interconnect: qcom: Fix Kconfig indentation
[linux/fpc-iii.git] / drivers / infiniband / ulp / srpt / ib_srpt.c
blob23c782e3d49a687db513cfe3c090bed5c0d9ea5f
1 /*
2 * Copyright (c) 2006 - 2009 Mellanox Technology Inc. All rights reserved.
3 * Copyright (C) 2008 - 2011 Bart Van Assche <bvanassche@acm.org>.
5 * This software is available to you under a choice of one of two
6 * licenses. You may choose to be licensed under the terms of the GNU
7 * General Public License (GPL) Version 2, available from the file
8 * COPYING in the main directory of this source tree, or the
9 * OpenIB.org BSD license below:
11 * Redistribution and use in source and binary forms, with or
12 * without modification, are permitted provided that the following
13 * conditions are met:
15 * - Redistributions of source code must retain the above
16 * copyright notice, this list of conditions and the following
17 * disclaimer.
19 * - Redistributions in binary form must reproduce the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer in the documentation and/or other materials
22 * provided with the distribution.
24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31 * SOFTWARE.
35 #include <linux/module.h>
36 #include <linux/init.h>
37 #include <linux/slab.h>
38 #include <linux/err.h>
39 #include <linux/ctype.h>
40 #include <linux/kthread.h>
41 #include <linux/string.h>
42 #include <linux/delay.h>
43 #include <linux/atomic.h>
44 #include <linux/inet.h>
45 #include <rdma/ib_cache.h>
46 #include <scsi/scsi_proto.h>
47 #include <scsi/scsi_tcq.h>
48 #include <target/target_core_base.h>
49 #include <target/target_core_fabric.h>
50 #include "ib_srpt.h"
52 /* Name of this kernel module. */
53 #define DRV_NAME "ib_srpt"
55 #define SRPT_ID_STRING "Linux SRP target"
57 #undef pr_fmt
58 #define pr_fmt(fmt) DRV_NAME " " fmt
60 MODULE_AUTHOR("Vu Pham and Bart Van Assche");
61 MODULE_DESCRIPTION("SCSI RDMA Protocol target driver");
62 MODULE_LICENSE("Dual BSD/GPL");
65 * Global Variables
68 static u64 srpt_service_guid;
69 static DEFINE_SPINLOCK(srpt_dev_lock); /* Protects srpt_dev_list. */
70 static LIST_HEAD(srpt_dev_list); /* List of srpt_device structures. */
72 static unsigned srp_max_req_size = DEFAULT_MAX_REQ_SIZE;
73 module_param(srp_max_req_size, int, 0444);
74 MODULE_PARM_DESC(srp_max_req_size,
75 "Maximum size of SRP request messages in bytes.");
77 static int srpt_srq_size = DEFAULT_SRPT_SRQ_SIZE;
78 module_param(srpt_srq_size, int, 0444);
79 MODULE_PARM_DESC(srpt_srq_size,
80 "Shared receive queue (SRQ) size.");
82 static int srpt_get_u64_x(char *buffer, const struct kernel_param *kp)
84 return sprintf(buffer, "0x%016llx", *(u64 *)kp->arg);
86 module_param_call(srpt_service_guid, NULL, srpt_get_u64_x, &srpt_service_guid,
87 0444);
88 MODULE_PARM_DESC(srpt_service_guid,
89 "Using this value for ioc_guid, id_ext, and cm_listen_id instead of using the node_guid of the first HCA.");
91 static struct ib_client srpt_client;
92 /* Protects both rdma_cm_port and rdma_cm_id. */
93 static DEFINE_MUTEX(rdma_cm_mutex);
94 /* Port number RDMA/CM will bind to. */
95 static u16 rdma_cm_port;
96 static struct rdma_cm_id *rdma_cm_id;
97 static void srpt_release_cmd(struct se_cmd *se_cmd);
98 static void srpt_free_ch(struct kref *kref);
99 static int srpt_queue_status(struct se_cmd *cmd);
100 static void srpt_recv_done(struct ib_cq *cq, struct ib_wc *wc);
101 static void srpt_send_done(struct ib_cq *cq, struct ib_wc *wc);
102 static void srpt_process_wait_list(struct srpt_rdma_ch *ch);
105 * The only allowed channel state changes are those that change the channel
106 * state into a state with a higher numerical value. Hence the new > prev test.
108 static bool srpt_set_ch_state(struct srpt_rdma_ch *ch, enum rdma_ch_state new)
110 unsigned long flags;
111 enum rdma_ch_state prev;
112 bool changed = false;
114 spin_lock_irqsave(&ch->spinlock, flags);
115 prev = ch->state;
116 if (new > prev) {
117 ch->state = new;
118 changed = true;
120 spin_unlock_irqrestore(&ch->spinlock, flags);
122 return changed;
126 * srpt_event_handler - asynchronous IB event callback function
127 * @handler: IB event handler registered by ib_register_event_handler().
128 * @event: Description of the event that occurred.
130 * Callback function called by the InfiniBand core when an asynchronous IB
131 * event occurs. This callback may occur in interrupt context. See also
132 * section 11.5.2, Set Asynchronous Event Handler in the InfiniBand
133 * Architecture Specification.
135 static void srpt_event_handler(struct ib_event_handler *handler,
136 struct ib_event *event)
138 struct srpt_device *sdev;
139 struct srpt_port *sport;
140 u8 port_num;
142 sdev = ib_get_client_data(event->device, &srpt_client);
143 if (!sdev || sdev->device != event->device)
144 return;
146 pr_debug("ASYNC event= %d on device= %s\n", event->event,
147 dev_name(&sdev->device->dev));
149 switch (event->event) {
150 case IB_EVENT_PORT_ERR:
151 port_num = event->element.port_num - 1;
152 if (port_num < sdev->device->phys_port_cnt) {
153 sport = &sdev->port[port_num];
154 sport->lid = 0;
155 sport->sm_lid = 0;
156 } else {
157 WARN(true, "event %d: port_num %d out of range 1..%d\n",
158 event->event, port_num + 1,
159 sdev->device->phys_port_cnt);
161 break;
162 case IB_EVENT_PORT_ACTIVE:
163 case IB_EVENT_LID_CHANGE:
164 case IB_EVENT_PKEY_CHANGE:
165 case IB_EVENT_SM_CHANGE:
166 case IB_EVENT_CLIENT_REREGISTER:
167 case IB_EVENT_GID_CHANGE:
168 /* Refresh port data asynchronously. */
169 port_num = event->element.port_num - 1;
170 if (port_num < sdev->device->phys_port_cnt) {
171 sport = &sdev->port[port_num];
172 if (!sport->lid && !sport->sm_lid)
173 schedule_work(&sport->work);
174 } else {
175 WARN(true, "event %d: port_num %d out of range 1..%d\n",
176 event->event, port_num + 1,
177 sdev->device->phys_port_cnt);
179 break;
180 default:
181 pr_err("received unrecognized IB event %d\n", event->event);
182 break;
187 * srpt_srq_event - SRQ event callback function
188 * @event: Description of the event that occurred.
