interconnect: qcom: Fix Kconfig indentation
[linux/fpc-iii.git] / drivers / dma / stm32-dma.c
blob5989b08935211537026f289a0b1eb5bc320b4284
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Driver for STM32 DMA controller
5 * Inspired by dma-jz4740.c and tegra20-apb-dma.c
7 * Copyright (C) M'boumba Cedric Madianga 2015
8 * Author: M'boumba Cedric Madianga <cedric.madianga@gmail.com>
9 * Pierre-Yves Mordret <pierre-yves.mordret@st.com>
12 #include <linux/clk.h>
13 #include <linux/delay.h>
14 #include <linux/dmaengine.h>
15 #include <linux/dma-mapping.h>
16 #include <linux/err.h>
17 #include <linux/init.h>
18 #include <linux/jiffies.h>
19 #include <linux/list.h>
20 #include <linux/module.h>
21 #include <linux/of.h>
22 #include <linux/of_device.h>
23 #include <linux/of_dma.h>
24 #include <linux/platform_device.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/reset.h>
27 #include <linux/sched.h>
28 #include <linux/slab.h>
30 #include "virt-dma.h"
32 #define STM32_DMA_LISR 0x0000 /* DMA Low Int Status Reg */
33 #define STM32_DMA_HISR 0x0004 /* DMA High Int Status Reg */
34 #define STM32_DMA_LIFCR 0x0008 /* DMA Low Int Flag Clear Reg */
35 #define STM32_DMA_HIFCR 0x000c /* DMA High Int Flag Clear Reg */
36 #define STM32_DMA_TCI BIT(5) /* Transfer Complete Interrupt */
37 #define STM32_DMA_HTI BIT(4) /* Half Transfer Interrupt */
38 #define STM32_DMA_TEI BIT(3) /* Transfer Error Interrupt */
39 #define STM32_DMA_DMEI BIT(2) /* Direct Mode Error Interrupt */
40 #define STM32_DMA_FEI BIT(0) /* FIFO Error Interrupt */
41 #define STM32_DMA_MASKI (STM32_DMA_TCI \
42 | STM32_DMA_TEI \
43 | STM32_DMA_DMEI \
44 | STM32_DMA_FEI)
46 /* DMA Stream x Configuration Register */
47 #define STM32_DMA_SCR(x) (0x0010 + 0x18 * (x)) /* x = 0..7 */
48 #define STM32_DMA_SCR_REQ(n) ((n & 0x7) << 25)
49 #define STM32_DMA_SCR_MBURST_MASK GENMASK(24, 23)
50 #define STM32_DMA_SCR_MBURST(n) ((n & 0x3) << 23)
51 #define STM32_DMA_SCR_PBURST_MASK GENMASK(22, 21)
52 #define STM32_DMA_SCR_PBURST(n) ((n & 0x3) << 21)
53 #define STM32_DMA_SCR_PL_MASK GENMASK(17, 16)
54 #define STM32_DMA_SCR_PL(n) ((n & 0x3) << 16)
55 #define STM32_DMA_SCR_MSIZE_MASK GENMASK(14, 13)
56 #define STM32_DMA_SCR_MSIZE(n) ((n & 0x3) << 13)
57 #define STM32_DMA_SCR_PSIZE_MASK GENMASK(12, 11)
58 #define STM32_DMA_SCR_PSIZE(n) ((n & 0x3) << 11)
59 #define STM32_DMA_SCR_PSIZE_GET(n) ((n & STM32_DMA_SCR_PSIZE_MASK) >> 11)
60 #define STM32_DMA_SCR_DIR_MASK GENMASK(7, 6)
61 #define STM32_DMA_SCR_DIR(n) ((n & 0x3) << 6)
62 #define STM32_DMA_SCR_CT BIT(19) /* Target in double buffer */
63 #define STM32_DMA_SCR_DBM BIT(18) /* Double Buffer Mode */
64 #define STM32_DMA_SCR_PINCOS BIT(15) /* Peripheral inc offset size */
65 #define STM32_DMA_SCR_MINC BIT(10) /* Memory increment mode */
66 #define STM32_DMA_SCR_PINC BIT(9) /* Peripheral increment mode */
67 #define STM32_DMA_SCR_CIRC BIT(8) /* Circular mode */
68 #define STM32_DMA_SCR_PFCTRL BIT(5) /* Peripheral Flow Controller */
69 #define STM32_DMA_SCR_TCIE BIT(4) /* Transfer Complete Int Enable
71 #define STM32_DMA_SCR_TEIE BIT(2) /* Transfer Error Int Enable */
72 #define STM32_DMA_SCR_DMEIE BIT(1) /* Direct Mode Err Int Enable */
73 #define STM32_DMA_SCR_EN BIT(0) /* Stream Enable */
74 #define STM32_DMA_SCR_CFG_MASK (STM32_DMA_SCR_PINC \
75 | STM32_DMA_SCR_MINC \
76 | STM32_DMA_SCR_PINCOS \
77 | STM32_DMA_SCR_PL_MASK)
78 #define STM32_DMA_SCR_IRQ_MASK (STM32_DMA_SCR_TCIE \
79 | STM32_DMA_SCR_TEIE \
80 | STM32_DMA_SCR_DMEIE)
82 /* DMA Stream x number of data register */
83 #define STM32_DMA_SNDTR(x) (0x0014 + 0x18 * (x))
85 /* DMA stream peripheral address register */
86 #define STM32_DMA_SPAR(x) (0x0018 + 0x18 * (x))
88 /* DMA stream x memory 0 address register */
89 #define STM32_DMA_SM0AR(x) (0x001c + 0x18 * (x))
91 /* DMA stream x memory 1 address register */
92 #define STM32_DMA_SM1AR(x) (0x0020 + 0x18 * (x))
94 /* DMA stream x FIFO control register */
95 #define STM32_DMA_SFCR(x) (0x0024 + 0x18 * (x))
96 #define STM32_DMA_SFCR_FTH_MASK GENMASK(1, 0)
97 #define STM32_DMA_SFCR_FTH(n) (n & STM32_DMA_SFCR_FTH_MASK)
98 #define STM32_DMA_SFCR_FEIE BIT(7) /* FIFO error interrupt enable */
99 #define STM32_DMA_SFCR_DMDIS BIT(2) /* Direct mode disable */
100 #define STM32_DMA_SFCR_MASK (STM32_DMA_SFCR_FEIE \
101 | STM32_DMA_SFCR_DMDIS)
103 /* DMA direction */
104 #define STM32_DMA_DEV_TO_MEM 0x00
105 #define STM32_DMA_MEM_TO_DEV 0x01
106 #define STM32_DMA_MEM_TO_MEM 0x02
108 /* DMA priority level */
109 #define STM32_DMA_PRIORITY_LOW 0x00
110 #define STM32_DMA_PRIORITY_MEDIUM 0x01
111 #define STM32_DMA_PRIORITY_HIGH 0x02
112 #define STM32_DMA_PRIORITY_VERY_HIGH 0x03
114 /* DMA FIFO threshold selection */
115 #define STM32_DMA_FIFO_THRESHOLD_1QUARTERFULL 0x00
116 #define STM32_DMA_FIFO_THRESHOLD_HALFFULL 0x01
