ACPICA: Namespace: Properly null terminate objects detached from a namespace node
[linux/fpc-iii.git] / block / bio.c
blob8c2e55e39a1b9a6eca0c169f658b35a8006f5372
1 /*
2 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
13 * You should have received a copy of the GNU General Public Licens
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/bio.h>
21 #include <linux/blkdev.h>
22 #include <linux/uio.h>
23 #include <linux/iocontext.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/kernel.h>
27 #include <linux/export.h>
28 #include <linux/mempool.h>
29 #include <linux/workqueue.h>
30 #include <linux/cgroup.h>
31 #include <scsi/sg.h> /* for struct sg_iovec */
33 #include <trace/events/block.h>
36 * Test patch to inline a certain number of bi_io_vec's inside the bio
37 * itself, to shrink a bio data allocation from two mempool calls to one
39 #define BIO_INLINE_VECS 4
42 * if you change this list, also change bvec_alloc or things will
43 * break badly! cannot be bigger than what you can fit into an
44 * unsigned short
46 #define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) }
47 static struct biovec_slab bvec_slabs[BIOVEC_NR_POOLS] __read_mostly = {
48 BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES),
50 #undef BV
53 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
54 * IO code that does not need private memory pools.
56 struct bio_set *fs_bio_set;
57 EXPORT_SYMBOL(fs_bio_set);
60 * Our slab pool management
62 struct bio_slab {
63 struct kmem_cache *slab;
64 unsigned int slab_ref;
65 unsigned int slab_size;
66 char name[8];
68 static DEFINE_MUTEX(bio_slab_lock);
69 static struct bio_slab *bio_slabs;
70 static unsigned int bio_slab_nr, bio_slab_max;
72 static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
74 unsigned int sz = sizeof(struct bio) + extra_size;
75 struct kmem_cache *slab = NULL;
76 struct bio_slab *bslab, *new_bio_slabs;
77 unsigned int new_bio_slab_max;
78 unsigned int i, entry = -1;
80 mutex_lock(&bio_slab_lock);
82 i = 0;
83 while (i < bio_slab_nr) {
84 bslab = &bio_slabs[i];
86 if (!bslab->slab && entry == -1)
87 entry = i;
88 else if (bslab->slab_size == sz) {
89 slab = bslab->slab;
90 bslab->slab_ref++;
91 break;
93 i++;
96 if (slab)
97 goto out_unlock;
99 if (bio_slab_nr == bio_slab_max && entry == -1) {
100 new_bio_slab_max = bio_slab_max << 1;
101 new_bio_slabs = krealloc(bio_slabs,
102 new_bio_slab_max * sizeof(struct bio_slab),
103 GFP_KERNEL);
104 if (!new_bio_slabs)
105 goto out_unlock;
106 bio_slab_max = new_bio_slab_max;
107 bio_slabs = new_bio_slabs;
109 if (entry == -1)
110 entry = bio_slab_nr++;
112 bslab = &bio_slabs[entry];
114 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
115 slab = kmem_cache_create(bslab->name, sz, 0, SLAB_HWCACHE_ALIGN, NULL);
116 if (!slab)
117 goto out_unlock;
119 bslab->slab = slab;
120 bslab->slab_ref = 1;
121 bslab->slab_size = sz;
122 out_unlock:
123 mutex_unlock(&bio_slab_lock);
124 return slab;
127 static void bio_put_slab(struct bio_set *bs)
129 struct bio_slab *bslab = NULL;
130 unsigned int i;
132 mutex_lock(&bio_slab_lock);
134 for (i = 0; i < bio_slab_nr; i++) {
135 if (bs->bio_slab == bio_slabs[i].slab) {
136 bslab = &bio_slabs[i];
137 break;
141 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
142 goto out;
144 WARN_ON(!bslab->slab_ref);
146 if (--bslab->slab_ref)
147 goto out;
149 kmem_cache_destroy(bslab->slab);
150 bslab->slab = NULL;
152 out:
153 mutex_unlock(&bio_slab_lock);
156 unsigned int bvec_nr_vecs(unsigned short idx)
158 return bvec_slabs[idx].nr_vecs;
161 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
163 BIO_BUG_ON(idx >= BIOVEC_NR_POOLS);
165 if (idx == BIOVEC_MAX_IDX)
166 mempool_free(bv, pool);
167 else {
168 struct biovec_slab *bvs = bvec_slabs + idx;
170 kmem_cache_free(bvs->slab, bv);
174 struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
175 mempool_t *pool)
177 struct bio_vec *bvl;
180 * see comment near bvec_array define!
182 switch (nr) {
183 case 1:
184 *idx = 0;
185 break;
186 case 2 ... 4:
187 *idx = 1;
188 break;
189 case 5 ... 16:
190 *idx = 2;
191 break;
192 case 17 ... 64:
193 *idx = 3;
194 break;
195 case 65 ... 128:
196 *idx = 4;
197 break;
198 case 129 ... BIO_MAX_PAGES:
199 *idx = 5;
200 break;
201 default:
202 return NULL;
206 * idx now points to the pool we want to allocate from. only the
207 * 1-vec entry pool is mempool backed.
209 if (*idx == BIOVEC_MAX_IDX) {
210 fallback:
211 bvl = mempool_alloc(pool, gfp_mask);
212 } else {
213 struct biovec_slab *bvs = bvec_slabs + *idx;
214 gfp_t __gfp_mask = gfp_mask & ~(__GFP_WAIT | __GFP_IO);
217 * Make this allocation restricted and don't dump info on
218 * allocation failures, since we'll fallback to the mempool
219 * in case of failure.
221 __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
224 * Try a slab allocation. If this fails and __GFP_WAIT
225 * is set, retry with the 1-entry mempool
227 bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
228 if (unlikely(!bvl && (gfp_mask & __GFP_WAIT))) {
229 *idx = BIOVEC_MAX_IDX;
230 goto fallback;
234 return bvl;
237 static void __bio_free(struct bio *bio)
239 bio_disassociate_task(bio);
241 if (bio_integrity(bio))
242 bio_integrity_free(bio);
245 static void bio_free(struct bio *bio)
247 struct bio_set *bs = bio->bi_pool;
248 void *p;
250 __bio_free(bio);
252 if (bs) {
253 if (bio_flagged(bio, BIO_OWNS_VEC))
254 bvec_free(bs->bvec_pool, bio->bi_io_vec, BIO_POOL_IDX(bio));
257 * If we have front padding, adjust the bio pointer before freeing
259 p = bio;
260 p -= bs->front_pad;
262 mempool_free(p, bs->bio_pool);
263 } else {
264 /* Bio was allocated by bio_kmalloc() */
265 kfree(bio);
269 void bio_init(struct bio *bio)
271 memset(bio, 0, sizeof(*bio));
272 bio->bi_flags = 1 << BIO_UPTODATE;
273 atomic_set(&bio->bi_remaining, 1);
274 atomic_set(&bio->bi_cnt, 1);
276 EXPORT_SYMBOL(bio_init);
279 * bio_reset - reinitialize a bio
280 * @bio: bio to reset
282 * Description:
283 * After calling bio_reset(), @bio will be in the same state as a freshly
284 * allocated bio returned bio bio_alloc_bioset() - the only fields that are
285 * preserved are the ones that are initialized by bio_alloc_bioset(). See
286 * comment in struct bio.