189 * @ctx: Context pointer specified at SRQ creation time.
191 static void srpt_srq_event(struct ib_event *event, void *ctx)
193 pr_debug("SRQ event %d\n", event->event);
196 static const char *get_ch_state_name(enum rdma_ch_state s)
198 switch (s) {
199 case CH_CONNECTING:
200 return "connecting";
201 case CH_LIVE:
202 return "live";
203 case CH_DISCONNECTING:
204 return "disconnecting";
205 case CH_DRAINING:
206 return "draining";
207 case CH_DISCONNECTED:
208 return "disconnected";
210 return "???";
214 * srpt_qp_event - QP event callback function
215 * @event: Description of the event that occurred.
216 * @ch: SRPT RDMA channel.
218 static void srpt_qp_event(struct ib_event *event, struct srpt_rdma_ch *ch)
220 pr_debug("QP event %d on ch=%p sess_name=%s state=%d\n",
221 event->event, ch, ch->sess_name, ch->state);
223 switch (event->event) {
224 case IB_EVENT_COMM_EST:
225 if (ch->using_rdma_cm)
226 rdma_notify(ch->rdma_cm.cm_id, event->event);
227 else
228 ib_cm_notify(ch->ib_cm.cm_id, event->event);
229 break;
230 case IB_EVENT_QP_LAST_WQE_REACHED:
231 pr_debug("%s-%d, state %s: received Last WQE event.\n",
232 ch->sess_name, ch->qp->qp_num,
233 get_ch_state_name(ch->state));
234 break;
235 default:
236 pr_err("received unrecognized IB QP event %d\n", event->event);
237 break;
242 * srpt_set_ioc - initialize a IOUnitInfo structure
243 * @c_list: controller list.
244 * @slot: one-based slot number.
245 * @value: four-bit value.
247 * Copies the lowest four bits of value in element slot of the array of four
248 * bit elements called c_list (controller list). The index slot is one-based.
250 static void srpt_set_ioc(u8 *c_list, u32 slot, u8 value)
252 u16 id;
253 u8 tmp;
255 id = (slot - 1) / 2;
256 if (slot & 0x1) {
257 tmp = c_list[id] & 0xf;
258 c_list[id] = (value << 4) | tmp;
259 } else {
260 tmp = c_list[id] & 0xf0;
261 c_list[id] = (value & 0xf) | tmp;
266 * srpt_get_class_port_info - copy ClassPortInfo to a management datagram
267 * @mad: Datagram that will be sent as response to DM_ATTR_CLASS_PORT_INFO.
269 * See also section 16.3.3.1 ClassPortInfo in the InfiniBand Architecture
270 * Specification.
272 static void srpt_get_class_port_info(struct ib_dm_mad *mad)
274 struct ib_class_port_info *cif;
276 cif = (struct ib_class_port_info *)mad->data;
277 memset(cif, 0, sizeof(*cif));
278 cif->base_version = 1;
279 cif->class_version = 1;
281 ib_set_cpi_resp_time(cif, 20);
282 mad->mad_hdr.status = 0;
286 * srpt_get_iou - write IOUnitInfo to a management datagram
287 * @mad: Datagram that will be sent as response to DM_ATTR_IOU_INFO.
289 * See also section 16.3.3.3 IOUnitInfo in the InfiniBand Architecture
290 * Specification. See also section B.7, table B.6 in the SRP r16a document.
292 static void srpt_get_iou(struct ib_dm_mad *mad)
294 struct ib_dm_iou_info *ioui;
295 u8 slot;
296 int i;
298 ioui = (struct ib_dm_iou_info *)mad->data;
299 ioui->change_id = cpu_to_be16(1);
300 ioui->max_controllers = 16;
302 /* set present for slot 1 and empty for the rest */
303 srpt_set_ioc(ioui->controller_list, 1, 1);
304 for (i = 1, slot = 2; i < 16; i++, slot++)
305 srpt_set_ioc(ioui->controller_list, slot, 0);
307 mad->mad_hdr.status = 0;
311 * srpt_get_ioc - write IOControllerprofile to a management datagram
312 * @sport: HCA port through which the MAD has been received.
313 * @slot: Slot number specified in DM_ATTR_IOC_PROFILE query.
314 * @mad: Datagram that will be sent as response to DM_ATTR_IOC_PROFILE.
316 * See also section 16.3.3.4 IOControllerProfile in the InfiniBand
317 * Architecture Specification. See also section B.7, table B.7 in the SRP
318 * r16a document.
320 static void srpt_get_ioc(struct srpt_port *sport, u32 slot,
321 struct ib_dm_mad *mad)
323 struct srpt_device *sdev = sport->sdev;
324 struct ib_dm_ioc_profile *iocp;
325 int send_queue_depth;
327 iocp = (struct ib_dm_ioc_profile *)mad->data;
329 if (!slot || slot > 16) {
330 mad->mad_hdr.status
331 = cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD);
332 return;
335 if (slot > 2) {
336 mad->mad_hdr.status
337 = cpu_to_be16(DM_MAD_STATUS_NO_IOC);
338 return;
341 if (sdev->use_srq)
342 send_queue_depth = sdev->srq_size;
343 else
344 send_queue_depth = min(MAX_SRPT_RQ_SIZE,
345 sdev->device->attrs.max_qp_wr);
347 memset(iocp, 0, sizeof(*iocp));
348 strcpy(iocp->id_string, SRPT_ID_STRING);
349 iocp->guid = cpu_to_be64(srpt_service_guid);
350 iocp->vendor_id = cpu_to_be32(sdev->device->attrs.vendor_id);
351 iocp->device_id = cpu_to_be32(sdev->device->attrs.vendor_part_id);
352 iocp->device_version = cpu_to_be16(sdev->device->attrs.hw_ver);
353 iocp->subsys_vendor_id = cpu_to_be32(sdev->device->attrs.vendor_id);
354 iocp->subsys_device_id = 0x0;
355 iocp->io_class = cpu_to_be16(SRP_REV16A_IB_IO_CLASS);
356 iocp->io_subclass = cpu_to_be16(SRP_IO_SUBCLASS);
357 iocp->protocol = cpu_to_be16(SRP_PROTOCOL);
358 iocp->protocol_version = cpu_to_be16(SRP_PROTOCOL_VERSION);
359 iocp->send_queue_depth = cpu_to_be16(send_queue_depth);
360 iocp->rdma_read_depth = 4;
361 iocp->send_size = cpu_to_be32(srp_max_req_size);
362 iocp->rdma_size = cpu_to_be32(min(sport->port_attrib.srp_max_rdma_size,
363 1U << 24));
364 iocp->num_svc_entries = 1;
365 iocp->op_cap_mask = SRP_SEND_TO_IOC | SRP_SEND_FROM_IOC |
366 SRP_RDMA_READ_FROM_IOC | SRP_RDMA_WRITE_FROM_IOC;
368 mad->mad_hdr.status = 0;
372 * srpt_get_svc_entries - write ServiceEntries to a management datagram
373 * @ioc_guid: I/O controller GUID to use in reply.
