ARM: s3c24xx: Switch to common GPIO controlled UDC pullup implementation
[linux/fpc-iii.git] / kernel / sys.c
blob18da702ec813c491c758b6f28e86a31a71ba60b5
1 /*
2 * linux/kernel/sys.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 #include <linux/module.h>
8 #include <linux/mm.h>
9 #include <linux/utsname.h>
10 #include <linux/mman.h>
11 #include <linux/notifier.h>
12 #include <linux/reboot.h>
13 #include <linux/prctl.h>
14 #include <linux/highuid.h>
15 #include <linux/fs.h>
16 #include <linux/perf_event.h>
17 #include <linux/resource.h>
18 #include <linux/kernel.h>
19 #include <linux/kexec.h>
20 #include <linux/workqueue.h>
21 #include <linux/capability.h>
22 #include <linux/device.h>
23 #include <linux/key.h>
24 #include <linux/times.h>
25 #include <linux/posix-timers.h>
26 #include <linux/security.h>
27 #include <linux/dcookies.h>
28 #include <linux/suspend.h>
29 #include <linux/tty.h>
30 #include <linux/signal.h>
31 #include <linux/cn_proc.h>
32 #include <linux/getcpu.h>
33 #include <linux/task_io_accounting_ops.h>
34 #include <linux/seccomp.h>
35 #include <linux/cpu.h>
36 #include <linux/personality.h>
37 #include <linux/ptrace.h>
38 #include <linux/fs_struct.h>
39 #include <linux/gfp.h>
41 #include <linux/compat.h>
42 #include <linux/syscalls.h>
43 #include <linux/kprobes.h>
44 #include <linux/user_namespace.h>
46 #include <linux/kmsg_dump.h>
48 #include <asm/uaccess.h>
49 #include <asm/io.h>
50 #include <asm/unistd.h>
52 #ifndef SET_UNALIGN_CTL
53 # define SET_UNALIGN_CTL(a,b) (-EINVAL)
54 #endif
55 #ifndef GET_UNALIGN_CTL
56 # define GET_UNALIGN_CTL(a,b) (-EINVAL)
57 #endif
58 #ifndef SET_FPEMU_CTL
59 # define SET_FPEMU_CTL(a,b) (-EINVAL)
60 #endif
61 #ifndef GET_FPEMU_CTL
62 # define GET_FPEMU_CTL(a,b) (-EINVAL)
63 #endif
64 #ifndef SET_FPEXC_CTL
65 # define SET_FPEXC_CTL(a,b) (-EINVAL)
66 #endif
67 #ifndef GET_FPEXC_CTL
68 # define GET_FPEXC_CTL(a,b) (-EINVAL)
69 #endif
70 #ifndef GET_ENDIAN
71 # define GET_ENDIAN(a,b) (-EINVAL)
72 #endif
73 #ifndef SET_ENDIAN
74 # define SET_ENDIAN(a,b) (-EINVAL)
75 #endif
76 #ifndef GET_TSC_CTL
77 # define GET_TSC_CTL(a) (-EINVAL)
78 #endif
79 #ifndef SET_TSC_CTL
80 # define SET_TSC_CTL(a) (-EINVAL)
81 #endif
84 * this is where the system-wide overflow UID and GID are defined, for
85 * architectures that now have 32-bit UID/GID but didn't in the past
88 int overflowuid = DEFAULT_OVERFLOWUID;
89 int overflowgid = DEFAULT_OVERFLOWGID;
91 #ifdef CONFIG_UID16
92 EXPORT_SYMBOL(overflowuid);
93 EXPORT_SYMBOL(overflowgid);
94 #endif
97 * the same as above, but for filesystems which can only store a 16-bit
98 * UID and GID. as such, this is needed on all architectures
101 int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
102 int fs_overflowgid = DEFAULT_FS_OVERFLOWUID;
104 EXPORT_SYMBOL(fs_overflowuid);
105 EXPORT_SYMBOL(fs_overflowgid);
108 * this indicates whether you can reboot with ctrl-alt-del: the default is yes
111 int C_A_D = 1;
112 struct pid *cad_pid;
113 EXPORT_SYMBOL(cad_pid);
116 * If set, this is used for preparing the system to power off.
119 void (*pm_power_off_prepare)(void);
122 * set the priority of a task
123 * - the caller must hold the RCU read lock
125 static int set_one_prio(struct task_struct *p, int niceval, int error)
127 const struct cred *cred = current_cred(), *pcred = __task_cred(p);
128 int no_nice;
130 if (pcred->uid != cred->euid &&
131 pcred->euid != cred->euid && !capable(CAP_SYS_NICE)) {
132 error = -EPERM;
133 goto out;
135 if (niceval < task_nice(p) && !can_nice(p, niceval)) {
136 error = -EACCES;
137 goto out;
139 no_nice = security_task_setnice(p, niceval);
140 if (no_nice) {
141 error = no_nice;
142 goto out;
144 if (error == -ESRCH)
145 error = 0;
146 set_user_nice(p, niceval);
147 out:
148 return error;
151 SYSCALL_DEFINE3(setpriority, int, which, int, who, int, niceval)
153 struct task_struct *g, *p;
154 struct user_struct *user;
155 const struct cred *cred = current_cred();
156 int error = -EINVAL;
157 struct pid *pgrp;
159 if (which > PRIO_USER || which < PRIO_PROCESS)
160 goto out;
162 /* normalize: avoid signed division (rounding problems) */
163 error = -ESRCH;
164 if (niceval < -20)
165 niceval = -20;
166 if (niceval > 19)
167 niceval = 19;
169 rcu_read_lock();
170 read_lock(&tasklist_lock);
171 switch (which) {
172 case PRIO_PROCESS:
173 if (who)
174 p = find_task_by_vpid(who);
175 else
176 p = current;
177 if (p)
178 error = set_one_prio(p, niceval, error);
179 break;
180 case PRIO_PGRP:
181 if (who)
182 pgrp = find_vpid(who);
183 else
184 pgrp = task_pgrp(current);
185 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
186 error = set_one_prio(p, niceval, error);
187 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
188 break;
189 case PRIO_USER:
190 user = (struct user_struct *) cred->user;
191 if (!who)
192 who = cred->uid;
193 else if ((who != cred->uid) &&
194 !(user = find_user(who)))
195 goto out_unlock; /* No processes for this user */
197 do_each_thread(g, p) {
198 if (__task_cred(p)->uid == who)
199 error = set_one_prio(p, niceval, error);
200 } while_each_thread(g, p);
201 if (who != cred->uid)
202 free_uid(user); /* For find_user() */
203 break;
205 out_unlock:
206 read_unlock(&tasklist_lock);
207 rcu_read_unlock();
208 out:
209 return error;
213 * Ugh. To avoid negative return values, "getpriority()" will
214 * not return the normal nice-value, but a negated value that
215 * has been offset by 20 (ie it returns 40..1 instead of -20..19)
216 * to stay compatible.