117 #define STM32_DMA_FIFO_THRESHOLD_3QUARTERSFULL 0x02
118 #define STM32_DMA_FIFO_THRESHOLD_FULL 0x03
120 #define STM32_DMA_MAX_DATA_ITEMS 0xffff
122 * Valid transfer starts from @0 to @0xFFFE leading to unaligned scatter
123 * gather at boundary. Thus it's safer to round down this value on FIFO
124 * size (16 Bytes)
126 #define STM32_DMA_ALIGNED_MAX_DATA_ITEMS \
127 ALIGN_DOWN(STM32_DMA_MAX_DATA_ITEMS, 16)
128 #define STM32_DMA_MAX_CHANNELS 0x08
129 #define STM32_DMA_MAX_REQUEST_ID 0x08
130 #define STM32_DMA_MAX_DATA_PARAM 0x03
131 #define STM32_DMA_FIFO_SIZE 16 /* FIFO is 16 bytes */
132 #define STM32_DMA_MIN_BURST 4
133 #define STM32_DMA_MAX_BURST 16
135 /* DMA Features */
136 #define STM32_DMA_THRESHOLD_FTR_MASK GENMASK(1, 0)
137 #define STM32_DMA_THRESHOLD_FTR_GET(n) ((n) & STM32_DMA_THRESHOLD_FTR_MASK)
139 enum stm32_dma_width {
140 STM32_DMA_BYTE,
141 STM32_DMA_HALF_WORD,
142 STM32_DMA_WORD,
145 enum stm32_dma_burst_size {
146 STM32_DMA_BURST_SINGLE,
147 STM32_DMA_BURST_INCR4,
148 STM32_DMA_BURST_INCR8,
149 STM32_DMA_BURST_INCR16,
153 * struct stm32_dma_cfg - STM32 DMA custom configuration
154 * @channel_id: channel ID
155 * @request_line: DMA request
156 * @stream_config: 32bit mask specifying the DMA channel configuration
157 * @features: 32bit mask specifying the DMA Feature list
159 struct stm32_dma_cfg {
160 u32 channel_id;
161 u32 request_line;
162 u32 stream_config;
163 u32 features;
166 struct stm32_dma_chan_reg {
167 u32 dma_lisr;
168 u32 dma_hisr;
169 u32 dma_lifcr;
170 u32 dma_hifcr;
171 u32 dma_scr;
172 u32 dma_sndtr;
173 u32 dma_spar;
174 u32 dma_sm0ar;
175 u32 dma_sm1ar;
176 u32 dma_sfcr;
179 struct stm32_dma_sg_req {
180 u32 len;
181 struct stm32_dma_chan_reg chan_reg;
184 struct stm32_dma_desc {
185 struct virt_dma_desc vdesc;
186 bool cyclic;
187 u32 num_sgs;
188 struct stm32_dma_sg_req sg_req[];
191 struct stm32_dma_chan {
192 struct virt_dma_chan vchan;
193 bool config_init;
194 bool busy;
195 u32 id;
196 u32 irq;
197 struct stm32_dma_desc *desc;
198 u32 next_sg;
199 struct dma_slave_config dma_sconfig;
200 struct stm32_dma_chan_reg chan_reg;
201 u32 threshold;
202 u32 mem_burst;
203 u32 mem_width;
206 struct stm32_dma_device {
207 struct dma_device ddev;
208 void __iomem *base;
209 struct clk *clk;
210 struct reset_control *rst;
211 bool mem2mem;
212 struct stm32_dma_chan chan[STM32_DMA_MAX_CHANNELS];
215 static struct stm32_dma_device *stm32_dma_get_dev(struct stm32_dma_chan *chan)
217 return container_of(chan->vchan.chan.device, struct stm32_dma_device,
218 ddev);
221 static struct stm32_dma_chan *to_stm32_dma_chan(struct dma_chan *c)
223 return container_of(c, struct stm32_dma_chan, vchan.chan);
226 static struct stm32_dma_desc *to_stm32_dma_desc(struct virt_dma_desc *vdesc)
228 return container_of(vdesc, struct stm32_dma_desc, vdesc);
231 static struct device *chan2dev(struct stm32_dma_chan *chan)
233 return &chan->vchan.chan.dev->device;
236 static u32 stm32_dma_read(struct stm32_dma_device *dmadev, u32 reg)
238 return readl_relaxed(dmadev->base + reg);
241 static void stm32_dma_write(struct stm32_dma_device *dmadev, u32 reg, u32 val)
243 writel_relaxed(val, dmadev->base + reg);
246 static int stm32_dma_get_width(struct stm32_dma_chan *chan,
247 enum dma_slave_buswidth width)
249 switch (width) {
250 case DMA_SLAVE_BUSWIDTH_1_BYTE:
251 return STM32_DMA_BYTE;
252 case DMA_SLAVE_BUSWIDTH_2_BYTES:
253 return STM32_DMA_HALF_WORD;
254 case DMA_SLAVE_BUSWIDTH_4_BYTES:
255 return STM32_DMA_WORD;
256 default:
257 dev_err(chan2dev(chan), "Dma bus width not supported\n");
258 return -EINVAL;
262 static enum dma_slave_buswidth stm32_dma_get_max_width(u32 buf_len,
263 u32 threshold)
265 enum dma_slave_buswidth max_width;
267 if (threshold == STM32_DMA_FIFO_THRESHOLD_FULL)
268 max_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
269 else
270 max_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
272 while ((buf_len < max_width || buf_len % max_width) &&
273 max_width > DMA_SLAVE_BUSWIDTH_1_BYTE)
274 max_width = max_width >> 1;
276 return max_width;
279 static bool stm32_dma_fifo_threshold_is_allowed(u32 burst, u32 threshold,
280 enum dma_slave_buswidth width)
282 u32 remaining;
284 if (width != DMA_SLAVE_BUSWIDTH_UNDEFINED) {
285 if (burst != 0) {
287 * If number of beats fit in several whole bursts
288 * this configuration is allowed.
290 remaining = ((STM32_DMA_FIFO_SIZE / width) *
291 (threshold + 1) / 4) % burst;
293 if (remaining == 0)
294 return true;
295 } else {
296 return true;
300 return false;
303 static bool stm32_dma_is_burst_possible(u32 buf_len, u32 threshold)
306 * Buffer or period length has to be aligned on FIFO depth.
307 * Otherwise bytes may be stuck within FIFO at buffer or period
308 * length.