374 * @slot: I/O controller number.
375 * @hi: End of the range of service entries to be specified in the reply.
376 * @lo: Start of the range of service entries to be specified in the reply..
377 * @mad: Datagram that will be sent as response to DM_ATTR_SVC_ENTRIES.
379 * See also section 16.3.3.5 ServiceEntries in the InfiniBand Architecture
380 * Specification. See also section B.7, table B.8 in the SRP r16a document.
382 static void srpt_get_svc_entries(u64 ioc_guid,
383 u16 slot, u8 hi, u8 lo, struct ib_dm_mad *mad)
385 struct ib_dm_svc_entries *svc_entries;
387 WARN_ON(!ioc_guid);
389 if (!slot || slot > 16) {
390 mad->mad_hdr.status
391 = cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD);
392 return;
395 if (slot > 2 || lo > hi || hi > 1) {
396 mad->mad_hdr.status
397 = cpu_to_be16(DM_MAD_STATUS_NO_IOC);
398 return;
401 svc_entries = (struct ib_dm_svc_entries *)mad->data;
402 memset(svc_entries, 0, sizeof(*svc_entries));
403 svc_entries->service_entries[0].id = cpu_to_be64(ioc_guid);
404 snprintf(svc_entries->service_entries[0].name,
405 sizeof(svc_entries->service_entries[0].name),
406 "%s%016llx",
407 SRP_SERVICE_NAME_PREFIX,
408 ioc_guid);
410 mad->mad_hdr.status = 0;
414 * srpt_mgmt_method_get - process a received management datagram
415 * @sp: HCA port through which the MAD has been received.
416 * @rq_mad: received MAD.
417 * @rsp_mad: response MAD.
419 static void srpt_mgmt_method_get(struct srpt_port *sp, struct ib_mad *rq_mad,
420 struct ib_dm_mad *rsp_mad)
422 u16 attr_id;
423 u32 slot;
424 u8 hi, lo;
426 attr_id = be16_to_cpu(rq_mad->mad_hdr.attr_id);
427 switch (attr_id) {
428 case DM_ATTR_CLASS_PORT_INFO:
429 srpt_get_class_port_info(rsp_mad);
430 break;
431 case DM_ATTR_IOU_INFO:
432 srpt_get_iou(rsp_mad);
433 break;
434 case DM_ATTR_IOC_PROFILE:
435 slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod);
436 srpt_get_ioc(sp, slot, rsp_mad);
437 break;
438 case DM_ATTR_SVC_ENTRIES:
439 slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod);
440 hi = (u8) ((slot >> 8) & 0xff);
441 lo = (u8) (slot & 0xff);
442 slot = (u16) ((slot >> 16) & 0xffff);
443 srpt_get_svc_entries(srpt_service_guid,
444 slot, hi, lo, rsp_mad);
445 break;
446 default:
447 rsp_mad->mad_hdr.status =
448 cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR);
449 break;
454 * srpt_mad_send_handler - MAD send completion callback
455 * @mad_agent: Return value of ib_register_mad_agent().
456 * @mad_wc: Work completion reporting that the MAD has been sent.
458 static void srpt_mad_send_handler(struct ib_mad_agent *mad_agent,
459 struct ib_mad_send_wc *mad_wc)
461 rdma_destroy_ah(mad_wc->send_buf->ah, RDMA_DESTROY_AH_SLEEPABLE);
462 ib_free_send_mad(mad_wc->send_buf);
466 * srpt_mad_recv_handler - MAD reception callback function
467 * @mad_agent: Return value of ib_register_mad_agent().
468 * @send_buf: Not used.
469 * @mad_wc: Work completion reporting that a MAD has been received.
471 static void srpt_mad_recv_handler(struct ib_mad_agent *mad_agent,
472 struct ib_mad_send_buf *send_buf,
473 struct ib_mad_recv_wc *mad_wc)
475 struct srpt_port *sport = (struct srpt_port *)mad_agent->context;
476 struct ib_ah *ah;
477 struct ib_mad_send_buf *rsp;
478 struct ib_dm_mad *dm_mad;
480 if (!mad_wc || !mad_wc->recv_buf.mad)
481 return;
483 ah = ib_create_ah_from_wc(mad_agent->qp->pd, mad_wc->wc,
484 mad_wc->recv_buf.grh, mad_agent->port_num);
485 if (IS_ERR(ah))
486 goto err;
488 BUILD_BUG_ON(offsetof(struct ib_dm_mad, data) != IB_MGMT_DEVICE_HDR);
490 rsp = ib_create_send_mad(mad_agent, mad_wc->wc->src_qp,
491 mad_wc->wc->pkey_index, 0,
492 IB_MGMT_DEVICE_HDR, IB_MGMT_DEVICE_DATA,
493 GFP_KERNEL,
494 IB_MGMT_BASE_VERSION);
495 if (IS_ERR(rsp))
496 goto err_rsp;
498 rsp->ah = ah;
500 dm_mad = rsp->mad;
501 memcpy(dm_mad, mad_wc->recv_buf.mad, sizeof(*dm_mad));
502 dm_mad->mad_hdr.method = IB_MGMT_METHOD_GET_RESP;
503 dm_mad->mad_hdr.status = 0;
505 switch (mad_wc->recv_buf.mad->mad_hdr.method) {
506 case IB_MGMT_METHOD_GET:
507 srpt_mgmt_method_get(sport, mad_wc->recv_buf.mad, dm_mad);
508 break;
509 case IB_MGMT_METHOD_SET:
510 dm_mad->mad_hdr.status =
511 cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR);
512 break;
513 default:
514 dm_mad->mad_hdr.status =
515 cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD);
516 break;
519 if (!ib_post_send_mad(rsp, NULL)) {
520 ib_free_recv_mad(mad_wc);
521 /* will destroy_ah & free_send_mad in send completion */
522 return;
525 ib_free_send_mad(rsp);
527 err_rsp:
528 rdma_destroy_ah(ah, RDMA_DESTROY_AH_SLEEPABLE);
529 err:
530 ib_free_recv_mad(mad_wc);
533 static int srpt_format_guid(char *buf, unsigned int size, const __be64 *guid)
535 const __be16 *g = (const __be16 *)guid;
537 return snprintf(buf, size, "%04x:%04x:%04x:%04x",
538 be16_to_cpu(g[0]), be16_to_cpu(g[1]),
539 be16_to_cpu(g[2]), be16_to_cpu(g[3]));
543 * srpt_refresh_port - configure a HCA port
544 * @sport: SRPT HCA port.
