interconnect: qcom: Fix Kconfig indentation
[linux/fpc-iii.git] / drivers / hid / hid-core.c
blobe0b241bd3070c5a15e9ac90ecc81573aad6452ec
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * HID support for Linux
5 * Copyright (c) 1999 Andreas Gal
6 * Copyright (c) 2000-2005 Vojtech Pavlik <vojtech@suse.cz>
7 * Copyright (c) 2005 Michael Haboustak <mike-@cinci.rr.com> for Concept2, Inc
8 * Copyright (c) 2006-2012 Jiri Kosina
9 */
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16 #include <linux/module.h>
17 #include <linux/slab.h>
18 #include <linux/init.h>
19 #include <linux/kernel.h>
20 #include <linux/list.h>
21 #include <linux/mm.h>
22 #include <linux/spinlock.h>
23 #include <asm/unaligned.h>
24 #include <asm/byteorder.h>
25 #include <linux/input.h>
26 #include <linux/wait.h>
27 #include <linux/vmalloc.h>
28 #include <linux/sched.h>
29 #include <linux/semaphore.h>
31 #include <linux/hid.h>
32 #include <linux/hiddev.h>
33 #include <linux/hid-debug.h>
34 #include <linux/hidraw.h>
36 #include "hid-ids.h"
39 * Version Information
42 #define DRIVER_DESC "HID core driver"
44 int hid_debug = 0;
45 module_param_named(debug, hid_debug, int, 0600);
46 MODULE_PARM_DESC(debug, "toggle HID debugging messages");
47 EXPORT_SYMBOL_GPL(hid_debug);
49 static int hid_ignore_special_drivers = 0;
50 module_param_named(ignore_special_drivers, hid_ignore_special_drivers, int, 0600);
51 MODULE_PARM_DESC(ignore_special_drivers, "Ignore any special drivers and handle all devices by generic driver");
54 * Register a new report for a device.
57 struct hid_report *hid_register_report(struct hid_device *device,
58 unsigned int type, unsigned int id,
59 unsigned int application)
61 struct hid_report_enum *report_enum = device->report_enum + type;
62 struct hid_report *report;
64 if (id >= HID_MAX_IDS)
65 return NULL;
66 if (report_enum->report_id_hash[id])
67 return report_enum->report_id_hash[id];
69 report = kzalloc(sizeof(struct hid_report), GFP_KERNEL);
70 if (!report)
71 return NULL;
73 if (id != 0)
74 report_enum->numbered = 1;
76 report->id = id;
77 report->type = type;
78 report->size = 0;
79 report->device = device;
80 report->application = application;
81 report_enum->report_id_hash[id] = report;
83 list_add_tail(&report->list, &report_enum->report_list);
85 return report;
87 EXPORT_SYMBOL_GPL(hid_register_report);
90 * Register a new field for this report.
93 static struct hid_field *hid_register_field(struct hid_report *report, unsigned usages, unsigned values)
95 struct hid_field *field;
97 if (report->maxfield == HID_MAX_FIELDS) {
98 hid_err(report->device, "too many fields in report\n");
99 return NULL;
102 field = kzalloc((sizeof(struct hid_field) +
103 usages * sizeof(struct hid_usage) +
104 values * sizeof(unsigned)), GFP_KERNEL);
105 if (!field)
106 return NULL;
108 field->index = report->maxfield++;
109 report->field[field->index] = field;
110 field->usage = (struct hid_usage *)(field + 1);
111 field->value = (s32 *)(field->usage + usages);
112 field->report = report;
114 return field;
118 * Open a collection. The type/usage is pushed on the stack.
121 static int open_collection(struct hid_parser *parser, unsigned type)
123 struct hid_collection *collection;
124 unsigned usage;
125 int collection_index;
127 usage = parser->local.usage[0];
129 if (parser->collection_stack_ptr == parser->collection_stack_size) {
130 unsigned int *collection_stack;
131 unsigned int new_size = parser->collection_stack_size +
132 HID_COLLECTION_STACK_SIZE;
134 collection_stack = krealloc(parser->collection_stack,
135 new_size * sizeof(unsigned int),
136 GFP_KERNEL);
137 if (!collection_stack)
138 return -ENOMEM;
140 parser->collection_stack = collection_stack;
141 parser->collection_stack_size = new_size;
144 if (parser->device->maxcollection == parser->device->collection_size) {
145 collection = kmalloc(
146 array3_size(sizeof(struct hid_collection),
147 parser->device->collection_size,
149 GFP_KERNEL);
150 if (collection == NULL) {
151 hid_err(parser->device, "failed to reallocate collection array\n");
152 return -ENOMEM;
154 memcpy(collection, parser->device->collection,
155 sizeof(struct hid_collection) *
156 parser->device->collection_size);
157 memset(collection + parser->device->collection_size, 0,
158 sizeof(struct hid_collection) *
159 parser->device->collection_size);
160 kfree(parser->device->collection);
161 parser->device->collection = collection;
162 parser->device->collection_size *= 2;
165 parser->collection_stack[parser->collection_stack_ptr++] =
166 parser->device->maxcollection;
168 collection_index = parser->device->maxcollection++;
169 collection = parser->device->collection + collection_index;
170 collection->type = type;
171 collection->usage = usage;
172 collection->level = parser->collection_stack_ptr - 1;
173 collection->parent_idx = (collection->level == 0) ? -1 :
174 parser->collection_stack[collection->level - 1];
176 if (type == HID_COLLECTION_APPLICATION)
177 parser->device->maxapplication++;
179 return 0;
183 * Close a collection.
186 static int close_collection(struct hid_parser *parser)
188 if (!parser->collection_stack_ptr) {
189 hid_err(parser->device, "collection stack underflow\n");
190 return -EINVAL;
192 parser->collection_stack_ptr--;
193 return 0;
197 * Climb up the stack, search for the specified collection type
198 * and return the usage.
201 static unsigned hid_lookup_collection(struct hid_parser *parser, unsigned type)
203 struct hid_collection *collection = parser->device->collection;
204 int n;
206 for (n = parser->collection_stack_ptr - 1; n >= 0; n--) {
207 unsigned index = parser->collection_stack[n];
208 if (collection[index].type == type)
209 return collection[index].usage;
211 return 0; /* we know nothing about this usage type */
215 * Concatenate usage which defines 16 bits or less with the
216 * currently defined usage page to form a 32 bit usage
219 static void complete_usage(struct hid_parser *parser, unsigned int index)
221 parser->local.usage[index] &= 0xFFFF;
222 parser->local.usage[index] |=
223 (parser->global.usage_page & 0xFFFF) << 16;
227 * Add a usage to the temporary parser table.
230 static int hid_add_usage(struct hid_parser *parser, unsigned usage, u8 size)
232 if (parser->local.usage_index >= HID_MAX_USAGES) {
233 hid_err(parser->device, "usage index exceeded\n");
234 return -1;
236 parser->local.usage[parser->local.usage_index] = usage;
239 * If Usage item only includes usage id, concatenate it with
240 * currently defined usage page
242 if (size <= 2)
243 complete_usage(parser, parser->local.usage_index);
245 parser->local.usage_size[parser->local.usage_index] = size;
246 parser->local.collection_index[parser->local.usage_index] =
247 parser->collection_stack_ptr ?
248 parser->collection_stack[parser->collection_stack_ptr - 1] : 0;
249 parser->local.usage_index++;
250 return 0;
254 * Register a new field for this report.
257 static int hid_add_field(struct hid_parser *parser, unsigned report_type, unsigned flags)
259 struct hid_report *report;
260 struct hid_field *field;
261 unsigned int usages;
262 unsigned int offset;
263 unsigned int i;
264 unsigned int application;
266 application = hid_lookup_collection(parser, HID_COLLECTION_APPLICATION);
268 report = hid_register_report(parser->device, report_type,
269 parser->global.report_id, application);
270 if (!report) {
271 hid_err(parser->device, "hid_register_report failed\n");
272 return -1;
275 /* Handle both signed and unsigned cases properly */
276 if ((parser->global.logical_minimum < 0 &&
277 parser->global.logical_maximum <
278 parser->global.logical_minimum) ||
279 (parser->global.logical_minimum >= 0 &&
280 (__u32)parser->global.logical_maximum <
281 (__u32)parser->global.logical_minimum)) {
282 dbg_hid("logical range invalid 0x%x 0x%x\n",
283 parser->global.logical_minimum,
284 parser->global.logical_maximum);
285 return -1;
288 offset = report->size;
289 report->size += parser->global.report_size * parser->global.report_count;
291 if (!parser->local.usage_index) /* Ignore padding fields */
292 return 0;
294 usages = max_t(unsigned, parser->local.usage_index,
295 parser->global.report_count);
297 field = hid_register_field(report, usages, parser->global.report_count);
298 if (!field)
299 return 0;
301 field->physical = hid_lookup_collection(parser, HID_COLLECTION_PHYSICAL);
302 field->logical = hid_lookup_collection(parser, HID_COLLECTION_LOGICAL);
303 field->application = application;
305 for (i = 0; i < usages; i++) {
306 unsigned j = i;
307 /* Duplicate the last usage we parsed if we have excess values */
308 if (i >= parser->local.usage_index)
309 j = parser->local.usage_index - 1;
310 field->usage[i].hid = parser->local.usage[j];
311 field->usage[i].collection_index =
312 parser->local.collection_index[j];
313 field->usage[i].usage_index = i;
314 field->usage[i].resolution_multiplier = 1;
317 field->maxusage = usages;
318 field->flags = flags;
319 field->report_offset = offset;
320 field->report_type = report_type;
321 field->report_size = parser->global.report_size;
322 field->report_count = parser->global.report_count;
323 field->logical_minimum = parser->global.logical_minimum;
324 field->logical_maximum = parser->global.logical_maximum;
325 field->physical_minimum = parser->global.physical_minimum;
326 field->physical_maximum = parser->global.physical_maximum;
327 field->unit_exponent = parser->global.unit_exponent;
328 field->unit = parser->global.unit;
330 return 0;
334 * Read data value from item.
