
- PAGE_SIZE
;
2082 if (inflated_len
> TASK_SIZE
)
2084 if (inflated_len
< len
)
2087 inflated_addr
= get_area(NULL
, 0, inflated_len
, 0, flags
);
2088 if (IS_ERR_VALUE(inflated_addr
))
2090 if (inflated_addr
& ~PAGE_MASK
)
2093 inflated_offset
= inflated_addr
& (HPAGE_PMD_SIZE
-1);
2094 inflated_addr
+= offset
- inflated_offset
;
2095 if (inflated_offset
> offset
)
2096 inflated_addr
+= HPAGE_PMD_SIZE
;
2098 if (inflated_addr
> TASK_SIZE
- len
)
2100 return inflated_addr
;
2104 static int shmem_set_policy(struct vm_area_struct
*vma
, struct mempolicy
*mpol
)
2106 struct inode
*inode
= file_inode(vma
->vm_file
);
2107 return mpol_set_shared_policy(&SHMEM_I(inode
)->policy
, vma
, mpol
);
2110 static struct mempolicy
*shmem_get_policy(struct vm_area_struct
*vma
,
2113 struct inode
*inode
= file_inode(vma
->vm_file
);
2116 index
= ((addr
- vma
->vm_start
) >> PAGE_SHIFT
) + vma
->vm_pgoff
;
2117 return mpol_shared_policy_lookup(&SHMEM_I(inode
)->policy
, index
);
2121 int shmem_lock(struct file
*file
, int lock
, struct user_struct
*user
)
2123 struct inode
*inode
= file_inode(file
);
2124 struct shmem_inode_info
*info
= SHMEM_I(inode
);
2125 int retval
= -ENOMEM
;
2127 spin_lock_irq(&info
->lock
);
2128 if (lock
&& !(info
->flags
& VM_LOCKED
)) {
2129 if (!user_shm_lock(inode
->i_size
, user
))
2131 info
->flags
|= VM_LOCKED
;
2132 mapping_set_unevictable(file
->f_mapping
);
2134 if (!lock
&& (info
->flags
& VM_LOCKED
) && user
) {
2135 user_shm_unlock(inode
->i_size
, user
);
2136 info
->flags
&= ~VM_LOCKED
;
2137 mapping_clear_unevictable(file
->f_mapping
);
2142 spin_unlock_irq(&info
->lock
);
2146 static int shmem_mmap(struct file
*file
, struct vm_area_struct
*vma
)
2148 file_accessed(file
);
2149 vma
->vm_ops
= &shmem_vm_ops
;
2150 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE
) &&
2151 ((vma
->vm_start
+ ~HPAGE_PMD_MASK
) & HPAGE_PMD_MASK
) <
2152 (vma
->vm_end
& HPAGE_PMD_MASK
)) {
2153 khugepaged_enter(vma
, vma
->vm_flags
);
2158 static struct inode
*shmem_get_inode(struct super_block
*sb
, const struct inode
*dir
,
2159 umode_t mode
, dev_t dev
, unsigned long flags
)
2161 struct inode
*inode
;
2162 struct shmem_inode_info
*info
;
2163 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
2165 if (shmem_reserve_inode(sb
))
2168 inode
= new_inode(sb
);
2170 inode
->i_ino
= get_next_ino();
2171 inode_init_owner(inode
, dir
, mode
);
2172 inode
->i_blocks
= 0;
2173 inode
->i_atime
= inode
->i_mtime
= inode
->i_ctime
= current_time(inode
);
2174 inode
->i_generation
= prandom_u32();
2175 info
= SHMEM_I(inode
);
2176 memset(info
, 0, (char *)inode
- (char *)info
);
2177 spin_lock_init(&info
->lock
);
2178 info
->seals
= F_SEAL_SEAL
;
2179 info
->flags
= flags
& VM_NORESERVE
;
2180 INIT_LIST_HEAD(&info
->shrinklist
);
2181 INIT_LIST_HEAD(&info
->swaplist
);
2182 simple_xattrs_init(&info
->xattrs
);
2183 cache_no_acl(inode
);
2185 switch (mode
& S_IFMT
) {
2187 inode
->i_op
= &shmem_special_inode_operations
;
2188 init_special_inode(inode
, mode
, dev
);
2191 inode
->i_mapping
->a_ops
= &shmem_aops
;
2192 inode
->i_op
= &shmem_inode_operations
;
2193 inode
->i_fop
= &shmem_file_operations
;
2194 mpol_shared_policy_init(&info
->policy
,
2195 shmem_get_sbmpol(sbinfo
));
2199 /* Some things misbehave if size == 0 on a directory */
2200 inode
->i_size
= 2 * BOGO_DIRENT_SIZE
;
2201 inode
->i_op
= &shmem_dir_inode_operations
;
2202 inode
->i_fop
= &simple_dir_operations
;
2206 * Must not load anything in the rbtree,
2207 * mpol_free_shared_policy will not be called.
2209 mpol_shared_policy_init(&info
->policy
, NULL
);
2213 lockdep_annotate_inode_mutex_key(inode
);
2215 shmem_free_inode(sb
);
2219 bool shmem_mapping(struct address_space
*mapping
)
2221 return mapping
->a_ops
== &shmem_aops
;
2224 static int shmem_mfill_atomic_pte(struct mm_struct
*dst_mm
,
2226 struct vm_area_struct
*dst_vma
,
2227 unsigned long dst_addr
,
2228 unsigned long src_addr
,
2230 struct page
**pagep
)
2232 struct inode
*inode
= file_inode(dst_vma
->vm_file
);
2233 struct shmem_inode_info
*info
= SHMEM_I(inode
);
2234 struct address_space
*mapping
= inode
->i_mapping
;
2235 gfp_t gfp
= mapping_gfp_mask(mapping
);
2236 pgoff_t pgoff
= linear_page_index(dst_vma
, dst_addr
);
2237 struct mem_cgroup
*memcg
;
2241 pte_t _dst_pte
, *dst_pte
;
2245 if (!shmem_inode_acct_block(inode
, 1))
2249 page
= shmem_alloc_page(gfp
, info
, pgoff
);
2251 goto out_unacct_blocks
;
2253 if (!zeropage
) { /* mcopy_atomic */
2254 page_kaddr
= kmap_atomic(page
);
2255 ret
= copy_from_user(page_kaddr
,
2256 (const void __user
*)src_addr
,
2258 kunmap_atomic(page_kaddr
);
2260 /* fallback to copy_from_user outside mmap_sem */
2261 if (unlikely(ret
)) {
2263 shmem_inode_unacct_blocks(inode
, 1);
2264 /* don't free the page */
2267 } else { /* mfill_zeropage_atomic */
2268 clear_highpage(page
);
2275 VM_BUG_ON(PageLocked(page
) || PageSwapBacked(page
));
2276 __SetPageLocked(page
);
2277 __SetPageSwapBacked(page
);
2278 __SetPageUptodate(page
);
2280 ret
= mem_cgroup_try_charge_delay(page
, dst_mm
, gfp
, &memcg
, false);
2284 ret
= radix_tree_maybe_preload(gfp