546 * Enable InfiniBand management datagram processing, update the cached sm_lid,
547 * lid and gid values, and register a callback function for processing MADs
548 * on the specified port.
550 * Note: It is safe to call this function more than once for the same port.
552 static int srpt_refresh_port(struct srpt_port *sport)
554 struct ib_mad_reg_req reg_req;
555 struct ib_port_modify port_modify;
556 struct ib_port_attr port_attr;
557 int ret;
559 ret = ib_query_port(sport->sdev->device, sport->port, &port_attr);
560 if (ret)
561 return ret;
563 sport->sm_lid = port_attr.sm_lid;
564 sport->lid = port_attr.lid;
566 ret = rdma_query_gid(sport->sdev->device, sport->port, 0, &sport->gid);
567 if (ret)
568 return ret;
570 sport->port_guid_id.wwn.priv = sport;
571 srpt_format_guid(sport->port_guid_id.name,
572 sizeof(sport->port_guid_id.name),
573 &sport->gid.global.interface_id);
574 sport->port_gid_id.wwn.priv = sport;
575 snprintf(sport->port_gid_id.name, sizeof(sport->port_gid_id.name),
576 "0x%016llx%016llx",
577 be64_to_cpu(sport->gid.global.subnet_prefix),
578 be64_to_cpu(sport->gid.global.interface_id));
580 if (rdma_protocol_iwarp(sport->sdev->device, sport->port))
581 return 0;
583 memset(&port_modify, 0, sizeof(port_modify));
584 port_modify.set_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP;
585 port_modify.clr_port_cap_mask = 0;
587 ret = ib_modify_port(sport->sdev->device, sport->port, 0, &port_modify);
588 if (ret) {
589 pr_warn("%s-%d: enabling device management failed (%d). Note: this is expected if SR-IOV is enabled.\n",
590 dev_name(&sport->sdev->device->dev), sport->port, ret);
591 return 0;
594 if (!sport->mad_agent) {
595 memset(&reg_req, 0, sizeof(reg_req));
596 reg_req.mgmt_class = IB_MGMT_CLASS_DEVICE_MGMT;
597 reg_req.mgmt_class_version = IB_MGMT_BASE_VERSION;
598 set_bit(IB_MGMT_METHOD_GET, reg_req.method_mask);
599 set_bit(IB_MGMT_METHOD_SET, reg_req.method_mask);
601 sport->mad_agent = ib_register_mad_agent(sport->sdev->device,
602 sport->port,
603 IB_QPT_GSI,
604 &reg_req, 0,
605 srpt_mad_send_handler,
606 srpt_mad_recv_handler,
607 sport, 0);
608 if (IS_ERR(sport->mad_agent)) {
609 pr_err("%s-%d: MAD agent registration failed (%ld). Note: this is expected if SR-IOV is enabled.\n",
610 dev_name(&sport->sdev->device->dev), sport->port,
611 PTR_ERR(sport->mad_agent));
612 sport->mad_agent = NULL;
616 return 0;
620 * srpt_unregister_mad_agent - unregister MAD callback functions
621 * @sdev: SRPT HCA pointer.
623 * Note: It is safe to call this function more than once for the same device.
625 static void srpt_unregister_mad_agent(struct srpt_device *sdev)
627 struct ib_port_modify port_modify = {
628 .clr_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP,
630 struct srpt_port *sport;
631 int i;
633 for (i = 1; i <= sdev->device->phys_port_cnt; i++) {
634 sport = &sdev->port[i - 1];
635 WARN_ON(sport->port != i);
636 if (ib_modify_port(sdev->device, i, 0, &port_modify) < 0)
637 pr_err("disabling MAD processing failed.\n");
638 if (sport->mad_agent) {
639 ib_unregister_mad_agent(sport->mad_agent);
640 sport->mad_agent = NULL;
646 * srpt_alloc_ioctx - allocate a SRPT I/O context structure
647 * @sdev: SRPT HCA pointer.
648 * @ioctx_size: I/O context size.
649 * @buf_cache: I/O buffer cache.
650 * @dir: DMA data direction.
652 static struct srpt_ioctx *srpt_alloc_ioctx(struct srpt_device *sdev,
653 int ioctx_size,
654 struct kmem_cache *buf_cache,
655 enum dma_data_direction dir)
657 struct srpt_ioctx *ioctx;
659 ioctx = kzalloc(ioctx_size, GFP_KERNEL);
660 if (!ioctx)
661 goto err;
663 ioctx->buf = kmem_cache_alloc(buf_cache, GFP_KERNEL);
664 if (!ioctx->buf)
665 goto err_free_ioctx;
667 ioctx->dma = ib_dma_map_single(sdev->device, ioctx->buf,
668 kmem_cache_size(buf_cache), dir);
669 if (ib_dma_mapping_error(sdev->device, ioctx->dma))
670 goto err_free_buf;
672 return ioctx;
674 err_free_buf:
675 kmem_cache_free(buf_cache, ioctx->buf);
676 err_free_ioctx:
677 kfree(ioctx);
678 err:
679 return NULL;
683 * srpt_free_ioctx - free a SRPT I/O context structure
684 * @sdev: SRPT HCA pointer.
685 * @ioctx: I/O context pointer.
686 * @buf_cache: I/O buffer cache.
687 * @dir: DMA data direction.