337 static u32 item_udata(struct hid_item *item)
339 switch (item->size) {
340 case 1: return item->data.u8;
341 case 2: return item->data.u16;
342 case 4: return item->data.u32;
344 return 0;
347 static s32 item_sdata(struct hid_item *item)
349 switch (item->size) {
350 case 1: return item->data.s8;
351 case 2: return item->data.s16;
352 case 4: return item->data.s32;
354 return 0;
358 * Process a global item.
361 static int hid_parser_global(struct hid_parser *parser, struct hid_item *item)
363 __s32 raw_value;
364 switch (item->tag) {
365 case HID_GLOBAL_ITEM_TAG_PUSH:
367 if (parser->global_stack_ptr == HID_GLOBAL_STACK_SIZE) {
368 hid_err(parser->device, "global environment stack overflow\n");
369 return -1;
372 memcpy(parser->global_stack + parser->global_stack_ptr++,
373 &parser->global, sizeof(struct hid_global));
374 return 0;
376 case HID_GLOBAL_ITEM_TAG_POP:
378 if (!parser->global_stack_ptr) {
379 hid_err(parser->device, "global environment stack underflow\n");
380 return -1;
383 memcpy(&parser->global, parser->global_stack +
384 --parser->global_stack_ptr, sizeof(struct hid_global));
385 return 0;
387 case HID_GLOBAL_ITEM_TAG_USAGE_PAGE:
388 parser->global.usage_page = item_udata(item);
389 return 0;
391 case HID_GLOBAL_ITEM_TAG_LOGICAL_MINIMUM:
392 parser->global.logical_minimum = item_sdata(item);
393 return 0;
395 case HID_GLOBAL_ITEM_TAG_LOGICAL_MAXIMUM:
396 if (parser->global.logical_minimum < 0)
397 parser->global.logical_maximum = item_sdata(item);
398 else
399 parser->global.logical_maximum = item_udata(item);
400 return 0;
402 case HID_GLOBAL_ITEM_TAG_PHYSICAL_MINIMUM:
403 parser->global.physical_minimum = item_sdata(item);
404 return 0;
406 case HID_GLOBAL_ITEM_TAG_PHYSICAL_MAXIMUM:
407 if (parser->global.physical_minimum < 0)
408 parser->global.physical_maximum = item_sdata(item);
409 else
410 parser->global.physical_maximum = item_udata(item);
411 return 0;
413 case HID_GLOBAL_ITEM_TAG_UNIT_EXPONENT:
414 /* Many devices provide unit exponent as a two's complement
415 * nibble due to the common misunderstanding of HID
416 * specification 1.11, 6.2.2.7 Global Items. Attempt to handle
417 * both this and the standard encoding. */
418 raw_value = item_sdata(item);
419 if (!(raw_value & 0xfffffff0))
420 parser->global.unit_exponent = hid_snto32(raw_value, 4);
421 else
422 parser->global.unit_exponent = raw_value;
423 return 0;
425 case HID_GLOBAL_ITEM_TAG_UNIT:
426 parser->global.unit = item_udata(item);
427 return 0;
429 case HID_GLOBAL_ITEM_TAG_REPORT_SIZE:
430 parser->global.report_size = item_udata(item);
431 if (parser->global.report_size > 256) {
432 hid_err(parser->device, "invalid report_size %d\n",
433 parser->global.report_size);
434 return -1;
436 return 0;
438 case HID_GLOBAL_ITEM_TAG_REPORT_COUNT:
439 parser->global.report_count = item_udata(item);
440 if (parser->global.report_count > HID_MAX_USAGES) {
441 hid_err(parser->device, "invalid report_count %d\n",
442 parser->global.report_count);
443 return -1;
445 return 0;
447 case HID_GLOBAL_ITEM_TAG_REPORT_ID:
448 parser->global.report_id = item_udata(item);
449 if (parser->global.report_id == 0 ||
450 parser->global.report_id >= HID_MAX_IDS) {
451 hid_err(parser->device, "report_id %u is invalid\n",
452 parser->global.report_id);
453 return -1;
455 return 0;
457 default:
458 hid_err(parser->device, "unknown global tag 0x%x\n", item->tag);
459 return -1;
464 * Process a local item.
467 static int hid_parser_local(struct hid_parser *parser, struct hid_item *item)
469 __u32 data;
470 unsigned n;
471 __u32 count;
473 data = item_udata(item);
475 switch (item->tag) {
476 case HID_LOCAL_ITEM_TAG_DELIMITER:
478 if (data) {
480 * We treat items before the first delimiter
481 * as global to all usage sets (branch 0).
482 * In the moment we process only these global
483 * items and the first delimiter set.
485 if (parser->local.delimiter_depth != 0) {
486 hid_err(parser->device, "nested delimiters\n");
487 return -1;
489 parser->local.delimiter_depth++;
490 parser->local.delimiter_branch++;
491 } else {
492 if (parser->local.delimiter_depth < 1) {
493 hid_err(parser->device, "bogus close delimiter\n");
494 return -1;
496 parser->local.delimiter_depth--;
498 return 0;
500 case HID_LOCAL_ITEM_TAG_USAGE:
502 if (parser->local.delimiter_branch > 1) {
503 dbg_hid("alternative usage ignored\n");
504 return 0;
507 return hid_add_usage(parser, data, item->size);
509 case HID_LOCAL_ITEM_TAG_USAGE_MINIMUM:
511 if (parser->local.delimiter_branch > 1) {
512 dbg_hid("alternative usage ignored\n");
513 return 0;
516 parser->local.usage_minimum = data;
517 return 0;
519 case HID_LOCAL_ITEM_TAG_USAGE_MAXIMUM:
521 if (parser->local.delimiter_branch > 1) {
522 dbg_hid("alternative usage ignored\n");
523 return 0;
526 count = data - parser->local.usage_minimum;
527 if (count + parser->local.usage_index >= HID_MAX_USAGES) {
529 * We do not warn if the name is not set, we are
530 * actually pre-scanning the device.
532 if (dev_name(&parser->device->dev))
533 hid_warn(parser->device,
534 "ignoring exceeding usage max\n");
535 data = HID_MAX_USAGES - parser->local.usage_index +
536 parser->local.usage_minimum - 1;
537 if (data <= 0) {
538 hid_err(parser->device,
539 "no more usage index available\n");
540 return -1;
544 for (n = parser->local.usage_minimum; n <= data; n++)
545 if (hid_add_usage(parser, n, item->size)) {
546 dbg_hid("hid_add_usage failed\n");
547 return -1;
549 return 0;
551 default:
553 dbg_hid("unknown local item tag 0x%x\n", item->tag);
554 return 0;
556 return 0;
560 * Concatenate Usage Pages into Usages where relevant:
561 * As per specification, 6.2.2.8: "When the parser encounters a main item it
562 * concatenates the last declared Usage Page with a Usage to form a complete
563 * usage value."
566 static void hid_concatenate_last_usage_page(struct hid_parser *parser)
568 int i;
569 unsigned int usage_page;
570 unsigned int current_page;
572 if (!parser->local.usage_index)
573 return;
575 usage_page = parser->global.usage_page;
578 * Concatenate usage page again only if last declared Usage Page
579 * has not been already used in previous usages concatenation
581 for (i = parser->local.usage_index - 1; i >= 0; i--) {
582 if (parser->local.usage_size[i] > 2)
583 /* Ignore extended usages */
584 continue;
586 current_page = parser->local.usage[i] >> 16;
587 if (current_page == usage_page)
588 break;
590 complete_usage(parser, i);
595 * Process a main item.
598 static int hid_parser_main(struct hid_parser *parser, struct hid_item *item)
600 __u32 data;
601 int ret;
603 hid_concatenate_last_usage_page(parser);
605 data = item_udata(item);
607 switch (item->tag) {
608 case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION:
609 ret = open_collection(parser, data & 0xff);
610 break;
611 case HID_MAIN_ITEM_TAG_END_COLLECTION:
612 ret = close_collection(parser);
613 break;
614 case HID_MAIN_ITEM_TAG_INPUT:
615 ret = hid_add_field(parser, HID_INPUT_REPORT, data);
616 break;
617 case HID_MAIN_ITEM_TAG_OUTPUT:
618 ret = hid_add_field(parser, HID_OUTPUT_REPORT, data);
619 break;
620 case HID_MAIN_ITEM_TAG_FEATURE:
621 ret = hid_add_field(parser, HID_FEATURE_REPORT, data);
622 break;
623 default:
624 hid_warn(parser->device, "unknown main item tag 0x%x\n", item->tag);
625 ret = 0;
628 memset(&parser->local, 0, sizeof(parser->local)); /* Reset the local parser environment */
630 return ret;
634 * Process a reserved item.
637 static int hid_parser_reserved(struct hid_parser *parser, struct hid_item *item)
639 dbg_hid("reserved item type, tag 0x%x\n", item->tag);
640 return 0;
644 * Free a report and all registered fields. The field->usage and
645 * field->value table's are allocated behind the field, so we need
646 * only to free(field) itself.
649 static void hid_free_report(struct hid_report *report)
651 unsigned n;
653 for (n = 0; n < report->maxfield; n++)
654 kfree(report->field[n]);
655 kfree(report);
659 * Close report. This function returns the device
660 * state to the point prior to hid_open_report().
662 static void hid_close_report(struct hid_device *device)
664 unsigned i, j;
666 for (i = 0; i < HID_REPORT_TYPES; i++) {
667 struct hid_report_enum *report_enum = device->report_enum + i;
669 for (j = 0; j < HID_MAX_IDS; j++) {
670 struct hid_report *report = report_enum->report_id_hash[j];
671 if (report)
672 hid_free_report(report);
674 memset(report_enum, 0, sizeof(*report_enum));
675 INIT_LIST_HEAD(&report_enum->report_list);
678 kfree(device->rdesc);
679 device->rdesc = NULL;
680 device->rsize = 0;
682 kfree(device->collection);
683 device->collection = NULL;
684 device->collection_size = 0;
685 device->maxcollection = 0;
686 device->maxapplication = 0;
688 device->status &= ~HID_STAT_PARSED;
692 * Free a device structure, all reports, and all fields.
695 static void hid_device_release(struct device *dev)
697 struct hid_device *hid = to_hid_device(dev);
699 hid_close_report(hid);
700 kfree(hid->dev_rdesc);
701 kfree(hid);
705 * Fetch a report description item from the data stream. We support long
706 * items, though they are not used yet.