288 void bio_reset(struct bio *bio)
290 unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);
292 __bio_free(bio);
294 memset(bio, 0, BIO_RESET_BYTES);
295 bio->bi_flags = flags|(1 << BIO_UPTODATE);
296 atomic_set(&bio->bi_remaining, 1);
298 EXPORT_SYMBOL(bio_reset);
300 static void bio_chain_endio(struct bio *bio, int error)
302 bio_endio(bio->bi_private, error);
303 bio_put(bio);
307 * bio_chain - chain bio completions
308 * @bio: the target bio
309 * @parent: the @bio's parent bio
311 * The caller won't have a bi_end_io called when @bio completes - instead,
312 * @parent's bi_end_io won't be called until both @parent and @bio have
313 * completed; the chained bio will also be freed when it completes.
315 * The caller must not set bi_private or bi_end_io in @bio.
317 void bio_chain(struct bio *bio, struct bio *parent)
319 BUG_ON(bio->bi_private || bio->bi_end_io);
321 bio->bi_private = parent;
322 bio->bi_end_io = bio_chain_endio;
323 atomic_inc(&parent->bi_remaining);
325 EXPORT_SYMBOL(bio_chain);
327 static void bio_alloc_rescue(struct work_struct *work)
329 struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
330 struct bio *bio;
332 while (1) {
333 spin_lock(&bs->rescue_lock);
334 bio = bio_list_pop(&bs->rescue_list);
335 spin_unlock(&bs->rescue_lock);
337 if (!bio)
338 break;
340 generic_make_request(bio);
344 static void punt_bios_to_rescuer(struct bio_set *bs)
346 struct bio_list punt, nopunt;
347 struct bio *bio;
350 * In order to guarantee forward progress we must punt only bios that
351 * were allocated from this bio_set; otherwise, if there was a bio on
352 * there for a stacking driver higher up in the stack, processing it
353 * could require allocating bios from this bio_set, and doing that from
354 * our own rescuer would be bad.
356 * Since bio lists are singly linked, pop them all instead of trying to
357 * remove from the middle of the list:
360 bio_list_init(&punt);
361 bio_list_init(&nopunt);
363 while ((bio = bio_list_pop(current->bio_list)))
364 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
366 *current->bio_list = nopunt;
368 spin_lock(&bs->rescue_lock);
369 bio_list_merge(&bs->rescue_list, &punt);
370 spin_unlock(&bs->rescue_lock);
372 queue_work(bs->rescue_workqueue, &bs->rescue_work);
376 * bio_alloc_bioset - allocate a bio for I/O
377 * @gfp_mask: the GFP_ mask given to the slab allocator
378 * @nr_iovecs: number of iovecs to pre-allocate
379 * @bs: the bio_set to allocate from.
381 * Description:
382 * If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
383 * backed by the @bs's mempool.
385 * When @bs is not NULL, if %__GFP_WAIT is set then bio_alloc will always be
386 * able to allocate a bio. This is due to the mempool guarantees. To make this
387 * work, callers must never allocate more than 1 bio at a time from this pool.
388 * Callers that need to allocate more than 1 bio must always submit the
389 * previously allocated bio for IO before attempting to allocate a new one.
390 * Failure to do so can cause deadlocks under memory pressure.
392 * Note that when running under generic_make_request() (i.e. any block
393 * driver), bios are not submitted until after you return - see the code in
394 * generic_make_request() that converts recursion into iteration, to prevent
395 * stack overflows.
397 * This would normally mean allocating multiple bios under
398 * generic_make_request() would be susceptible to deadlocks, but we have
399 * deadlock avoidance code that resubmits any blocked bios from a rescuer
400 * thread.
402 * However, we do not guarantee forward progress for allocations from other
403 * mempools. Doing multiple allocations from the same mempool under
404 * generic_make_request() should be avoided - instead, use bio_set's front_pad
405 * for per bio allocations.
407 * RETURNS:
408 * Pointer to new bio on success, NULL on failure.
410 struct bio *bio_alloc_bioset(gfp_t gfp_mask, int nr_iovecs, struct bio_set *bs)
412 gfp_t saved_gfp = gfp_mask;
413 unsigned front_pad;
414 unsigned inline_vecs;
415 unsigned long idx = BIO_POOL_NONE;
416 struct bio_vec *bvl = NULL;
417 struct bio *bio;
418 void *p;
420 if (!bs) {
421 if (nr_iovecs > UIO_MAXIOV)
422 return NULL;
424 p = kmalloc(sizeof(struct bio) +
425 nr_iovecs * sizeof(struct bio_vec),
426 gfp_mask);
427 front_pad = 0;
428 inline_vecs = nr_iovecs;
429 } else {
431 * generic_make_request() converts recursion to iteration; this
432 * means if we're running beneath it, any bios we allocate and
433 * submit will not be submitted (and thus freed) until after we
434 * return.
436 * This exposes us to a potential deadlock if we allocate
437 * multiple bios from the same bio_set() while running
438 * underneath generic_make_request(). If we were to allocate
439 * multiple bios (say a stacking block driver that was splitting
440 * bios), we would deadlock if we exhausted the mempool's
441 * reserve.
443 * We solve this, and guarantee forward progress, with a rescuer
444 * workqueue per bio_set. If we go to allocate and there are
445 * bios on current->bio_list, we first try the allocation
446 * without __GFP_WAIT; if that fails, we punt those bios we
447 * would be blocking to the rescuer workqueue before we retry
448 * with the original gfp_flags.
451 if (current->bio_list && !bio_list_empty(current->bio_list))
452 gfp_mask &= ~__GFP_WAIT;
454 p = mempool_alloc(bs->bio_pool, gfp_mask);
455 if (!p && gfp_mask != saved_gfp) {
456 punt_bios_to_rescuer(bs);
457 gfp_mask = saved_gfp;
458 p = mempool_alloc(bs->bio_pool, gfp_mask);
461 front_pad = bs->front_pad;
462 inline_vecs = BIO_INLINE_VECS;
465 if (unlikely(!p))
466 return NULL;
468 bio = p + front_pad;
469 bio_init(bio);
471 if (nr_iovecs > inline_vecs) {
472 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
473 if (!bvl && gfp_mask != saved_gfp) {
474 punt_bios_to_rescuer(bs);
475 gfp_mask = saved_gfp;
476 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
479 if (unlikely(!bvl))
480 goto err_free;
482 bio->bi_flags |= 1 << BIO_OWNS_VEC;
483 } else if (nr_iovecs) {
484 bvl = bio->bi_inline_vecs;
487 bio->bi_pool = bs;
488 bio->bi_flags |= idx << BIO_POOL_OFFSET;
489 bio->bi_max_vecs = nr_iovecs;
490 bio->bi_io_vec = bvl;
491 return bio;
493 err_free:
494 mempool_free(p, bs->bio_pool);
495 return NULL;
497 EXPORT_SYMBOL(bio_alloc_bioset);
499 void zero_fill_bio(struct bio *bio)
501 unsigned long flags;
502 struct bio_vec bv;
503 struct bvec_iter iter;
505 bio_for_each_segment(bv, bio, iter) {
506 char *data = bvec_kmap_irq(&bv, &flags);
507 memset(data, 0, bv.bv_len);
508 flush_dcache_page(bv.bv_page);
509 bvec_kunmap_irq(data, &flags);
512 EXPORT_SYMBOL(zero_fill_bio);
515 * bio_put - release a reference to a bio
516 * @bio: bio to release reference to
518 * Description:
519 * Put a reference to a &struct bio, either one you have gotten with
520 * bio_alloc, bio_get or bio_clone. The last put of a bio will free it.