689 static void srpt_free_ioctx(struct srpt_device *sdev, struct srpt_ioctx *ioctx,
690 struct kmem_cache *buf_cache,
691 enum dma_data_direction dir)
693 if (!ioctx)
694 return;
696 ib_dma_unmap_single(sdev->device, ioctx->dma,
697 kmem_cache_size(buf_cache), dir);
698 kmem_cache_free(buf_cache, ioctx->buf);
699 kfree(ioctx);
703 * srpt_alloc_ioctx_ring - allocate a ring of SRPT I/O context structures
704 * @sdev: Device to allocate the I/O context ring for.
705 * @ring_size: Number of elements in the I/O context ring.
706 * @ioctx_size: I/O context size.
707 * @buf_cache: I/O buffer cache.
708 * @alignment_offset: Offset in each ring buffer at which the SRP information
709 * unit starts.
710 * @dir: DMA data direction.
712 static struct srpt_ioctx **srpt_alloc_ioctx_ring(struct srpt_device *sdev,
713 int ring_size, int ioctx_size,
714 struct kmem_cache *buf_cache,
715 int alignment_offset,
716 enum dma_data_direction dir)
718 struct srpt_ioctx **ring;
719 int i;
721 WARN_ON(ioctx_size != sizeof(struct srpt_recv_ioctx) &&
722 ioctx_size != sizeof(struct srpt_send_ioctx));
724 ring = kvmalloc_array(ring_size, sizeof(ring[0]), GFP_KERNEL);
725 if (!ring)
726 goto out;
727 for (i = 0; i < ring_size; ++i) {
728 ring[i] = srpt_alloc_ioctx(sdev, ioctx_size, buf_cache, dir);
729 if (!ring[i])
730 goto err;
731 ring[i]->index = i;
732 ring[i]->offset = alignment_offset;
734 goto out;
736 err:
737 while (--i >= 0)
738 srpt_free_ioctx(sdev, ring[i], buf_cache, dir);
739 kvfree(ring);
740 ring = NULL;
741 out:
742 return ring;
746 * srpt_free_ioctx_ring - free the ring of SRPT I/O context structures
747 * @ioctx_ring: I/O context ring to be freed.
748 * @sdev: SRPT HCA pointer.
749 * @ring_size: Number of ring elements.
750 * @buf_cache: I/O buffer cache.
751 * @dir: DMA data direction.
753 static void srpt_free_ioctx_ring(struct srpt_ioctx **ioctx_ring,
754 struct srpt_device *sdev, int ring_size,
755 struct kmem_cache *buf_cache,
756 enum dma_data_direction dir)
758 int i;
760 if (!ioctx_ring)
761 return;
763 for (i = 0; i < ring_size; ++i)
764 srpt_free_ioctx(sdev, ioctx_ring[i], buf_cache, dir);
765 kvfree(ioctx_ring);
769 * srpt_set_cmd_state - set the state of a SCSI command
770 * @ioctx: Send I/O context.
771 * @new: New I/O context state.
773 * Does not modify the state of aborted commands. Returns the previous command
774 * state.
776 static enum srpt_command_state srpt_set_cmd_state(struct srpt_send_ioctx *ioctx,
777 enum srpt_command_state new)
779 enum srpt_command_state previous;
781 previous = ioctx->state;
782 if (previous != SRPT_STATE_DONE)
783 ioctx->state = new;
785 return previous;
789 * srpt_test_and_set_cmd_state - test and set the state of a command
790 * @ioctx: Send I/O context.
791 * @old: Current I/O context state.
792 * @new: New I/O context state.
794 * Returns true if and only if the previous command state was equal to 'old'.
796 static bool srpt_test_and_set_cmd_state(struct srpt_send_ioctx *ioctx,
797 enum srpt_command_state old,
798 enum srpt_command_state new)
800 enum srpt_command_state previous;
802 WARN_ON(!ioctx);
803 WARN_ON(old == SRPT_STATE_DONE);
804 WARN_ON(new == SRPT_STATE_NEW);
806 previous = ioctx->state;
807 if (previous == old)
808 ioctx->state = new;
810 return previous == old;
814 * srpt_post_recv - post an IB receive request
815 * @sdev: SRPT HCA pointer.
816 * @ch: SRPT RDMA channel.
817 * @ioctx: Receive I/O context pointer.
819 static int srpt_post_recv(struct srpt_device *sdev, struct srpt_rdma_ch *ch,
820 struct srpt_recv_ioctx *ioctx)
822 struct ib_sge list;
823 struct ib_recv_wr wr;
825 BUG_ON(!sdev);
826 list.addr = ioctx->ioctx.dma + ioctx->ioctx.offset;
827 list.length = srp_max_req_size;
828 list.lkey = sdev->lkey;
830 ioctx->ioctx.cqe.done = srpt_recv_done;
831 wr.wr_cqe = &ioctx->ioctx.cqe;
832 wr.next = NULL;
833 wr.sg_list = &list;
834 wr.num_sge = 1;
836 if (sdev->use_srq)
837 return ib_post_srq_recv(sdev->srq, &wr, NULL);
838 else
839 return ib_post_recv(ch->qp, &wr, NULL);
843 * srpt_zerolength_write - perform a zero-length RDMA write
844 * @ch: SRPT RDMA channel.
846 * A quote from the InfiniBand specification: C9-88: For an HCA responder
847 * using Reliable Connection service, for each zero-length RDMA READ or WRITE
848 * request, the R_Key shall not be validated, even if the request includes
849 * Immediate data.