709 static u8 *fetch_item(__u8 *start, __u8 *end, struct hid_item *item)
711 u8 b;
713 if ((end - start) <= 0)
714 return NULL;
716 b = *start++;
718 item->type = (b >> 2) & 3;
719 item->tag = (b >> 4) & 15;
721 if (item->tag == HID_ITEM_TAG_LONG) {
723 item->format = HID_ITEM_FORMAT_LONG;
725 if ((end - start) < 2)
726 return NULL;
728 item->size = *start++;
729 item->tag = *start++;
731 if ((end - start) < item->size)
732 return NULL;
734 item->data.longdata = start;
735 start += item->size;
736 return start;
739 item->format = HID_ITEM_FORMAT_SHORT;
740 item->size = b & 3;
742 switch (item->size) {
743 case 0:
744 return start;
746 case 1:
747 if ((end - start) < 1)
748 return NULL;
749 item->data.u8 = *start++;
750 return start;
752 case 2:
753 if ((end - start) < 2)
754 return NULL;
755 item->data.u16 = get_unaligned_le16(start);
756 start = (__u8 *)((__le16 *)start + 1);
757 return start;
759 case 3:
760 item->size++;
761 if ((end - start) < 4)
762 return NULL;
763 item->data.u32 = get_unaligned_le32(start);
764 start = (__u8 *)((__le32 *)start + 1);
765 return start;
768 return NULL;
771 static void hid_scan_input_usage(struct hid_parser *parser, u32 usage)
773 struct hid_device *hid = parser->device;
775 if (usage == HID_DG_CONTACTID)
776 hid->group = HID_GROUP_MULTITOUCH;
779 static void hid_scan_feature_usage(struct hid_parser *parser, u32 usage)
781 if (usage == 0xff0000c5 && parser->global.report_count == 256 &&
782 parser->global.report_size == 8)
783 parser->scan_flags |= HID_SCAN_FLAG_MT_WIN_8;
785 if (usage == 0xff0000c6 && parser->global.report_count == 1 &&
786 parser->global.report_size == 8)
787 parser->scan_flags |= HID_SCAN_FLAG_MT_WIN_8;
790 static void hid_scan_collection(struct hid_parser *parser, unsigned type)
792 struct hid_device *hid = parser->device;
793 int i;
795 if (((parser->global.usage_page << 16) == HID_UP_SENSOR) &&
796 type == HID_COLLECTION_PHYSICAL)
797 hid->group = HID_GROUP_SENSOR_HUB;
799 if (hid->vendor == USB_VENDOR_ID_MICROSOFT &&
800 hid->product == USB_DEVICE_ID_MS_POWER_COVER &&
801 hid->group == HID_GROUP_MULTITOUCH)
802 hid->group = HID_GROUP_GENERIC;
804 if ((parser->global.usage_page << 16) == HID_UP_GENDESK)
805 for (i = 0; i < parser->local.usage_index; i++)
806 if (parser->local.usage[i] == HID_GD_POINTER)
807 parser->scan_flags |= HID_SCAN_FLAG_GD_POINTER;
809 if ((parser->global.usage_page << 16) >= HID_UP_MSVENDOR)
810 parser->scan_flags |= HID_SCAN_FLAG_VENDOR_SPECIFIC;
813 static int hid_scan_main(struct hid_parser *parser, struct hid_item *item)
815 __u32 data;
816 int i;
818 hid_concatenate_last_usage_page(parser);
820 data = item_udata(item);
822 switch (item->tag) {
823 case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION:
824 hid_scan_collection(parser, data & 0xff);
825 break;
826 case HID_MAIN_ITEM_TAG_END_COLLECTION:
827 break;
828 case HID_MAIN_ITEM_TAG_INPUT:
829 /* ignore constant inputs, they will be ignored by hid-input */
830 if (data & HID_MAIN_ITEM_CONSTANT)
831 break;
832 for (i = 0; i < parser->local.usage_index; i++)
833 hid_scan_input_usage(parser, parser->local.usage[i]);
834 break;
835 case HID_MAIN_ITEM_TAG_OUTPUT:
836 break;
837 case HID_MAIN_ITEM_TAG_FEATURE:
838 for (i = 0; i < parser->local.usage_index; i++)
839 hid_scan_feature_usage(parser, parser->local.usage[i]);
840 break;
843 /* Reset the local parser environment */
844 memset(&parser->local, 0, sizeof(parser->local));
846 return 0;
850 * Scan a report descriptor before the device is added to the bus.
851 * Sets device groups and other properties that determine what driver
852 * to load.
854 static int hid_scan_report(struct hid_device *hid)
856 struct hid_parser *parser;
857 struct hid_item item;
858 __u8 *start = hid->dev_rdesc;
859 __u8 *end = start + hid->dev_rsize;
860 static int (*dispatch_type[])(struct hid_parser *parser,
861 struct hid_item *item) = {
862 hid_scan_main,
863 hid_parser_global,
864 hid_parser_local,
865 hid_parser_reserved
868 parser = vzalloc(sizeof(struct hid_parser));
869 if (!parser)
870 return -ENOMEM;
872 parser->device = hid;
873 hid->group = HID_GROUP_GENERIC;
876 * The parsing is simpler than the one in hid_open_report() as we should
877 * be robust against hid errors. Those errors will be raised by
878 * hid_open_report() anyway.
880 while ((start = fetch_item(start, end, &item)) != NULL)
881 dispatch_type[item.type](parser, &item);
884 * Handle special flags set during scanning.
886 if ((parser->scan_flags & HID_SCAN_FLAG_MT_WIN_8) &&
887 (hid->group == HID_GROUP_MULTITOUCH))
888 hid->group = HID_GROUP_MULTITOUCH_WIN_8;
891 * Vendor specific handlings
893 switch (hid->vendor) {
894 case USB_VENDOR_ID_WACOM:
895 hid->group = HID_GROUP_WACOM;
896 break;
897 case USB_VENDOR_ID_SYNAPTICS:
898 if (hid->group == HID_GROUP_GENERIC)
899 if ((parser->scan_flags & HID_SCAN_FLAG_VENDOR_SPECIFIC)
900 && (parser->scan_flags & HID_SCAN_FLAG_GD_POINTER))
902 * hid-rmi should take care of them,
903 * not hid-generic
905 hid->group = HID_GROUP_RMI;
906 break;
909 kfree(parser->collection_stack);
910 vfree(parser);
911 return 0;
915 * hid_parse_report - parse device report
917 * @device: hid device
918 * @start: report start
919 * @size: report size
921 * Allocate the device report as read by the bus driver. This function should
922 * only be called from parse() in ll drivers.
924 int hid_parse_report(struct hid_device *hid, __u8 *start, unsigned size)
926 hid->dev_rdesc = kmemdup(start, size, GFP_KERNEL);
927 if (!hid->dev_rdesc)
928 return -ENOMEM;
929 hid->dev_rsize = size;
930 return 0;
932 EXPORT_SYMBOL_GPL(hid_parse_report);
934 static const char * const hid_report_names[] = {
935 "HID_INPUT_REPORT",
936 "HID_OUTPUT_REPORT",
937 "HID_FEATURE_REPORT",
940 * hid_validate_values - validate existing device report's value indexes
942 * @device: hid device
943 * @type: which report type to examine
944 * @id: which report ID to examine (0 for first)
945 * @field_index: which report field to examine
946 * @report_counts: expected number of values
948 * Validate the number of values in a given field of a given report, after
949 * parsing.
951 struct hid_report *hid_validate_values(struct hid_device *hid,
952 unsigned int type, unsigned int id,
953 unsigned int field_index,
954 unsigned int report_counts)
956 struct hid_report *report;
958 if (type > HID_FEATURE_REPORT) {
959 hid_err(hid, "invalid HID report type %u\n", type);
960 return NULL;
963 if (id >= HID_MAX_IDS) {
964 hid_err(hid, "invalid HID report id %u\n", id);
965 return NULL;
969 * Explicitly not using hid_get_report() here since it depends on
970 * ->numbered being checked, which may not always be the case when
971 * drivers go to access report values.
973 if (id == 0) {
975 * Validating on id 0 means we should examine the first
976 * report in the list.
978 report = list_entry(
979 hid->report_enum[type].report_list.next,
980 struct hid_report, list);
981 } else {
982 report = hid->report_enum[type].report_id_hash[id];
984 if (!report) {
985 hid_err(hid, "missing %s %u\n", hid_report_names[type], id);
986 return NULL;
988 if (report->maxfield <= field_index) {
989 hid_err(hid, "not enough fields in %s %u\n",
990 hid_report_names[type], id);
991 return NULL;
993 if (report->field[field_index]->report_count < report_counts) {
994 hid_err(hid, "not enough values in %s %u field %u\n",
995 hid_report_names[type], id, field_index);
996 return NULL;
998 return report;
1000 EXPORT_SYMBOL_GPL(hid_validate_values);
1002 static int hid_calculate_multiplier(struct hid_device *hid,
1003 struct hid_field *multiplier)
1005 int m;
1006 __s32 v = *multiplier->value;
1007 __s32 lmin = multiplier->logical_minimum;
1008 __s32 lmax = multiplier->logical_maximum;
1009 __s32 pmin = multiplier->physical_minimum;
1010 __s32 pmax = multiplier->physical_maximum;
1013 * "Because OS implementations will generally divide the control's
1014 * reported count by the Effective Resolution Multiplier, designers
1015 * should take care not to establish a potential Effective
1016 * Resolution Multiplier of zero."
1017 * HID Usage Table, v1.12, Section 4.3.1, p31
1019 if (lmax - lmin == 0)
1020 return 1;
1022 * Handling the unit exponent is left as an exercise to whoever
1023 * finds a device where that exponent is not 0.