& GFP_RECLAIM_MASK
);
2286 ret
= shmem_add_to_page_cache(page
, mapping
, pgoff
, NULL
);
2287 radix_tree_preload_end();
2290 goto out_release_uncharge
;
2292 mem_cgroup_commit_charge(page
, memcg
, false, false);
2294 _dst_pte
= mk_pte(page
, dst_vma
->vm_page_prot
);
2295 if (dst_vma
->vm_flags
& VM_WRITE
)
2296 _dst_pte
= pte_mkwrite(pte_mkdirty(_dst_pte
));
2299 dst_pte
= pte_offset_map_lock(dst_mm
, dst_pmd
, dst_addr
, &ptl
);
2300 if (!pte_none(*dst_pte
))
2301 goto out_release_uncharge_unlock
;
2303 lru_cache_add_anon(page
);
2305 spin_lock(&info
->lock
);
2307 inode
->i_blocks
+= BLOCKS_PER_PAGE
;
2308 shmem_recalc_inode(inode
);
2309 spin_unlock(&info
->lock
);
2311 inc_mm_counter(dst_mm
, mm_counter_file(page
));
2312 page_add_file_rmap(page
, false);
2313 set_pte_at(dst_mm
, dst_addr
, dst_pte
, _dst_pte
);
2315 /* No need to invalidate - it was non-present before */
2316 update_mmu_cache(dst_vma
, dst_addr
, dst_pte
);
2318 pte_unmap_unlock(dst_pte
, ptl
);
2322 out_release_uncharge_unlock
:
2323 pte_unmap_unlock(dst_pte
, ptl
);
2324 out_release_uncharge
:
2325 mem_cgroup_cancel_charge(page
, memcg
, false);
2330 shmem_inode_unacct_blocks(inode
, 1);
2334 int shmem_mcopy_atomic_pte(struct mm_struct
*dst_mm
,
2336 struct vm_area_struct
*dst_vma
,
2337 unsigned long dst_addr
,
2338 unsigned long src_addr
,
2339 struct page
**pagep
)
2341 return shmem_mfill_atomic_pte(dst_mm
, dst_pmd
, dst_vma
,
2342 dst_addr
, src_addr
, false, pagep
);
2345 int shmem_mfill_zeropage_pte(struct mm_struct
*dst_mm
,
2347 struct vm_area_struct
*dst_vma
,
2348 unsigned long dst_addr
)
2350 struct page
*page
= NULL
;
2352 return shmem_mfill_atomic_pte(dst_mm
, dst_pmd
, dst_vma
,
2353 dst_addr
, 0, true, &page
);
2357 static const struct inode_operations shmem_symlink_inode_operations
;
2358 static const struct inode_operations shmem_short_symlink_operations
;
2360 #ifdef CONFIG_TMPFS_XATTR
2361 static int shmem_initxattrs(struct inode
*, const struct xattr
*, void *);
2363 #define shmem_initxattrs NULL
2367 shmem_write_begin(struct file
*file
, struct address_space
*mapping
,
2368 loff_t pos
, unsigned len
, unsigned flags
,
2369 struct page
**pagep
, void **fsdata
)
2371 struct inode
*inode
= mapping
->host
;
2372 struct shmem_inode_info
*info
= SHMEM_I(inode
);
2373 pgoff_t index
= pos
>> PAGE_SHIFT
;
2375 /* i_mutex is held by caller */
2376 if (unlikely(info
->seals
& (F_SEAL_WRITE
| F_SEAL_GROW
))) {
2377 if (info
->seals
& F_SEAL_WRITE
)
2379 if ((info
->seals
& F_SEAL_GROW
) && pos
+ len
> inode
->i_size
)
2383 return shmem_getpage(inode
, index
, pagep
, SGP_WRITE
);
2387 shmem_write_end(struct file
*file
, struct address_space
*mapping
,
2388 loff_t pos
, unsigned len
, unsigned copied
,
2389 struct page
*page
, void *fsdata
)
2391 struct inode
*inode
= mapping
->host
;
2393 if (pos
+ copied
> inode
->i_size
)
2394 i_size_write(inode
, pos
+ copied
);
2396 if (!PageUptodate(page
)) {
2397 struct page
*head
= compound_head(page
);
2398 if (PageTransCompound(page
)) {
2401 for (i
= 0; i
< HPAGE_PMD_NR
; i
++) {
2402 if (head
+ i
== page
)
2404 clear_highpage(head
+ i
);
2405 flush_dcache_page(head
+ i
);
2408 if (copied
< PAGE_SIZE
) {
2409 unsigned from
= pos
& (PAGE_SIZE
- 1);
2410 zero_user_segments(page
, 0, from
,
2411 from
+ copied
, PAGE_SIZE
);
2413 SetPageUptodate(head
);
2415 set_page_dirty(page
);
2422 static ssize_t
shmem_file_read_iter(struct kiocb
*iocb
, struct iov_iter
*to
)
2424 struct file
*file
= iocb
->ki_filp
;
2425 struct inode
*inode
= file_inode(file
);
2426 struct address_space
*mapping
= inode
->i_mapping
;
2428 unsigned long offset
;
2429 enum sgp_type sgp
= SGP_READ
;
2432 loff_t
*ppos
= &iocb
->ki_pos
;
2435 * Might this read be for a stacking filesystem? Then when reading
2436 * holes of a sparse file, we actually need to allocate those pages,
2437 * and even mark them dirty, so it cannot exceed the max_blocks limit.
2439 if (!iter_is_iovec(to
))
2442 index
= *ppos
>> PAGE_SHIFT
;
2443 offset
= *ppos
& ~PAGE_MASK
;
2446 struct page
*page
= NULL
;
2448 unsigned long nr
, ret
;
2449 loff_t i_size
= i_size_read(inode
);
2451 end_index
= i_size
>> PAGE_SHIFT
;
2452 if (index
> end_index
)
2454 if (index
== end_index
) {
2455 nr
= i_size
& ~PAGE_MASK
;
2460 error
= shmem_getpage(inode
, index
, &page
, sgp
);
2462 if (error
== -EINVAL
)
2467 if (sgp
== SGP_CACHE
)
2468 set_page_dirty(page
);
2473 * We must evaluate after, since reads (unlike writes)
2474 * are called without i_mutex protection against truncate
2477 i_size
= i_size_read(inode
);
2478 end_index
= i_size
>> PAGE_SHIFT
;
2479 if (index
== end_index
) {
2480 nr
= i_size
& ~PAGE_MASK
;
2491 * If users can be writing to this page using arbitrary
2492 * virtual addresses, take care about potential aliasing
2493 * before reading the page on the kernel side.
2495 if (mapping_writably_mapped(mapping
))
2496 flush_dcache_page(page
);
2498 * Mark the page accessed if we read the beginning.
2501 mark_page_accessed(page
);
2503 page
= ZERO_PAGE(0);
2508 * Ok, we have the page, and it's up-to-date, so
2509 * now we can copy it to user space...