851 static int srpt_zerolength_write(struct srpt_rdma_ch *ch)
853 struct ib_rdma_wr wr = {
854 .wr = {
855 .next = NULL,
856 { .wr_cqe = &ch->zw_cqe, },
857 .opcode = IB_WR_RDMA_WRITE,
858 .send_flags = IB_SEND_SIGNALED,
862 pr_debug("%s-%d: queued zerolength write\n", ch->sess_name,
863 ch->qp->qp_num);
865 return ib_post_send(ch->qp, &wr.wr, NULL);
868 static void srpt_zerolength_write_done(struct ib_cq *cq, struct ib_wc *wc)
870 struct srpt_rdma_ch *ch = cq->cq_context;
872 pr_debug("%s-%d wc->status %d\n", ch->sess_name, ch->qp->qp_num,
873 wc->status);
875 if (wc->status == IB_WC_SUCCESS) {
876 srpt_process_wait_list(ch);
877 } else {
878 if (srpt_set_ch_state(ch, CH_DISCONNECTED))
879 schedule_work(&ch->release_work);
880 else
881 pr_debug("%s-%d: already disconnected.\n",
882 ch->sess_name, ch->qp->qp_num);
886 static int srpt_alloc_rw_ctxs(struct srpt_send_ioctx *ioctx,
887 struct srp_direct_buf *db, int nbufs, struct scatterlist **sg,
888 unsigned *sg_cnt)
890 enum dma_data_direction dir = target_reverse_dma_direction(&ioctx->cmd);
891 struct srpt_rdma_ch *ch = ioctx->ch;
892 struct scatterlist *prev = NULL;
893 unsigned prev_nents;
894 int ret, i;
896 if (nbufs == 1) {
897 ioctx->rw_ctxs = &ioctx->s_rw_ctx;
898 } else {
899 ioctx->rw_ctxs = kmalloc_array(nbufs, sizeof(*ioctx->rw_ctxs),
900 GFP_KERNEL);
901 if (!ioctx->rw_ctxs)
902 return -ENOMEM;
905 for (i = ioctx->n_rw_ctx; i < nbufs; i++, db++) {
906 struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i];
907 u64 remote_addr = be64_to_cpu(db->va);
908 u32 size = be32_to_cpu(db->len);
909 u32 rkey = be32_to_cpu(db->key);
911 ret = target_alloc_sgl(&ctx->sg, &ctx->nents, size, false,
912 i < nbufs - 1);
913 if (ret)
914 goto unwind;
916 ret = rdma_rw_ctx_init(&ctx->rw, ch->qp, ch->sport->port,
917 ctx->sg, ctx->nents, 0, remote_addr, rkey, dir);
918 if (ret < 0) {
919 target_free_sgl(ctx->sg, ctx->nents);
920 goto unwind;
923 ioctx->n_rdma += ret;
924 ioctx->n_rw_ctx++;
926 if (prev) {
927 sg_unmark_end(&prev[prev_nents - 1]);
928 sg_chain(prev, prev_nents + 1, ctx->sg);
929 } else {
930 *sg = ctx->sg;
933 prev = ctx->sg;
934 prev_nents = ctx->nents;
936 *sg_cnt += ctx->nents;
939 return 0;
941 unwind:
942 while (--i >= 0) {
943 struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i];
945 rdma_rw_ctx_destroy(&ctx->rw, ch->qp, ch->sport->port,
946 ctx->sg, ctx->nents, dir);
947 target_free_sgl(ctx->sg, ctx->nents);
949 if (ioctx->rw_ctxs != &ioctx->s_rw_ctx)
950 kfree(ioctx->rw_ctxs);
951 return ret;
954 static void srpt_free_rw_ctxs(struct srpt_rdma_ch *ch,
955 struct srpt_send_ioctx *ioctx)
957 enum dma_data_direction dir = target_reverse_dma_direction(&ioctx->cmd);
958 int i;
960 for (i = 0; i < ioctx->n_rw_ctx; i++) {
961 struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i];
963 rdma_rw_ctx_destroy(&ctx->rw, ch->qp, ch->sport->port,
964 ctx->sg, ctx->nents, dir);
965 target_free_sgl(ctx->sg, ctx->nents);
968 if (ioctx->rw_ctxs != &ioctx->s_rw_ctx)
969 kfree(ioctx->rw_ctxs);
972 static inline void *srpt_get_desc_buf(struct srp_cmd *srp_cmd)
975 * The pointer computations below will only be compiled correctly
976 * if srp_cmd::add_data is declared as s8*, u8*, s8[] or u8[], so check
977 * whether srp_cmd::add_data has been declared as a byte pointer.
979 BUILD_BUG_ON(!__same_type(srp_cmd->add_data[0], (s8)0) &&
980 !__same_type(srp_cmd->add_data[0], (u8)0));
983 * According to the SRP spec, the lower two bits of the 'ADDITIONAL
984 * CDB LENGTH' field are reserved and the size in bytes of this field
985 * is four times the value specified in bits 3..7. Hence the "& ~3".
987 return srp_cmd->add_data + (srp_cmd->add_cdb_len & ~3);
991 * srpt_get_desc_tbl - parse the data descriptors of a SRP_CMD request
992 * @recv_ioctx: I/O context associated with the received command @srp_cmd.
993 * @ioctx: I/O context that will be used for responding to the initiator.
994 * @srp_cmd: Pointer to the SRP_CMD request data.
995 * @dir: Pointer to the variable to which the transfer direction will be
996 * written.
997 * @sg: [out] scatterlist for the parsed SRP_CMD.
998 * @sg_cnt: [out] length of @sg.
999 * @data_len: Pointer to the variable to which the total data length of all
1000 * descriptors in the SRP_CMD request will be written.
1001 * @imm_data_offset: [in] Offset in SRP_CMD requests at which immediate data
1002 * starts.
1004 * This function initializes ioctx->nrbuf and ioctx->r_bufs.
1006 * Returns -EINVAL when the SRP_CMD request contains inconsistent descriptors;
1007 * -ENOMEM when memory allocation fails and zero upon success.
1009 static int srpt_get_desc_tbl(struct srpt_recv_ioctx *recv_ioctx,
1010 struct srpt_send_ioctx *ioctx,
1011 struct srp_cmd *srp_cmd, enum dma_data_direction *dir,
1012 struct scatterlist **sg, unsigned int *sg_cnt, u64 *data_len,
1013 u16 imm_data_offset)
1015 BUG_ON(!dir);
1016 BUG_ON(!data_len);
1019 * The lower four bits of the buffer format field contain the DATA-IN
1020 * buffer descriptor format, and the highest four bits contain the
1021 * DATA-OUT buffer descriptor format.