522 void bio_put(struct bio *bio)
524 BIO_BUG_ON(!atomic_read(&bio->bi_cnt));
527 * last put frees it
529 if (atomic_dec_and_test(&bio->bi_cnt))
530 bio_free(bio);
532 EXPORT_SYMBOL(bio_put);
534 inline int bio_phys_segments(struct request_queue *q, struct bio *bio)
536 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
537 blk_recount_segments(q, bio);
539 return bio->bi_phys_segments;
541 EXPORT_SYMBOL(bio_phys_segments);
544 * __bio_clone_fast - clone a bio that shares the original bio's biovec
545 * @bio: destination bio
546 * @bio_src: bio to clone
548 * Clone a &bio. Caller will own the returned bio, but not
549 * the actual data it points to. Reference count of returned
550 * bio will be one.
552 * Caller must ensure that @bio_src is not freed before @bio.
554 void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
556 BUG_ON(bio->bi_pool && BIO_POOL_IDX(bio) != BIO_POOL_NONE);
559 * most users will be overriding ->bi_bdev with a new target,
560 * so we don't set nor calculate new physical/hw segment counts here
562 bio->bi_bdev = bio_src->bi_bdev;
563 bio->bi_flags |= 1 << BIO_CLONED;
564 bio->bi_rw = bio_src->bi_rw;
565 bio->bi_iter = bio_src->bi_iter;
566 bio->bi_io_vec = bio_src->bi_io_vec;
568 EXPORT_SYMBOL(__bio_clone_fast);
571 * bio_clone_fast - clone a bio that shares the original bio's biovec
572 * @bio: bio to clone
573 * @gfp_mask: allocation priority
574 * @bs: bio_set to allocate from
576 * Like __bio_clone_fast, only also allocates the returned bio
578 struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
580 struct bio *b;
582 b = bio_alloc_bioset(gfp_mask, 0, bs);
583 if (!b)
584 return NULL;
586 __bio_clone_fast(b, bio);
588 if (bio_integrity(bio)) {
589 int ret;
591 ret = bio_integrity_clone(b, bio, gfp_mask);
593 if (ret < 0) {
594 bio_put(b);
595 return NULL;
599 return b;
601 EXPORT_SYMBOL(bio_clone_fast);
604 * bio_clone_bioset - clone a bio
605 * @bio_src: bio to clone
606 * @gfp_mask: allocation priority
607 * @bs: bio_set to allocate from
609 * Clone bio. Caller will own the returned bio, but not the actual data it
610 * points to. Reference count of returned bio will be one.
612 struct bio *bio_clone_bioset(struct bio *bio_src, gfp_t gfp_mask,
613 struct bio_set *bs)
615 struct bvec_iter iter;
616 struct bio_vec bv;
617 struct bio *bio;
620 * Pre immutable biovecs, __bio_clone() used to just do a memcpy from
621 * bio_src->bi_io_vec to bio->bi_io_vec.
623 * We can't do that anymore, because:
625 * - The point of cloning the biovec is to produce a bio with a biovec
626 * the caller can modify: bi_idx and bi_bvec_done should be 0.
628 * - The original bio could've had more than BIO_MAX_PAGES biovecs; if
629 * we tried to clone the whole thing bio_alloc_bioset() would fail.
630 * But the clone should succeed as long as the number of biovecs we
631 * actually need to allocate is fewer than BIO_MAX_PAGES.
633 * - Lastly, bi_vcnt should not be looked at or relied upon by code
634 * that does not own the bio - reason being drivers don't use it for
635 * iterating over the biovec anymore, so expecting it to be kept up
636 * to date (i.e. for clones that share the parent biovec) is just
637 * asking for trouble and would force extra work on
638 * __bio_clone_fast() anyways.
641 bio = bio_alloc_bioset(gfp_mask, bio_segments(bio_src), bs);
642 if (!bio)
643 return NULL;
645 bio->bi_bdev = bio_src->bi_bdev;
646 bio->bi_rw = bio_src->bi_rw;
647 bio->bi_iter.bi_sector = bio_src->bi_iter.bi_sector;
648 bio->bi_iter.bi_size = bio_src->bi_iter.bi_size;
650 if (bio->bi_rw & REQ_DISCARD)
651 goto integrity_clone;
653 if (bio->bi_rw & REQ_WRITE_SAME) {
654 bio->bi_io_vec[bio->bi_vcnt++] = bio_src->bi_io_vec[0];
655 goto integrity_clone;
658 bio_for_each_segment(bv, bio_src, iter)
659 bio->bi_io_vec[bio->bi_vcnt++] = bv;
661 integrity_clone:
662 if (bio_integrity(bio_src)) {
663 int ret;
665 ret = bio_integrity_clone(bio, bio_src, gfp_mask);
666 if (ret < 0) {
667 bio_put(bio);
668 return NULL;
672 return bio;
674 EXPORT_SYMBOL(bio_clone_bioset);
677 * bio_get_nr_vecs - return approx number of vecs
678 * @bdev: I/O target
680 * Return the approximate number of pages we can send to this target.
681 * There's no guarantee that you will be able to fit this number of pages
682 * into a bio, it does not account for dynamic restrictions that vary
683 * on offset.
685 int bio_get_nr_vecs(struct block_device *bdev)
687 struct request_queue *q = bdev_get_queue(bdev);
688 int nr_pages;
690 nr_pages = min_t(unsigned,
691 queue_max_segments(q),
692 queue_max_sectors(q) / (PAGE_SIZE >> 9) + 1);
694 return min_t(unsigned, nr_pages, BIO_MAX_PAGES);
697 EXPORT_SYMBOL(bio_get_nr_vecs);
699 static int __bio_add_page(struct request_queue *q, struct bio *bio, struct page
700 *page, unsigned int len, unsigned int offset,
701 unsigned int max_sectors)
703 int retried_segments = 0;
704 struct bio_vec *bvec;
707 * cloned bio must not modify vec list
709 if (unlikely(bio_flagged(bio, BIO_CLONED)))
710 return 0;
712 if (((bio->bi_iter.bi_size + len) >> 9) > max_sectors)
713 return 0;
716 * For filesystems with a blocksize smaller than the pagesize
717 * we will often be called with the same page as last time and
718 * a consecutive offset. Optimize this special case.
720 if (bio->bi_vcnt > 0) {
721 struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
723 if (page == prev->bv_page &&
724 offset == prev->bv_offset + prev->bv_len) {
725 unsigned int prev_bv_len = prev->bv_len;
726 prev->bv_len += len;
728 if (q->merge_bvec_fn) {
729 struct bvec_merge_data bvm = {
730 /* prev_bvec is already charged in
731 bi_size, discharge it in order to
732 simulate merging updated prev_bvec
733 as new bvec. */
734 .bi_bdev = bio->bi_bdev,
735 .bi_sector = bio->bi_iter.bi_sector,
736 .bi_size = bio->bi_iter.bi_size -
737 prev_bv_len,
738 .bi_rw = bio->bi_rw,
741 if (q->merge_bvec_fn(q, &bvm, prev) < prev->bv_len) {
742 prev->bv_len -= len;
743 return 0;
747 goto done;
751 if (bio->bi_vcnt >= bio->bi_max_vecs)
752 return 0;
755 * we might lose a segment or two here, but rather that than
756 * make this too complex.