310 return ((buf_len % ((threshold + 1) * 4)) == 0);
313 static u32 stm32_dma_get_best_burst(u32 buf_len, u32 max_burst, u32 threshold,
314 enum dma_slave_buswidth width)
316 u32 best_burst = max_burst;
318 if (best_burst == 1 || !stm32_dma_is_burst_possible(buf_len, threshold))
319 return 0;
321 while ((buf_len < best_burst * width && best_burst > 1) ||
322 !stm32_dma_fifo_threshold_is_allowed(best_burst, threshold,
323 width)) {
324 if (best_burst > STM32_DMA_MIN_BURST)
325 best_burst = best_burst >> 1;
326 else
327 best_burst = 0;
330 return best_burst;
333 static int stm32_dma_get_burst(struct stm32_dma_chan *chan, u32 maxburst)
335 switch (maxburst) {
336 case 0:
337 case 1:
338 return STM32_DMA_BURST_SINGLE;
339 case 4:
340 return STM32_DMA_BURST_INCR4;
341 case 8:
342 return STM32_DMA_BURST_INCR8;
343 case 16:
344 return STM32_DMA_BURST_INCR16;
345 default:
346 dev_err(chan2dev(chan), "Dma burst size not supported\n");
347 return -EINVAL;
351 static void stm32_dma_set_fifo_config(struct stm32_dma_chan *chan,
352 u32 src_burst, u32 dst_burst)
354 chan->chan_reg.dma_sfcr &= ~STM32_DMA_SFCR_MASK;
355 chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_DMEIE;
357 if (!src_burst && !dst_burst) {
358 /* Using direct mode */
359 chan->chan_reg.dma_scr |= STM32_DMA_SCR_DMEIE;
360 } else {
361 /* Using FIFO mode */
362 chan->chan_reg.dma_sfcr |= STM32_DMA_SFCR_MASK;
366 static int stm32_dma_slave_config(struct dma_chan *c,
367 struct dma_slave_config *config)
369 struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
371 memcpy(&chan->dma_sconfig, config, sizeof(*config));
373 chan->config_init = true;
375 return 0;
378 static u32 stm32_dma_irq_status(struct stm32_dma_chan *chan)
380 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
381 u32 flags, dma_isr;
384 * Read "flags" from DMA_xISR register corresponding to the selected
385 * DMA channel at the correct bit offset inside that register.
387 * If (ch % 4) is 2 or 3, left shift the mask by 16 bits.
388 * If (ch % 4) is 1 or 3, additionally left shift the mask by 6 bits.
391 if (chan->id & 4)
392 dma_isr = stm32_dma_read(dmadev, STM32_DMA_HISR);
393 else
394 dma_isr = stm32_dma_read(dmadev, STM32_DMA_LISR);
396 flags = dma_isr >> (((chan->id & 2) << 3) | ((chan->id & 1) * 6));
398 return flags & STM32_DMA_MASKI;
401 static void stm32_dma_irq_clear(struct stm32_dma_chan *chan, u32 flags)
403 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
404 u32 dma_ifcr;
407 * Write "flags" to the DMA_xIFCR register corresponding to the selected
408 * DMA channel at the correct bit offset inside that register.
410 * If (ch % 4) is 2 or 3, left shift the mask by 16 bits.
411 * If (ch % 4) is 1 or 3, additionally left shift the mask by 6 bits.
413 flags &= STM32_DMA_MASKI;
414 dma_ifcr = flags << (((chan->id & 2) << 3) | ((chan->id & 1) * 6));
416 if (chan->id & 4)
417 stm32_dma_write(dmadev, STM32_DMA_HIFCR, dma_ifcr);
418 else
419 stm32_dma_write(dmadev, STM32_DMA_LIFCR, dma_ifcr);
422 static int stm32_dma_disable_chan(struct stm32_dma_chan *chan)
424 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
425 unsigned long timeout = jiffies + msecs_to_jiffies(5000);
426 u32 dma_scr, id;
428 id = chan->id;
429 dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id));
431 if (dma_scr & STM32_DMA_SCR_EN) {
432 dma_scr &= ~STM32_DMA_SCR_EN;
433 stm32_dma_write(dmadev, STM32_DMA_SCR(id), dma_scr);
435 do {
436 dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id));
437 dma_scr &= STM32_DMA_SCR_EN;
438 if (!dma_scr)
439 break;
441 if (time_after_eq(jiffies, timeout)) {
442 dev_err(chan2dev(chan), "%s: timeout!\n",
443 __func__);
444 return -EBUSY;
446 cond_resched();
447 } while (1);
450 return 0;
453 static void stm32_dma_stop(struct stm32_dma_chan *chan)
455 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
456 u32 dma_scr, dma_sfcr, status;
457 int ret;
459 /* Disable interrupts */
460 dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
461 dma_scr &= ~STM32_DMA_SCR_IRQ_MASK;
462 stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), dma_scr);
463 dma_sfcr = stm32_dma_read(dmadev, STM32_DMA_SFCR(chan->id));
464 dma_sfcr &= ~STM32_DMA_SFCR_FEIE;
465 stm32_dma_write(dmadev, STM32_DMA_SFCR(chan->id), dma_sfcr);
467 /* Disable DMA */
468 ret = stm32_dma_disable_chan(chan);
469 if (ret < 0)
470 return;
472 /* Clear interrupt status if it is there */
473 status = stm32_dma_irq_status(chan);
474 if (status) {
475 dev_dbg(chan2dev(chan), "%s(): clearing interrupt: 0x%08x\n",
476 __func__, status);
477 stm32_dma_irq_clear(chan, status);
480 chan->busy = false;
483 static int stm32_dma_terminate_all(struct dma_chan *c)
485 struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
486 unsigned long flags;
487 LIST_HEAD(head);
489 spin_lock_irqsave(&chan->vchan.lock, flags);
491 if (chan->busy) {
492 stm32_dma_stop(chan);
493 chan->desc = NULL;
496 vchan_get_all_descriptors(&chan->vchan, &head);
497 spin_unlock_irqrestore(&chan->vchan.lock, flags);
498 vchan_dma_desc_free_list(&chan->vchan, &head);
500 return 0;
503 static void stm32_dma_synchronize(struct dma_chan *c)
505 struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
507 vchan_synchronize(&chan->vchan);
510 static void stm32_dma_dump_reg(struct stm32_dma_chan *chan)
512 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
513 u32 scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
514 u32 ndtr = stm32_dma_read(dmadev, STM32_DMA_SNDTR(chan->id));
515 u32 spar = stm32_dma_read(dmadev, STM32_DMA_SPAR(chan->id));
516 u32 sm0ar = stm32_dma_read(dmadev, STM32_DMA_SM0AR(chan->id));
517 u32 sm1ar = stm32_dma_read(dmadev, STM32_DMA_SM1AR(chan->id));
518 u32 sfcr = stm32_dma_read(dmadev, STM32_DMA_SFCR(chan->id));
520 dev_dbg(chan2dev(chan), "SCR: 0x%08x\n", scr);
521 dev_dbg(chan2dev(chan), "NDTR: 0x%08x\n", ndtr);
522 dev_dbg(chan2dev(chan), "SPAR: 0x%08x\n", spar);
523 dev_dbg(chan2dev(chan), "SM0AR: 0x%08x\n", sm0ar);