2511 ret
= copy_page_to_iter(page
, offset
, nr
, to
);
2514 index
+= offset
>> PAGE_SHIFT
;
2515 offset
&= ~PAGE_MASK
;
2518 if (!iov_iter_count(to
))
2527 *ppos
= ((loff_t
) index
<< PAGE_SHIFT
) + offset
;
2528 file_accessed(file
);
2529 return retval
? retval
: error
;
2533 * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
2535 static pgoff_t
shmem_seek_hole_data(struct address_space
*mapping
,
2536 pgoff_t index
, pgoff_t end
, int whence
)
2539 struct pagevec pvec
;
2540 pgoff_t indices
[PAGEVEC_SIZE
];
2544 pagevec_init(&pvec
);
2545 pvec
.nr
= 1; /* start small: we may be there already */
2547 pvec
.nr
= find_get_entries(mapping
, index
,
2548 pvec
.nr
, pvec
.pages
, indices
);
2550 if (whence
== SEEK_DATA
)
2554 for (i
= 0; i
< pvec
.nr
; i
++, index
++) {
2555 if (index
< indices
[i
]) {
2556 if (whence
== SEEK_HOLE
) {
2562 page
= pvec
.pages
[i
];
2563 if (page
&& !xa_is_value(page
)) {
2564 if (!PageUptodate(page
))
2568 (page
&& whence
== SEEK_DATA
) ||
2569 (!page
&& whence
== SEEK_HOLE
)) {
2574 pagevec_remove_exceptionals(&pvec
);
2575 pagevec_release(&pvec
);
2576 pvec
.nr
= PAGEVEC_SIZE
;
2582 static loff_t
shmem_file_llseek(struct file
*file
, loff_t offset
, int whence
)
2584 struct address_space
*mapping
= file
->f_mapping
;
2585 struct inode
*inode
= mapping
->host
;
2589 if (whence
!= SEEK_DATA
&& whence
!= SEEK_HOLE
)
2590 return generic_file_llseek_size(file
, offset
, whence
,
2591 MAX_LFS_FILESIZE
, i_size_read(inode
));
2593 /* We're holding i_mutex so we can access i_size directly */
2597 else if (offset
>= inode
->i_size
)
2600 start
= offset
>> PAGE_SHIFT
;
2601 end
= (inode
->i_size
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
2602 new_offset
= shmem_seek_hole_data(mapping
, start
, end
, whence
);
2603 new_offset
<<= PAGE_SHIFT
;
2604 if (new_offset
> offset
) {
2605 if (new_offset
< inode
->i_size
)
2606 offset
= new_offset
;
2607 else if (whence
== SEEK_DATA
)
2610 offset
= inode
->i_size
;
2615 offset
= vfs_setpos(file
, offset
, MAX_LFS_FILESIZE
);
2616 inode_unlock(inode
);
2620 static long shmem_fallocate(struct file
*file
, int mode
, loff_t offset
,
2623 struct inode
*inode
= file_inode(file
);
2624 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
2625 struct shmem_inode_info
*info
= SHMEM_I(inode
);
2626 struct shmem_falloc shmem_falloc
;
2627 pgoff_t start
, index
, end
;
2630 if (mode
& ~(FALLOC_FL_KEEP_SIZE
| FALLOC_FL_PUNCH_HOLE
))
2635 if (mode
& FALLOC_FL_PUNCH_HOLE
) {
2636 struct address_space
*mapping
= file
->f_mapping
;
2637 loff_t unmap_start
= round_up(offset
, PAGE_SIZE
);
2638 loff_t unmap_end
= round_down(offset
+ len
, PAGE_SIZE
) - 1;
2639 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq
);
2641 /* protected by i_mutex */
2642 if (info
->seals
& F_SEAL_WRITE
) {
2647 shmem_falloc
.waitq
= &shmem_falloc_waitq
;
2648 shmem_falloc
.start
= unmap_start
>> PAGE_SHIFT
;
2649 shmem_falloc
.next
= (unmap_end
+ 1) >> PAGE_SHIFT
;
2650 spin_lock(&inode
->i_lock
);
2651 inode
->i_private
= &shmem_falloc
;
2652 spin_unlock(&inode
->i_lock
);
2654 if ((u64
)unmap_end
> (u64
)unmap_start
)
2655 unmap_mapping_range(mapping
, unmap_start
,
2656 1 + unmap_end
- unmap_start
, 0);
2657 shmem_truncate_range(inode
, offset
, offset
+ len
- 1);
2658 /* No need to unmap again: hole-punching leaves COWed pages */
2660 spin_lock(&inode
->i_lock
);
2661 inode
->i_private
= NULL
;
2662 wake_up_all(&shmem_falloc_waitq
);
2663 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq
.head
));
2664 spin_unlock(&inode
->i_lock
);
2669 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2670 error
= inode_newsize_ok(inode
, offset
+ len
);
2674 if ((info
->seals
& F_SEAL_GROW
) && offset
+ len
> inode
->i_size
) {
2679 start
= offset
>> PAGE_SHIFT
;
2680 end
= (offset
+ len
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
2681 /* Try to avoid a swapstorm if len is impossible to satisfy */
2682 if (sbinfo
->max_blocks
&& end
- start
> sbinfo
->max_blocks
) {
2687 shmem_falloc
.waitq
= NULL
;
2688 shmem_falloc
.start
= start
;
2689 shmem_falloc
.next
= start
;
2690 shmem_falloc
.nr_falloced
= 0;
2691 shmem_falloc
.nr_unswapped
= 0;
2692 spin_lock(&inode
->i_lock
);
2693 inode
->i_private
= &shmem_falloc
;
2694 spin_unlock(&inode
->i_lock
);
2696 for (index
= start
; index
< end
; index
++) {
2700 * Good, the fallocate(2) manpage permits EINTR: we may have
2701 * been interrupted because we are using up too much memory.
2703 if (signal_pending(current
))
2705 else if (shmem_falloc
.nr_unswapped
> shmem_falloc
.nr_falloced
)
2708 error
= shmem_getpage(inode
, index
, &page
, SGP_FALLOC
);
2710 /* Remove the !PageUptodate pages we added */
2711 if (index
> start
) {
2712 shmem_undo_range(inode
,
2713 (loff_t
)start
<< PAGE_SHIFT
,
2714 ((loff_t
)index
<< PAGE_SHIFT
) - 1, true);
2720 * Inform shmem_writepage() how far we have reached.
2721 * No need for lock or barrier: we have the page lock.
2723 shmem_falloc
.next
++;
2724 if (!PageUptodate(page
))
2725 shmem_falloc
.nr_falloced
++;
2728 * If !PageUptodate, leave it that way so that freeable pages
2729 * can be recognized if we need to rollback on error later.
2730 * But set_page_dirty so that memory pressure will swap rather
2731 * than free the pages we are allocating (and SGP_CACHE pages
2732 * might still be clean: we now need to mark those dirty too).
2734 set_page_dirty(page
);
2740 if (!(mode
& FALLOC_FL_KEEP_SIZE
) && offset
+ len
> inode
->i_size
)
2741 i_size_write(inode
, offset
+ len
);
2742 inode
->i_ctime
= current_time(inode
);
2744 spin_lock(&inode
->i_lock
);
2745 inode
->i_private
= NULL
;
2746 spin_unlock(&inode
->i_lock
);
2748 inode_unlock(inode
);
2752 static int shmem_statfs(struct dentry
*dentry
, struct kstatfs
*buf
)
2754 struct shmem_sb_info
*sbinfo
= SHMEM_SB(dentry
->d_sb
);
2756 buf
->f_type
= TMPFS_MAGIC
;
2757 buf
->f_bsize
= PAGE_SIZE
;
2758 buf
->f_namelen
= NAME_MAX
;
2759 if (sbinfo
->max_blocks
) {
2760 buf
->f_blocks
= sbinfo
->max_blocks
;
2762 buf
->f_bfree
= sbinfo
->max_blocks
-
2763 percpu_counter_sum(&sbinfo
->used_blocks
);
2765 if (sbinfo
->max_inodes
) {
2766 buf
->f_files
= sbinfo
->max_inodes
;
2767 buf
->f_ffree
= sbinfo
->free_inodes
;
2769 /* else leave those fields 0 like simple_statfs */
2774 * File creation. Allocate an inode, and we're done..