759 while (bio->bi_phys_segments >= queue_max_segments(q)) {
761 if (retried_segments)
762 return 0;
764 retried_segments = 1;
765 blk_recount_segments(q, bio);
769 * setup the new entry, we might clear it again later if we
770 * cannot add the page
772 bvec = &bio->bi_io_vec[bio->bi_vcnt];
773 bvec->bv_page = page;
774 bvec->bv_len = len;
775 bvec->bv_offset = offset;
778 * if queue has other restrictions (eg varying max sector size
779 * depending on offset), it can specify a merge_bvec_fn in the
780 * queue to get further control
782 if (q->merge_bvec_fn) {
783 struct bvec_merge_data bvm = {
784 .bi_bdev = bio->bi_bdev,
785 .bi_sector = bio->bi_iter.bi_sector,
786 .bi_size = bio->bi_iter.bi_size,
787 .bi_rw = bio->bi_rw,
791 * merge_bvec_fn() returns number of bytes it can accept
792 * at this offset
794 if (q->merge_bvec_fn(q, &bvm, bvec) < bvec->bv_len) {
795 bvec->bv_page = NULL;
796 bvec->bv_len = 0;
797 bvec->bv_offset = 0;
798 return 0;
802 /* If we may be able to merge these biovecs, force a recount */
803 if (bio->bi_vcnt && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec)))
804 bio->bi_flags &= ~(1 << BIO_SEG_VALID);
806 bio->bi_vcnt++;
807 bio->bi_phys_segments++;
808 done:
809 bio->bi_iter.bi_size += len;
810 return len;
814 * bio_add_pc_page - attempt to add page to bio
815 * @q: the target queue
816 * @bio: destination bio
817 * @page: page to add
818 * @len: vec entry length
819 * @offset: vec entry offset
821 * Attempt to add a page to the bio_vec maplist. This can fail for a
822 * number of reasons, such as the bio being full or target block device
823 * limitations. The target block device must allow bio's up to PAGE_SIZE,
824 * so it is always possible to add a single page to an empty bio.
826 * This should only be used by REQ_PC bios.
828 int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page *page,
829 unsigned int len, unsigned int offset)
831 return __bio_add_page(q, bio, page, len, offset,
832 queue_max_hw_sectors(q));
834 EXPORT_SYMBOL(bio_add_pc_page);
837 * bio_add_page - attempt to add page to bio
838 * @bio: destination bio
839 * @page: page to add
840 * @len: vec entry length
841 * @offset: vec entry offset
843 * Attempt to add a page to the bio_vec maplist. This can fail for a
844 * number of reasons, such as the bio being full or target block device
845 * limitations. The target block device must allow bio's up to PAGE_SIZE,
846 * so it is always possible to add a single page to an empty bio.
848 int bio_add_page(struct bio *bio, struct page *page, unsigned int len,
849 unsigned int offset)
851 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
852 unsigned int max_sectors;
854 max_sectors = blk_max_size_offset(q, bio->bi_iter.bi_sector);
855 if ((max_sectors < (len >> 9)) && !bio->bi_iter.bi_size)
856 max_sectors = len >> 9;
858 return __bio_add_page(q, bio, page, len, offset, max_sectors);
860 EXPORT_SYMBOL(bio_add_page);
862 struct submit_bio_ret {
863 struct completion event;
864 int error;
867 static void submit_bio_wait_endio(struct bio *bio, int error)
869 struct submit_bio_ret *ret = bio->bi_private;
871 ret->error = error;
872 complete(&ret->event);
876 * submit_bio_wait - submit a bio, and wait until it completes
877 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
878 * @bio: The &struct bio which describes the I/O
880 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
881 * bio_endio() on failure.
883 int submit_bio_wait(int rw, struct bio *bio)
885 struct submit_bio_ret ret;
887 rw |= REQ_SYNC;
888 init_completion(&ret.event);
889 bio->bi_private = &ret;
890 bio->bi_end_io = submit_bio_wait_endio;
891 submit_bio(rw, bio);
892 wait_for_completion(&ret.event);
894 return ret.error;
896 EXPORT_SYMBOL(submit_bio_wait);
899 * bio_advance - increment/complete a bio by some number of bytes
900 * @bio: bio to advance
901 * @bytes: number of bytes to complete
903 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
904 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
905 * be updated on the last bvec as well.
907 * @bio will then represent the remaining, uncompleted portion of the io.
909 void bio_advance(struct bio *bio, unsigned bytes)
911 if (bio_integrity(bio))
912 bio_integrity_advance(bio, bytes);
914 bio_advance_iter(bio, &bio->bi_iter, bytes);
916 EXPORT_SYMBOL(bio_advance);
919 * bio_alloc_pages - allocates a single page for each bvec in a bio
920 * @bio: bio to allocate pages for
921 * @gfp_mask: flags for allocation
923 * Allocates pages up to @bio->bi_vcnt.
925 * Returns 0 on success, -ENOMEM on failure. On failure, any allocated pages are
926 * freed.
928 int bio_alloc_pages(struct bio *bio, gfp_t gfp_mask)
930 int i;
931 struct bio_vec *bv;
933 bio_for_each_segment_all(bv, bio, i) {
934 bv->bv_page = alloc_page(gfp_mask);
935 if (!bv->bv_page) {
936 while (--bv >= bio->bi_io_vec)
937 __free_page(bv->bv_page);
938 return -ENOMEM;
942 return 0;
944 EXPORT_SYMBOL(bio_alloc_pages);
947 * bio_copy_data - copy contents of data buffers from one chain of bios to
948 * another
949 * @src: source bio list
950 * @dst: destination bio list
952 * If @src and @dst are single bios, bi_next must be NULL - otherwise, treats
953 * @src and @dst as linked lists of bios.
955 * Stops when it reaches the end of either @src or @dst - that is, copies
956 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
958 void bio_copy_data(struct bio *dst, struct bio *src)
960 struct bvec_iter src_iter, dst_iter;
961 struct bio_vec src_bv, dst_bv;
962 void *src_p, *dst_p;
963 unsigned bytes;
965 src_iter = src->bi_iter;
966 dst_iter = dst->bi_iter;
968 while (1) {
969 if (!src_iter.bi_size) {
970 src = src->bi_next;
971 if (!src)
972 break;
974 src_iter = src->bi_iter;
977 if (!dst_iter.bi_size) {
978 dst = dst->bi_next;
979 if (!dst)
980 break;
982 dst_iter = dst->bi_iter;
985 src_bv = bio_iter_iovec(src, src_iter);
986 dst_bv = bio_iter_iovec(dst, dst_iter);
988 bytes = min(src_bv.bv_len, dst_bv.bv_len);
990 src_p = kmap_atomic(src_bv.bv_page);
991 dst_p = kmap_atomic(dst_bv.bv_page);
993 memcpy(dst_p + dst_bv.bv_offset,
994 src_p + src_bv.bv_offset,
995 bytes);
997 kunmap_atomic(dst_p);
998 kunmap_atomic(src_p);
1000 bio_advance_iter(src, &src_iter, bytes);
1001 bio_advance_iter(dst, &dst_iter, bytes);
1004 EXPORT_SYMBOL(bio_copy_data);
1006 struct bio_map_data {
1007 int nr_sgvecs;
1008 int is_our_pages;
1009 struct sg_iovec sgvecs[];
1012 static void bio_set_map_data(struct bio_map_data *bmd, struct bio *bio,
1013 const struct sg_iovec *iov, int iov_count,
1014 int is_our_pages)
1016 memcpy(bmd->sgvecs, iov, sizeof(struct sg_iovec) * iov_count);
1017 bmd->nr_sgvecs = iov_count;
1018 bmd->is_our_pages = is_our_pages;
1019 bio->bi_private = bmd;
1022 static struct bio_map_data *bio_alloc_map_data(unsigned int iov_count,
1023 gfp_t gfp_mask)
1025 if (iov_count > UIO_MAXIOV)
1026 return NULL;
1028 return kmalloc(sizeof(struct bio_map_data) +
1029 sizeof(struct sg_iovec) * iov_count, gfp_mask);
1032 static int __bio_copy_iov(struct bio *bio, const struct sg_iovec *iov, int iov_count,
1033 int to_user, int from_user, int do_free_page)
1035 int ret = 0, i;
1036 struct bio_vec *bvec;
1037 int iov_idx = 0;
1038 unsigned int iov_off = 0;
1040 bio_for_each_segment_all(bvec, bio, i) {
1041 char *bv_addr = page_address(bvec->bv_page);
1042 unsigned int bv_len = bvec->bv_len;
1044 while (bv_len && iov_idx < iov_count) {
1045 unsigned int bytes;
1046 char __user *iov_addr;
1048 bytes = min_t(unsigned int,
1049 iov[iov_idx].iov_len - iov_off, bv_len);
1050 iov_addr = iov[iov_idx].iov_base + iov_off;
1052 if (!ret) {
1053 if (to_user)
1054 ret = copy_to_user(iov_addr, bv_addr,
1055 bytes);
1057 if (from_user)
1058 ret = copy_from_user(bv_addr, iov_addr,
1059 bytes);
1061 if (ret)
1062 ret = -EFAULT;
1065 bv_len -= bytes;
1066 bv_addr += bytes;
1067 iov_addr += bytes;
1068 iov_off += bytes;
1070 if (iov[iov_idx].iov_len == iov_off) {
1071 iov_idx++;
1072 iov_off = 0;
1076 if (do_free_page)
1077 __free_page(bvec->bv_page);
1080 return ret;
1084 * bio_uncopy_user - finish previously mapped bio
1085 * @bio: bio being terminated
1087 * Free pages allocated from bio_copy_user() and write back data
1088 * to user space in case of a read.