1023 if (srp_cmd->buf_fmt & 0xf)
1024 /* DATA-IN: transfer data from target to initiator (read). */
1025 *dir = DMA_FROM_DEVICE;
1026 else if (srp_cmd->buf_fmt >> 4)
1027 /* DATA-OUT: transfer data from initiator to target (write). */
1028 *dir = DMA_TO_DEVICE;
1029 else
1030 *dir = DMA_NONE;
1032 /* initialize data_direction early as srpt_alloc_rw_ctxs needs it */
1033 ioctx->cmd.data_direction = *dir;
1035 if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_DIRECT) ||
1036 ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_DIRECT)) {
1037 struct srp_direct_buf *db = srpt_get_desc_buf(srp_cmd);
1039 *data_len = be32_to_cpu(db->len);
1040 return srpt_alloc_rw_ctxs(ioctx, db, 1, sg, sg_cnt);
1041 } else if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_INDIRECT) ||
1042 ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_INDIRECT)) {
1043 struct srp_indirect_buf *idb = srpt_get_desc_buf(srp_cmd);
1044 int nbufs = be32_to_cpu(idb->table_desc.len) /
1045 sizeof(struct srp_direct_buf);
1047 if (nbufs >
1048 (srp_cmd->data_out_desc_cnt + srp_cmd->data_in_desc_cnt)) {
1049 pr_err("received unsupported SRP_CMD request type (%u out + %u in != %u / %zu)\n",
1050 srp_cmd->data_out_desc_cnt,
1051 srp_cmd->data_in_desc_cnt,
1052 be32_to_cpu(idb->table_desc.len),
1053 sizeof(struct srp_direct_buf));
1054 return -EINVAL;
1057 *data_len = be32_to_cpu(idb->len);
1058 return srpt_alloc_rw_ctxs(ioctx, idb->desc_list, nbufs,
1059 sg, sg_cnt);
1060 } else if ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_IMM) {
1061 struct srp_imm_buf *imm_buf = srpt_get_desc_buf(srp_cmd);
1062 void *data = (void *)srp_cmd + imm_data_offset;
1063 uint32_t len = be32_to_cpu(imm_buf->len);
1064 uint32_t req_size = imm_data_offset + len;
1066 if (req_size > srp_max_req_size) {
1067 pr_err("Immediate data (length %d + %d) exceeds request size %d\n",
1068 imm_data_offset, len, srp_max_req_size);
1069 return -EINVAL;
1071 if (recv_ioctx->byte_len < req_size) {
1072 pr_err("Received too few data - %d < %d\n",
1073 recv_ioctx->byte_len, req_size);
1074 return -EIO;
1077 * The immediate data buffer descriptor must occur before the
1078 * immediate data itself.
1080 if ((void *)(imm_buf + 1) > (void *)data) {
1081 pr_err("Received invalid write request\n");
1082 return -EINVAL;
1084 *data_len = len;
1085 ioctx->recv_ioctx = recv_ioctx;
1086 if ((uintptr_t)data & 511) {
1087 pr_warn_once("Internal error - the receive buffers are not aligned properly.\n");
1088 return -EINVAL;
1090 sg_init_one(&ioctx->imm_sg, data, len);
1091 *sg = &ioctx->imm_sg;
1092 *sg_cnt = 1;
1093 return 0;
1094 } else {
1095 *data_len = 0;
1096 return 0;
1101 * srpt_init_ch_qp - initialize queue pair attributes
1102 * @ch: SRPT RDMA channel.
1103 * @qp: Queue pair pointer.
1105 * Initialized the attributes of queue pair 'qp' by allowing local write,
1106 * remote read and remote write. Also transitions 'qp' to state IB_QPS_INIT.
1108 static int srpt_init_ch_qp(struct srpt_rdma_ch *ch, struct ib_qp *qp)
1110 struct ib_qp_attr *attr;
1111 int ret;
1113 WARN_ON_ONCE(ch->using_rdma_cm);
1115 attr = kzalloc(sizeof(*attr), GFP_KERNEL);
1116 if (!attr)
1117 return -ENOMEM;
1119 attr->qp_state = IB_QPS_INIT;
1120 attr->qp_access_flags = IB_ACCESS_LOCAL_WRITE;
1121 attr->port_num = ch->sport->port;
1123 ret = ib_find_cached_pkey(ch->sport->sdev->device, ch->sport->port,
1124 ch->pkey, &attr->pkey_index);
1125 if (ret < 0)
1126 pr_err("Translating pkey %#x failed (%d) - using index 0\n",
1127 ch->pkey, ret);
1129 ret = ib_modify_qp(qp, attr,
1130 IB_QP_STATE | IB_QP_ACCESS_FLAGS | IB_QP_PORT |
1131 IB_QP_PKEY_INDEX);
1133 kfree(attr);
1134 return ret;
1138 * srpt_ch_qp_rtr - change the state of a channel to 'ready to receive' (RTR)
1139 * @ch: channel of the queue pair.
1140 * @qp: queue pair to change the state of.
1142 * Returns zero upon success and a negative value upon failure.
1144 * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system.
1145 * If this structure ever becomes larger, it might be necessary to allocate
1146 * it dynamically instead of on the stack.
1148 static int srpt_ch_qp_rtr(struct srpt_rdma_ch *ch, struct ib_qp *qp)
1150 struct ib_qp_attr qp_attr;
1151 int attr_mask;
1152 int ret;
1154 WARN_ON_ONCE(ch->using_rdma_cm);
1156 qp_attr.qp_state = IB_QPS_RTR;
1157 ret = ib_cm_init_qp_attr(ch->ib_cm.cm_id, &qp_attr, &attr_mask);
1158 if (ret)
1159 goto out;
1161 qp_attr.max_dest_rd_atomic = 4;
1163 ret = ib_modify_qp(qp, &qp_attr, attr_mask);
1165 out:
1166 return ret;
1170 * srpt_ch_qp_rts - change the state of a channel to 'ready to send' (RTS)
1171 * @ch: channel of the queue pair.
1172 * @qp: queue pair to change the state of.
1174 * Returns zero upon success and a negative value upon failure.
1176 * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system.
1177 * If this structure ever becomes larger, it might be necessary to allocate
1178 * it dynamically instead of on the stack.
1180 static int srpt_ch_qp_rts(struct srpt_rdma_ch *ch, struct ib_qp *qp)
1182 struct ib_qp_attr qp_attr;
1183 int attr_mask;
1184 int ret;
1186 qp_attr.qp_state = IB_QPS_RTS;
1187 ret = ib_cm_init_qp_attr(ch->ib_cm.cm_id, &qp_attr, &attr_mask);
1188 if (ret)
1189 goto out;
1191 qp_attr.max_rd_atomic = 4;
1193 ret = ib_modify_qp(qp, &qp_attr, attr_mask);
1195 out:
1196 return ret;
1200 * srpt_ch_qp_err - set the channel queue pair state to 'error'
1201 * @ch: SRPT RDMA channel.
1203 static int srpt_ch_qp_err(struct srpt_rdma_ch *ch)
1205 struct ib_qp_attr qp_attr;
1207 qp_attr.qp_state = IB_QPS_ERR;
1208 return ib_modify_qp(ch->qp, &qp_attr, IB_QP_STATE);
1212 * srpt_get_send_ioctx - obtain an I/O context for sending to the initiator
1213 * @ch: SRPT RDMA channel.