2777 shmem_mknod(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
, dev_t dev
)
2779 struct inode
*inode
;
2780 int error
= -ENOSPC
;
2782 inode
= shmem_get_inode(dir
->i_sb
, dir
, mode
, dev
, VM_NORESERVE
);
2784 error
= simple_acl_create(dir
, inode
);
2787 error
= security_inode_init_security(inode
, dir
,
2789 shmem_initxattrs
, NULL
);
2790 if (error
&& error
!= -EOPNOTSUPP
)
2794 dir
->i_size
+= BOGO_DIRENT_SIZE
;
2795 dir
->i_ctime
= dir
->i_mtime
= current_time(dir
);
2796 d_instantiate(dentry
, inode
);
2797 dget(dentry
); /* Extra count - pin the dentry in core */
2806 shmem_tmpfile(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
)
2808 struct inode
*inode
;
2809 int error
= -ENOSPC
;
2811 inode
= shmem_get_inode(dir
->i_sb
, dir
, mode
, 0, VM_NORESERVE
);
2813 error
= security_inode_init_security(inode
, dir
,
2815 shmem_initxattrs
, NULL
);
2816 if (error
&& error
!= -EOPNOTSUPP
)
2818 error
= simple_acl_create(dir
, inode
);
2821 d_tmpfile(dentry
, inode
);
2829 static int shmem_mkdir(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
)
2833 if ((error
= shmem_mknod(dir
, dentry
, mode
| S_IFDIR
, 0)))
2839 static int shmem_create(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
,
2842 return shmem_mknod(dir
, dentry
, mode
| S_IFREG
, 0);
2848 static int shmem_link(struct dentry
*old_dentry
, struct inode
*dir
, struct dentry
*dentry
)
2850 struct inode
*inode
= d_inode(old_dentry
);
2854 * No ordinary (disk based) filesystem counts links as inodes;
2855 * but each new link needs a new dentry, pinning lowmem, and
2856 * tmpfs dentries cannot be pruned until they are unlinked.
2858 ret
= shmem_reserve_inode(inode
->i_sb
);
2862 dir
->i_size
+= BOGO_DIRENT_SIZE
;
2863 inode
->i_ctime
= dir
->i_ctime
= dir
->i_mtime
= current_time(inode
);
2865 ihold(inode
); /* New dentry reference */
2866 dget(dentry
); /* Extra pinning count for the created dentry */
2867 d_instantiate(dentry
, inode
);
2872 static int shmem_unlink(struct inode
*dir
, struct dentry
*dentry
)
2874 struct inode
*inode
= d_inode(dentry
);
2876 if (inode
->i_nlink
> 1 && !S_ISDIR(inode
->i_mode
))
2877 shmem_free_inode(inode
->i_sb
);
2879 dir
->i_size
-= BOGO_DIRENT_SIZE
;
2880 inode
->i_ctime
= dir
->i_ctime
= dir
->i_mtime
= current_time(inode
);
2882 dput(dentry
); /* Undo the count from "create" - this does all the work */
2886 static int shmem_rmdir(struct inode
*dir
, struct dentry
*dentry
)
2888 if (!simple_empty(dentry
))
2891 drop_nlink(d_inode(dentry
));
2893 return shmem_unlink(dir
, dentry
);
2896 static int shmem_exchange(struct inode
*old_dir
, struct dentry
*old_dentry
, struct inode
*new_dir
, struct dentry
*new_dentry
)
2898 bool old_is_dir
= d_is_dir(old_dentry
);
2899 bool new_is_dir
= d_is_dir(new_dentry
);
2901 if (old_dir
!= new_dir
&& old_is_dir
!= new_is_dir
) {
2903 drop_nlink(old_dir
);
2906 drop_nlink(new_dir
);
2910 old_dir
->i_ctime
= old_dir
->i_mtime
=
2911 new_dir
->i_ctime
= new_dir
->i_mtime
=
2912 d_inode(old_dentry
)->i_ctime
=
2913 d_inode(new_dentry
)->i_ctime
= current_time(old_dir
);
2918 static int shmem_whiteout(struct inode
*old_dir
, struct dentry
*old_dentry
)
2920 struct dentry
*whiteout
;
2923 whiteout
= d_alloc(old_dentry
->d_parent
, &old_dentry
->d_name
);
2927 error
= shmem_mknod(old_dir
, whiteout
,
2928 S_IFCHR
| WHITEOUT_MODE
, WHITEOUT_DEV
);
2934 * Cheat and hash the whiteout while the old dentry is still in
2935 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
2937 * d_lookup() will consistently find one of them at this point,
2938 * not sure which one, but that isn't even important.
2945 * The VFS layer already does all the dentry stuff for rename,
2946 * we just have to decrement the usage count for the target if
2947 * it exists so that the VFS layer correctly free's it when it
2950 static int shmem_rename2(struct inode
*old_dir
, struct dentry
*old_dentry
, struct inode
*new_dir
, struct dentry
*new_dentry
, unsigned int flags
)
2952 struct inode
*inode
= d_inode(old_dentry
);
2953 int they_are_dirs
= S_ISDIR(inode
->i_mode
);
2955 if (flags
& ~(RENAME_NOREPLACE
| RENAME_EXCHANGE
| RENAME_WHITEOUT
))
2958 if (flags
& RENAME_EXCHANGE
)
2959 return shmem_exchange(old_dir
, old_dentry
, new_dir
, new_dentry
);
2961 if (!simple_empty(new_dentry
))
2964 if (flags
& RENAME_WHITEOUT
) {
2967 error
= shmem_whiteout(old_dir
, old_dentry
);
2972 if (d_really_is_positive(new_dentry
)) {
2973 (void) shmem_unlink(new_dir
, new_dentry
);
2974 if (they_are_dirs
) {
2975 drop_nlink(d_inode(new_dentry
));
2976 drop_nlink(old_dir
);
2978 } else if (they_are_dirs
) {
2979 drop_nlink(old_dir
);
2983 old_dir
->i_size
-= BOGO_DIRENT_SIZE
;
2984 new_dir
->i_size
+= BOGO_DIRENT_SIZE
;
2985 old_dir
->i_ctime
= old_dir
->i_mtime
=
2986 new_dir
->i_ctime
= new_dir
->i_mtime
=
2987 inode
->i_ctime
= current_time(old_dir
);
2991 static int shmem_symlink(struct inode
*dir
, struct dentry
*dentry
, const char *symname
)
2995 struct inode
*inode
;
2998 len
= strlen(symname
) + 1;
2999 if (len
> PAGE_SIZE
)
3000 return -ENAMETOOLONG
;
3002 inode
= shmem_get_inode(dir
->i_sb
, dir
, S_IFLNK
| 0777, 0,
3007 error
= security_inode_init_security(inode
, dir
, &dentry
->d_name
,
3008 shmem_initxattrs
, NULL
);
3010 if (error
!= -EOPNOTSUPP
) {
3017 inode
->i_size
= len
-1;
3018 if (len
<= SHORT_SYMLINK_LEN
) {
3019 inode
->i_link
= kmemdup(symname
, len
, GFP_KERNEL
);
3020 if (!inode
->i_link
) {
3024 inode
->i_op
= &shmem_short_symlink_operations
;
3026 inode_nohighmem(inode
);
3027 error
= shmem_getpage(inode
, 0, &page
, SGP_WRITE
);
3032 inode
->i_mapping
->a_ops
= &shmem_aops
;
3033 inode
->i_op
= &shmem_symlink_inode_operations
;
3034 memcpy(page_address(page
), symname
, len
);
3035 SetPageUptodate(page
);
3036 set_page_dirty(page
);
3040 dir
->i_size
+= BOGO_DIRENT_SIZE
;
3041 dir
->i_ctime
= dir
->i_mtime
= current_time(dir
);
3042 d_instantiate(dentry
, inode
);
3047 static void shmem_put_link(void *arg
)
3049 mark_page_accessed(arg
);
3053 static const char *shmem_get_link(struct dentry
*dentry
,
3054 struct inode
*inode
,
3055 struct delayed_call
*done
)
3057 struct page
*page
= NULL
;
3060 page
= find_get_page(inode
->i_mapping
, 0);
3062 return ERR_PTR(-ECHILD
);
3063 if (!PageUptodate(page
)) {
3065 return ERR_PTR(-ECHILD
);
3068 error
= shmem_getpage(inode
, 0, &page
, SGP_READ
);
3070 return ERR_PTR(error
);
3073 set_delayed_call(done
, shmem_put_link
, page
);
3074 return page_address(page
);
3077 #ifdef CONFIG_TMPFS_XATTR
3079 * Superblocks without xattr inode operations may get some security.* xattr
3080 * support from the LSM "for free". As soon as we have any other xattrs
3081 * like ACLs, we also need to implement the security.* handlers at
3082 * filesystem level, though.