1090 int bio_uncopy_user(struct bio *bio)
1092 struct bio_map_data *bmd = bio->bi_private;
1093 struct bio_vec *bvec;
1094 int ret = 0, i;
1096 if (!bio_flagged(bio, BIO_NULL_MAPPED)) {
1098 * if we're in a workqueue, the request is orphaned, so
1099 * don't copy into a random user address space, just free.
1101 if (current->mm)
1102 ret = __bio_copy_iov(bio, bmd->sgvecs, bmd->nr_sgvecs,
1103 bio_data_dir(bio) == READ,
1104 0, bmd->is_our_pages);
1105 else if (bmd->is_our_pages)
1106 bio_for_each_segment_all(bvec, bio, i)
1107 __free_page(bvec->bv_page);
1109 kfree(bmd);
1110 bio_put(bio);
1111 return ret;
1113 EXPORT_SYMBOL(bio_uncopy_user);
1116 * bio_copy_user_iov - copy user data to bio
1117 * @q: destination block queue
1118 * @map_data: pointer to the rq_map_data holding pages (if necessary)
1119 * @iov: the iovec.
1120 * @iov_count: number of elements in the iovec
1121 * @write_to_vm: bool indicating writing to pages or not
1122 * @gfp_mask: memory allocation flags
1124 * Prepares and returns a bio for indirect user io, bouncing data
1125 * to/from kernel pages as necessary. Must be paired with
1126 * call bio_uncopy_user() on io completion.
1128 struct bio *bio_copy_user_iov(struct request_queue *q,
1129 struct rq_map_data *map_data,
1130 const struct sg_iovec *iov, int iov_count,
1131 int write_to_vm, gfp_t gfp_mask)
1133 struct bio_map_data *bmd;
1134 struct bio_vec *bvec;
1135 struct page *page;
1136 struct bio *bio;
1137 int i, ret;
1138 int nr_pages = 0;
1139 unsigned int len = 0;
1140 unsigned int offset = map_data ? map_data->offset & ~PAGE_MASK : 0;
1142 for (i = 0; i < iov_count; i++) {
1143 unsigned long uaddr;
1144 unsigned long end;
1145 unsigned long start;
1147 uaddr = (unsigned long)iov[i].iov_base;
1148 end = (uaddr + iov[i].iov_len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1149 start = uaddr >> PAGE_SHIFT;
1152 * Overflow, abort
1154 if (end < start)
1155 return ERR_PTR(-EINVAL);
1157 nr_pages += end - start;
1158 len += iov[i].iov_len;
1161 if (offset)
1162 nr_pages++;
1164 bmd = bio_alloc_map_data(iov_count, gfp_mask);
1165 if (!bmd)
1166 return ERR_PTR(-ENOMEM);
1168 ret = -ENOMEM;
1169 bio = bio_kmalloc(gfp_mask, nr_pages);
1170 if (!bio)
1171 goto out_bmd;
1173 if (!write_to_vm)
1174 bio->bi_rw |= REQ_WRITE;
1176 ret = 0;
1178 if (map_data) {
1179 nr_pages = 1 << map_data->page_order;
1180 i = map_data->offset / PAGE_SIZE;
1182 while (len) {
1183 unsigned int bytes = PAGE_SIZE;
1185 bytes -= offset;
1187 if (bytes > len)
1188 bytes = len;
1190 if (map_data) {
1191 if (i == map_data->nr_entries * nr_pages) {
1192 ret = -ENOMEM;
1193 break;
1196 page = map_data->pages[i / nr_pages];
1197 page += (i % nr_pages);
1199 i++;
1200 } else {
1201 page = alloc_page(q->bounce_gfp | gfp_mask);
1202 if (!page) {
1203 ret = -ENOMEM;
1204 break;
1208 if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes)
1209 break;
1211 len -= bytes;
1212 offset = 0;
1215 if (ret)
1216 goto cleanup;
1219 * success
1221 if ((!write_to_vm && (!map_data || !map_data->null_mapped)) ||
1222 (map_data && map_data->from_user)) {
1223 ret = __bio_copy_iov(bio, iov, iov_count, 0, 1, 0);
1224 if (ret)
1225 goto cleanup;
1228 bio_set_map_data(bmd, bio, iov, iov_count, map_data ? 0 : 1);
1229 return bio;
1230 cleanup:
1231 if (!map_data)
1232 bio_for_each_segment_all(bvec, bio, i)
1233 __free_page(bvec->bv_page);
1235 bio_put(bio);
1236 out_bmd:
1237 kfree(bmd);
1238 return ERR_PTR(ret);
1242 * bio_copy_user - copy user data to bio
1243 * @q: destination block queue
1244 * @map_data: pointer to the rq_map_data holding pages (if necessary)
1245 * @uaddr: start of user address
1246 * @len: length in bytes
1247 * @write_to_vm: bool indicating writing to pages or not
1248 * @gfp_mask: memory allocation flags
1250 * Prepares and returns a bio for indirect user io, bouncing data
1251 * to/from kernel pages as necessary. Must be paired with
1252 * call bio_uncopy_user() on io completion.