218 SYSCALL_DEFINE2(getpriority, int, which, int, who)
220 struct task_struct *g, *p;
221 struct user_struct *user;
222 const struct cred *cred = current_cred();
223 long niceval, retval = -ESRCH;
224 struct pid *pgrp;
226 if (which > PRIO_USER || which < PRIO_PROCESS)
227 return -EINVAL;
229 rcu_read_lock();
230 read_lock(&tasklist_lock);
231 switch (which) {
232 case PRIO_PROCESS:
233 if (who)
234 p = find_task_by_vpid(who);
235 else
236 p = current;
237 if (p) {
238 niceval = 20 - task_nice(p);
239 if (niceval > retval)
240 retval = niceval;
242 break;
243 case PRIO_PGRP:
244 if (who)
245 pgrp = find_vpid(who);
246 else
247 pgrp = task_pgrp(current);
248 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
249 niceval = 20 - task_nice(p);
250 if (niceval > retval)
251 retval = niceval;
252 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
253 break;
254 case PRIO_USER:
255 user = (struct user_struct *) cred->user;
256 if (!who)
257 who = cred->uid;
258 else if ((who != cred->uid) &&
259 !(user = find_user(who)))
260 goto out_unlock; /* No processes for this user */
262 do_each_thread(g, p) {
263 if (__task_cred(p)->uid == who) {
264 niceval = 20 - task_nice(p);
265 if (niceval > retval)
266 retval = niceval;
268 } while_each_thread(g, p);
269 if (who != cred->uid)
270 free_uid(user); /* for find_user() */
271 break;
273 out_unlock:
274 read_unlock(&tasklist_lock);
275 rcu_read_unlock();
277 return retval;
281 * emergency_restart - reboot the system
283 * Without shutting down any hardware or taking any locks
284 * reboot the system. This is called when we know we are in
285 * trouble so this is our best effort to reboot. This is
286 * safe to call in interrupt context.
288 void emergency_restart(void)
290 kmsg_dump(KMSG_DUMP_EMERG);
291 machine_emergency_restart();
293 EXPORT_SYMBOL_GPL(emergency_restart);
295 void kernel_restart_prepare(char *cmd)
297 blocking_notifier_call_chain(&reboot_notifier_list, SYS_RESTART, cmd);
298 system_state = SYSTEM_RESTART;
299 device_shutdown();
300 sysdev_shutdown();
304 * kernel_restart - reboot the system
305 * @cmd: pointer to buffer containing command to execute for restart
306 * or %NULL
308 * Shutdown everything and perform a clean reboot.
309 * This is not safe to call in interrupt context.
311 void kernel_restart(char *cmd)
313 kernel_restart_prepare(cmd);
314 if (!cmd)
315 printk(KERN_EMERG "Restarting system.\n");
316 else
317 printk(KERN_EMERG "Restarting system with command '%s'.\n", cmd);
318 kmsg_dump(KMSG_DUMP_RESTART);
319 machine_restart(cmd);
321 EXPORT_SYMBOL_GPL(kernel_restart);
323 static void kernel_shutdown_prepare(enum system_states state)
325 blocking_notifier_call_chain(&reboot_notifier_list,
326 (state == SYSTEM_HALT)?SYS_HALT:SYS_POWER_OFF, NULL);
327 system_state = state;
328 device_shutdown();
331 * kernel_halt - halt the system
333 * Shutdown everything and perform a clean system halt.
335 void kernel_halt(void)
337 kernel_shutdown_prepare(SYSTEM_HALT);
338 sysdev_shutdown();
339 printk(KERN_EMERG "System halted.\n");
340 kmsg_dump(KMSG_DUMP_HALT);
341 machine_halt();
344 EXPORT_SYMBOL_GPL(kernel_halt);
347 * kernel_power_off - power_off the system
349 * Shutdown everything and perform a clean system power_off.
351 void kernel_power_off(void)
353 kernel_shutdown_prepare(SYSTEM_POWER_OFF);
354 if (pm_power_off_prepare)
355 pm_power_off_prepare();
356 disable_nonboot_cpus();
357 sysdev_shutdown();
358 printk(KERN_EMERG "Power down.\n");
359 kmsg_dump(KMSG_DUMP_POWEROFF);
360 machine_power_off();
362 EXPORT_SYMBOL_GPL(kernel_power_off);
364 static DEFINE_MUTEX(reboot_mutex);
367 * Reboot system call: for obvious reasons only root may call it,
368 * and even root needs to set up some magic numbers in the registers
369 * so that some mistake won't make this reboot the whole machine.
370 * You can also set the meaning of the ctrl-alt-del-key here.
372 * reboot doesn't sync: do that yourself before calling this.
374 SYSCALL_DEFINE4(reboot, int, magic1, int, magic2, unsigned int, cmd,
375 void __user *, arg)
377 char buffer[256];
378 int ret = 0;
380 /* We only trust the superuser with rebooting the system. */
381 if (!capable(CAP_SYS_BOOT))
382 return -EPERM;
384 /* For safety, we require "magic" arguments. */
385 if (magic1 != LINUX_REBOOT_MAGIC1 ||
386 (magic2 != LINUX_REBOOT_MAGIC2 &&
387 magic2 != LINUX_REBOOT_MAGIC2A &&
388 magic2 != LINUX_REBOOT_MAGIC2B &&
389 magic2 != LINUX_REBOOT_MAGIC2C))
390 return -EINVAL;
392 /* Instead of trying to make the power_off code look like
393 * halt when pm_power_off is not set do it the easy way.
395 if ((cmd == LINUX_REBOOT_CMD_POWER_OFF) && !pm_power_off)
396 cmd = LINUX_REBOOT_CMD_HALT;
398 mutex_lock(&reboot_mutex);
399 switch (cmd) {
400 case LINUX_REBOOT_CMD_RESTART:
401 kernel_restart(NULL);
402 break;
404 case LINUX_REBOOT_CMD_CAD_ON:
405 C_A_D = 1;
406 break;
408 case LINUX_REBOOT_CMD_CAD_OFF:
409 C_A_D = 0;
410 break;
412 case LINUX_REBOOT_CMD_HALT:
413 kernel_halt();
414 do_exit(0);
415 panic("cannot halt");
417 case LINUX_REBOOT_CMD_POWER_OFF:
418 kernel_power_off();
419 do_exit(0);
420 break;
422 case LINUX_REBOOT_CMD_RESTART2:
423 if (strncpy_from_user(&buffer[0], arg, sizeof(buffer) - 1) < 0) {
424 ret = -EFAULT;
425 break;
427 buffer[sizeof(buffer) - 1] = '\0';
429 kernel_restart(buffer);
430 break;
432 #ifdef CONFIG_KEXEC
433 case LINUX_REBOOT_CMD_KEXEC:
434 ret = kernel_kexec();
435 break;
436 #endif
438 #ifdef CONFIG_HIBERNATION
439 case LINUX_REBOOT_CMD_SW_SUSPEND:
440 ret = hibernate();
441 break;
442 #endif
444 default:
445 ret = -EINVAL;
446 break;
448 mutex_unlock(&reboot_mutex);
449 return ret;
452 static void deferred_cad(struct work_struct *dummy)
454 kernel_restart(NULL);
458 * This function gets called by ctrl-alt-del - ie the keyboard interrupt.