3086 * Callback for security_inode_init_security() for acquiring xattrs.
3088 static int shmem_initxattrs(struct inode
*inode
,
3089 const struct xattr
*xattr_array
,
3092 struct shmem_inode_info
*info
= SHMEM_I(inode
);
3093 const struct xattr
*xattr
;
3094 struct simple_xattr
*new_xattr
;
3097 for (xattr
= xattr_array
; xattr
->name
!= NULL
; xattr
++) {
3098 new_xattr
= simple_xattr_alloc(xattr
->value
, xattr
->value_len
);
3102 len
= strlen(xattr
->name
) + 1;
3103 new_xattr
->name
= kmalloc(XATTR_SECURITY_PREFIX_LEN
+ len
,
3105 if (!new_xattr
->name
) {
3110 memcpy(new_xattr
->name
, XATTR_SECURITY_PREFIX
,
3111 XATTR_SECURITY_PREFIX_LEN
);
3112 memcpy(new_xattr
->name
+ XATTR_SECURITY_PREFIX_LEN
,
3115 simple_xattr_list_add(&info
->xattrs
, new_xattr
);
3121 static int shmem_xattr_handler_get(const struct xattr_handler
*handler
,
3122 struct dentry
*unused
, struct inode
*inode
,
3123 const char *name
, void *buffer
, size_t size
)
3125 struct shmem_inode_info
*info
= SHMEM_I(inode
);
3127 name
= xattr_full_name(handler
, name
);
3128 return simple_xattr_get(&info
->xattrs
, name
, buffer
, size
);
3131 static int shmem_xattr_handler_set(const struct xattr_handler
*handler
,
3132 struct dentry
*unused
, struct inode
*inode
,
3133 const char *name
, const void *value
,
3134 size_t size
, int flags
)
3136 struct shmem_inode_info
*info
= SHMEM_I(inode
);
3138 name
= xattr_full_name(handler
, name
);
3139 return simple_xattr_set(&info
->xattrs
, name
, value
, size
, flags
);
3142 static const struct xattr_handler shmem_security_xattr_handler
= {
3143 .prefix
= XATTR_SECURITY_PREFIX
,
3144 .get
= shmem_xattr_handler_get
,
3145 .set
= shmem_xattr_handler_set
,
3148 static const struct xattr_handler shmem_trusted_xattr_handler
= {
3149 .prefix
= XATTR_TRUSTED_PREFIX
,
3150 .get
= shmem_xattr_handler_get
,
3151 .set
= shmem_xattr_handler_set
,
3154 static const struct xattr_handler
*shmem_xattr_handlers
[] = {
3155 #ifdef CONFIG_TMPFS_POSIX_ACL
3156 &posix_acl_access_xattr_handler
,
3157 &posix_acl_default_xattr_handler
,
3159 &shmem_security_xattr_handler
,
3160 &shmem_trusted_xattr_handler
,
3164 static ssize_t
shmem_listxattr(struct dentry
*dentry
, char *buffer
, size_t size
)
3166 struct shmem_inode_info
*info
= SHMEM_I(d_inode(dentry
));
3167 return simple_xattr_list(d_inode(dentry
), &info
->xattrs
, buffer
, size
);
3169 #endif /* CONFIG_TMPFS_XATTR */
3171 static const struct inode_operations shmem_short_symlink_operations
= {
3172 .get_link
= simple_get_link
,
3173 #ifdef CONFIG_TMPFS_XATTR
3174 .listxattr
= shmem_listxattr
,
3178 static const struct inode_operations shmem_symlink_inode_operations
= {
3179 .get_link
= shmem_get_link
,
3180 #ifdef CONFIG_TMPFS_XATTR
3181 .listxattr
= shmem_listxattr
,
3185 static struct dentry
*shmem_get_parent(struct dentry
*child
)
3187 return ERR_PTR(-ESTALE
);
3190 static int shmem_match(struct inode
*ino
, void *vfh
)
3194 inum
= (inum
<< 32) | fh
[1];
3195 return ino
->i_ino
== inum
&& fh
[0] == ino
->i_generation
;
3198 /* Find any alias of inode, but prefer a hashed alias */
3199 static struct dentry
*shmem_find_alias(struct inode
*inode
)
3201 struct dentry
*alias
= d_find_alias(inode
);
3203 return alias
?: d_find_any_alias(inode
);
3207 static struct dentry
*shmem_fh_to_dentry(struct super_block
*sb
,
3208 struct fid
*fid
, int fh_len
, int fh_type
)
3210 struct inode
*inode
;
3211 struct dentry
*dentry
= NULL
;
3218 inum
= (inum
<< 32) | fid
->raw
[1];
3220 inode
= ilookup5(sb
, (unsigned long)(inum
+ fid
->raw
[0]),
3221 shmem_match
, fid
->raw
);
3223 dentry
= shmem_find_alias(inode
);
3230 static int shmem_encode_fh(struct inode
*inode
, __u32
*fh
, int *len
,
3231 struct inode
*parent
)
3235 return FILEID_INVALID
;
3238 if (inode_unhashed(inode
)) {
3239 /* Unfortunately insert_inode_hash is not idempotent,
3240 * so as we hash inodes here rather than at creation
3241 * time, we need a lock to ensure we only try
3244 static DEFINE_SPINLOCK(lock
);
3246 if (inode_unhashed(inode
))
3247 __insert_inode_hash(inode
,
3248 inode
->i_ino
+ inode
->i_generation
);
3252 fh
[0] = inode
->i_generation
;
3253 fh
[1] = inode
->i_ino
;
3254 fh
[2] = ((__u64
)inode
->i_ino
) >> 32;
3260 static const struct export_operations shmem_export_ops
= {
3261 .get_parent
= shmem_get_parent
,
3262 .encode_fh
= shmem_encode_fh
,
3263 .fh_to_dentry
= shmem_fh_to_dentry
,
3266 static int shmem_parse_options(char *options
, struct shmem_sb_info
*sbinfo
,
3269 char *this_char
, *value
, *rest
;
3270 struct mempolicy
*mpol
= NULL
;
3274 while (options
!= NULL
) {
3275 this_char
= options
;
3278 * NUL-terminate this option: unfortunately,
3279 * mount options form a comma-separated list,
3280 * but mpol's nodelist may also contain commas.