1025 m = ((v - lmin)/(lmax - lmin) * (pmax - pmin) + pmin);
1026 if (unlikely(multiplier->unit_exponent != 0)) {
1027 hid_warn(hid,
1028 "unsupported Resolution Multiplier unit exponent %d\n",
1029 multiplier->unit_exponent);
1032 /* There are no devices with an effective multiplier > 255 */
1033 if (unlikely(m == 0 || m > 255 || m < -255)) {
1034 hid_warn(hid, "unsupported Resolution Multiplier %d\n", m);
1035 m = 1;
1038 return m;
1041 static void hid_apply_multiplier_to_field(struct hid_device *hid,
1042 struct hid_field *field,
1043 struct hid_collection *multiplier_collection,
1044 int effective_multiplier)
1046 struct hid_collection *collection;
1047 struct hid_usage *usage;
1048 int i;
1051 * If multiplier_collection is NULL, the multiplier applies
1052 * to all fields in the report.
1053 * Otherwise, it is the Logical Collection the multiplier applies to
1054 * but our field may be in a subcollection of that collection.
1056 for (i = 0; i < field->maxusage; i++) {
1057 usage = &field->usage[i];
1059 collection = &hid->collection[usage->collection_index];
1060 while (collection->parent_idx != -1 &&
1061 collection != multiplier_collection)
1062 collection = &hid->collection[collection->parent_idx];
1064 if (collection->parent_idx != -1 ||
1065 multiplier_collection == NULL)
1066 usage->resolution_multiplier = effective_multiplier;
1071 static void hid_apply_multiplier(struct hid_device *hid,
1072 struct hid_field *multiplier)
1074 struct hid_report_enum *rep_enum;
1075 struct hid_report *rep;
1076 struct hid_field *field;
1077 struct hid_collection *multiplier_collection;
1078 int effective_multiplier;
1079 int i;
1082 * "The Resolution Multiplier control must be contained in the same
1083 * Logical Collection as the control(s) to which it is to be applied.
1084 * If no Resolution Multiplier is defined, then the Resolution
1085 * Multiplier defaults to 1. If more than one control exists in a
1086 * Logical Collection, the Resolution Multiplier is associated with
1087 * all controls in the collection. If no Logical Collection is
1088 * defined, the Resolution Multiplier is associated with all
1089 * controls in the report."
1090 * HID Usage Table, v1.12, Section 4.3.1, p30
1092 * Thus, search from the current collection upwards until we find a
1093 * logical collection. Then search all fields for that same parent
1094 * collection. Those are the fields the multiplier applies to.
1096 * If we have more than one multiplier, it will overwrite the
1097 * applicable fields later.
1099 multiplier_collection = &hid->collection[multiplier->usage->collection_index];
1100 while (multiplier_collection->parent_idx != -1 &&
1101 multiplier_collection->type != HID_COLLECTION_LOGICAL)
1102 multiplier_collection = &hid->collection[multiplier_collection->parent_idx];
1104 effective_multiplier = hid_calculate_multiplier(hid, multiplier);
1106 rep_enum = &hid->report_enum[HID_INPUT_REPORT];
1107 list_for_each_entry(rep, &rep_enum->report_list, list) {
1108 for (i = 0; i < rep->maxfield; i++) {
1109 field = rep->field[i];
1110 hid_apply_multiplier_to_field(hid, field,
1111 multiplier_collection,
1112 effective_multiplier);
1118 * hid_setup_resolution_multiplier - set up all resolution multipliers
1120 * @device: hid device
1122 * Search for all Resolution Multiplier Feature Reports and apply their
1123 * value to all matching Input items. This only updates the internal struct
1124 * fields.
1126 * The Resolution Multiplier is applied by the hardware. If the multiplier
1127 * is anything other than 1, the hardware will send pre-multiplied events
1128 * so that the same physical interaction generates an accumulated
1129 * accumulated_value = value * * multiplier
1130 * This may be achieved by sending
1131 * - "value * multiplier" for each event, or
1132 * - "value" but "multiplier" times as frequently, or
1133 * - a combination of the above
1134 * The only guarantee is that the same physical interaction always generates
1135 * an accumulated 'value * multiplier'.
1137 * This function must be called before any event processing and after
1138 * any SetRequest to the Resolution Multiplier.
1140 void hid_setup_resolution_multiplier(struct hid_device *hid)
1142 struct hid_report_enum *rep_enum;
1143 struct hid_report *rep;
1144 struct hid_usage *usage;
1145 int i, j;
1147 rep_enum = &hid->report_enum[HID_FEATURE_REPORT];
1148 list_for_each_entry(rep, &rep_enum->report_list, list) {
1149 for (i = 0; i < rep->maxfield; i++) {
1150 /* Ignore if report count is out of bounds. */
1151 if (rep->field[i]->report_count < 1)
1152 continue;
1154 for (j = 0; j < rep->field[i]->maxusage; j++) {
1155 usage = &rep->field[i]->usage[j];
1156 if (usage->hid == HID_GD_RESOLUTION_MULTIPLIER)
1157 hid_apply_multiplier(hid,
1158 rep->field[i]);
1163 EXPORT_SYMBOL_GPL(hid_setup_resolution_multiplier);
1166 * hid_open_report - open a driver-specific device report
1168 * @device: hid device
1170 * Parse a report description into a hid_device structure. Reports are
1171 * enumerated, fields are attached to these reports.
1172 * 0 returned on success, otherwise nonzero error value.
1174 * This function (or the equivalent hid_parse() macro) should only be
1175 * called from probe() in drivers, before starting the device.
1177 int hid_open_report(struct hid_device *device)
1179 struct hid_parser *parser;
1180 struct hid_item item;
1181 unsigned int size;
1182 __u8 *start;
1183 __u8 *buf;
1184 __u8 *end;
1185 __u8 *next;
1186 int ret;
1187 static int (*dispatch_type[])(struct hid_parser *parser,
1188 struct hid_item *item) = {
1189 hid_parser_main,
1190 hid_parser_global,
1191 hid_parser_local,
1192 hid_parser_reserved
1195 if (WARN_ON(device->status & HID_STAT_PARSED))
1196 return -EBUSY;
1198 start = device->dev_rdesc;
1199 if (WARN_ON(!start))
1200 return -ENODEV;
1201 size = device->dev_rsize;
1203 buf = kmemdup(start, size, GFP_KERNEL);
1204 if (buf == NULL)
1205 return -ENOMEM;
1207 if (device->driver->report_fixup)
1208 start = device->driver->report_fixup(device, buf, &size);
1209 else
1210 start = buf;
1212 start = kmemdup(start, size, GFP_KERNEL);
1213 kfree(buf);
1214 if (start == NULL)
1215 return -ENOMEM;
1217 device->rdesc = start;
1218 device->rsize = size;
1220 parser = vzalloc(sizeof(struct hid_parser));
1221 if (!parser) {
1222 ret = -ENOMEM;
1223 goto alloc_err;
1226 parser->device = device;
1228 end = start + size;
1230 device->collection = kcalloc(HID_DEFAULT_NUM_COLLECTIONS,
1231 sizeof(struct hid_collection), GFP_KERNEL);
1232 if (!device->collection) {
1233 ret = -ENOMEM;
1234 goto err;
1236 device->collection_size = HID_DEFAULT_NUM_COLLECTIONS;
1238 ret = -EINVAL;
1239 while ((next = fetch_item(start, end, &item)) != NULL) {
1240 start = next;
1242 if (item.format != HID_ITEM_FORMAT_SHORT) {
1243 hid_err(device, "unexpected long global item\n");
1244 goto err;
1247 if (dispatch_type[item.type](parser, &item)) {
1248 hid_err(device, "item %u %u %u %u parsing failed\n",
1249 item.format, (unsigned)item.size,
1250 (unsigned)item.type, (unsigned)item.tag);
1251 goto err;
1254 if (start == end) {
1255 if (parser->collection_stack_ptr) {
1256 hid_err(device, "unbalanced collection at end of report description\n");
1257 goto err;
1259 if (parser->local.delimiter_depth) {
1260 hid_err(device, "unbalanced delimiter at end of report description\n");
1261 goto err;
1265 * fetch initial values in case the device's
1266 * default multiplier isn't the recommended 1
1268 hid_setup_resolution_multiplier(device);
1270 kfree(parser->collection_stack);
1271 vfree(parser);
1272 device->status |= HID_STAT_PARSED;
1274 return 0;
1278 hid_err(device, "item fetching failed at offset %u/%u\n",
1279 size - (unsigned int)(end - start), size);
1280 err:
1281 kfree(parser->collection_stack);
1282 alloc_err:
1283 vfree(parser);
1284 hid_close_report(device);
1285 return ret;
1287 EXPORT_SYMBOL_GPL(hid_open_report);
1290 * Convert a signed n-bit integer to signed 32-bit integer. Common
1291 * cases are done through the compiler, the screwed things has to be
1292 * done by hand.
1295 static s32 snto32(__u32 value, unsigned n)
1297 switch (n) {
1298 case 8: return ((__s8)value);
1299 case 16: return ((__s16)value);
1300 case 32: return ((__s32)value);
1302 return value & (1 << (n - 1)) ? value | (~0U << n) : value;
1305 s32 hid_snto32(__u32 value, unsigned n)
1307 return snto32(value, n);
1309 EXPORT_SYMBOL_GPL(hid_snto32);
1312 * Convert a signed 32-bit integer to a signed n-bit integer.
1315 static u32 s32ton(__s32 value, unsigned n)
1317 s32 a = value >> (n - 1);
1318 if (a && a != -1)
1319 return value < 0 ? 1 << (n - 1) : (1 << (n - 1)) - 1;
1320 return value & ((1 << n) - 1);
1324 * Extract/implement a data field from/to a little endian report (bit array).
1326 * Code sort-of follows HID spec:
1327 * http://www.usb.org/developers/hidpage/HID1_11.pdf
1329 * While the USB HID spec allows unlimited length bit fields in "report
1330 * descriptors", most devices never use more than 16 bits.
1331 * One model of UPS is claimed to report "LINEV" as a 32-bit field.
1332 * Search linux-kernel and linux-usb-devel archives for "hid-core extract".