459 * As it's called within an interrupt, it may NOT sync: the only choice
460 * is whether to reboot at once, or just ignore the ctrl-alt-del.
462 void ctrl_alt_del(void)
464 static DECLARE_WORK(cad_work, deferred_cad);
466 if (C_A_D)
467 schedule_work(&cad_work);
468 else
469 kill_cad_pid(SIGINT, 1);
473 * Unprivileged users may change the real gid to the effective gid
474 * or vice versa. (BSD-style)
476 * If you set the real gid at all, or set the effective gid to a value not
477 * equal to the real gid, then the saved gid is set to the new effective gid.
479 * This makes it possible for a setgid program to completely drop its
480 * privileges, which is often a useful assertion to make when you are doing
481 * a security audit over a program.
483 * The general idea is that a program which uses just setregid() will be
484 * 100% compatible with BSD. A program which uses just setgid() will be
485 * 100% compatible with POSIX with saved IDs.
487 * SMP: There are not races, the GIDs are checked only by filesystem
488 * operations (as far as semantic preservation is concerned).
490 SYSCALL_DEFINE2(setregid, gid_t, rgid, gid_t, egid)
492 const struct cred *old;
493 struct cred *new;
494 int retval;
496 new = prepare_creds();
497 if (!new)
498 return -ENOMEM;
499 old = current_cred();
501 retval = -EPERM;
502 if (rgid != (gid_t) -1) {
503 if (old->gid == rgid ||
504 old->egid == rgid ||
505 capable(CAP_SETGID))
506 new->gid = rgid;
507 else
508 goto error;
510 if (egid != (gid_t) -1) {
511 if (old->gid == egid ||
512 old->egid == egid ||
513 old->sgid == egid ||
514 capable(CAP_SETGID))
515 new->egid = egid;
516 else
517 goto error;
520 if (rgid != (gid_t) -1 ||
521 (egid != (gid_t) -1 && egid != old->gid))
522 new->sgid = new->egid;
523 new->fsgid = new->egid;
525 return commit_creds(new);
527 error:
528 abort_creds(new);
529 return retval;
533 * setgid() is implemented like SysV w/ SAVED_IDS
535 * SMP: Same implicit races as above.
537 SYSCALL_DEFINE1(setgid, gid_t, gid)
539 const struct cred *old;
540 struct cred *new;
541 int retval;
543 new = prepare_creds();
544 if (!new)
545 return -ENOMEM;
546 old = current_cred();
548 retval = -EPERM;
549 if (capable(CAP_SETGID))
550 new->gid = new->egid = new->sgid = new->fsgid = gid;
551 else if (gid == old->gid || gid == old->sgid)
552 new->egid = new->fsgid = gid;
553 else
554 goto error;
556 return commit_creds(new);
558 error:
559 abort_creds(new);
560 return retval;
564 * change the user struct in a credentials set to match the new UID
566 static int set_user(struct cred *new)
568 struct user_struct *new_user;
570 new_user = alloc_uid(current_user_ns(), new->uid);
571 if (!new_user)
572 return -EAGAIN;
574 if (atomic_read(&new_user->processes) >= rlimit(RLIMIT_NPROC) &&
575 new_user != INIT_USER) {
576 free_uid(new_user);
577 return -EAGAIN;
580 free_uid(new->user);
581 new->user = new_user;
582 return 0;
586 * Unprivileged users may change the real uid to the effective uid
587 * or vice versa. (BSD-style)
589 * If you set the real uid at all, or set the effective uid to a value not
590 * equal to the real uid, then the saved uid is set to the new effective uid.
592 * This makes it possible for a setuid program to completely drop its
593 * privileges, which is often a useful assertion to make when you are doing
594 * a security audit over a program.
596 * The general idea is that a program which uses just setreuid() will be
597 * 100% compatible with BSD. A program which uses just setuid() will be
598 * 100% compatible with POSIX with saved IDs.
600 SYSCALL_DEFINE2(setreuid, uid_t, ruid, uid_t, euid)
602 const struct cred *old;
603 struct cred *new;
604 int retval;
606 new = prepare_creds();
607 if (!new)
608 return -ENOMEM;
609 old = current_cred();
611 retval = -EPERM;
612 if (ruid != (uid_t) -1) {
613 new->uid = ruid;
614 if (old->uid != ruid &&
615 old->euid != ruid &&
616 !capable(CAP_SETUID))
617 goto error;
620 if (euid != (uid_t) -1) {
621 new->euid = euid;
622 if (old->uid != euid &&
623 old->euid != euid &&
624 old->suid != euid &&
625 !capable(CAP_SETUID))
626 goto error;
629 if (new->uid != old->uid) {
630 retval = set_user(new);
631 if (retval < 0)
632 goto error;
634 if (ruid != (uid_t) -1 ||
635 (euid != (uid_t) -1 && euid != old->uid))
636 new->suid = new->euid;
637 new->fsuid = new->euid;
639 retval = security_task_fix_setuid(new, old, LSM_SETID_RE);
640 if (retval < 0)
641 goto error;
643 return commit_creds(new);
645 error:
646 abort_creds(new);
647 return retval;
651 * setuid() is implemented like SysV with SAVED_IDS
653 * Note that SAVED_ID's is deficient in that a setuid root program
654 * like sendmail, for example, cannot set its uid to be a normal
655 * user and then switch back, because if you're root, setuid() sets
656 * the saved uid too. If you don't like this, blame the bright people
657 * in the POSIX committee and/or USG. Note that the BSD-style setreuid()
658 * will allow a root program to temporarily drop privileges and be able to
659 * regain them by swapping the real and effective uid.
661 SYSCALL_DEFINE1(setuid, uid_t, uid)
663 const struct cred *old;
664 struct cred *new;
665 int retval;
667 new = prepare_creds();
668 if (!new)
669 return -ENOMEM;
670 old = current_cred();
672 retval = -EPERM;
673 if (capable(CAP_SETUID)) {
674 new->suid = new->uid = uid;
675 if (uid != old->uid) {
676 retval = set_user(new);
677 if (retval < 0)
678 goto error;
680 } else if (uid != old->uid && uid != new->suid) {
681 goto error;
684 new->fsuid = new->euid = uid;
686 retval = security_task_fix_setuid(new, old, LSM_SETID_ID);
687 if (retval < 0)
688 goto error;
690 return commit_creds(new);
692 error:
693 abort_creds(new);
694 return retval;
699 * This function implements a generic ability to update ruid, euid,
700 * and suid. This allows you to implement the 4.4 compatible seteuid().