3282 options
= strchr(options
, ',');
3283 if (options
== NULL
)
3286 if (!isdigit(*options
)) {
3293 if ((value
= strchr(this_char
,'=')) != NULL
) {
3296 pr_err("tmpfs: No value for mount option '%s'\n",
3301 if (!strcmp(this_char
,"size")) {
3302 unsigned long long size
;
3303 size
= memparse(value
,&rest
);
3305 size
<<= PAGE_SHIFT
;
3306 size
*= totalram_pages
;
3312 sbinfo
->max_blocks
=
3313 DIV_ROUND_UP(size
, PAGE_SIZE
);
3314 } else if (!strcmp(this_char
,"nr_blocks")) {
3315 sbinfo
->max_blocks
= memparse(value
, &rest
);
3318 } else if (!strcmp(this_char
,"nr_inodes")) {
3319 sbinfo
->max_inodes
= memparse(value
, &rest
);
3322 } else if (!strcmp(this_char
,"mode")) {
3325 sbinfo
->mode
= simple_strtoul(value
, &rest
, 8) & 07777;
3328 } else if (!strcmp(this_char
,"uid")) {
3331 uid
= simple_strtoul(value
, &rest
, 0);
3334 sbinfo
->uid
= make_kuid(current_user_ns(), uid
);
3335 if (!uid_valid(sbinfo
->uid
))
3337 } else if (!strcmp(this_char
,"gid")) {
3340 gid
= simple_strtoul(value
, &rest
, 0);
3343 sbinfo
->gid
= make_kgid(current_user_ns(), gid
);
3344 if (!gid_valid(sbinfo
->gid
))
3346 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3347 } else if (!strcmp(this_char
, "huge")) {
3349 huge
= shmem_parse_huge(value
);
3352 if (!has_transparent_hugepage() &&
3353 huge
!= SHMEM_HUGE_NEVER
)
3355 sbinfo
->huge
= huge
;
3358 } else if (!strcmp(this_char
,"mpol")) {
3361 if (mpol_parse_str(value
, &mpol
))
3365 pr_err("tmpfs: Bad mount option %s\n", this_char
);
3369 sbinfo
->mpol
= mpol
;
3373 pr_err("tmpfs: Bad value '%s' for mount option '%s'\n",
3381 static int shmem_remount_fs(struct super_block
*sb
, int *flags
, char *data
)
3383 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
3384 struct shmem_sb_info config
= *sbinfo
;
3385 unsigned long inodes
;
3386 int error
= -EINVAL
;
3389 if (shmem_parse_options(data
, &config
, true))
3392 spin_lock(&sbinfo
->stat_lock
);
3393 inodes
= sbinfo
->max_inodes
- sbinfo
->free_inodes
;
3394 if (percpu_counter_compare(&sbinfo
->used_blocks
, config
.max_blocks
) > 0)
3396 if (config
.max_inodes
< inodes
)
3399 * Those tests disallow limited->unlimited while any are in use;
3400 * but we must separately disallow unlimited->limited, because
3401 * in that case we have no record of how much is already in use.
3403 if (config
.max_blocks
&& !sbinfo
->max_blocks
)
3405 if (config
.max_inodes
&& !sbinfo
->max_inodes
)
3409 sbinfo
->huge
= config
.huge
;
3410 sbinfo
->max_blocks
= config
.max_blocks
;
3411 sbinfo
->max_inodes
= config
.max_inodes
;
3412 sbinfo
->free_inodes
= config
.max_inodes
- inodes
;
3415 * Preserve previous mempolicy unless mpol remount option was specified.
3418 mpol_put(sbinfo
->mpol
);
3419 sbinfo
->mpol
= config
.mpol
; /* transfers initial ref */
3422 spin_unlock(&sbinfo
->stat_lock
);
3426 static int shmem_show_options(struct seq_file
*seq
, struct dentry
*root
)
3428 struct shmem_sb_info
*sbinfo
= SHMEM_SB(root
->d_sb
);
3430 if (sbinfo
->max_blocks
!= shmem_default_max_blocks())
3431 seq_printf(seq
, ",size=%luk",
3432 sbinfo
->max_blocks
<< (PAGE_SHIFT
- 10));
3433 if (sbinfo
->max_inodes
!= shmem_default_max_inodes())
3434 seq_printf(seq
, ",nr_inodes=%lu", sbinfo
->max_inodes
);
3435 if (sbinfo
->mode
!= (0777 | S_ISVTX
))
3436 seq_printf(seq
, ",mode=%03ho", sbinfo
->mode
);
3437 if (!uid_eq(sbinfo
->uid
, GLOBAL_ROOT_UID
))
3438 seq_printf(seq
, ",uid=%u",
3439 from_kuid_munged(&init_user_ns
, sbinfo
->uid
));
3440 if (!gid_eq(sbinfo
->gid
, GLOBAL_ROOT_GID
))
3441 seq_printf(seq
, ",gid=%u",
3442 from_kgid_munged(&init_user_ns
, sbinfo
->gid
));
3443 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3444 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3446 seq_printf(seq
, ",huge=%s", shmem_format_huge(sbinfo
->huge
));
3448 shmem_show_mpol(seq
, sbinfo
->mpol
);
3452 #endif /* CONFIG_TMPFS */
3454 static void shmem_put_super(struct super_block
*sb
)
3456 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
3458 percpu_counter_destroy(&sbinfo
->used_blocks
);
3459 mpol_put(sbinfo
->mpol
);
3461 sb
->s_fs_info
= NULL
;
3464 int shmem_fill_super(struct super_block
*sb
, void *data
, int silent
)
3466 struct inode
*inode
;
3467 struct shmem_sb_info
*sbinfo
;
3470 /* Round up to L1_CACHE_BYTES to resist false sharing */
3471 sbinfo
= kzalloc(max((int)sizeof(struct shmem_sb_info
),
3472 L1_CACHE_BYTES
), GFP_KERNEL
);
3476 sbinfo
->mode
= 0777 | S_ISVTX
;
3477 sbinfo
->uid
= current_fsuid();
3478 sbinfo
->gid
= current_fsgid();
3479 sb
->s_fs_info
= sbinfo
;
3483 * Per default we only allow half of the physical ram per
3484 * tmpfs instance, limiting inodes to one per page of lowmem;
3485 * but the internal instance is left unlimited.
3487 if (!(sb
->s_flags
& SB_KERNMOUNT
)) {
3488 sbinfo
->max_blocks
= shmem_default_max_blocks();
3489 sbinfo
->max_inodes
= shmem_default_max_inodes();
3490 if (shmem_parse_options(data
, sbinfo
, false)) {
3495 sb
->s_flags
|= SB_NOUSER
;
3497 sb
->s_export_op
= &shmem_export_ops
;
3498 sb
->s_flags
|= SB_NOSEC
;
3500 sb
->s_flags
|= SB_NOUSER
;
3503 spin_lock_init(&sbinfo
->stat_lock
);
3504 if (percpu_counter_init(&sbinfo
->used_blocks
, 0, GFP_KERNEL
))
3506 sbinfo
->free_inodes
= sbinfo
->max_inodes
;
3507 spin_lock_init(&sbinfo
->shrinklist_lock
);
3508 INIT_LIST_HEAD(&sbinfo
->shrinklist
);
3510 sb
->s_maxbytes
= MAX_LFS_FILESIZE
;
3511 sb
->s_blocksize
= PAGE_SIZE
;
3512 sb
->s_blocksize_bits
= PAGE_SHIFT
;
3513 sb
->s_magic
= TMPFS_MAGIC
;
3514 sb
->s_op
= &shmem_ops
;
3515 sb
->s_time_gran
= 1;
3516 #ifdef CONFIG_TMPFS_XATTR
3517 sb
->s_xattr
= shmem_xattr_handlers
;
3519 #ifdef CONFIG_TMPFS_POSIX_ACL
3520 sb
->s_flags
|= SB_POSIXACL
;
3522 uuid_gen(&sb
->s_uuid
);
3524 inode
= shmem_get_inode(sb
, NULL
, S_IFDIR
| sbinfo
->mode
, 0, VM_NORESERVE
);
3527 inode
->i_uid
= sbinfo
->uid
;
3528 inode
->i_gid
= sbinfo
->gid
;
3529 sb
->s_root
= d_make_root(inode
);
3535 shmem_put_super(sb
);
3539 static struct kmem_cache
*shmem_inode_cachep
;
3541 static struct inode
*shmem_alloc_inode(struct super_block
*sb
)
3543 struct shmem_inode_info
*info
;
3544 info
= kmem_cache_alloc(shmem_inode_cachep
, GFP_KERNEL
);
3547 return &info
->vfs_inode
;
3550 static void shmem_destroy_callback(struct rcu_head
*head
)
3552 struct inode
*inode
= container_of(head
, struct inode
, i_rcu
);
3553 if (S_ISLNK(inode
->i_mode
))
3554 kfree(inode
->i_link
);
3555 kmem_cache_free(shmem_inode_cachep
, SHMEM_I(inode
));
3558 static void shmem_destroy_inode(struct inode
*inode