1335 static u32 __extract(u8 *report, unsigned offset, int n)
1337 unsigned int idx = offset / 8;
1338 unsigned int bit_nr = 0;
1339 unsigned int bit_shift = offset % 8;
1340 int bits_to_copy = 8 - bit_shift;
1341 u32 value = 0;
1342 u32 mask = n < 32 ? (1U << n) - 1 : ~0U;
1344 while (n > 0) {
1345 value |= ((u32)report[idx] >> bit_shift) << bit_nr;
1346 n -= bits_to_copy;
1347 bit_nr += bits_to_copy;
1348 bits_to_copy = 8;
1349 bit_shift = 0;
1350 idx++;
1353 return value & mask;
1356 u32 hid_field_extract(const struct hid_device *hid, u8 *report,
1357 unsigned offset, unsigned n)
1359 if (n > 32) {
1360 hid_warn_once(hid, "%s() called with n (%d) > 32! (%s)\n",
1361 __func__, n, current->comm);
1362 n = 32;
1365 return __extract(report, offset, n);
1367 EXPORT_SYMBOL_GPL(hid_field_extract);
1370 * "implement" : set bits in a little endian bit stream.
1371 * Same concepts as "extract" (see comments above).
1372 * The data mangled in the bit stream remains in little endian
1373 * order the whole time. It make more sense to talk about
1374 * endianness of register values by considering a register
1375 * a "cached" copy of the little endian bit stream.
1378 static void __implement(u8 *report, unsigned offset, int n, u32 value)
1380 unsigned int idx = offset / 8;
1381 unsigned int bit_shift = offset % 8;
1382 int bits_to_set = 8 - bit_shift;
1384 while (n - bits_to_set >= 0) {
1385 report[idx] &= ~(0xff << bit_shift);
1386 report[idx] |= value << bit_shift;
1387 value >>= bits_to_set;
1388 n -= bits_to_set;
1389 bits_to_set = 8;
1390 bit_shift = 0;
1391 idx++;
1394 /* last nibble */
1395 if (n) {
1396 u8 bit_mask = ((1U << n) - 1);
1397 report[idx] &= ~(bit_mask << bit_shift);
1398 report[idx] |= value << bit_shift;
1402 static void implement(const struct hid_device *hid, u8 *report,
1403 unsigned offset, unsigned n, u32 value)
1405 if (unlikely(n > 32)) {
1406 hid_warn(hid, "%s() called with n (%d) > 32! (%s)\n",
1407 __func__, n, current->comm);
1408 n = 32;
1409 } else if (n < 32) {
1410 u32 m = (1U << n) - 1;
1412 if (unlikely(value > m)) {
1413 hid_warn(hid,
1414 "%s() called with too large value %d (n: %d)! (%s)\n",
1415 __func__, value, n, current->comm);
1416 WARN_ON(1);
1417 value &= m;
1421 __implement(report, offset, n, value);
1425 * Search an array for a value.
1428 static int search(__s32 *array, __s32 value, unsigned n)
1430 while (n--) {
1431 if (*array++ == value)
1432 return 0;
1434 return -1;
1438 * hid_match_report - check if driver's raw_event should be called
1440 * @hid: hid device
1441 * @report_type: type to match against
1443 * compare hid->driver->report_table->report_type to report->type
1445 static int hid_match_report(struct hid_device *hid, struct hid_report *report)
1447 const struct hid_report_id *id = hid->driver->report_table;
1449 if (!id) /* NULL means all */
1450 return 1;
1452 for (; id->report_type != HID_TERMINATOR; id++)
1453 if (id->report_type == HID_ANY_ID ||
1454 id->report_type == report->type)
1455 return 1;
1456 return 0;
1460 * hid_match_usage - check if driver's event should be called
1462 * @hid: hid device
1463 * @usage: usage to match against
1465 * compare hid->driver->usage_table->usage_{type,code} to
1466 * usage->usage_{type,code}
1468 static int hid_match_usage(struct hid_device *hid, struct hid_usage *usage)
1470 const struct hid_usage_id *id = hid->driver->usage_table;
1472 if (!id) /* NULL means all */
1473 return 1;
1475 for (; id->usage_type != HID_ANY_ID - 1; id++)
1476 if ((id->usage_hid == HID_ANY_ID ||
1477 id->usage_hid == usage->hid) &&
1478 (id->usage_type == HID_ANY_ID ||
1479 id->usage_type == usage->type) &&
1480 (id->usage_code == HID_ANY_ID ||
1481 id->usage_code == usage->code))
1482 return 1;
1483 return 0;
1486 static void hid_process_event(struct hid_device *hid, struct hid_field *field,
1487 struct hid_usage *usage, __s32 value, int interrupt)
1489 struct hid_driver *hdrv = hid->driver;
1490 int ret;
1492 if (!list_empty(&hid->debug_list))
1493 hid_dump_input(hid, usage, value);
1495 if (hdrv && hdrv->event && hid_match_usage(hid, usage)) {
1496 ret = hdrv->event(hid, field, usage, value);
1497 if (ret != 0) {
1498 if (ret < 0)
1499 hid_err(hid, "%s's event failed with %d\n",
1500 hdrv->name, ret);
1501 return;
1505 if (hid->claimed & HID_CLAIMED_INPUT)
1506 hidinput_hid_event(hid, field, usage, value);
1507 if (hid->claimed & HID_CLAIMED_HIDDEV && interrupt && hid->hiddev_hid_event)
1508 hid->hiddev_hid_event(hid, field, usage, value);
1512 * Analyse a received field, and fetch the data from it. The field
1513 * content is stored for next report processing (we do differential
1514 * reporting to the layer).
1517 static void hid_input_field(struct hid_device *hid, struct hid_field *field,
1518 __u8 *data, int interrupt)
1520 unsigned n;
1521 unsigned count = field->report_count;
1522 unsigned offset = field->report_offset;
1523 unsigned size = field->report_size;
1524 __s32 min = field->logical_minimum;
1525 __s32 max = field->logical_maximum;
1526 __s32 *value;
1528 value = kmalloc_array(count, sizeof(__s32), GFP_ATOMIC);
1529 if (!value)
1530 return;
1532 for (n = 0; n < count; n++) {
1534 value[n] = min < 0 ?
1535 snto32(hid_field_extract(hid, data, offset + n * size,
1536 size), size) :
1537 hid_field_extract(hid, data, offset + n * size, size);
1539 /* Ignore report if ErrorRollOver */
1540 if (!(field->flags & HID_MAIN_ITEM_VARIABLE) &&
1541 value[n] >= min && value[n] <= max &&
1542 value[n] - min < field->maxusage &&
1543 field->usage[value[n] - min].hid == HID_UP_KEYBOARD + 1)
1544 goto exit;
1547 for (n = 0; n < count; n++) {
1549 if (HID_MAIN_ITEM_VARIABLE & field->flags) {
1550 hid_process_event(hid, field, &field->usage[n], value[n], interrupt);
1551 continue;
1554 if (field->value[n] >= min && field->value[n] <= max
1555 && field->value[n] - min < field->maxusage
1556 && field->usage[field->value[n] - min].hid
1557 && search(value, field->value[n], count))
1558 hid_process_event(hid, field, &field->usage[field->value[n] - min], 0, interrupt);
1560 if (value[n] >= min && value[n] <= max
1561 && value[n] - min < field->maxusage
1562 && field->usage[value[n] - min].hid
1563 && search(field->value, value[n], count))
1564 hid_process_event(hid, field, &field->usage[value[n] - min], 1, interrupt);
1567 memcpy(field->value, value, count * sizeof(__s32));
1568 exit:
1569 kfree(value);
1573 * Output the field into the report.
1576 static void hid_output_field(const struct hid_device *hid,
1577 struct hid_field *field, __u8 *data)
1579 unsigned count = field->report_count;
1580 unsigned offset = field->report_offset;
1581 unsigned size = field->report_size;
1582 unsigned n;
1584 for (n = 0; n < count; n++) {
1585 if (field->logical_minimum < 0) /* signed values */
1586 implement(hid, data, offset + n * size, size,
1587 s32ton(field->value[n], size));
1588 else /* unsigned values */
1589 implement(hid, data, offset + n * size, size,
1590 field->value[n]);
1595 * Create a report. 'data' has to be allocated using
1596 * hid_alloc_report_buf() so that it has proper size.
1599 void hid_output_report(struct hid_report *report, __u8 *data)
1601 unsigned n;
1603 if (report->id > 0)
1604 *data++ = report->id;
1606 memset(data, 0, ((report->size - 1) >> 3) + 1);
1607 for (n = 0; n < report->maxfield; n++)
1608 hid_output_field(report->device, report->field[n], data);
1610 EXPORT_SYMBOL_GPL(hid_output_report);
1613 * Allocator for buffer that is going to be passed to hid_output_report()
1615 u8 *hid_alloc_report_buf(struct hid_report *report, gfp_t flags)
1618 * 7 extra bytes are necessary to achieve proper functionality
1619 * of implement() working on 8 byte chunks
1622 u32 len = hid_report_len(report) + 7;
1624 return kmalloc(len, flags);
1626 EXPORT_SYMBOL_GPL(hid_alloc_report_buf);
1629 * Set a field value. The report this field belongs to has to be
1630 * created and transferred to the device, to set this value in the
1631 * device.
1634 int hid_set_field(struct hid_field *field, unsigned offset, __s32 value)
1636 unsigned size;
1638 if (!field)
1639 return -1;
1641 size = field->report_size;
1643 hid_dump_input(field->report->device, field->usage + offset, value);
1645 if (offset >= field->report_count) {
1646 hid_err(field->report->device, "offset (%d) exceeds report_count (%d)\n",
1647 offset, field->report_count);
1648 return -1;
1650 if (field->logical_minimum < 0) {
1651 if (value != snto32(s32ton(value, size), size)) {
1652 hid_err(field->report->device, "value %d is out of range\n", value);
1653 return -1;
1656 field->value[offset] = value;
1657 return 0;
1659 EXPORT_SYMBOL_GPL(hid_set_field);
1661 static struct hid_report *hid_get_report(struct hid_report_enum *report_enum,
1662 const u8 *data)
1664 struct hid_report *report;
1665 unsigned int n = 0; /* Normally report number is 0 */
1667 /* Device uses numbered reports, data[0] is report number */
1668 if (report_enum->numbered)
1669 n = *data;
1671 report = report_enum->report_id_hash[n];
1672 if (report == NULL)
1673 dbg_hid("undefined report_id %u received\n", n);
1675 return report;
1679 * Implement a generic .request() callback, using .raw_request()
1680 * DO NOT USE in hid drivers directly, but through hid_hw_request instead.