702 SYSCALL_DEFINE3(setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
704 const struct cred *old;
705 struct cred *new;
706 int retval;
708 new = prepare_creds();
709 if (!new)
710 return -ENOMEM;
712 old = current_cred();
714 retval = -EPERM;
715 if (!capable(CAP_SETUID)) {
716 if (ruid != (uid_t) -1 && ruid != old->uid &&
717 ruid != old->euid && ruid != old->suid)
718 goto error;
719 if (euid != (uid_t) -1 && euid != old->uid &&
720 euid != old->euid && euid != old->suid)
721 goto error;
722 if (suid != (uid_t) -1 && suid != old->uid &&
723 suid != old->euid && suid != old->suid)
724 goto error;
727 if (ruid != (uid_t) -1) {
728 new->uid = ruid;
729 if (ruid != old->uid) {
730 retval = set_user(new);
731 if (retval < 0)
732 goto error;
735 if (euid != (uid_t) -1)
736 new->euid = euid;
737 if (suid != (uid_t) -1)
738 new->suid = suid;
739 new->fsuid = new->euid;
741 retval = security_task_fix_setuid(new, old, LSM_SETID_RES);
742 if (retval < 0)
743 goto error;
745 return commit_creds(new);
747 error:
748 abort_creds(new);
749 return retval;
752 SYSCALL_DEFINE3(getresuid, uid_t __user *, ruid, uid_t __user *, euid, uid_t __user *, suid)
754 const struct cred *cred = current_cred();
755 int retval;
757 if (!(retval = put_user(cred->uid, ruid)) &&
758 !(retval = put_user(cred->euid, euid)))
759 retval = put_user(cred->suid, suid);
761 return retval;
765 * Same as above, but for rgid, egid, sgid.
767 SYSCALL_DEFINE3(setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
769 const struct cred *old;
770 struct cred *new;
771 int retval;
773 new = prepare_creds();
774 if (!new)
775 return -ENOMEM;
776 old = current_cred();
778 retval = -EPERM;
779 if (!capable(CAP_SETGID)) {
780 if (rgid != (gid_t) -1 && rgid != old->gid &&
781 rgid != old->egid && rgid != old->sgid)
782 goto error;
783 if (egid != (gid_t) -1 && egid != old->gid &&
784 egid != old->egid && egid != old->sgid)
785 goto error;
786 if (sgid != (gid_t) -1 && sgid != old->gid &&
787 sgid != old->egid && sgid != old->sgid)
788 goto error;
791 if (rgid != (gid_t) -1)
792 new->gid = rgid;
793 if (egid != (gid_t) -1)
794 new->egid = egid;
795 if (sgid != (gid_t) -1)
796 new->sgid = sgid;
797 new->fsgid = new->egid;
799 return commit_creds(new);
801 error:
802 abort_creds(new);
803 return retval;
806 SYSCALL_DEFINE3(getresgid, gid_t __user *, rgid, gid_t __user *, egid, gid_t __user *, sgid)
808 const struct cred *cred = current_cred();
809 int retval;
811 if (!(retval = put_user(cred->gid, rgid)) &&
812 !(retval = put_user(cred->egid, egid)))
813 retval = put_user(cred->sgid, sgid);
815 return retval;
820 * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
821 * is used for "access()" and for the NFS daemon (letting nfsd stay at
822 * whatever uid it wants to). It normally shadows "euid", except when
823 * explicitly set by setfsuid() or for access..
825 SYSCALL_DEFINE1(setfsuid, uid_t, uid)
827 const struct cred *old;
828 struct cred *new;
829 uid_t old_fsuid;
831 new = prepare_creds();
832 if (!new)
833 return current_fsuid();
834 old = current_cred();
835 old_fsuid = old->fsuid;
837 if (uid == old->uid || uid == old->euid ||
838 uid == old->suid || uid == old->fsuid ||
839 capable(CAP_SETUID)) {
840 if (uid != old_fsuid) {
841 new->fsuid = uid;
842 if (security_task_fix_setuid(new, old, LSM_SETID_FS) == 0)
843 goto change_okay;
847 abort_creds(new);
848 return old_fsuid;
850 change_okay:
851 commit_creds(new);
852 return old_fsuid;
856 * Samma på svenska..
858 SYSCALL_DEFINE1(setfsgid, gid_t, gid)
860 const struct cred *old;
861 struct cred *new;
862 gid_t old_fsgid;
864 new = prepare_creds();
865 if (!new)
866 return current_fsgid();
867 old = current_cred();
868 old_fsgid = old->fsgid;
870 if (gid == old->gid || gid == old->egid ||
871 gid == old->sgid || gid == old->fsgid ||
872 capable(CAP_SETGID)) {
873 if (gid != old_fsgid) {
874 new->fsgid = gid;
875 goto change_okay;
879 abort_creds(new);
880 return old_fsgid;
882 change_okay:
883 commit_creds(new);
884 return old_fsgid;
887 void do_sys_times(struct tms *tms)
889 cputime_t tgutime, tgstime, cutime, cstime;
891 spin_lock_irq(&current->sighand->siglock);
892 thread_group_times(current, &tgutime, &tgstime);
893 cutime = current->signal->cutime;
894 cstime = current->signal->cstime;
895 spin_unlock_irq(&current->sighand->siglock);
896 tms->tms_utime = cputime_to_clock_t(tgutime);
897 tms->tms_stime = cputime_to_clock_t(tgstime);
898 tms->tms_cutime = cputime_to_clock_t(cutime);
899 tms->tms_cstime = cputime_to_clock_t(cstime);
902 SYSCALL_DEFINE1(times, struct tms __user *, tbuf)
904 if (tbuf) {
905 struct tms tmp;
907 do_sys_times(&tmp);
908 if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
909 return -EFAULT;
911 force_successful_syscall_return();
912 return (long) jiffies_64_to_clock_t(get_jiffies_64());
916 * This needs some heavy checking ...
917 * I just haven't the stomach for it. I also don't fully
918 * understand sessions/pgrp etc. Let somebody who does explain it.
920 * OK, I think I have the protection semantics right.... this is really
921 * only important on a multi-user system anyway, to make sure one user
922 * can't send a signal to a process owned by another. -TYT, 12/12/91
924 * Auch. Had to add the 'did_exec' flag to conform completely to POSIX.