524 dev_dbg(chan2dev(chan), "SM1AR: 0x%08x\n", sm1ar);
525 dev_dbg(chan2dev(chan), "SFCR: 0x%08x\n", sfcr);
528 static void stm32_dma_configure_next_sg(struct stm32_dma_chan *chan);
530 static void stm32_dma_start_transfer(struct stm32_dma_chan *chan)
532 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
533 struct virt_dma_desc *vdesc;
534 struct stm32_dma_sg_req *sg_req;
535 struct stm32_dma_chan_reg *reg;
536 u32 status;
537 int ret;
539 ret = stm32_dma_disable_chan(chan);
540 if (ret < 0)
541 return;
543 if (!chan->desc) {
544 vdesc = vchan_next_desc(&chan->vchan);
545 if (!vdesc)
546 return;
548 chan->desc = to_stm32_dma_desc(vdesc);
549 chan->next_sg = 0;
552 if (chan->next_sg == chan->desc->num_sgs)
553 chan->next_sg = 0;
555 sg_req = &chan->desc->sg_req[chan->next_sg];
556 reg = &sg_req->chan_reg;
558 stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), reg->dma_scr);
559 stm32_dma_write(dmadev, STM32_DMA_SPAR(chan->id), reg->dma_spar);
560 stm32_dma_write(dmadev, STM32_DMA_SM0AR(chan->id), reg->dma_sm0ar);
561 stm32_dma_write(dmadev, STM32_DMA_SFCR(chan->id), reg->dma_sfcr);
562 stm32_dma_write(dmadev, STM32_DMA_SM1AR(chan->id), reg->dma_sm1ar);
563 stm32_dma_write(dmadev, STM32_DMA_SNDTR(chan->id), reg->dma_sndtr);
565 chan->next_sg++;
567 /* Clear interrupt status if it is there */
568 status = stm32_dma_irq_status(chan);
569 if (status)
570 stm32_dma_irq_clear(chan, status);
572 if (chan->desc->cyclic)
573 stm32_dma_configure_next_sg(chan);
575 stm32_dma_dump_reg(chan);
577 /* Start DMA */
578 reg->dma_scr |= STM32_DMA_SCR_EN;
579 stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), reg->dma_scr);
581 chan->busy = true;
583 dev_dbg(chan2dev(chan), "vchan %pK: started\n", &chan->vchan);
586 static void stm32_dma_configure_next_sg(struct stm32_dma_chan *chan)
588 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
589 struct stm32_dma_sg_req *sg_req;
590 u32 dma_scr, dma_sm0ar, dma_sm1ar, id;
592 id = chan->id;
593 dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id));
595 if (dma_scr & STM32_DMA_SCR_DBM) {
596 if (chan->next_sg == chan->desc->num_sgs)
597 chan->next_sg = 0;
599 sg_req = &chan->desc->sg_req[chan->next_sg];
601 if (dma_scr & STM32_DMA_SCR_CT) {
602 dma_sm0ar = sg_req->chan_reg.dma_sm0ar;
603 stm32_dma_write(dmadev, STM32_DMA_SM0AR(id), dma_sm0ar);
604 dev_dbg(chan2dev(chan), "CT=1 <=> SM0AR: 0x%08x\n",
605 stm32_dma_read(dmadev, STM32_DMA_SM0AR(id)));
606 } else {
607 dma_sm1ar = sg_req->chan_reg.dma_sm1ar;
608 stm32_dma_write(dmadev, STM32_DMA_SM1AR(id), dma_sm1ar);
609 dev_dbg(chan2dev(chan), "CT=0 <=> SM1AR: 0x%08x\n",
610 stm32_dma_read(dmadev, STM32_DMA_SM1AR(id)));
615 static void stm32_dma_handle_chan_done(struct stm32_dma_chan *chan)
617 if (chan->desc) {
618 if (chan->desc->cyclic) {
619 vchan_cyclic_callback(&chan->desc->vdesc);
620 chan->next_sg++;
621 stm32_dma_configure_next_sg(chan);
622 } else {
623 chan->busy = false;
624 if (chan->next_sg == chan->desc->num_sgs) {
625 list_del(&chan->desc->vdesc.node);
626 vchan_cookie_complete(&chan->desc->vdesc);
627 chan->desc = NULL;
629 stm32_dma_start_transfer(chan);
634 static irqreturn_t stm32_dma_chan_irq(int irq, void *devid)
636 struct stm32_dma_chan *chan = devid;
637 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
638 u32 status, scr, sfcr;
640 spin_lock(&chan->vchan.lock);
642 status = stm32_dma_irq_status(chan);
643 scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
644 sfcr = stm32_dma_read(dmadev, STM32_DMA_SFCR(chan->id));
646 if (status & STM32_DMA_TCI) {
647 stm32_dma_irq_clear(chan, STM32_DMA_TCI);
648 if (scr & STM32_DMA_SCR_TCIE)
649 stm32_dma_handle_chan_done(chan);
650 status &= ~STM32_DMA_TCI;
652 if (status & STM32_DMA_HTI) {
653 stm32_dma_irq_clear(chan, STM32_DMA_HTI);
654 status &= ~STM32_DMA_HTI;
656 if (status & STM32_DMA_FEI) {
657 stm32_dma_irq_clear(chan, STM32_DMA_FEI);
658 status &= ~STM32_DMA_FEI;
659 if (sfcr & STM32_DMA_SFCR_FEIE) {
660 if (!(scr & STM32_DMA_SCR_EN))
661 dev_err(chan2dev(chan), "FIFO Error\n");
662 else
663 dev_dbg(chan2dev(chan), "FIFO over/underrun\n");
666 if (status) {
667 stm32_dma_irq_clear(chan, status);
668 dev_err(chan2dev(chan), "DMA error: status=0x%08x\n", status);
669 if (!(scr & STM32_DMA_SCR_EN))
670 dev_err(chan2dev(chan), "chan disabled by HW\n");
673 spin_unlock(&chan->vchan.lock);
675 return IRQ_HANDLED;
678 static void stm32_dma_issue_pending(struct dma_chan *c)
680 struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
681 unsigned long flags;
683 spin_lock_irqsave(&chan->vchan.lock, flags);
684 if (vchan_issue_pending(&chan->vchan) && !chan->desc && !chan->busy) {
685 dev_dbg(chan2dev(chan), "vchan %pK: issued\n", &chan->vchan);
686 stm32_dma_start_transfer(chan);
689 spin_unlock_irqrestore(&chan->vchan.lock, flags);
692 static int stm32_dma_set_xfer_param(struct stm32_dma_chan *chan,
693 enum dma_transfer_direction direction,
694 enum dma_slave_buswidth *buswidth,
695 u32 buf_len)
697 enum dma_slave_buswidth src_addr_width, dst_addr_width;
698 int src_bus_width, dst_bus_width;
699 int src_burst_size, dst_burst_size;
700 u32 src_maxburst, dst_maxburst, src_best_burst, dst_best_burst;
701 u32 dma_scr, threshold;
703 src_addr_width = chan->dma_sconfig.src_addr_width;
704 dst_addr_width = chan->dma_sconfig.dst_addr_width;
705 src_maxburst = chan->dma_sconfig.src_maxburst;
706 dst_maxburst = chan->dma_sconfig.dst_maxburst;
707 threshold = chan->threshold;
709 switch (direction) {
710 case DMA_MEM_TO_DEV:
711 /* Set device data size */
712 dst_bus_width = stm32_dma_get_width(chan, dst_addr_width);
713 if (dst_bus_width < 0)
714 return dst_bus_width;
716 /* Set device burst size */
717 dst_best_burst = stm32_dma_get_best_burst(buf_len,
718 dst_maxburst,
719 threshold,
720 dst_addr_width);
722 dst_burst_size = stm32_dma_get_burst(chan, dst_best_burst);
723 if (dst_burst_size < 0)
724 return dst_burst_size;
726 /* Set memory data size */