1682 int __hid_request(struct hid_device *hid, struct hid_report *report,
1683 int reqtype)
1685 char *buf;
1686 int ret;
1687 u32 len;
1689 buf = hid_alloc_report_buf(report, GFP_KERNEL);
1690 if (!buf)
1691 return -ENOMEM;
1693 len = hid_report_len(report);
1695 if (reqtype == HID_REQ_SET_REPORT)
1696 hid_output_report(report, buf);
1698 ret = hid->ll_driver->raw_request(hid, report->id, buf, len,
1699 report->type, reqtype);
1700 if (ret < 0) {
1701 dbg_hid("unable to complete request: %d\n", ret);
1702 goto out;
1705 if (reqtype == HID_REQ_GET_REPORT)
1706 hid_input_report(hid, report->type, buf, ret, 0);
1708 ret = 0;
1710 out:
1711 kfree(buf);
1712 return ret;
1714 EXPORT_SYMBOL_GPL(__hid_request);
1716 int hid_report_raw_event(struct hid_device *hid, int type, u8 *data, u32 size,
1717 int interrupt)
1719 struct hid_report_enum *report_enum = hid->report_enum + type;
1720 struct hid_report *report;
1721 struct hid_driver *hdrv;
1722 unsigned int a;
1723 u32 rsize, csize = size;
1724 u8 *cdata = data;
1725 int ret = 0;
1727 report = hid_get_report(report_enum, data);
1728 if (!report)
1729 goto out;
1731 if (report_enum->numbered) {
1732 cdata++;
1733 csize--;
1736 rsize = ((report->size - 1) >> 3) + 1;
1738 if (rsize > HID_MAX_BUFFER_SIZE)
1739 rsize = HID_MAX_BUFFER_SIZE;
1741 if (csize < rsize) {
1742 dbg_hid("report %d is too short, (%d < %d)\n", report->id,
1743 csize, rsize);
1744 memset(cdata + csize, 0, rsize - csize);
1747 if ((hid->claimed & HID_CLAIMED_HIDDEV) && hid->hiddev_report_event)
1748 hid->hiddev_report_event(hid, report);
1749 if (hid->claimed & HID_CLAIMED_HIDRAW) {
1750 ret = hidraw_report_event(hid, data, size);
1751 if (ret)
1752 goto out;
1755 if (hid->claimed != HID_CLAIMED_HIDRAW && report->maxfield) {
1756 for (a = 0; a < report->maxfield; a++)
1757 hid_input_field(hid, report->field[a], cdata, interrupt);
1758 hdrv = hid->driver;
1759 if (hdrv && hdrv->report)
1760 hdrv->report(hid, report);
1763 if (hid->claimed & HID_CLAIMED_INPUT)
1764 hidinput_report_event(hid, report);
1765 out:
1766 return ret;
1768 EXPORT_SYMBOL_GPL(hid_report_raw_event);
1771 * hid_input_report - report data from lower layer (usb, bt...)
1773 * @hid: hid device
1774 * @type: HID report type (HID_*_REPORT)
1775 * @data: report contents
1776 * @size: size of data parameter
1777 * @interrupt: distinguish between interrupt and control transfers
1779 * This is data entry for lower layers.
1781 int hid_input_report(struct hid_device *hid, int type, u8 *data, u32 size, int interrupt)
1783 struct hid_report_enum *report_enum;
1784 struct hid_driver *hdrv;
1785 struct hid_report *report;
1786 int ret = 0;
1788 if (!hid)
1789 return -ENODEV;
1791 if (down_trylock(&hid->driver_input_lock))
1792 return -EBUSY;
1794 if (!hid->driver) {
1795 ret = -ENODEV;
1796 goto unlock;
1798 report_enum = hid->report_enum + type;
1799 hdrv = hid->driver;
1801 if (!size) {
1802 dbg_hid("empty report\n");
1803 ret = -1;
1804 goto unlock;
1807 /* Avoid unnecessary overhead if debugfs is disabled */
1808 if (!list_empty(&hid->debug_list))
1809 hid_dump_report(hid, type, data, size);
1811 report = hid_get_report(report_enum, data);
1813 if (!report) {
1814 ret = -1;
1815 goto unlock;
1818 if (hdrv && hdrv->raw_event && hid_match_report(hid, report)) {
1819 ret = hdrv->raw_event(hid, report, data, size);
1820 if (ret < 0)
1821 goto unlock;
1824 ret = hid_report_raw_event(hid, type, data, size, interrupt);
1826 unlock:
1827 up(&hid->driver_input_lock);
1828 return ret;
1830 EXPORT_SYMBOL_GPL(hid_input_report);
1832 bool hid_match_one_id(const struct hid_device *hdev,
1833 const struct hid_device_id *id)
1835 return (id->bus == HID_BUS_ANY || id->bus == hdev->bus) &&
1836 (id->group == HID_GROUP_ANY || id->group == hdev->group) &&
1837 (id->vendor == HID_ANY_ID || id->vendor == hdev->vendor) &&
1838 (id->product == HID_ANY_ID || id->product == hdev->product);
1841 const struct hid_device_id *hid_match_id(const struct hid_device *hdev,
1842 const struct hid_device_id *id)
1844 for (; id->bus; id++)
1845 if (hid_match_one_id(hdev, id))
1846 return id;
1848 return NULL;
1851 static const struct hid_device_id hid_hiddev_list[] = {
1852 { HID_USB_DEVICE(USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS) },
1853 { HID_USB_DEVICE(USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS1) },
1857 static bool hid_hiddev(struct hid_device *hdev)
1859 return !!hid_match_id(hdev, hid_hiddev_list);
1863 static ssize_t
1864 read_report_descriptor(struct file *filp, struct kobject *kobj,
1865 struct bin_attribute *attr,
1866 char *buf, loff_t off, size_t count)
1868 struct device *dev = kobj_to_dev(kobj);
1869 struct hid_device *hdev = to_hid_device(dev);
1871 if (off >= hdev->rsize)
1872 return 0;
1874 if (off + count > hdev->rsize)
1875 count = hdev->rsize - off;
1877 memcpy(buf, hdev->rdesc + off, count);
1879 return count;
1882 static ssize_t
1883 show_country(struct device *dev, struct device_attribute *attr,
1884 char *buf)
1886 struct hid_device *hdev = to_hid_device(dev);
1888 return sprintf(buf, "%02x\n", hdev->country & 0xff);
1891 static struct bin_attribute dev_bin_attr_report_desc = {
1892 .attr = { .name = "report_descriptor", .mode = 0444 },
1893 .read = read_report_descriptor,
1894 .size = HID_MAX_DESCRIPTOR_SIZE,
1897 static const struct device_attribute dev_attr_country = {
1898 .attr = { .name = "country", .mode = 0444 },
1899 .show = show_country,
1902 int hid_connect(struct hid_device *hdev, unsigned int connect_mask)
1904 static const char *types[] = { "Device", "Pointer", "Mouse", "Device",
1905 "Joystick", "Gamepad", "Keyboard", "Keypad",
1906 "Multi-Axis Controller"
1908 const char *type, *bus;
1909 char buf[64] = "";
1910 unsigned int i;
1911 int len;
1912 int ret;
1914 if (hdev->quirks & HID_QUIRK_HIDDEV_FORCE)
1915 connect_mask |= (HID_CONNECT_HIDDEV_FORCE | HID_CONNECT_HIDDEV);
1916 if (hdev->quirks & HID_QUIRK_HIDINPUT_FORCE)
1917 connect_mask |= HID_CONNECT_HIDINPUT_FORCE;
1918 if (hdev->bus != BUS_USB)
1919 connect_mask &= ~HID_CONNECT_HIDDEV;
1920 if (hid_hiddev(hdev))
1921 connect_mask |= HID_CONNECT_HIDDEV_FORCE;
1923 if ((connect_mask & HID_CONNECT_HIDINPUT) && !hidinput_connect(hdev,
1924 connect_mask & HID_CONNECT_HIDINPUT_FORCE))
1925 hdev->claimed |= HID_CLAIMED_INPUT;
1927 if ((connect_mask & HID_CONNECT_HIDDEV) && hdev->hiddev_connect &&
1928 !hdev->hiddev_connect(hdev,
1929 connect_mask & HID_CONNECT_HIDDEV_FORCE))
1930 hdev->claimed |= HID_CLAIMED_HIDDEV;
1931 if ((connect_mask & HID_CONNECT_HIDRAW) && !hidraw_connect(hdev))
1932 hdev->claimed |= HID_CLAIMED_HIDRAW;
1934 if (connect_mask & HID_CONNECT_DRIVER)
1935 hdev->claimed |= HID_CLAIMED_DRIVER;
1937 /* Drivers with the ->raw_event callback set are not required to connect
1938 * to any other listener. */
1939 if (!hdev->claimed && !hdev->driver->raw_event) {
1940 hid_err(hdev, "device has no listeners, quitting\n");
1941 return -ENODEV;
1944 if ((hdev->claimed & HID_CLAIMED_INPUT) &&
1945 (connect_mask & HID_CONNECT_FF) && hdev->ff_init)
1946 hdev->ff_init(hdev);
1948 len = 0;
1949 if (hdev->claimed & HID_CLAIMED_INPUT)
1950 len += sprintf(buf + len, "input");
1951 if (hdev->claimed & HID_CLAIMED_HIDDEV)
1952 len += sprintf(buf + len, "%shiddev%d", len ? "," : "",
1953 ((struct hiddev *)hdev->hiddev)->minor);
1954 if (hdev->claimed & HID_CLAIMED_HIDRAW)
1955 len += sprintf(buf + len, "%shidraw%d", len ? "," : "",
1956 ((struct hidraw *)hdev->hidraw)->minor);
1958 type = "Device";
1959 for (i = 0; i < hdev->maxcollection; i++) {
1960 struct hid_collection *col = &hdev->collection[i];
1961 if (col->type == HID_COLLECTION_APPLICATION &&
1962 (col->usage & HID_USAGE_PAGE) == HID_UP_GENDESK &&
1963 (col->usage & 0xffff) < ARRAY_SIZE(types)) {
1964 type = types[col->usage & 0xffff];
1965 break;
1969 switch (hdev->bus) {
1970 case BUS_USB:
1971 bus = "USB";
1972 break;
1973 case BUS_BLUETOOTH:
1974 bus = "BLUETOOTH";
1975 break;
1976 case BUS_I2C:
1977 bus = "I2C";
1978 break;
1979 default:
1980 bus = "<UNKNOWN>";
1983 ret = device_create_file(&hdev->dev, &dev_attr_country);
1984 if (ret)
1985 hid_warn(hdev,
1986 "can't create sysfs country code attribute err: %d\n", ret);
1988 hid_info(hdev, "%s: %s HID v%x.%02x %s [%s] on %s\n",
1989 buf, bus, hdev->version >> 8, hdev->version & 0xff,
1990 type, hdev->name, hdev->phys);
1992 return 0;
1994 EXPORT_SYMBOL_GPL(hid_connect);
1996 void hid_disconnect(struct hid_device *hdev)
1998 device_remove_file(&hdev->dev, &dev_attr_country);
1999 if (hdev->claimed & HID_CLAIMED_INPUT)
2000 hidinput_disconnect(hdev);
2001 if (hdev->claimed & HID_CLAIMED_HIDDEV)
2002 hdev->hiddev_disconnect(hdev);
2003 if (hdev->claimed & HID_CLAIMED_HIDRAW)
2004 hidraw_disconnect(hdev);
2005 hdev->claimed = 0;
2007 EXPORT_SYMBOL_GPL(hid_disconnect);
2010 * hid_hw_start - start underlying HW
2011 * @hdev: hid device
2012 * @connect_mask: which outputs to connect, see HID_CONNECT_*
2014 * Call this in probe function *after* hid_parse. This will setup HW
2015 * buffers and start the device (if not defeirred to device open).