925 * LBT 04.03.94
927 SYSCALL_DEFINE2(setpgid, pid_t, pid, pid_t, pgid)
929 struct task_struct *p;
930 struct task_struct *group_leader = current->group_leader;
931 struct pid *pgrp;
932 int err;
934 if (!pid)
935 pid = task_pid_vnr(group_leader);
936 if (!pgid)
937 pgid = pid;
938 if (pgid < 0)
939 return -EINVAL;
940 rcu_read_lock();
942 /* From this point forward we keep holding onto the tasklist lock
943 * so that our parent does not change from under us. -DaveM
945 write_lock_irq(&tasklist_lock);
947 err = -ESRCH;
948 p = find_task_by_vpid(pid);
949 if (!p)
950 goto out;
952 err = -EINVAL;
953 if (!thread_group_leader(p))
954 goto out;
956 if (same_thread_group(p->real_parent, group_leader)) {
957 err = -EPERM;
958 if (task_session(p) != task_session(group_leader))
959 goto out;
960 err = -EACCES;
961 if (p->did_exec)
962 goto out;
963 } else {
964 err = -ESRCH;
965 if (p != group_leader)
966 goto out;
969 err = -EPERM;
970 if (p->signal->leader)
971 goto out;
973 pgrp = task_pid(p);
974 if (pgid != pid) {
975 struct task_struct *g;
977 pgrp = find_vpid(pgid);
978 g = pid_task(pgrp, PIDTYPE_PGID);
979 if (!g || task_session(g) != task_session(group_leader))
980 goto out;
983 err = security_task_setpgid(p, pgid);
984 if (err)
985 goto out;
987 if (task_pgrp(p) != pgrp)
988 change_pid(p, PIDTYPE_PGID, pgrp);
990 err = 0;
991 out:
992 /* All paths lead to here, thus we are safe. -DaveM */
993 write_unlock_irq(&tasklist_lock);
994 rcu_read_unlock();
995 return err;
998 SYSCALL_DEFINE1(getpgid, pid_t, pid)
1000 struct task_struct *p;
1001 struct pid *grp;
1002 int retval;
1004 rcu_read_lock();
1005 if (!pid)
1006 grp = task_pgrp(current);
1007 else {
1008 retval = -ESRCH;
1009 p = find_task_by_vpid(pid);
1010 if (!p)
1011 goto out;
1012 grp = task_pgrp(p);
1013 if (!grp)
1014 goto out;
1016 retval = security_task_getpgid(p);
1017 if (retval)
1018 goto out;
1020 retval = pid_vnr(grp);
1021 out:
1022 rcu_read_unlock();
1023 return retval;
1026 #ifdef __ARCH_WANT_SYS_GETPGRP
1028 SYSCALL_DEFINE0(getpgrp)
1030 return sys_getpgid(0);
1033 #endif
1035 SYSCALL_DEFINE1(getsid, pid_t, pid)
1037 struct task_struct *p;
1038 struct pid *sid;
1039 int retval;
1041 rcu_read_lock();
1042 if (!pid)
1043 sid = task_session(current);
1044 else {
1045 retval = -ESRCH;
1046 p = find_task_by_vpid(pid);
1047 if (!p)
1048 goto out;
1049 sid = task_session(p);
1050 if (!sid)
1051 goto out;
1053 retval = security_task_getsid(p);
1054 if (retval)
1055 goto out;
1057 retval = pid_vnr(sid);
1058 out:
1059 rcu_read_unlock();
1060 return retval;
1063 SYSCALL_DEFINE0(setsid)
1065 struct task_struct *group_leader = current->group_leader;
1066 struct pid *sid = task_pid(group_leader);
1067 pid_t session = pid_vnr(sid);
1068 int err = -EPERM;
1070 write_lock_irq(&tasklist_lock);
1071 /* Fail if I am already a session leader */
1072 if (group_leader->signal->leader)
1073 goto out;
1075 /* Fail if a process group id already exists that equals the
1076 * proposed session id.
1078 if (pid_task(sid, PIDTYPE_PGID))
1079 goto out;
1081 group_leader->signal->leader = 1;
1082 __set_special_pids(sid);
1084 proc_clear_tty(group_leader);
1086 err = session;
1087 out:
1088 write_unlock_irq(&tasklist_lock);
1089 if (err > 0) {
1090 proc_sid_connector(group_leader);
1091 sched_autogroup_create_attach(group_leader);
1093 return err;
1096 DECLARE_RWSEM(uts_sem);
1098 #ifdef COMPAT_UTS_MACHINE
1099 #define override_architecture(name) \
1100 (personality(current->personality) == PER_LINUX32 && \
1101 copy_to_user(name->machine, COMPAT_UTS_MACHINE, \
1102 sizeof(COMPAT_UTS_MACHINE)))
1103 #else
1104 #define override_architecture(name) 0
1105 #endif
1107 SYSCALL_DEFINE1(newuname, struct new_utsname __user *, name)
1109 int errno = 0;
1111 down_read(&uts_sem);
1112 if (copy_to_user(name, utsname(), sizeof *name))
1113 errno = -EFAULT;
1114 up_read(&uts_sem);
1116 if (!errno && override_architecture(name))
1117 errno = -EFAULT;
1118 return errno;
1121 #ifdef __ARCH_WANT_SYS_OLD_UNAME
1123 * Old cruft
1125 SYSCALL_DEFINE1(uname, struct old_utsname __user *, name)
1127 int error = 0;
1129 if (!name)
1130 return -EFAULT;
1132 down_read(&uts_sem);
1133 if (copy_to_user(name, utsname(), sizeof(*name)))
1134 error = -EFAULT;
1135 up_read(&uts_sem);
1137 if (!error && override_architecture(name))
1138 error = -EFAULT;
1139 return error;
1142 SYSCALL_DEFINE1(olduname, struct oldold_utsname __user *, name)
1144 int error;
1146 if (!name)
1147 return -EFAULT;
1148 if (!access_ok(VERIFY_WRITE, name, sizeof(struct oldold_utsname)))
1149 return -EFAULT;
1151 down_read(&uts_sem);
1152 error = __copy_to_user(&name->sysname, &utsname()->sysname,
1153 __OLD_UTS_LEN);
1154 error |= __put_user(0, name->sysname + __OLD_UTS_LEN);
1155 error |= __copy_to_user(&name->nodename, &utsname()->nodename,
1156 __OLD_UTS_LEN);
1157 error |= __put_user(0, name->nodename + __OLD_UTS_LEN);
1158 error |= __copy_to_user(&name->release, &utsname()->release,
1159 __OLD_UTS_LEN);
1160 error |= __put_user(0, name->release + __OLD_UTS_LEN);
1161 error |= __copy_to_user(&name->version, &utsname()->version,
1162 __OLD_UTS_LEN);
1163 error |= __put_user(0, name->version + __OLD_UTS_LEN);
1164 error |= __copy_to_user(&name->machine, &utsname()->machine,
1165 __OLD_UTS_LEN);
1166 error |= __put_user(0, name->machine + __OLD_UTS_LEN);
1167 up_read(&uts_sem);
1169 if (!error && override_architecture(name))
1170 error = -EFAULT;
1171 return error ? -EFAULT : 0;
1173 #endif
1175 SYSCALL_DEFINE2(sethostname, char __user *, name, int, len)
1177 int errno;
1178 char tmp[__NEW_UTS_LEN];
1180 if (!capable(CAP_SYS_ADMIN))
1181 return -EPERM;
1182 if (len < 0 || len > __NEW_UTS_LEN)
1183 return -EINVAL;
1184 down_write(&uts_sem);
1185 errno = -EFAULT;
1186 if (!copy_from_user(tmp, name, len)) {
1187 struct new_utsname *u = utsname();
1189 memcpy(u->nodename, tmp, len);
1190 memset(u->nodename + len, 0, sizeof(u->nodename) - len);
1191 errno = 0;
1193 up_write(&uts_sem);
1194 return errno;
1197 #ifdef __ARCH_WANT_SYS_GETHOSTNAME
1199 SYSCALL_DEFINE2(gethostname, char __user *, name, int, len)
1201 int i, errno;
1202 struct new_utsname *u;
1204 if (len < 0)
1205 return -EINVAL;
1206 down_read(&uts_sem);
1207 u = utsname();
1208 i = 1 + strlen(u->nodename);
1209 if (i > len)
1210 i = len;
1211 errno = 0;
1212 if (copy_to_user(name, u->nodename, i))
1213 errno = -EFAULT;
1214 up_read(&uts_sem);
1215 return errno;
1218 #endif
1221 * Only setdomainname; getdomainname can be implemented by calling
1222 * uname()
1224 SYSCALL_DEFINE2(setdomainname, char __user *, name, int, len)
1226 int errno;
1227 char tmp[__NEW_UTS_LEN];
1229 if (!capable(CAP_SYS_ADMIN))
1230 return -EPERM;
1231 if (len < 0 || len > __NEW_UTS_LEN)
1232 return -EINVAL;
1234 down_write(&uts_sem);
1235 errno = -EFAULT;
1236 if (!copy_from_user(tmp, name, len)) {
1237 struct new_utsname *u = utsname();
1239 memcpy(u->domainname, tmp, len);
1240 memset(u->domainname + len, 0, sizeof(u->domainname) - len);
1241 errno = 0;
1243 up_write(&uts_sem);
1244 return errno;
1247 SYSCALL_DEFINE2(getrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1249 struct rlimit value;
1250 int ret;
1252 ret = do_prlimit(current, resource, NULL, &value);
1253 if (!ret)
1254 ret = copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1256 return ret;
1259 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1262 * Back compatibility for getrlimit. Needed for some apps.