1254 struct bio *bio_copy_user(struct request_queue *q, struct rq_map_data *map_data,
1255 unsigned long uaddr, unsigned int len,
1256 int write_to_vm, gfp_t gfp_mask)
1258 struct sg_iovec iov;
1260 iov.iov_base = (void __user *)uaddr;
1261 iov.iov_len = len;
1263 return bio_copy_user_iov(q, map_data, &iov, 1, write_to_vm, gfp_mask);
1265 EXPORT_SYMBOL(bio_copy_user);
1267 static struct bio *__bio_map_user_iov(struct request_queue *q,
1268 struct block_device *bdev,
1269 const struct sg_iovec *iov, int iov_count,
1270 int write_to_vm, gfp_t gfp_mask)
1272 int i, j;
1273 int nr_pages = 0;
1274 struct page **pages;
1275 struct bio *bio;
1276 int cur_page = 0;
1277 int ret, offset;
1279 for (i = 0; i < iov_count; i++) {
1280 unsigned long uaddr = (unsigned long)iov[i].iov_base;
1281 unsigned long len = iov[i].iov_len;
1282 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1283 unsigned long start = uaddr >> PAGE_SHIFT;
1286 * Overflow, abort
1288 if (end < start)
1289 return ERR_PTR(-EINVAL);
1291 nr_pages += end - start;
1293 * buffer must be aligned to at least hardsector size for now
1295 if (uaddr & queue_dma_alignment(q))
1296 return ERR_PTR(-EINVAL);
1299 if (!nr_pages)
1300 return ERR_PTR(-EINVAL);
1302 bio = bio_kmalloc(gfp_mask, nr_pages);
1303 if (!bio)
1304 return ERR_PTR(-ENOMEM);
1306 ret = -ENOMEM;
1307 pages = kcalloc(nr_pages, sizeof(struct page *), gfp_mask);
1308 if (!pages)
1309 goto out;
1311 for (i = 0; i < iov_count; i++) {
1312 unsigned long uaddr = (unsigned long)iov[i].iov_base;
1313 unsigned long len = iov[i].iov_len;
1314 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1315 unsigned long start = uaddr >> PAGE_SHIFT;
1316 const int local_nr_pages = end - start;
1317 const int page_limit = cur_page + local_nr_pages;
1319 ret = get_user_pages_fast(uaddr, local_nr_pages,
1320 write_to_vm, &pages[cur_page]);
1321 if (ret < local_nr_pages) {
1322 ret = -EFAULT;
1323 goto out_unmap;
1326 offset = uaddr & ~PAGE_MASK;
1327 for (j = cur_page; j < page_limit; j++) {
1328 unsigned int bytes = PAGE_SIZE - offset;
1330 if (len <= 0)
1331 break;
1333 if (bytes > len)
1334 bytes = len;
1337 * sorry...
1339 if (bio_add_pc_page(q, bio, pages[j], bytes, offset) <
1340 bytes)
1341 break;
1343 len -= bytes;
1344 offset = 0;
1347 cur_page = j;
1349 * release the pages we didn't map into the bio, if any
1351 while (j < page_limit)
1352 page_cache_release(pages[j++]);
1355 kfree(pages);
1358 * set data direction, and check if mapped pages need bouncing
1360 if (!write_to_vm)
1361 bio->bi_rw |= REQ_WRITE;
1363 bio->bi_bdev = bdev;
1364 bio->bi_flags |= (1 << BIO_USER_MAPPED);
1365 return bio;
1367 out_unmap:
1368 for (i = 0; i < nr_pages; i++) {
1369 if(!pages[i])
1370 break;
1371 page_cache_release(pages[i]);
1373 out:
1374 kfree(pages);
1375 bio_put(bio);
1376 return ERR_PTR(ret);
1380 * bio_map_user - map user address into bio
1381 * @q: the struct request_queue for the bio
1382 * @bdev: destination block device
1383 * @uaddr: start of user address
1384 * @len: length in bytes
1385 * @write_to_vm: bool indicating writing to pages or not
1386 * @gfp_mask: memory allocation flags
1388 * Map the user space address into a bio suitable for io to a block
1389 * device. Returns an error pointer in case of error.
1391 struct bio *bio_map_user(struct request_queue *q, struct block_device *bdev,
1392 unsigned long uaddr, unsigned int len, int write_to_vm,
1393 gfp_t gfp_mask)
1395 struct sg_iovec iov;
1397 iov.iov_base = (void __user *)uaddr;
1398 iov.iov_len = len;
1400 return bio_map_user_iov(q, bdev, &iov, 1, write_to_vm, gfp_mask);
1402 EXPORT_SYMBOL(bio_map_user);
1405 * bio_map_user_iov - map user sg_iovec table into bio
1406 * @q: the struct request_queue for the bio
1407 * @bdev: destination block device
1408 * @iov: the iovec.
1409 * @iov_count: number of elements in the iovec
1410 * @write_to_vm: bool indicating writing to pages or not
1411 * @gfp_mask: memory allocation flags
1413 * Map the user space address into a bio suitable for io to a block
1414 * device. Returns an error pointer in case of error.
1416 struct bio *bio_map_user_iov(struct request_queue *q, struct block_device *bdev,
1417 const struct sg_iovec *iov, int iov_count,
1418 int write_to_vm, gfp_t gfp_mask)
1420 struct bio *bio;
1422 bio = __bio_map_user_iov(q, bdev, iov, iov_count, write_to_vm,
1423 gfp_mask);
1424 if (IS_ERR(bio))
1425 return bio;
1428 * subtle -- if __bio_map_user() ended up bouncing a bio,
1429 * it would normally disappear when its bi_end_io is run.
1430 * however, we need it for the unmap, so grab an extra
1431 * reference to it
1433 bio_get(bio);
1435 return bio;
1438 static void __bio_unmap_user(struct bio *bio)
1440 struct bio_vec *bvec;
1441 int i;
1444 * make sure we dirty pages we wrote to
1446 bio_for_each_segment_all(bvec, bio, i) {
1447 if (bio_data_dir(bio) == READ)
1448 set_page_dirty_lock(bvec->bv_page);
1450 page_cache_release(bvec->bv_page);
1453 bio_put(bio);
1457 * bio_unmap_user - unmap a bio
1458 * @bio: the bio being unmapped
1460 * Unmap a bio previously mapped by bio_map_user(). Must be called with
1461 * a process context.
1463 * bio_unmap_user() may sleep.
1465 void bio_unmap_user(struct bio *bio)
1467 __bio_unmap_user(bio);
1468 bio_put(bio);
1470 EXPORT_SYMBOL(bio_unmap_user);
1472 static void bio_map_kern_endio(struct bio *bio, int err)
1474 bio_put(bio);
1477 static struct bio *__bio_map_kern(struct request_queue *q, void *data,
1478 unsigned int len, gfp_t gfp_mask)
1480 unsigned long kaddr = (unsigned long)data;
1481 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1482 unsigned long start = kaddr >> PAGE_SHIFT;
1483 const int nr_pages = end - start;
1484 int offset, i;
1485 struct bio *bio;
1487 bio = bio_kmalloc(gfp_mask, nr_pages);
1488 if (!bio)
1489 return ERR_PTR(-ENOMEM);
1491 offset = offset_in_page(kaddr);
1492 for (i = 0; i < nr_pages; i++) {
1493 unsigned int bytes = PAGE_SIZE - offset;
1495 if (len <= 0)
1496 break;
1498 if (bytes > len)
1499 bytes = len;
1501 if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
1502 offset) < bytes)
1503 break;
1505 data += bytes;
1506 len -= bytes;
1507 offset = 0;
1510 bio->bi_end_io = bio_map_kern_endio;
1511 return bio;
1515 * bio_map_kern - map kernel address into bio
1516 * @q: the struct request_queue for the bio
1517 * @data: pointer to buffer to map
1518 * @len: length in bytes
1519 * @gfp_mask: allocation flags for bio allocation
1521 * Map the kernel address into a bio suitable for io to a block
1522 * device. Returns an error pointer in case of error.
1524 struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
1525 gfp_t gfp_mask)
1527 struct bio *bio;
1529 bio = __bio_map_kern(q, data, len, gfp_mask);
1530 if (IS_ERR(bio))
1531 return bio;
1533 if (bio->bi_iter.bi_size == len)
1534 return bio;
1537 * Don't support partial mappings.