2016 * hid_hw_stop must be called if this was successful.
2018 int hid_hw_start(struct hid_device *hdev, unsigned int connect_mask)
2020 int error;
2022 error = hdev->ll_driver->start(hdev);
2023 if (error)
2024 return error;
2026 if (connect_mask) {
2027 error = hid_connect(hdev, connect_mask);
2028 if (error) {
2029 hdev->ll_driver->stop(hdev);
2030 return error;
2034 return 0;
2036 EXPORT_SYMBOL_GPL(hid_hw_start);
2039 * hid_hw_stop - stop underlying HW
2040 * @hdev: hid device
2042 * This is usually called from remove function or from probe when something
2043 * failed and hid_hw_start was called already.
2045 void hid_hw_stop(struct hid_device *hdev)
2047 hid_disconnect(hdev);
2048 hdev->ll_driver->stop(hdev);
2050 EXPORT_SYMBOL_GPL(hid_hw_stop);
2053 * hid_hw_open - signal underlying HW to start delivering events
2054 * @hdev: hid device
2056 * Tell underlying HW to start delivering events from the device.
2057 * This function should be called sometime after successful call
2058 * to hid_hw_start().
2060 int hid_hw_open(struct hid_device *hdev)
2062 int ret;
2064 ret = mutex_lock_killable(&hdev->ll_open_lock);
2065 if (ret)
2066 return ret;
2068 if (!hdev->ll_open_count++) {
2069 ret = hdev->ll_driver->open(hdev);
2070 if (ret)
2071 hdev->ll_open_count--;
2074 mutex_unlock(&hdev->ll_open_lock);
2075 return ret;
2077 EXPORT_SYMBOL_GPL(hid_hw_open);
2080 * hid_hw_close - signal underlaying HW to stop delivering events
2082 * @hdev: hid device
2084 * This function indicates that we are not interested in the events
2085 * from this device anymore. Delivery of events may or may not stop,
2086 * depending on the number of users still outstanding.
2088 void hid_hw_close(struct hid_device *hdev)
2090 mutex_lock(&hdev->ll_open_lock);
2091 if (!--hdev->ll_open_count)
2092 hdev->ll_driver->close(hdev);
2093 mutex_unlock(&hdev->ll_open_lock);
2095 EXPORT_SYMBOL_GPL(hid_hw_close);
2097 struct hid_dynid {
2098 struct list_head list;
2099 struct hid_device_id id;
2103 * store_new_id - add a new HID device ID to this driver and re-probe devices
2104 * @driver: target device driver
2105 * @buf: buffer for scanning device ID data
2106 * @count: input size
2108 * Adds a new dynamic hid device ID to this driver,
2109 * and causes the driver to probe for all devices again.
2111 static ssize_t new_id_store(struct device_driver *drv, const char *buf,
2112 size_t count)
2114 struct hid_driver *hdrv = to_hid_driver(drv);
2115 struct hid_dynid *dynid;
2116 __u32 bus, vendor, product;
2117 unsigned long driver_data = 0;
2118 int ret;
2120 ret = sscanf(buf, "%x %x %x %lx",
2121 &bus, &vendor, &product, &driver_data);
2122 if (ret < 3)
2123 return -EINVAL;
2125 dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
2126 if (!dynid)
2127 return -ENOMEM;
2129 dynid->id.bus = bus;
2130 dynid->id.group = HID_GROUP_ANY;
2131 dynid->id.vendor = vendor;
2132 dynid->id.product = product;
2133 dynid->id.driver_data = driver_data;
2135 spin_lock(&hdrv->dyn_lock);
2136 list_add_tail(&dynid->list, &hdrv->dyn_list);
2137 spin_unlock(&hdrv->dyn_lock);
2139 ret = driver_attach(&hdrv->driver);
2141 return ret ? : count;
2143 static DRIVER_ATTR_WO(new_id);
2145 static struct attribute *hid_drv_attrs[] = {
2146 &driver_attr_new_id.attr,
2147 NULL,
2149 ATTRIBUTE_GROUPS(hid_drv);
2151 static void hid_free_dynids(struct hid_driver *hdrv)
2153 struct hid_dynid *dynid, *n;
2155 spin_lock(&hdrv->dyn_lock);
2156 list_for_each_entry_safe(dynid, n, &hdrv->dyn_list, list) {
2157 list_del(&dynid->list);
2158 kfree(dynid);
2160 spin_unlock(&hdrv->dyn_lock);
2163 const struct hid_device_id *hid_match_device(struct hid_device *hdev,
2164 struct hid_driver *hdrv)
2166 struct hid_dynid *dynid;
2168 spin_lock(&hdrv->dyn_lock);
2169 list_for_each_entry(dynid, &hdrv->dyn_list, list) {
2170 if (hid_match_one_id(hdev, &dynid->id)) {
2171 spin_unlock(&hdrv->dyn_lock);
2172 return &dynid->id;
2175 spin_unlock(&hdrv->dyn_lock);
2177 return hid_match_id(hdev, hdrv->id_table);
2179 EXPORT_SYMBOL_GPL(hid_match_device);
2181 static int hid_bus_match(struct device *dev, struct device_driver *drv)
2183 struct hid_driver *hdrv = to_hid_driver(drv);
2184 struct hid_device *hdev = to_hid_device(dev);
2186 return hid_match_device(hdev, hdrv) != NULL;
2190 * hid_compare_device_paths - check if both devices share the same path
2191 * @hdev_a: hid device
2192 * @hdev_b: hid device
2193 * @separator: char to use as separator
2195 * Check if two devices share the same path up to the last occurrence of
2196 * the separator char. Both paths must exist (i.e., zero-length paths
2197 * don't match).
2199 bool hid_compare_device_paths(struct hid_device *hdev_a,
2200 struct hid_device *hdev_b, char separator)
2202 int n1 = strrchr(hdev_a->phys, separator) - hdev_a->phys;
2203 int n2 = strrchr(hdev_b->phys, separator) - hdev_b->phys;
2205 if (n1 != n2 || n1 <= 0 || n2 <= 0)
2206 return false;
2208 return !strncmp(hdev_a->phys, hdev_b->phys, n1);
2210 EXPORT_SYMBOL_GPL(hid_compare_device_paths);
2212 static int hid_device_probe(struct device *dev)
2214 struct hid_driver *hdrv = to_hid_driver(dev->driver);
2215 struct hid_device *hdev = to_hid_device(dev);
2216 const struct hid_device_id *id;
2217 int ret = 0;
2219 if (down_interruptible(&hdev->driver_input_lock)) {
2220 ret = -EINTR;
2221 goto end;
2223 hdev->io_started = false;
2225 clear_bit(ffs(HID_STAT_REPROBED), &hdev->status);
2227 if (!hdev->driver) {
2228 id = hid_match_device(hdev, hdrv);
2229 if (id == NULL) {
2230 ret = -ENODEV;
2231 goto unlock;
2234 if (hdrv->match) {
2235 if (!hdrv->match(hdev, hid_ignore_special_drivers)) {
2236 ret = -ENODEV;
2237 goto unlock;
2239 } else {
2241 * hid-generic implements .match(), so if
2242 * hid_ignore_special_drivers is set, we can safely
2243 * return.