1265 SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1266 struct rlimit __user *, rlim)
1268 struct rlimit x;
1269 if (resource >= RLIM_NLIMITS)
1270 return -EINVAL;
1272 task_lock(current->group_leader);
1273 x = current->signal->rlim[resource];
1274 task_unlock(current->group_leader);
1275 if (x.rlim_cur > 0x7FFFFFFF)
1276 x.rlim_cur = 0x7FFFFFFF;
1277 if (x.rlim_max > 0x7FFFFFFF)
1278 x.rlim_max = 0x7FFFFFFF;
1279 return copy_to_user(rlim, &x, sizeof(x))?-EFAULT:0;
1282 #endif
1284 static inline bool rlim64_is_infinity(__u64 rlim64)
1286 #if BITS_PER_LONG < 64
1287 return rlim64 >= ULONG_MAX;
1288 #else
1289 return rlim64 == RLIM64_INFINITY;
1290 #endif
1293 static void rlim_to_rlim64(const struct rlimit *rlim, struct rlimit64 *rlim64)
1295 if (rlim->rlim_cur == RLIM_INFINITY)
1296 rlim64->rlim_cur = RLIM64_INFINITY;
1297 else
1298 rlim64->rlim_cur = rlim->rlim_cur;
1299 if (rlim->rlim_max == RLIM_INFINITY)
1300 rlim64->rlim_max = RLIM64_INFINITY;
1301 else
1302 rlim64->rlim_max = rlim->rlim_max;
1305 static void rlim64_to_rlim(const struct rlimit64 *rlim64, struct rlimit *rlim)
1307 if (rlim64_is_infinity(rlim64->rlim_cur))
1308 rlim->rlim_cur = RLIM_INFINITY;
1309 else
1310 rlim->rlim_cur = (unsigned long)rlim64->rlim_cur;
1311 if (rlim64_is_infinity(rlim64->rlim_max))
1312 rlim->rlim_max = RLIM_INFINITY;
1313 else
1314 rlim->rlim_max = (unsigned long)rlim64->rlim_max;
1317 /* make sure you are allowed to change @tsk limits before calling this */
1318 int do_prlimit(struct task_struct *tsk, unsigned int resource,
1319 struct rlimit *new_rlim, struct rlimit *old_rlim)
1321 struct rlimit *rlim;
1322 int retval = 0;
1324 if (resource >= RLIM_NLIMITS)
1325 return -EINVAL;
1326 if (new_rlim) {
1327 if (new_rlim->rlim_cur > new_rlim->rlim_max)
1328 return -EINVAL;
1329 if (resource == RLIMIT_NOFILE &&
1330 new_rlim->rlim_max > sysctl_nr_open)
1331 return -EPERM;
1334 /* protect tsk->signal and tsk->sighand from disappearing */
1335 read_lock(&tasklist_lock);
1336 if (!tsk->sighand) {
1337 retval = -ESRCH;
1338 goto out;
1341 rlim = tsk->signal->rlim + resource;
1342 task_lock(tsk->group_leader);
1343 if (new_rlim) {
1344 if (new_rlim->rlim_max > rlim->rlim_max &&
1345 !capable(CAP_SYS_RESOURCE))
1346 retval = -EPERM;
1347 if (!retval)
1348 retval = security_task_setrlimit(tsk->group_leader,
1349 resource, new_rlim);
1350 if (resource == RLIMIT_CPU && new_rlim->rlim_cur == 0) {
1352 * The caller is asking for an immediate RLIMIT_CPU
1353 * expiry. But we use the zero value to mean "it was
1354 * never set". So let's cheat and make it one second
1355 * instead
1357 new_rlim->rlim_cur = 1;
1360 if (!retval) {
1361 if (old_rlim)
1362 *old_rlim = *rlim;
1363 if (new_rlim)
1364 *rlim = *new_rlim;
1366 task_unlock(tsk->group_leader);
1369 * RLIMIT_CPU handling. Note that the kernel fails to return an error
1370 * code if it rejected the user's attempt to set RLIMIT_CPU. This is a
1371 * very long-standing error, and fixing it now risks breakage of
1372 * applications, so we live with it
1374 if (!retval && new_rlim && resource == RLIMIT_CPU &&
1375 new_rlim->rlim_cur != RLIM_INFINITY)
1376 update_rlimit_cpu(tsk, new_rlim->rlim_cur);
1377 out:
1378 read_unlock(&tasklist_lock);
1379 return retval;
1382 /* rcu lock must be held */
1383 static int check_prlimit_permission(struct task_struct *task)
1385 const struct cred *cred = current_cred(), *tcred;
1387 tcred = __task_cred(task);
1388 if (current != task &&
1389 (cred->uid != tcred->euid ||
1390 cred->uid != tcred->suid ||
1391 cred->uid != tcred->uid ||
1392 cred->gid != tcred->egid ||
1393 cred->gid != tcred->sgid ||
1394 cred->gid != tcred->gid) &&
1395 !capable(CAP_SYS_RESOURCE)) {
1396 return -EPERM;
1399 return 0;
1402 SYSCALL_DEFINE4(prlimit64, pid_t, pid, unsigned int, resource,
1403 const struct rlimit64 __user *, new_rlim,
1404 struct rlimit64 __user *, old_rlim)
1406 struct rlimit64 old64, new64;
1407 struct rlimit old, new;
1408 struct task_struct *tsk;
1409 int ret;
1411 if (new_rlim) {
1412 if (copy_from_user(&new64, new_rlim, sizeof(new64)))
1413 return -EFAULT;
1414 rlim64_to_rlim(&new64, &new);
1417 rcu_read_lock();
1418 tsk = pid ? find_task_by_vpid(pid) : current;
1419 if (!tsk) {
1420 rcu_read_unlock();
1421 return -ESRCH;
1423 ret = check_prlimit_permission(tsk);
1424 if (ret) {
1425 rcu_read_unlock();
1426 return ret;
1428 get_task_struct(tsk);
1429 rcu_read_unlock();
1431 ret = do_prlimit(tsk, resource, new_rlim ? &new : NULL,
1432 old_rlim ? &old : NULL);
1434 if (!ret && old_rlim) {
1435 rlim_to_rlim64(&old, &old64);
1436 if (copy_to_user(old_rlim, &old64, sizeof(old64)))
1437 ret = -EFAULT;
1440 put_task_struct(tsk);
1441 return ret;
1444 SYSCALL_DEFINE2(setrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1446 struct rlimit new_rlim;
1448 if (copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1449 return -EFAULT;
1450 return do_prlimit(current, resource, &new_rlim, NULL);
1454 * It would make sense to put struct rusage in the task_struct,
1455 * except that would make the task_struct be *really big*. After
1456 * task_struct gets moved into malloc'ed memory, it would
1457 * make sense to do this. It will make moving the rest of the information
1458 * a lot simpler! (Which we're not doing right now because we're not
1459 * measuring them yet).