)
3560 if (S_ISREG(inode
->i_mode
))
3561 mpol_free_shared_policy(&SHMEM_I(inode
)->policy
);
3562 call_rcu(&inode
->i_rcu
, shmem_destroy_callback
);
3565 static void shmem_init_inode(void *foo
)
3567 struct shmem_inode_info
*info
= foo
;
3568 inode_init_once(&info
->vfs_inode
);
3571 static void shmem_init_inodecache(void)
3573 shmem_inode_cachep
= kmem_cache_create("shmem_inode_cache",
3574 sizeof(struct shmem_inode_info
),
3575 0, SLAB_PANIC
|SLAB_ACCOUNT
, shmem_init_inode
);
3578 static void shmem_destroy_inodecache(void)
3580 kmem_cache_destroy(shmem_inode_cachep
);
3583 static const struct address_space_operations shmem_aops
= {
3584 .writepage
= shmem_writepage
,
3585 .set_page_dirty
= __set_page_dirty_no_writeback
,
3587 .write_begin
= shmem_write_begin
,
3588 .write_end
= shmem_write_end
,
3590 #ifdef CONFIG_MIGRATION
3591 .migratepage
= migrate_page
,
3593 .error_remove_page
= generic_error_remove_page
,
3596 static const struct file_operations shmem_file_operations
= {
3598 .get_unmapped_area
= shmem_get_unmapped_area
,
3600 .llseek
= shmem_file_llseek
,
3601 .read_iter
= shmem_file_read_iter
,
3602 .write_iter
= generic_file_write_iter
,
3603 .fsync
= noop_fsync
,
3604 .splice_read
= generic_file_splice_read
,
3605 .splice_write
= iter_file_splice_write
,
3606 .fallocate
= shmem_fallocate
,
3610 static const struct inode_operations shmem_inode_operations
= {
3611 .getattr
= shmem_getattr
,
3612 .setattr
= shmem_setattr
,
3613 #ifdef CONFIG_TMPFS_XATTR
3614 .listxattr
= shmem_listxattr
,
3615 .set_acl
= simple_set_acl
,
3619 static const struct inode_operations shmem_dir_inode_operations
= {
3621 .create
= shmem_create
,
3622 .lookup
= simple_lookup
,
3624 .unlink
= shmem_unlink
,
3625 .symlink
= shmem_symlink
,
3626 .mkdir
= shmem_mkdir
,
3627 .rmdir
= shmem_rmdir
,
3628 .mknod
= shmem_mknod
,
3629 .rename
= shmem_rename2
,
3630 .tmpfile
= shmem_tmpfile
,
3632 #ifdef CONFIG_TMPFS_XATTR
3633 .listxattr
= shmem_listxattr
,
3635 #ifdef CONFIG_TMPFS_POSIX_ACL
3636 .setattr
= shmem_setattr
,
3637 .set_acl
= simple_set_acl
,
3641 static const struct inode_operations shmem_special_inode_operations
= {
3642 #ifdef CONFIG_TMPFS_XATTR
3643 .listxattr
= shmem_listxattr
,
3645 #ifdef CONFIG_TMPFS_POSIX_ACL
3646 .setattr
= shmem_setattr
,
3647 .set_acl
= simple_set_acl
,
3651 static const struct super_operations shmem_ops
= {
3652 .alloc_inode
= shmem_alloc_inode
,
3653 .destroy_inode
= shmem_destroy_inode
,
3655 .statfs
= shmem_statfs
,
3656 .remount_fs
= shmem_remount_fs
,
3657 .show_options
= shmem_show_options
,
3659 .evict_inode
= shmem_evict_inode
,
3660 .drop_inode
= generic_delete_inode
,
3661 .put_super
= shmem_put_super
,
3662 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3663 .nr_cached_objects
= shmem_unused_huge_count
,
3664 .free_cached_objects
= shmem_unused_huge_scan
,
3668 static const struct vm_operations_struct shmem_vm_ops
= {
3669 .fault
= shmem_fault
,
3670 .map_pages
= filemap_map_pages
,
3672 .set_policy
= shmem_set_policy
,
3673 .get_policy
= shmem_get_policy
,
3677 static struct dentry
*shmem_mount(struct file_system_type
*fs_type
,
3678 int flags
, const char *dev_name
, void *data
)
3680 return mount_nodev(fs_type
, flags
, data
, shmem_fill_super
);
3683 static struct file_system_type shmem_fs_type
= {
3684 .owner
= THIS_MODULE
,
3686 .mount
= shmem_mount
,
3687 .kill_sb
= kill_litter_super
,
3688 .fs_flags
= FS_USERNS_MOUNT
,
3691 int __init
shmem_init(void)
3695 /* If rootfs called this, don't re-init */
3696 if (shmem_inode_cachep
)
3699 shmem_init_inodecache();
3701 error
= register_filesystem(&shmem_fs_type
);
3703 pr_err("Could not register tmpfs\n");
3707 shm_mnt
= kern_mount(&shmem_fs_type
);
3708 if (IS_ERR(shm_mnt
)) {
3709 error
= PTR_ERR(shm_mnt
);
3710 pr_err("Could not kern_mount tmpfs\n");
3714 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3715 if (has_transparent_hugepage() && shmem_huge
> SHMEM_HUGE_DENY
)
3716 SHMEM_SB(shm_mnt
->mnt_sb
)->huge
= shmem_huge
;
3718 shmem_huge
= 0; /* just in case it was patched */
3723 unregister_filesystem(&shmem_fs_type
);
3725 shmem_destroy_inodecache();
3726 shm_mnt
= ERR_PTR(error
);
3730 #if defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && defined(CONFIG_SYSFS)
3731 static ssize_t
shmem_enabled_show(struct kobject
*kobj
,
3732 struct kobj_attribute
*attr
, char *buf
)
3736 SHMEM_HUGE_WITHIN_SIZE
,
3744 for (i
= 0, count
= 0; i
< ARRAY_SIZE(values
); i
++) {
3745 const char *fmt
= shmem_huge
== values
[i
] ? "[%s] " : "%s ";
3747 count
+= sprintf(buf
+ count
, fmt
,
3748 shmem_format_huge(values
[i
]));
3750 buf
[count
- 1] = '\n';
3754 static ssize_t
shmem_enabled_store(struct kobject
*kobj
,
3755 struct kobj_attribute
*attr
, const char *buf
, size_t count
)
3760 if (count
+ 1 > sizeof(tmp
))
3762 memcpy(tmp
, buf
, count
);
3764 if (count
&& tmp
[count
- 1] == '\n')
3765 tmp
[count
- 1] = '\0';
3767 huge
= shmem_parse_huge(tmp
);
3768 if (huge
== -EINVAL
)
3770 if (!has_transparent_hugepage() &&
3771 huge
!= SHMEM_HUGE_NEVER
&& huge
!= SHMEM_HUGE_DENY
)
3775 if (shmem_huge
> SHMEM_HUGE_DENY
)
3776 SHMEM_SB(shm_mnt
->mnt_sb
)->huge
= shmem_huge
;
3780 struct kobj_attribute shmem_enabled_attr
=
3781 __ATTR(shmem_enabled
, 0644, shmem_enabled_show
, shmem_enabled_store
);
3782 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE && CONFIG_SYSFS */
3784 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3785 bool shmem_huge_enabled(struct vm_area_struct
*vma
)
3787 struct inode
*inode
= file_inode(vma
->vm_file
);
3788 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
3792 if (shmem_huge
== SHMEM_HUGE_FORCE
)
3794 if (shmem_huge
== SHMEM_HUGE_DENY
)
3796 switch (sbinfo
->huge
) {
3797 case SHMEM_HUGE_NEVER
:
3799 case SHMEM_HUGE_ALWAYS
:
3801 case SHMEM_HUGE_WITHIN_SIZE
:
3802 off
= round_up(vma
->vm_pgoff
, HPAGE_PMD_NR
);
3803 i_size
= round_up(i_size_read(inode
), PAGE_SIZE
);
3804 if (i_size
>= HPAGE_PMD_SIZE
&&
3805 i_size
>> PAGE_SHIFT
>= off
)
3808 case SHMEM_HUGE_ADVISE
:
3809 /* TODO: implement fadvise() hints */
3810 return (vma
->vm_flags
& VM_HUGEPAGE
);
3816 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
3818 #else /* !CONFIG_SHMEM */
3821 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
3823 * This is intended for small system where the benefits of the full
3824 * shmem code (swap-backed and resource-limited) are outweighed by
3825 * their complexity. On systems without swap this code should be
3826 * effectively equivalent, but much lighter weight.