727 src_addr_width = stm32_dma_get_max_width(buf_len, threshold);
728 chan->mem_width = src_addr_width;
729 src_bus_width = stm32_dma_get_width(chan, src_addr_width);
730 if (src_bus_width < 0)
731 return src_bus_width;
733 /* Set memory burst size */
734 src_maxburst = STM32_DMA_MAX_BURST;
735 src_best_burst = stm32_dma_get_best_burst(buf_len,
736 src_maxburst,
737 threshold,
738 src_addr_width);
739 src_burst_size = stm32_dma_get_burst(chan, src_best_burst);
740 if (src_burst_size < 0)
741 return src_burst_size;
743 dma_scr = STM32_DMA_SCR_DIR(STM32_DMA_MEM_TO_DEV) |
744 STM32_DMA_SCR_PSIZE(dst_bus_width) |
745 STM32_DMA_SCR_MSIZE(src_bus_width) |
746 STM32_DMA_SCR_PBURST(dst_burst_size) |
747 STM32_DMA_SCR_MBURST(src_burst_size);
749 /* Set FIFO threshold */
750 chan->chan_reg.dma_sfcr &= ~STM32_DMA_SFCR_FTH_MASK;
751 chan->chan_reg.dma_sfcr |= STM32_DMA_SFCR_FTH(threshold);
753 /* Set peripheral address */
754 chan->chan_reg.dma_spar = chan->dma_sconfig.dst_addr;
755 *buswidth = dst_addr_width;
756 break;
758 case DMA_DEV_TO_MEM:
759 /* Set device data size */
760 src_bus_width = stm32_dma_get_width(chan, src_addr_width);
761 if (src_bus_width < 0)
762 return src_bus_width;
764 /* Set device burst size */
765 src_best_burst = stm32_dma_get_best_burst(buf_len,
766 src_maxburst,
767 threshold,
768 src_addr_width);
769 chan->mem_burst = src_best_burst;
770 src_burst_size = stm32_dma_get_burst(chan, src_best_burst);
771 if (src_burst_size < 0)
772 return src_burst_size;
774 /* Set memory data size */
775 dst_addr_width = stm32_dma_get_max_width(buf_len, threshold);
776 chan->mem_width = dst_addr_width;
777 dst_bus_width = stm32_dma_get_width(chan, dst_addr_width);
778 if (dst_bus_width < 0)
779 return dst_bus_width;
781 /* Set memory burst size */
782 dst_maxburst = STM32_DMA_MAX_BURST;
783 dst_best_burst = stm32_dma_get_best_burst(buf_len,
784 dst_maxburst,
785 threshold,
786 dst_addr_width);
787 chan->mem_burst = dst_best_burst;
788 dst_burst_size = stm32_dma_get_burst(chan, dst_best_burst);
789 if (dst_burst_size < 0)
790 return dst_burst_size;
792 dma_scr = STM32_DMA_SCR_DIR(STM32_DMA_DEV_TO_MEM) |
793 STM32_DMA_SCR_PSIZE(src_bus_width) |
794 STM32_DMA_SCR_MSIZE(dst_bus_width) |
795 STM32_DMA_SCR_PBURST(src_burst_size) |
796 STM32_DMA_SCR_MBURST(dst_burst_size);
798 /* Set FIFO threshold */
799 chan->chan_reg.dma_sfcr &= ~STM32_DMA_SFCR_FTH_MASK;
800 chan->chan_reg.dma_sfcr |= STM32_DMA_SFCR_FTH(threshold);
802 /* Set peripheral address */
803 chan->chan_reg.dma_spar = chan->dma_sconfig.src_addr;
804 *buswidth = chan->dma_sconfig.src_addr_width;
805 break;
807 default:
808 dev_err(chan2dev(chan), "Dma direction is not supported\n");
809 return -EINVAL;
812 stm32_dma_set_fifo_config(chan, src_best_burst, dst_best_burst);
814 /* Set DMA control register */
815 chan->chan_reg.dma_scr &= ~(STM32_DMA_SCR_DIR_MASK |
816 STM32_DMA_SCR_PSIZE_MASK | STM32_DMA_SCR_MSIZE_MASK |
817 STM32_DMA_SCR_PBURST_MASK | STM32_DMA_SCR_MBURST_MASK);
818 chan->chan_reg.dma_scr |= dma_scr;
820 return 0;
823 static void stm32_dma_clear_reg(struct stm32_dma_chan_reg *regs)
825 memset(regs, 0, sizeof(struct stm32_dma_chan_reg));
828 static struct dma_async_tx_descriptor *stm32_dma_prep_slave_sg(
829 struct dma_chan *c, struct scatterlist *sgl,
830 u32 sg_len, enum dma_transfer_direction direction,
831 unsigned long flags, void *context)
833 struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
834 struct stm32_dma_desc *desc;
835 struct scatterlist *sg;
836 enum dma_slave_buswidth buswidth;
837 u32 nb_data_items;
838 int i, ret;
840 if (!chan->config_init) {
841 dev_err(chan2dev(chan), "dma channel is not configured\n");
842 return NULL;
845 if (sg_len < 1) {
846 dev_err(chan2dev(chan), "Invalid segment length %d\n", sg_len);
847 return NULL;
850 desc = kzalloc(struct_size(desc, sg_req, sg_len), GFP_NOWAIT);
851 if (!desc)
852 return NULL;
854 /* Set peripheral flow controller */
855 if (chan->dma_sconfig.device_fc)
856 chan->chan_reg.dma_scr |= STM32_DMA_SCR_PFCTRL;
857 else
858 chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_PFCTRL;
860 for_each_sg(sgl, sg, sg_len, i) {
861 ret = stm32_dma_set_xfer_param(chan, direction, &buswidth,
862 sg_dma_len(sg));
863 if (ret < 0)
864 goto err;
866 desc->sg_req[i].len = sg_dma_len(sg);
868 nb_data_items = desc->sg_req[i].len / buswidth;
869 if (nb_data_items > STM32_DMA_ALIGNED_MAX_DATA_ITEMS) {
870 dev_err(chan2dev(chan), "nb items not supported\n");
871 goto err;
874 stm32_dma_clear_reg(&desc->sg_req[i].chan_reg);
875 desc->sg_req[i].chan_reg.dma_scr = chan->chan_reg.dma_scr;
876 desc->sg_req[i].chan_reg.dma_sfcr = chan->chan_reg.dma_sfcr;
877 desc->sg_req[i].chan_reg.dma_spar = chan->chan_reg.dma_spar;
878 desc->sg_req[i].chan_reg.dma_sm0ar = sg_dma_address(sg);
879 desc->sg_req[i].chan_reg.dma_sm1ar = sg_dma_address(sg);
880 desc->sg_req[i].chan_reg.dma_sndtr = nb_data_items;
883 desc->num_sgs = sg_len;
884 desc->cyclic = false;
886 return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
888 err:
889 kfree(desc);
890 return NULL;
893 static struct dma_async_tx_descriptor *stm32_dma_prep_dma_cyclic(
894 struct dma_chan *c, dma_addr_t buf_addr, size_t buf_len,
895 size_t period_len, enum dma_transfer_direction direction,
896 unsigned long flags)
898 struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
899 struct stm32_dma_desc *desc;
900 enum dma_slave_buswidth buswidth;
901 u32 num_periods, nb_data_items;
902 int i, ret;
904 if (!buf_len || !period_len) {
905 dev_err(chan2dev(chan), "Invalid buffer/period len\n");
906 return NULL;
909 if (!chan->config_init) {
910 dev_err(chan2dev(chan), "dma channel is not configured\n");
911 return NULL;
914 if (buf_len % period_len) {
915 dev_err(chan2dev(chan), "buf_len not multiple of period_len\n");
916 return NULL;
920 * We allow to take more number of requests till DMA is
921 * not started. The driver will loop over all requests.