1539 bio_put(bio);
1540 return ERR_PTR(-EINVAL);
1542 EXPORT_SYMBOL(bio_map_kern);
1544 static void bio_copy_kern_endio(struct bio *bio, int err)
1546 struct bio_vec *bvec;
1547 const int read = bio_data_dir(bio) == READ;
1548 struct bio_map_data *bmd = bio->bi_private;
1549 int i;
1550 char *p = bmd->sgvecs[0].iov_base;
1552 bio_for_each_segment_all(bvec, bio, i) {
1553 char *addr = page_address(bvec->bv_page);
1555 if (read)
1556 memcpy(p, addr, bvec->bv_len);
1558 __free_page(bvec->bv_page);
1559 p += bvec->bv_len;
1562 kfree(bmd);
1563 bio_put(bio);
1567 * bio_copy_kern - copy kernel address into bio
1568 * @q: the struct request_queue for the bio
1569 * @data: pointer to buffer to copy
1570 * @len: length in bytes
1571 * @gfp_mask: allocation flags for bio and page allocation
1572 * @reading: data direction is READ
1574 * copy the kernel address into a bio suitable for io to a block
1575 * device. Returns an error pointer in case of error.
1577 struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
1578 gfp_t gfp_mask, int reading)
1580 struct bio *bio;
1581 struct bio_vec *bvec;
1582 int i;
1584 bio = bio_copy_user(q, NULL, (unsigned long)data, len, 1, gfp_mask);
1585 if (IS_ERR(bio))
1586 return bio;
1588 if (!reading) {
1589 void *p = data;
1591 bio_for_each_segment_all(bvec, bio, i) {
1592 char *addr = page_address(bvec->bv_page);
1594 memcpy(addr, p, bvec->bv_len);
1595 p += bvec->bv_len;
1599 bio->bi_end_io = bio_copy_kern_endio;
1601 return bio;
1603 EXPORT_SYMBOL(bio_copy_kern);
1606 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1607 * for performing direct-IO in BIOs.
1609 * The problem is that we cannot run set_page_dirty() from interrupt context
1610 * because the required locks are not interrupt-safe. So what we can do is to
1611 * mark the pages dirty _before_ performing IO. And in interrupt context,
1612 * check that the pages are still dirty. If so, fine. If not, redirty them
1613 * in process context.
1615 * We special-case compound pages here: normally this means reads into hugetlb
1616 * pages. The logic in here doesn't really work right for compound pages
1617 * because the VM does not uniformly chase down the head page in all cases.
1618 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1619 * handle them at all. So we skip compound pages here at an early stage.
1621 * Note that this code is very hard to test under normal circumstances because
1622 * direct-io pins the pages with get_user_pages(). This makes
1623 * is_page_cache_freeable return false, and the VM will not clean the pages.
1624 * But other code (eg, flusher threads) could clean the pages if they are mapped
1625 * pagecache.
1627 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1628 * deferred bio dirtying paths.
1632 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1634 void bio_set_pages_dirty(struct bio *bio)
1636 struct bio_vec *bvec;
1637 int i;
1639 bio_for_each_segment_all(bvec, bio, i) {
1640 struct page *page = bvec->bv_page;
1642 if (page && !PageCompound(page))
1643 set_page_dirty_lock(page);
1647 static void bio_release_pages(struct bio *bio)
1649 struct bio_vec *bvec;
1650 int i;
1652 bio_for_each_segment_all(bvec, bio, i) {
1653 struct page *page = bvec->bv_page;
1655 if (page)
1656 put_page(page);
1661 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1662 * If they are, then fine. If, however, some pages are clean then they must
1663 * have been written out during the direct-IO read. So we take another ref on
1664 * the BIO and the offending pages and re-dirty the pages in process context.
1666 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1667 * here on. It will run one page_cache_release() against each page and will
1668 * run one bio_put() against the BIO.
1671 static void bio_dirty_fn(struct work_struct *work);
1673 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1674 static DEFINE_SPINLOCK(bio_dirty_lock);
1675 static struct bio *bio_dirty_list;
1678 * This runs in process context
1680 static void bio_dirty_fn(struct work_struct *work)
1682 unsigned long flags;
1683 struct bio *bio;
1685 spin_lock_irqsave(&bio_dirty_lock, flags);
1686 bio = bio_dirty_list;
1687 bio_dirty_list = NULL;
1688 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1690 while (bio) {
1691 struct bio *next = bio->bi_private;
1693 bio_set_pages_dirty(bio);
1694 bio_release_pages(bio);
1695 bio_put(bio);
1696 bio = next;
1700 void bio_check_pages_dirty(struct bio *bio)
1702 struct bio_vec *bvec;
1703 int nr_clean_pages = 0;
1704 int i;
1706 bio_for_each_segment_all(bvec, bio, i) {
1707 struct page *page = bvec->bv_page;
1709 if (PageDirty(page) || PageCompound(page)) {
1710 page_cache_release(page);
1711 bvec->bv_page = NULL;
1712 } else {
1713 nr_clean_pages++;
1717 if (nr_clean_pages) {
1718 unsigned long flags;
1720 spin_lock_irqsave(&bio_dirty_lock, flags);
1721 bio->bi_private = bio_dirty_list;
1722 bio_dirty_list = bio;
1723 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1724 schedule_work(&bio_dirty_work);
1725 } else {
1726 bio_put(bio);
1730 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1731 void bio_flush_dcache_pages(struct bio *bi)
1733 struct bio_vec bvec;
1734 struct bvec_iter iter;
1736 bio_for_each_segment(bvec, bi, iter)
1737 flush_dcache_page(bvec.bv_page);
1739 EXPORT_SYMBOL(bio_flush_dcache_pages);
1740 #endif
1743 * bio_endio - end I/O on a bio
1744 * @bio: bio
1745 * @error: error, if any
1747 * Description:
1748 * bio_endio() will end I/O on the whole bio. bio_endio() is the
1749 * preferred way to end I/O on a bio, it takes care of clearing
1750 * BIO_UPTODATE on error. @error is 0 on success, and and one of the
1751 * established -Exxxx (-EIO, for instance) error values in case
1752 * something went wrong. No one should call bi_end_io() directly on a
1753 * bio unless they own it and thus know that it has an end_io
1754 * function.
1756 void bio_endio(struct bio *bio, int error)
1758 while (bio) {
1759 BUG_ON(atomic_read(&bio->bi_remaining) <= 0);
1761 if (error)
1762 clear_bit(BIO_UPTODATE, &bio->bi_flags);
1763 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
1764 error = -EIO;
1766 if (!atomic_dec_and_test(&bio->bi_remaining))
1767 return;
1770 * Need to have a real endio function for chained bios,
1771 * otherwise various corner cases will break (like stacking
1772 * block devices that save/restore bi_end_io) - however, we want
1773 * to avoid unbounded recursion and blowing the stack. Tail call
1774 * optimization would handle this, but compiling with frame
1775 * pointers also disables gcc's sibling call optimization.
1777 if (bio->bi_end_io == bio_chain_endio) {
1778 struct bio *parent = bio->bi_private;
1779 bio_put(bio);
1780 bio = parent;
1781 } else {
1782 if (bio->bi_end_io)
1783 bio->bi_end_io(bio, error);
1784 bio = NULL;
1788 EXPORT_SYMBOL(bio_endio);
1791 * bio_endio_nodec - end I/O on a bio, without decrementing bi_remaining
1792 * @bio: bio
1793 * @error: error, if any
1795 * For code that has saved and restored bi_end_io; thing hard before using this
1796 * function, probably you should've cloned the entire bio.