2245 if (hid_ignore_special_drivers) {
2246 ret = -ENODEV;
2247 goto unlock;
2251 /* reset the quirks that has been previously set */
2252 hdev->quirks = hid_lookup_quirk(hdev);
2253 hdev->driver = hdrv;
2254 if (hdrv->probe) {
2255 ret = hdrv->probe(hdev, id);
2256 } else { /* default probe */
2257 ret = hid_open_report(hdev);
2258 if (!ret)
2259 ret = hid_hw_start(hdev, HID_CONNECT_DEFAULT);
2261 if (ret) {
2262 hid_close_report(hdev);
2263 hdev->driver = NULL;
2266 unlock:
2267 if (!hdev->io_started)
2268 up(&hdev->driver_input_lock);
2269 end:
2270 return ret;
2273 static int hid_device_remove(struct device *dev)
2275 struct hid_device *hdev = to_hid_device(dev);
2276 struct hid_driver *hdrv;
2277 int ret = 0;
2279 if (down_interruptible(&hdev->driver_input_lock)) {
2280 ret = -EINTR;
2281 goto end;
2283 hdev->io_started = false;
2285 hdrv = hdev->driver;
2286 if (hdrv) {
2287 if (hdrv->remove)
2288 hdrv->remove(hdev);
2289 else /* default remove */
2290 hid_hw_stop(hdev);
2291 hid_close_report(hdev);
2292 hdev->driver = NULL;
2295 if (!hdev->io_started)
2296 up(&hdev->driver_input_lock);
2297 end:
2298 return ret;
2301 static ssize_t modalias_show(struct device *dev, struct device_attribute *a,
2302 char *buf)
2304 struct hid_device *hdev = container_of(dev, struct hid_device, dev);
2306 return scnprintf(buf, PAGE_SIZE, "hid:b%04Xg%04Xv%08Xp%08X\n",
2307 hdev->bus, hdev->group, hdev->vendor, hdev->product);
2309 static DEVICE_ATTR_RO(modalias);
2311 static struct attribute *hid_dev_attrs[] = {
2312 &dev_attr_modalias.attr,
2313 NULL,
2315 static struct bin_attribute *hid_dev_bin_attrs[] = {
2316 &dev_bin_attr_report_desc,
2317 NULL
2319 static const struct attribute_group hid_dev_group = {
2320 .attrs = hid_dev_attrs,
2321 .bin_attrs = hid_dev_bin_attrs,
2323 __ATTRIBUTE_GROUPS(hid_dev);
2325 static int hid_uevent(struct device *dev, struct kobj_uevent_env *env)
2327 struct hid_device *hdev = to_hid_device(dev);
2329 if (add_uevent_var(env, "HID_ID=%04X:%08X:%08X",
2330 hdev->bus, hdev->vendor, hdev->product))
2331 return -ENOMEM;
2333 if (add_uevent_var(env, "HID_NAME=%s", hdev->name))
2334 return -ENOMEM;
2336 if (add_uevent_var(env, "HID_PHYS=%s", hdev->phys))
2337 return -ENOMEM;
2339 if (add_uevent_var(env, "HID_UNIQ=%s", hdev->uniq))
2340 return -ENOMEM;
2342 if (add_uevent_var(env, "MODALIAS=hid:b%04Xg%04Xv%08Xp%08X",
2343 hdev->bus, hdev->group, hdev->vendor, hdev->product))
2344 return -ENOMEM;
2346 return 0;
2349 struct bus_type hid_bus_type = {
2350 .name = "hid",
2351 .dev_groups = hid_dev_groups,
2352 .drv_groups = hid_drv_groups,
2353 .match = hid_bus_match,
2354 .probe = hid_device_probe,
2355 .remove = hid_device_remove,
2356 .uevent = hid_uevent,
2358 EXPORT_SYMBOL(hid_bus_type);
2360 int hid_add_device(struct hid_device *hdev)
2362 static atomic_t id = ATOMIC_INIT(0);
2363 int ret;
2365 if (WARN_ON(hdev->status & HID_STAT_ADDED))
2366 return -EBUSY;
2368 hdev->quirks = hid_lookup_quirk(hdev);
2370 /* we need to kill them here, otherwise they will stay allocated to
2371 * wait for coming driver */
2372 if (hid_ignore(hdev))
2373 return -ENODEV;
2376 * Check for the mandatory transport channel.
2378 if (!hdev->ll_driver->raw_request) {
2379 hid_err(hdev, "transport driver missing .raw_request()\n");
2380 return -EINVAL;
2384 * Read the device report descriptor once and use as template
2385 * for the driver-specific modifications.
2387 ret = hdev->ll_driver->parse(hdev);
2388 if (ret)
2389 return ret;
2390 if (!hdev->dev_rdesc)
2391 return -ENODEV;
2394 * Scan generic devices for group information
2396 if (hid_ignore_special_drivers) {
2397 hdev->group = HID_GROUP_GENERIC;
2398 } else if (!hdev->group &&
2399 !(hdev->quirks & HID_QUIRK_HAVE_SPECIAL_DRIVER)) {
2400 ret = hid_scan_report(hdev);
2401 if (ret)
2402 hid_warn(hdev, "bad device descriptor (%d)\n", ret);
2405 /* XXX hack, any other cleaner solution after the driver core
2406 * is converted to allow more than 20 bytes as the device name? */
2407 dev_set_name(&hdev->dev, "%04X:%04X:%04X.%04X", hdev->bus,
2408 hdev->vendor, hdev->product, atomic_inc_return(&id));
2410 hid_debug_register(hdev, dev_name(&hdev->dev));
2411 ret = device_add(&hdev->dev);
2412 if (!ret)
2413 hdev->status |= HID_STAT_ADDED;
2414 else
2415 hid_debug_unregister(hdev);
2417 return ret;
2419 EXPORT_SYMBOL_GPL(hid_add_device);
2422 * hid_allocate_device - allocate new hid device descriptor
2424 * Allocate and initialize hid device, so that hid_destroy_device might be
2425 * used to free it.
2427 * New hid_device pointer is returned on success, otherwise ERR_PTR encoded
2428 * error value.
2430 struct hid_device *hid_allocate_device(void)
2432 struct hid_device *hdev;
2433 int ret = -ENOMEM;
2435 hdev = kzalloc(sizeof(*hdev), GFP_KERNEL);
2436 if (hdev == NULL)
2437 return ERR_PTR(ret);
2439 device_initialize(&hdev->dev);
2440 hdev->dev.release = hid_device_release;
2441 hdev->dev.bus = &hid_bus_type;
2442 device_enable_async_suspend(&hdev->dev);
2444 hid_close_report(hdev);
2446 init_waitqueue_head(&hdev->debug_wait);
2447 INIT_LIST_HEAD(&hdev->debug_list);
2448 spin_lock_init(&hdev->debug_list_lock);
2449 sema_init(&hdev->driver_input_lock, 1);
2450 mutex_init(&hdev->ll_open_lock);
2452 return hdev;
2454 EXPORT_SYMBOL_GPL(hid_allocate_device);
2456 static void hid_remove_device(struct hid_device *hdev)
2458 if (hdev->status & HID_STAT_ADDED) {
2459 device_del(&hdev->dev);
2460 hid_debug_unregister(hdev);
2461 hdev->status &= ~HID_STAT_ADDED;
2463 kfree(hdev->dev_rdesc);
2464 hdev->dev_rdesc = NULL;
2465 hdev->dev_rsize = 0;
2469 * hid_destroy_device - free previously allocated device
2471 * @hdev: hid device
2473 * If you allocate hid_device through hid_allocate_device, you should ever
2474 * free by this function.
2476 void hid_destroy_device(struct hid_device *hdev)
2478 hid_remove_device(hdev);
2479 put_device(&hdev->dev);
2481 EXPORT_SYMBOL_GPL(hid_destroy_device);
2484 static int __hid_bus_reprobe_drivers(struct device *dev, void *data)
2486 struct hid_driver *hdrv = data;
2487 struct hid_device *hdev = to_hid_device(dev);
2489 if (hdev->driver == hdrv &&
2490 !hdrv->match(hdev, hid_ignore_special_drivers) &&
2491 !test_and_set_bit(ffs(HID_STAT_REPROBED), &hdev->status))
2492 return device_reprobe(dev);
2494 return 0;
2497 static int __hid_bus_driver_added(struct device_driver *drv, void *data)
2499 struct hid_driver *hdrv = to_hid_driver(drv);
2501 if (hdrv->match) {
2502 bus_for_each_dev(&hid_bus_type, NULL, hdrv,
2503 __hid_bus_reprobe_drivers);
2506 return 0;
2509 static int __bus_removed_driver(struct device_driver *drv, void *data)
2511 return bus_rescan_devices(&hid_bus_type);
2514 int __hid_register_driver(struct hid_driver *hdrv, struct module *owner,
2515 const char *mod_name)
2517 int ret;
2519 hdrv->driver.name = hdrv->name;
2520 hdrv->driver.bus = &hid_bus_type;
2521 hdrv->driver.owner = owner;
2522 hdrv->driver.mod_name = mod_name;
2524 INIT_LIST_HEAD(&hdrv->dyn_list);
2525 spin_lock_init(&hdrv->dyn_lock);
2527 ret = driver_register(&hdrv->driver);
2529 if (ret == 0)
2530 bus_for_each_drv(&hid_bus_type, NULL, NULL,
2531 __hid_bus_driver_added);
2533 return ret;
2535 EXPORT_SYMBOL_GPL(__hid_register_driver);
2537 void hid_unregister_driver(struct hid_driver *hdrv)
2539 driver_unregister(&hdrv->driver);
2540 hid_free_dynids(hdrv);
2542 bus_for_each_drv(&hid_bus_type, NULL, hdrv, __bus_removed_driver);
2544 EXPORT_SYMBOL_GPL(hid_unregister_driver);
2546 int hid_check_keys_pressed(struct hid_device *hid)
2548 struct hid_input *hidinput;
2549 int i;
2551 if (!(hid->claimed & HID_CLAIMED_INPUT))
2552 return 0;
2554 list_for_each_entry(hidinput, &hid->inputs, list) {
2555 for (i = 0; i < BITS_TO_LONGS(KEY_MAX); i++)
2556 if (hidinput->input->key[i])
2557 return 1;
2560 return 0;
2563 EXPORT_SYMBOL_GPL(hid_check_keys_pressed);
2565 static int __init hid_init(void)
2567 int ret;
2569 if (hid_debug)
2570 pr_warn("hid_debug is now used solely for parser and driver debugging.\n"
2571 "debugfs is now used for inspecting the device (report descriptor, reports)\n");
2573 ret = bus_register(&hid_bus_type);
2574 if (ret) {
2575 pr_err("can't register hid bus\n");
2576 goto err;
2579 ret = hidraw_init();
2580 if (ret)
2581 goto err_bus;
2583 hid_debug_init();
2585 return 0;
2586 err_bus:
2587 bus_unregister(&hid_bus_type);
2588 err:
2589 return ret;
2592 static void __exit hid_exit(void)
2594 hid_debug_exit();
2595 hidraw_exit();
2596 bus_unregister(&hid_bus_type);
2597 hid_quirks_exit(HID_BUS_ANY);
2600 module_init(hid_init);
2601 module_exit(hid_exit);
2603 MODULE_AUTHOR("Andreas Gal");
2604 MODULE_AUTHOR("Vojtech Pavlik");
2605 MODULE_AUTHOR("Jiri Kosina");
2606 MODULE_LICENSE("GPL");