922 * Once DMA is started then new requests can be queued only after
923 * terminating the DMA.
925 if (chan->busy) {
926 dev_err(chan2dev(chan), "Request not allowed when dma busy\n");
927 return NULL;
930 ret = stm32_dma_set_xfer_param(chan, direction, &buswidth, period_len);
931 if (ret < 0)
932 return NULL;
934 nb_data_items = period_len / buswidth;
935 if (nb_data_items > STM32_DMA_ALIGNED_MAX_DATA_ITEMS) {
936 dev_err(chan2dev(chan), "number of items not supported\n");
937 return NULL;
940 /* Enable Circular mode or double buffer mode */
941 if (buf_len == period_len)
942 chan->chan_reg.dma_scr |= STM32_DMA_SCR_CIRC;
943 else
944 chan->chan_reg.dma_scr |= STM32_DMA_SCR_DBM;
946 /* Clear periph ctrl if client set it */
947 chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_PFCTRL;
949 num_periods = buf_len / period_len;
951 desc = kzalloc(struct_size(desc, sg_req, num_periods), GFP_NOWAIT);
952 if (!desc)
953 return NULL;
955 for (i = 0; i < num_periods; i++) {
956 desc->sg_req[i].len = period_len;
958 stm32_dma_clear_reg(&desc->sg_req[i].chan_reg);
959 desc->sg_req[i].chan_reg.dma_scr = chan->chan_reg.dma_scr;
960 desc->sg_req[i].chan_reg.dma_sfcr = chan->chan_reg.dma_sfcr;
961 desc->sg_req[i].chan_reg.dma_spar = chan->chan_reg.dma_spar;
962 desc->sg_req[i].chan_reg.dma_sm0ar = buf_addr;
963 desc->sg_req[i].chan_reg.dma_sm1ar = buf_addr;
964 desc->sg_req[i].chan_reg.dma_sndtr = nb_data_items;
965 buf_addr += period_len;
968 desc->num_sgs = num_periods;
969 desc->cyclic = true;
971 return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
974 static struct dma_async_tx_descriptor *stm32_dma_prep_dma_memcpy(
975 struct dma_chan *c, dma_addr_t dest,
976 dma_addr_t src, size_t len, unsigned long flags)
978 struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
979 enum dma_slave_buswidth max_width;
980 struct stm32_dma_desc *desc;
981 size_t xfer_count, offset;
982 u32 num_sgs, best_burst, dma_burst, threshold;
983 int i;
985 num_sgs = DIV_ROUND_UP(len, STM32_DMA_ALIGNED_MAX_DATA_ITEMS);
986 desc = kzalloc(struct_size(desc, sg_req, num_sgs), GFP_NOWAIT);
987 if (!desc)
988 return NULL;
990 threshold = chan->threshold;
992 for (offset = 0, i = 0; offset < len; offset += xfer_count, i++) {
993 xfer_count = min_t(size_t, len - offset,
994 STM32_DMA_ALIGNED_MAX_DATA_ITEMS);
996 /* Compute best burst size */
997 max_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
998 best_burst = stm32_dma_get_best_burst(len, STM32_DMA_MAX_BURST,
999 threshold, max_width);
1000 dma_burst = stm32_dma_get_burst(chan, best_burst);
1002 stm32_dma_clear_reg(&desc->sg_req[i].chan_reg);
1003 desc->sg_req[i].chan_reg.dma_scr =
1004 STM32_DMA_SCR_DIR(STM32_DMA_MEM_TO_MEM) |
1005 STM32_DMA_SCR_PBURST(dma_burst) |
1006 STM32_DMA_SCR_MBURST(dma_burst) |
1007 STM32_DMA_SCR_MINC |
1008 STM32_DMA_SCR_PINC |
1009 STM32_DMA_SCR_TCIE |
1010 STM32_DMA_SCR_TEIE;
1011 desc->sg_req[i].chan_reg.dma_sfcr |= STM32_DMA_SFCR_MASK;
1012 desc->sg_req[i].chan_reg.dma_sfcr |=
1013 STM32_DMA_SFCR_FTH(threshold);
1014 desc->sg_req[i].chan_reg.dma_spar = src + offset;
1015 desc->sg_req[i].chan_reg.dma_sm0ar = dest + offset;
1016 desc->sg_req[i].chan_reg.dma_sndtr = xfer_count;
1017 desc->sg_req[i].len = xfer_count;
1020 desc->num_sgs = num_sgs;
1021 desc->cyclic = false;
1023 return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
1026 static u32 stm32_dma_get_remaining_bytes(struct stm32_dma_chan *chan)
1028 u32 dma_scr, width, ndtr;
1029 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
1031 dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
1032 width = STM32_DMA_SCR_PSIZE_GET(dma_scr);
1033 ndtr = stm32_dma_read(dmadev, STM32_DMA_SNDTR(chan->id));
1035 return ndtr << width;
1039 * stm32_dma_is_current_sg - check that expected sg_req is currently transferred
1040 * @chan: dma channel
1042 * This function called when IRQ are disable, checks that the hardware has not
1043 * switched on the next transfer in double buffer mode. The test is done by
1044 * comparing the next_sg memory address with the hardware related register
1045 * (based on CT bit value).
1047 * Returns true if expected current transfer is still running or double
1048 * buffer mode is not activated.