1461 * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1462 * races with threads incrementing their own counters. But since word
1463 * reads are atomic, we either get new values or old values and we don't
1464 * care which for the sums. We always take the siglock to protect reading
1465 * the c* fields from p->signal from races with exit.c updating those
1466 * fields when reaping, so a sample either gets all the additions of a
1467 * given child after it's reaped, or none so this sample is before reaping.
1469 * Locking:
1470 * We need to take the siglock for CHILDEREN, SELF and BOTH
1471 * for the cases current multithreaded, non-current single threaded
1472 * non-current multithreaded. Thread traversal is now safe with
1473 * the siglock held.
1474 * Strictly speaking, we donot need to take the siglock if we are current and
1475 * single threaded, as no one else can take our signal_struct away, no one
1476 * else can reap the children to update signal->c* counters, and no one else
1477 * can race with the signal-> fields. If we do not take any lock, the
1478 * signal-> fields could be read out of order while another thread was just
1479 * exiting. So we should place a read memory barrier when we avoid the lock.
1480 * On the writer side, write memory barrier is implied in __exit_signal
1481 * as __exit_signal releases the siglock spinlock after updating the signal->
1482 * fields. But we don't do this yet to keep things simple.
1486 static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r)
1488 r->ru_nvcsw += t->nvcsw;
1489 r->ru_nivcsw += t->nivcsw;
1490 r->ru_minflt += t->min_flt;
1491 r->ru_majflt += t->maj_flt;
1492 r->ru_inblock += task_io_get_inblock(t);
1493 r->ru_oublock += task_io_get_oublock(t);
1496 static void k_getrusage(struct task_struct *p, int who, struct rusage *r)
1498 struct task_struct *t;
1499 unsigned long flags;
1500 cputime_t tgutime, tgstime, utime, stime;
1501 unsigned long maxrss = 0;
1503 memset((char *) r, 0, sizeof *r);
1504 utime = stime = cputime_zero;
1506 if (who == RUSAGE_THREAD) {
1507 task_times(current, &utime, &stime);
1508 accumulate_thread_rusage(p, r);
1509 maxrss = p->signal->maxrss;
1510 goto out;
1513 if (!lock_task_sighand(p, &flags))
1514 return;
1516 switch (who) {
1517 case RUSAGE_BOTH:
1518 case RUSAGE_CHILDREN:
1519 utime = p->signal->cutime;
1520 stime = p->signal->cstime;
1521 r->ru_nvcsw = p->signal->cnvcsw;
1522 r->ru_nivcsw = p->signal->cnivcsw;
1523 r->ru_minflt = p->signal->cmin_flt;
1524 r->ru_majflt = p->signal->cmaj_flt;
1525 r->ru_inblock = p->signal->cinblock;
1526 r->ru_oublock = p->signal->coublock;
1527 maxrss = p->signal->cmaxrss;
1529 if (who == RUSAGE_CHILDREN)
1530 break;
1532 case RUSAGE_SELF:
1533 thread_group_times(p, &tgutime, &tgstime);
1534 utime = cputime_add(utime, tgutime);
1535 stime = cputime_add(stime, tgstime);
1536 r->ru_nvcsw += p->signal->nvcsw;
1537 r->ru_nivcsw += p->signal->nivcsw;
1538 r->ru_minflt += p->signal->min_flt;
1539 r->ru_majflt += p->signal->maj_flt;
1540 r->ru_inblock += p->signal->inblock;
1541 r->ru_oublock += p->signal->oublock;
1542 if (maxrss < p->signal->maxrss)
1543 maxrss = p->signal->maxrss;
1544 t = p;
1545 do {
1546 accumulate_thread_rusage(t, r);
1547 t = next_thread(t);
1548 } while (t != p);
1549 break;
1551 default:
1552 BUG();
1554 unlock_task_sighand(p, &flags);
1556 out:
1557 cputime_to_timeval(utime, &r->ru_utime);
1558 cputime_to_timeval(stime, &r->ru_stime);
1560 if (who != RUSAGE_CHILDREN) {
1561 struct mm_struct *mm = get_task_mm(p);
1562 if (mm) {
1563 setmax_mm_hiwater_rss(&maxrss, mm);
1564 mmput(mm);
1567 r->ru_maxrss = maxrss * (PAGE_SIZE / 1024); /* convert pages to KBs */
1570 int getrusage(struct task_struct *p, int who, struct rusage __user *ru)
1572 struct rusage r;
1573 k_getrusage(p, who, &r);
1574 return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1577 SYSCALL_DEFINE2(getrusage, int, who, struct rusage __user *, ru)
1579 if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1580 who != RUSAGE_THREAD)
1581 return -EINVAL;
1582 return getrusage(current, who, ru);
1585 SYSCALL_DEFINE1(umask, int, mask)
1587 mask = xchg(&current->fs->umask, mask & S_IRWXUGO);
1588 return mask;
1591 SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3,
1592 unsigned long, arg4, unsigned long, arg5)
1594 struct task_struct *me = current;
1595 unsigned char comm[sizeof(me->comm)];
1596 long error;
1598 error = security_task_prctl(option, arg2, arg3, arg4, arg5);
1599 if (error != -ENOSYS)
1600 return error;
1602 error = 0;
1603 switch (option) {
1604 case PR_SET_PDEATHSIG:
1605 if (!valid_signal(arg2)) {
1606 error = -EINVAL;
1607 break;
1609 me->pdeath_signal = arg2;
1610 error = 0;
1611 break;
1612 case PR_GET_PDEATHSIG:
1613 error = put_user(me->pdeath_signal, (int __user *)arg2);
1614 break;
1615 case PR_GET_DUMPABLE:
1616 error = get_dumpable(me->mm);
1617 break;
1618 case PR_SET_DUMPABLE:
1619 if (arg2 < 0 || arg2 > 1) {
1620 error = -EINVAL;
1621 break;
1623 set_dumpable(me->mm, arg2);
1624 error = 0;
1625 break;
1627 case PR_SET_UNALIGN:
1628 error = SET_UNALIGN_CTL(me, arg2);
1629 break;
1630 case PR_GET_UNALIGN:
1631 error = GET_UNALIGN_CTL(me, arg2);
1632 break;
1633 case PR_SET_FPEMU:
1634 error = SET_FPEMU_CTL(me, arg2);
1635 break;
1636 case PR_GET_FPEMU:
1637 error = GET_FPEMU_CTL(me, arg2);
1638 break;
1639 case PR_SET_FPEXC:
1640 error = SET_FPEXC_CTL(me, arg2);
1641 break;
1642 case PR_GET_FPEXC:
1643 error = GET_FPEXC_CTL(me, arg2);
1644 break;
1645 case PR_GET_TIMING:
1646 error = PR_TIMING_STATISTICAL;
1647 break;
1648 case PR_SET_TIMING:
1649 if (arg2 != PR_TIMING_STATISTICAL)
1650 error = -EINVAL;
1651 else
1652 error = 0;
1653 break;
1655 case PR_SET_NAME:
1656 comm[sizeof(me->comm)-1] = 0;
1657 if (strncpy_from_user(comm, (char __user *)arg2,
1658 sizeof(me->comm) - 1) < 0)
1659 return -EFAULT;
1660 set_task_comm(me, comm);
1661 return 0;
1662 case PR_GET_NAME:
1663 get_task_comm(comm, me);
1664 if (copy_to_user((char __user *)arg2, comm,
1665 sizeof(comm)))
1666 return -EFAULT;
1667 return 0;
1668 case PR_GET_ENDIAN:
1669 error = GET_ENDIAN(me, arg2);
1670 break;
1671 case PR_SET_ENDIAN:
1672 error = SET_ENDIAN(me, arg2);
1673 break;
1675 case PR_GET_SECCOMP:
1676 error = prctl_get_seccomp();
1677 break;
1678 case PR_SET_SECCOMP:
1679 error = prctl_set_seccomp(arg2);
1680 break;
1681 case PR_GET_TSC:
1682 error = GET_TSC_CTL(arg2);
1683 break;
1684 case PR_SET_TSC:
1685 error = SET_TSC_CTL(arg2);
1686 break;
1687 case PR_TASK_PERF_EVENTS_DISABLE:
1688 error = perf_event_task_disable();
1689 break;
1690 case PR_TASK_PERF_EVENTS_ENABLE:
1691 error = perf_event_task_enable();
1692 break;
1693 case PR_GET_TIMERSLACK:
1694 error = current->timer_slack_ns;
1695 break;
1696 case PR_SET_TIMERSLACK:
1697 if (arg2 <= 0)
1698 current->timer_slack_ns =
1699 current->default_timer_slack_ns;
1700 else
1701 current->timer_slack_ns = arg2;
1702 error = 0;
1703 break;
1704 case PR_MCE_KILL:
1705 if (arg4 | arg5)
1706 return -EINVAL;
1707 switch (arg2) {
1708 case PR_MCE_KILL_CLEAR:
1709 if (arg3 != 0)
1710 return -EINVAL;
1711 current->flags &= ~PF_MCE_PROCESS;
1712 break;
1713 case PR_MCE_KILL_SET:
1714 current->flags |= PF_MCE_PROCESS;
1715 if (arg3 == PR_MCE_KILL_EARLY)
1716 current->flags |= PF_MCE_EARLY;
1717 else if (arg3 == PR_MCE_KILL_LATE)
1718 current->flags &= ~PF_MCE_EARLY;
1719 else if (arg3 == PR_MCE_KILL_DEFAULT)
1720 current->flags &=
1721 ~(PF_MCE_EARLY|PF_MCE_PROCESS);
1722 else
1723 return -EINVAL;
1724 break;
1725 default:
1726 return -EINVAL;
1728 error = 0;
1729 break;
1730 case PR_MCE_KILL_GET:
1731 if (arg2 | arg3 | arg4 | arg5)
1732 return -EINVAL;
1733 if (current->flags & PF_MCE_PROCESS)
1734 error = (current->flags & PF_MCE_EARLY) ?
1735 PR_MCE_KILL_EARLY : PR_MCE_KILL_LATE;
1736 else
1737 error = PR_MCE_KILL_DEFAULT;
1738 break;
1739 default:
1740 error = -EINVAL;
1741 break;
1743 return error;
1746 SYSCALL_DEFINE3(getcpu, unsigned __user *, cpup, unsigned __user *, nodep,
1747 struct getcpu_cache __user *, unused)
1749 int err = 0;
1750 int cpu = raw_smp_processor_id();
1751 if (cpup)
1752 err |= put_user(cpu, cpup);
1753 if (nodep)
1754 err |= put_user(cpu_to_node(cpu), nodep);
1755 return err ? -EFAULT : 0;
1758 char poweroff_cmd[POWEROFF_CMD_PATH_LEN] = "/sbin/poweroff";
1760 static void argv_cleanup(struct subprocess_info *info)
1762 argv_free(info->argv);
1766 * orderly_poweroff - Trigger an orderly system poweroff
1767 * @force: force poweroff if command execution fails
1769 * This may be called from any context to trigger a system shutdown.
1770 * If the orderly shutdown fails, it will force an immediate shutdown.
1772 int orderly_poweroff(bool force)
1774 int argc;
1775 char **argv = argv_split(GFP_ATOMIC, poweroff_cmd, &argc);
1776 static char *envp[] = {
1777 "HOME=/",
1778 "PATH=/sbin:/bin:/usr/sbin:/usr/bin",
1779 NULL
1781 int ret = -ENOMEM;
1782 struct subprocess_info *info;
1784 if (argv == NULL) {
1785 printk(KERN_WARNING "%s failed to allocate memory for \"%s\"\n",
1786 __func__, poweroff_cmd);
1787 goto out;
1790 info = call_usermodehelper_setup(argv[0], argv, envp, GFP_ATOMIC);
1791 if (info == NULL) {
1792 argv_free(argv);
1793 goto out;
1796 call_usermodehelper_setfns(info, NULL, argv_cleanup, NULL);
1798 ret = call_usermodehelper_exec(info, UMH_NO_WAIT);
1800 out:
1801 if (ret && force) {
1802 printk(KERN_WARNING "Failed to start orderly shutdown: "
1803 "forcing the issue\n");
1805 /* I guess this should try to kick off some daemon to
1806 sync and poweroff asap. Or not even bother syncing
1807 if we're doing an emergency shutdown? */
1808 emergency_sync();
1809 kernel_power_off();
1812 return ret;
1814 EXPORT_SYMBOL_GPL(orderly_poweroff);