1798 void bio_endio_nodec(struct bio *bio, int error)
1800 atomic_inc(&bio->bi_remaining);
1801 bio_endio(bio, error);
1803 EXPORT_SYMBOL(bio_endio_nodec);
1806 * bio_split - split a bio
1807 * @bio: bio to split
1808 * @sectors: number of sectors to split from the front of @bio
1809 * @gfp: gfp mask
1810 * @bs: bio set to allocate from
1812 * Allocates and returns a new bio which represents @sectors from the start of
1813 * @bio, and updates @bio to represent the remaining sectors.
1815 * The newly allocated bio will point to @bio's bi_io_vec; it is the caller's
1816 * responsibility to ensure that @bio is not freed before the split.
1818 struct bio *bio_split(struct bio *bio, int sectors,
1819 gfp_t gfp, struct bio_set *bs)
1821 struct bio *split = NULL;
1823 BUG_ON(sectors <= 0);
1824 BUG_ON(sectors >= bio_sectors(bio));
1826 split = bio_clone_fast(bio, gfp, bs);
1827 if (!split)
1828 return NULL;
1830 split->bi_iter.bi_size = sectors << 9;
1832 if (bio_integrity(split))
1833 bio_integrity_trim(split, 0, sectors);
1835 bio_advance(bio, split->bi_iter.bi_size);
1837 return split;
1839 EXPORT_SYMBOL(bio_split);
1842 * bio_trim - trim a bio
1843 * @bio: bio to trim
1844 * @offset: number of sectors to trim from the front of @bio
1845 * @size: size we want to trim @bio to, in sectors
1847 void bio_trim(struct bio *bio, int offset, int size)
1849 /* 'bio' is a cloned bio which we need to trim to match
1850 * the given offset and size.
1853 size <<= 9;
1854 if (offset == 0 && size == bio->bi_iter.bi_size)
1855 return;
1857 clear_bit(BIO_SEG_VALID, &bio->bi_flags);
1859 bio_advance(bio, offset << 9);
1861 bio->bi_iter.bi_size = size;
1863 EXPORT_SYMBOL_GPL(bio_trim);
1866 * create memory pools for biovec's in a bio_set.
1867 * use the global biovec slabs created for general use.
1869 mempool_t *biovec_create_pool(int pool_entries)
1871 struct biovec_slab *bp = bvec_slabs + BIOVEC_MAX_IDX;
1873 return mempool_create_slab_pool(pool_entries, bp->slab);
1876 void bioset_free(struct bio_set *bs)
1878 if (bs->rescue_workqueue)
1879 destroy_workqueue(bs->rescue_workqueue);
1881 if (bs->bio_pool)
1882 mempool_destroy(bs->bio_pool);
1884 if (bs->bvec_pool)
1885 mempool_destroy(bs->bvec_pool);
1887 bioset_integrity_free(bs);
1888 bio_put_slab(bs);
1890 kfree(bs);
1892 EXPORT_SYMBOL(bioset_free);
1895 * bioset_create - Create a bio_set
1896 * @pool_size: Number of bio and bio_vecs to cache in the mempool
1897 * @front_pad: Number of bytes to allocate in front of the returned bio
1899 * Description:
1900 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1901 * to ask for a number of bytes to be allocated in front of the bio.
1902 * Front pad allocation is useful for embedding the bio inside
1903 * another structure, to avoid allocating extra data to go with the bio.
1904 * Note that the bio must be embedded at the END of that structure always,
1905 * or things will break badly.
1907 struct bio_set *bioset_create(unsigned int pool_size, unsigned int front_pad)
1909 unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1910 struct bio_set *bs;
1912 bs = kzalloc(sizeof(*bs), GFP_KERNEL);
1913 if (!bs)
1914 return NULL;
1916 bs->front_pad = front_pad;
1918 spin_lock_init(&bs->rescue_lock);
1919 bio_list_init(&bs->rescue_list);
1920 INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1922 bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
1923 if (!bs->bio_slab) {
1924 kfree(bs);
1925 return NULL;
1928 bs->bio_pool = mempool_create_slab_pool(pool_size, bs->bio_slab);
1929 if (!bs->bio_pool)
1930 goto bad;
1932 bs->bvec_pool = biovec_create_pool(pool_size);
1933 if (!bs->bvec_pool)
1934 goto bad;
1936 bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
1937 if (!bs->rescue_workqueue)
1938 goto bad;
1940 return bs;
1941 bad:
1942 bioset_free(bs);
1943 return NULL;
1945 EXPORT_SYMBOL(bioset_create);
1947 #ifdef CONFIG_BLK_CGROUP
1949 * bio_associate_current - associate a bio with %current
1950 * @bio: target bio
1952 * Associate @bio with %current if it hasn't been associated yet. Block
1953 * layer will treat @bio as if it were issued by %current no matter which
1954 * task actually issues it.
1956 * This function takes an extra reference of @task's io_context and blkcg
1957 * which will be put when @bio is released. The caller must own @bio,
1958 * ensure %current->io_context exists, and is responsible for synchronizing
1959 * calls to this function.
1961 int bio_associate_current(struct bio *bio)
1963 struct io_context *ioc;
1964 struct cgroup_subsys_state *css;
1966 if (bio->bi_ioc)
1967 return -EBUSY;
1969 ioc = current->io_context;
1970 if (!ioc)
1971 return -ENOENT;
1973 /* acquire active ref on @ioc and associate */
1974 get_io_context_active(ioc);
1975 bio->bi_ioc = ioc;
1977 /* associate blkcg if exists */
1978 rcu_read_lock();
1979 css = task_css(current, blkio_cgrp_id);
1980 if (css && css_tryget_online(css))
1981 bio->bi_css = css;
1982 rcu_read_unlock();
1984 return 0;
1988 * bio_disassociate_task - undo bio_associate_current()
1989 * @bio: target bio
1991 void bio_disassociate_task(struct bio *bio)
1993 if (bio->bi_ioc) {
1994 put_io_context(bio->bi_ioc);
1995 bio->bi_ioc = NULL;
1997 if (bio->bi_css) {
1998 css_put(bio->bi_css);
1999 bio->bi_css = NULL;
2003 #endif /* CONFIG_BLK_CGROUP */
2005 static void __init biovec_init_slabs(void)
2007 int i;
2009 for (i = 0; i < BIOVEC_NR_POOLS; i++) {
2010 int size;
2011 struct biovec_slab *bvs = bvec_slabs + i;
2013 if (bvs->nr_vecs <= BIO_INLINE_VECS) {
2014 bvs->slab = NULL;
2015 continue;
2018 size = bvs->nr_vecs * sizeof(struct bio_vec);
2019 bvs->slab = kmem_cache_create(bvs->name, size, 0,
2020 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
2024 static int __init init_bio(void)
2026 bio_slab_max = 2;
2027 bio_slab_nr = 0;
2028 bio_slabs = kzalloc(bio_slab_max * sizeof(struct bio_slab), GFP_KERNEL);
2029 if (!bio_slabs)
2030 panic("bio: can't allocate bios\n");
2032 bio_integrity_init();
2033 biovec_init_slabs();
2035 fs_bio_set = bioset_create(BIO_POOL_SIZE, 0);
2036 if (!fs_bio_set)
2037 panic("bio: can't allocate bios\n");
2039 if (bioset_integrity_create(fs_bio_set, BIO_POOL_SIZE))
2040 panic("bio: can't create integrity pool\n");
2042 return 0;
2044 subsys_initcall(init_bio);