1050 static bool stm32_dma_is_current_sg(struct stm32_dma_chan *chan)
1052 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
1053 struct stm32_dma_sg_req *sg_req;
1054 u32 dma_scr, dma_smar, id;
1056 id = chan->id;
1057 dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id));
1059 if (!(dma_scr & STM32_DMA_SCR_DBM))
1060 return true;
1062 sg_req = &chan->desc->sg_req[chan->next_sg];
1064 if (dma_scr & STM32_DMA_SCR_CT) {
1065 dma_smar = stm32_dma_read(dmadev, STM32_DMA_SM0AR(id));
1066 return (dma_smar == sg_req->chan_reg.dma_sm0ar);
1069 dma_smar = stm32_dma_read(dmadev, STM32_DMA_SM1AR(id));
1071 return (dma_smar == sg_req->chan_reg.dma_sm1ar);
1074 static size_t stm32_dma_desc_residue(struct stm32_dma_chan *chan,
1075 struct stm32_dma_desc *desc,
1076 u32 next_sg)
1078 u32 modulo, burst_size;
1079 u32 residue;
1080 u32 n_sg = next_sg;
1081 struct stm32_dma_sg_req *sg_req = &chan->desc->sg_req[chan->next_sg];
1082 int i;
1085 * Calculate the residue means compute the descriptors
1086 * information:
1087 * - the sg_req currently transferred
1088 * - the Hardware remaining position in this sg (NDTR bits field).
1090 * A race condition may occur if DMA is running in cyclic or double
1091 * buffer mode, since the DMA register are automatically reloaded at end
1092 * of period transfer. The hardware may have switched to the next
1093 * transfer (CT bit updated) just before the position (SxNDTR reg) is
1094 * read.
1095 * In this case the SxNDTR reg could (or not) correspond to the new
1096 * transfer position, and not the expected one.
1097 * The strategy implemented in the stm32 driver is to:
1098 * - read the SxNDTR register
1099 * - crosscheck that hardware is still in current transfer.
1100 * In case of switch, we can assume that the DMA is at the beginning of
1101 * the next transfer. So we approximate the residue in consequence, by
1102 * pointing on the beginning of next transfer.
1104 * This race condition doesn't apply for none cyclic mode, as double
1105 * buffer is not used. In such situation registers are updated by the
1106 * software.
1109 residue = stm32_dma_get_remaining_bytes(chan);
1111 if (!stm32_dma_is_current_sg(chan)) {
1112 n_sg++;
1113 if (n_sg == chan->desc->num_sgs)
1114 n_sg = 0;
1115 residue = sg_req->len;
1119 * In cyclic mode, for the last period, residue = remaining bytes
1120 * from NDTR,
1121 * else for all other periods in cyclic mode, and in sg mode,
1122 * residue = remaining bytes from NDTR + remaining
1123 * periods/sg to be transferred
1125 if (!chan->desc->cyclic || n_sg != 0)
1126 for (i = n_sg; i < desc->num_sgs; i++)
1127 residue += desc->sg_req[i].len;
1129 if (!chan->mem_burst)
1130 return residue;
1132 burst_size = chan->mem_burst * chan->mem_width;
1133 modulo = residue % burst_size;
1134 if (modulo)
1135 residue = residue - modulo + burst_size;
1137 return residue;
1140 static enum dma_status stm32_dma_tx_status(struct dma_chan *c,
1141 dma_cookie_t cookie,
1142 struct dma_tx_state *state)
1144 struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
1145 struct virt_dma_desc *vdesc;
1146 enum dma_status status;
1147 unsigned long flags;
1148 u32 residue = 0;
1150 status = dma_cookie_status(c, cookie, state);
1151 if (status == DMA_COMPLETE || !state)
1152 return status;
1154 spin_lock_irqsave(&chan->vchan.lock, flags);
1155 vdesc = vchan_find_desc(&chan->vchan, cookie);
1156 if (chan->desc && cookie == chan->desc->vdesc.tx.cookie)
1157 residue = stm32_dma_desc_residue(chan, chan->desc,
1158 chan->next_sg);
1159 else if (vdesc)
1160 residue = stm32_dma_desc_residue(chan,
1161 to_stm32_dma_desc(vdesc), 0);
1162 dma_set_residue(state, residue);
1164 spin_unlock_irqrestore(&chan->vchan.lock, flags);
1166 return status;
1169 static int stm32_dma_alloc_chan_resources(struct dma_chan *c)
1171 struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
1172 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
1173 int ret;
1175 chan->config_init = false;
1177 ret = pm_runtime_get_sync(dmadev->ddev.dev);
1178 if (ret < 0)
1179 return ret;
1181 ret = stm32_dma_disable_chan(chan);
1182 if (ret < 0)
1183 pm_runtime_put(dmadev->ddev.dev);
1185 return ret;
1188 static void stm32_dma_free_chan_resources(struct dma_chan *c)
1190 struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
1191 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
1192 unsigned long flags;
1194 dev_dbg(chan2dev(chan), "Freeing channel %d\n", chan->id);
1196 if (chan->busy) {
1197 spin_lock_irqsave(&chan->vchan.lock, flags);
1198 stm32_dma_stop(chan);
1199 chan->desc = NULL;
1200 spin_unlock_irqrestore(&chan->vchan.lock, flags);
1203 pm_runtime_put(dmadev->ddev.dev);
1205 vchan_free_chan_resources(to_virt_chan(c));
1208 static void stm32_dma_desc_free(struct virt_dma_desc *vdesc)
1210 kfree(container_of(vdesc, struct stm32_dma_desc, vdesc));
1213 static void stm32_dma_set_config(struct stm32_dma_chan *chan,
1214 struct stm32_dma_cfg *cfg)
1216 stm32_dma_clear_reg(&chan->chan_reg);
1218 chan->chan_reg.dma_scr = cfg->stream_config & STM32_DMA_SCR_CFG_MASK;
1219 chan->chan_reg.dma_scr |= STM32_DMA_SCR_REQ(cfg->request_line);
1221 /* Enable Interrupts */
1222 chan->chan_reg.dma_scr |= STM32_DMA_SCR_TEIE | STM32_DMA_SCR_TCIE;
1224 chan->threshold = STM32_DMA_THRESHOLD_FTR_GET(cfg->features);
1227 static struct dma_chan *stm32_dma_of_xlate(struct of_phandle_args *dma_spec,
1228 struct of_dma *ofdma)
1230 struct stm32_dma_device *dmadev = ofdma->of_dma_data;
1231 struct device *dev = dmadev->ddev.dev;
1232 struct stm32_dma_cfg cfg;
1233 struct stm32_dma_chan *chan;
1234 struct dma_chan *c;
1236 if (dma_spec->args_count < 4) {
1237 dev_err(dev, "Bad number of cells\n");
1238 return NULL;
1241 cfg.channel_id = dma_spec->args[0];