3829 static struct file_system_type shmem_fs_type
= {
3831 .mount
= ramfs_mount
,
3832 .kill_sb
= kill_litter_super
,
3833 .fs_flags
= FS_USERNS_MOUNT
,
3836 int __init
shmem_init(void)
3838 BUG_ON(register_filesystem(&shmem_fs_type
) != 0);
3840 shm_mnt
= kern_mount(&shmem_fs_type
);
3841 BUG_ON(IS_ERR(shm_mnt
));
3846 int shmem_unuse(swp_entry_t swap
, struct page
*page
)
3851 int shmem_lock(struct file
*file
, int lock
, struct user_struct
*user
)
3856 void shmem_unlock_mapping(struct address_space
*mapping
)
3861 unsigned long shmem_get_unmapped_area(struct file
*file
,
3862 unsigned long addr
, unsigned long len
,
3863 unsigned long pgoff
, unsigned long flags
)
3865 return current
->mm
->get_unmapped_area(file
, addr
, len
, pgoff
, flags
);
3869 void shmem_truncate_range(struct inode
*inode
, loff_t lstart
, loff_t lend
)
3871 truncate_inode_pages_range(inode
->i_mapping
, lstart
, lend
);
3873 EXPORT_SYMBOL_GPL(shmem_truncate_range
);
3875 #define shmem_vm_ops generic_file_vm_ops
3876 #define shmem_file_operations ramfs_file_operations
3877 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
3878 #define shmem_acct_size(flags, size) 0
3879 #define shmem_unacct_size(flags, size) do {} while (0)
3881 #endif /* CONFIG_SHMEM */
3885 static struct file
*__shmem_file_setup(struct vfsmount
*mnt
, const char *name
, loff_t size
,
3886 unsigned long flags
, unsigned int i_flags
)
3888 struct inode
*inode
;
3892 return ERR_CAST(mnt
);
3894 if (size
< 0 || size
> MAX_LFS_FILESIZE
)
3895 return ERR_PTR(-EINVAL
);
3897 if (shmem_acct_size(flags
, size
))
3898 return ERR_PTR(-ENOMEM
);
3900 inode
= shmem_get_inode(mnt
->mnt_sb
, NULL
, S_IFREG
| S_IRWXUGO
, 0,
3902 if (unlikely(!inode
)) {
3903 shmem_unacct_size(flags
, size
);
3904 return ERR_PTR(-ENOSPC
);
3906 inode
->i_flags
|= i_flags
;
3907 inode
->i_size
= size
;
3908 clear_nlink(inode
); /* It is unlinked */
3909 res
= ERR_PTR(ramfs_nommu_expand_for_mapping(inode
, size
));
3911 res
= alloc_file_pseudo(inode
, mnt
, name
, O_RDWR
,
3912 &shmem_file_operations
);
3919 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
3920 * kernel internal. There will be NO LSM permission checks against the
3921 * underlying inode. So users of this interface must do LSM checks at a
3922 * higher layer. The users are the big_key and shm implementations. LSM
3923 * checks are provided at the key or shm level rather than the inode.
3924 * @name: name for dentry (to be seen in /proc/<pid>/maps
3925 * @size: size to be set for the file
3926 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3928 struct file
*shmem_kernel_file_setup(const char *name
, loff_t size
, unsigned long flags
)
3930 return __shmem_file_setup(shm_mnt
, name
, size
, flags
, S_PRIVATE
);
3934 * shmem_file_setup - get an unlinked file living in tmpfs
3935 * @name: name for dentry (to be seen in /proc/<pid>/maps
3936 * @size: size to be set for the file
3937 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3939 struct file
*shmem_file_setup(const char *name
, loff_t size
, unsigned long flags
)
3941 return __shmem_file_setup(shm_mnt
, name
, size
, flags
, 0);
3943 EXPORT_SYMBOL_GPL(shmem_file_setup
);
3946 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
3947 * @mnt: the tmpfs mount where the file will be created
3948 * @name: name for dentry (to be seen in /proc/<pid>/maps
3949 * @size: size to be set for the file
3950 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3952 struct file
*shmem_file_setup_with_mnt(struct vfsmount
*mnt
, const char *name
,
3953 loff_t size
, unsigned long flags
)
3955 return __shmem_file_setup(mnt
, name
, size
, flags
, 0);
3957 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt
);
3960 * shmem_zero_setup - setup a shared anonymous mapping
3961 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
3963 int shmem_zero_setup(struct vm_area_struct
*vma
)
3966 loff_t size
= vma
->vm_end
- vma
->vm_start
;
3969 * Cloning a new file under mmap_sem leads to a lock ordering conflict
3970 * between XFS directory reading and selinux: since this file is only
3971 * accessible to the user through its mapping, use S_PRIVATE flag to
3972 * bypass file security, in the same way as shmem_kernel_file_setup().
3974 file
= shmem_kernel_file_setup("dev/zero", size
, vma
->vm_flags
);
3976 return PTR_ERR(file
);
3980 vma
->vm_file
= file
;
3981 vma
->vm_ops
= &shmem_vm_ops
;
3983 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE
) &&
3984 ((vma
->vm_start
+ ~HPAGE_PMD_MASK
) & HPAGE_PMD_MASK
) <
3985 (vma
->vm_end
& HPAGE_PMD_MASK
)) {
3986 khugepaged_enter(vma
, vma
->vm_flags
);
3993 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
3994 * @mapping: the page's address_space
3995 * @index: the page index
3996 * @gfp: the page allocator flags to use if allocating
3998 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
3999 * with any new page allocations done using the specified allocation flags.
4000 * But read_cache_page_gfp() uses the ->readpage() method: which does not
4001 * suit tmpfs, since it may have pages in swapcache, and needs to find those
4002 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4004 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4005 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4007 struct page
*shmem_read_mapping_page_gfp(struct address_space
*mapping
,
4008 pgoff_t index
, gfp_t gfp
)
4011 struct inode
*inode
= mapping
->host
;
4015 BUG_ON(mapping
->a_ops
!= &shmem_aops
);
4016 error
= shmem_getpage_gfp(inode
, index
, &page
, SGP_CACHE
,
4017 gfp
, NULL
, NULL
, NULL
);
4019 page
= ERR_PTR(error
);
4025 * The tiny !SHMEM case uses ramfs without swap
4027 return read_cache_page_gfp(mapping
, index
, gfp
);
4030 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp
);