1242 cfg.request_line = dma_spec->args[1];
1243 cfg.stream_config = dma_spec->args[2];
1244 cfg.features = dma_spec->args[3];
1246 if (cfg.channel_id >= STM32_DMA_MAX_CHANNELS ||
1247 cfg.request_line >= STM32_DMA_MAX_REQUEST_ID) {
1248 dev_err(dev, "Bad channel and/or request id\n");
1249 return NULL;
1252 chan = &dmadev->chan[cfg.channel_id];
1254 c = dma_get_slave_channel(&chan->vchan.chan);
1255 if (!c) {
1256 dev_err(dev, "No more channels available\n");
1257 return NULL;
1260 stm32_dma_set_config(chan, &cfg);
1262 return c;
1265 static const struct of_device_id stm32_dma_of_match[] = {
1266 { .compatible = "st,stm32-dma", },
1267 { /* sentinel */ },
1269 MODULE_DEVICE_TABLE(of, stm32_dma_of_match);
1271 static int stm32_dma_probe(struct platform_device *pdev)
1273 struct stm32_dma_chan *chan;
1274 struct stm32_dma_device *dmadev;
1275 struct dma_device *dd;
1276 const struct of_device_id *match;
1277 struct resource *res;
1278 int i, ret;
1280 match = of_match_device(stm32_dma_of_match, &pdev->dev);
1281 if (!match) {
1282 dev_err(&pdev->dev, "Error: No device match found\n");
1283 return -ENODEV;
1286 dmadev = devm_kzalloc(&pdev->dev, sizeof(*dmadev), GFP_KERNEL);
1287 if (!dmadev)
1288 return -ENOMEM;
1290 dd = &dmadev->ddev;
1292 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1293 dmadev->base = devm_ioremap_resource(&pdev->dev, res);
1294 if (IS_ERR(dmadev->base))
1295 return PTR_ERR(dmadev->base);
1297 dmadev->clk = devm_clk_get(&pdev->dev, NULL);
1298 if (IS_ERR(dmadev->clk)) {
1299 dev_err(&pdev->dev, "Error: Missing controller clock\n");
1300 return PTR_ERR(dmadev->clk);
1303 ret = clk_prepare_enable(dmadev->clk);
1304 if (ret < 0) {
1305 dev_err(&pdev->dev, "clk_prep_enable error: %d\n", ret);
1306 return ret;
1309 dmadev->mem2mem = of_property_read_bool(pdev->dev.of_node,
1310 "st,mem2mem");
1312 dmadev->rst = devm_reset_control_get(&pdev->dev, NULL);
1313 if (!IS_ERR(dmadev->rst)) {
1314 reset_control_assert(dmadev->rst);
1315 udelay(2);
1316 reset_control_deassert(dmadev->rst);
1319 dma_cap_set(DMA_SLAVE, dd->cap_mask);
1320 dma_cap_set(DMA_PRIVATE, dd->cap_mask);
1321 dma_cap_set(DMA_CYCLIC, dd->cap_mask);
1322 dd->device_alloc_chan_resources = stm32_dma_alloc_chan_resources;
1323 dd->device_free_chan_resources = stm32_dma_free_chan_resources;
1324 dd->device_tx_status = stm32_dma_tx_status;
1325 dd->device_issue_pending = stm32_dma_issue_pending;
1326 dd->device_prep_slave_sg = stm32_dma_prep_slave_sg;
1327 dd->device_prep_dma_cyclic = stm32_dma_prep_dma_cyclic;
1328 dd->device_config = stm32_dma_slave_config;
1329 dd->device_terminate_all = stm32_dma_terminate_all;
1330 dd->device_synchronize = stm32_dma_synchronize;
1331 dd->src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
1332 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
1333 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
1334 dd->dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
1335 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
1336 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
1337 dd->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
1338 dd->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1339 dd->max_burst = STM32_DMA_MAX_BURST;
1340 dd->dev = &pdev->dev;
1341 INIT_LIST_HEAD(&dd->channels);
1343 if (dmadev->mem2mem) {
1344 dma_cap_set(DMA_MEMCPY, dd->cap_mask);
1345 dd->device_prep_dma_memcpy = stm32_dma_prep_dma_memcpy;
1346 dd->directions |= BIT(DMA_MEM_TO_MEM);
1349 for (i = 0; i < STM32_DMA_MAX_CHANNELS; i++) {
1350 chan = &dmadev->chan[i];
1351 chan->id = i;
1352 chan->vchan.desc_free = stm32_dma_desc_free;
1353 vchan_init(&chan->vchan, dd);
1356 ret = dma_async_device_register(dd);
1357 if (ret)
1358 goto clk_free;
1360 for (i = 0; i < STM32_DMA_MAX_CHANNELS; i++) {
1361 chan = &dmadev->chan[i];
1362 ret = platform_get_irq(pdev, i);
1363 if (ret < 0)
1364 goto err_unregister;
1365 chan->irq = ret;
1367 ret = devm_request_irq(&pdev->dev, chan->irq,
1368 stm32_dma_chan_irq, 0,
1369 dev_name(chan2dev(chan)), chan);
1370 if (ret) {
1371 dev_err(&pdev->dev,
1372 "request_irq failed with err %d channel %d\n",
1373 ret, i);
1374 goto err_unregister;
1378 ret = of_dma_controller_register(pdev->dev.of_node,
1379 stm32_dma_of_xlate, dmadev);
1380 if (ret < 0) {
1381 dev_err(&pdev->dev,
1382 "STM32 DMA DMA OF registration failed %d\n", ret);
1383 goto err_unregister;
1386 platform_set_drvdata(pdev, dmadev);
1388 pm_runtime_set_active(&pdev->dev);
1389 pm_runtime_enable(&pdev->dev);
1390 pm_runtime_get_noresume(&pdev->dev);
1391 pm_runtime_put(&pdev->dev);
1393 dev_info(&pdev->dev, "STM32 DMA driver registered\n");
1395 return 0;
1397 err_unregister:
1398 dma_async_device_unregister(dd);
1399 clk_free:
1400 clk_disable_unprepare(dmadev->clk);
1402 return ret;
1405 #ifdef CONFIG_PM
1406 static int stm32_dma_runtime_suspend(struct device *dev)
1408 struct stm32_dma_device *dmadev = dev_get_drvdata(dev);
1410 clk_disable_unprepare(dmadev->clk);
1412 return 0;
1415 static int stm32_dma_runtime_resume(struct device *dev)
1417 struct stm32_dma_device *dmadev = dev_get_drvdata(dev);
1418 int ret;
1420 ret = clk_prepare_enable(dmadev->clk);
1421 if (ret) {
1422 dev_err(dev, "failed to prepare_enable clock\n");
1423 return ret;
1426 return 0;
1428 #endif
1430 static const struct dev_pm_ops stm32_dma_pm_ops = {
1431 SET_RUNTIME_PM_OPS(stm32_dma_runtime_suspend,
1432 stm32_dma_runtime_resume, NULL)
1435 static struct platform_driver stm32_dma_driver = {
1436 .driver = {
1437 .name = "stm32-dma",
1438 .of_match_table = stm32_dma_of_match,
1439 .pm = &stm32_dma_pm_ops,
1443 static int __init stm32_dma_init(void)
1445 return platform_driver_probe(&stm32_dma_driver, stm32_dma_probe);
1447 subsys_initcall(stm32_dma_init);