1215 static struct srpt_send_ioctx *srpt_get_send_ioctx(struct srpt_rdma_ch *ch)
1217 struct srpt_send_ioctx *ioctx;
1218 int tag, cpu;
1220 BUG_ON(!ch);
1222 tag = sbitmap_queue_get(&ch->sess->sess_tag_pool, &cpu);
1223 if (tag < 0)
1224 return NULL;
1226 ioctx = ch->ioctx_ring[tag];
1227 BUG_ON(ioctx->ch != ch);
1228 ioctx->state = SRPT_STATE_NEW;
1229 WARN_ON_ONCE(ioctx->recv_ioctx);
1230 ioctx->n_rdma = 0;
1231 ioctx->n_rw_ctx = 0;
1232 ioctx->queue_status_only = false;
1234 * transport_init_se_cmd() does not initialize all fields, so do it
1235 * here.
1237 memset(&ioctx->cmd, 0, sizeof(ioctx->cmd));
1238 memset(&ioctx->sense_data, 0, sizeof(ioctx->sense_data));
1239 ioctx->cmd.map_tag = tag;
1240 ioctx->cmd.map_cpu = cpu;
1242 return ioctx;
1246 * srpt_abort_cmd - abort a SCSI command
1247 * @ioctx: I/O context associated with the SCSI command.
1249 static int srpt_abort_cmd(struct srpt_send_ioctx *ioctx)
1251 enum srpt_command_state state;
1253 BUG_ON(!ioctx);
1256 * If the command is in a state where the target core is waiting for
1257 * the ib_srpt driver, change the state to the next state.
1260 state = ioctx->state;
1261 switch (state) {
1262 case SRPT_STATE_NEED_DATA:
1263 ioctx->state = SRPT_STATE_DATA_IN;
1264 break;
1265 case SRPT_STATE_CMD_RSP_SENT:
1266 case SRPT_STATE_MGMT_RSP_SENT:
1267 ioctx->state = SRPT_STATE_DONE;
1268 break;
1269 default:
1270 WARN_ONCE(true, "%s: unexpected I/O context state %d\n",
1271 __func__, state);
1272 break;
1275 pr_debug("Aborting cmd with state %d -> %d and tag %lld\n", state,
1276 ioctx->state, ioctx->cmd.tag);
1278 switch (state) {
1279 case SRPT_STATE_NEW:
1280 case SRPT_STATE_DATA_IN:
1281 case SRPT_STATE_MGMT:
1282 case SRPT_STATE_DONE:
1284 * Do nothing - defer abort processing until
1285 * srpt_queue_response() is invoked.
1287 break;
1288 case SRPT_STATE_NEED_DATA:
1289 pr_debug("tag %#llx: RDMA read error\n", ioctx->cmd.tag);
1290 transport_generic_request_failure(&ioctx->cmd,
1291 TCM_CHECK_CONDITION_ABORT_CMD);
1292 break;
1293 case SRPT_STATE_CMD_RSP_SENT:
1295 * SRP_RSP sending failed or the SRP_RSP send completion has
1296 * not been received in time.
1298 transport_generic_free_cmd(&ioctx->cmd, 0);
1299 break;
1300 case SRPT_STATE_MGMT_RSP_SENT:
1301 transport_generic_free_cmd(&ioctx->cmd, 0);
1302 break;
1303 default:
1304 WARN(1, "Unexpected command state (%d)", state);
1305 break;
1308 return state;
1312 * srpt_rdma_read_done - RDMA read completion callback
1313 * @cq: Completion queue.
1314 * @wc: Work completion.
1316 * XXX: what is now target_execute_cmd used to be asynchronous, and unmapping
1317 * the data that has been transferred via IB RDMA had to be postponed until the
1318 * check_stop_free() callback. None of this is necessary anymore and needs to
1319 * be cleaned up.
1321 static void srpt_rdma_read_done(struct ib_cq *cq, struct ib_wc *wc)
1323 struct srpt_rdma_ch *ch = cq->cq_context;
1324 struct srpt_send_ioctx *ioctx =
1325 container_of(wc->wr_cqe, struct srpt_send_ioctx, rdma_cqe);
1327 WARN_ON(ioctx->n_rdma <= 0);
1328 atomic_add(ioctx->n_rdma, &ch->sq_wr_avail);
1329 ioctx->n_rdma = 0;
1331 if (unlikely(wc->status != IB_WC_SUCCESS)) {
1332 pr_info("RDMA_READ for ioctx 0x%p failed with status %d\n",
1333 ioctx, wc->status);
1334 srpt_abort_cmd(ioctx);
1335 return;
1338 if (srpt_test_and_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA,
1339 SRPT_STATE_DATA_IN))
1340 target_execute_cmd(&ioctx->cmd);
1341 else
1342 pr_err("%s[%d]: wrong state = %d\n", __func__,
1343 __LINE__, ioctx->state);
1347 * srpt_build_cmd_rsp - build a SRP_RSP response
1348 * @ch: RDMA channel through which the request has been received.
1349 * @ioctx: I/O context associated with the SRP_CMD request. The response will
1350 * be built in the buffer ioctx->buf points at and hence this function will
1351 * overwrite the request data.
1352 * @tag: tag of the request for which this response is being generated.
1353 * @status: value for the STATUS field of the SRP_RSP information unit.
1355 * Returns the size in bytes of the SRP_RSP response.
1357 * An SRP_RSP response contains a SCSI status or service response. See also
1358 * section 6.9 in the SRP r16a document for the format of an SRP_RSP
1359 * response. See also SPC-2 for more information about sense data.
1361 static int srpt_build_cmd_rsp(struct srpt_rdma_ch *ch,
1362 struct srpt_send_ioctx *ioctx, u64 tag,
1363 int status)
1365 struct se_cmd *cmd = &ioctx->cmd;
1366 struct srp_rsp *srp_rsp;
1367 const u8 *sense_data;
1368 int sense_data_len, max_sense_len;
1369 u32 resid = cmd->residual_count;
1372 * The lowest bit of all SAM-3 status codes is zero (see also
1373 * paragraph 5.3 in SAM-3).
1375 WARN_ON(status & 1);
1377 srp_rsp = ioctx->ioctx.buf;
1378 BUG_ON(!srp_rsp);
1380 sense_data = ioctx->sense_data;
1381 sense_data_len = ioctx->cmd.scsi_sense_length;
1382 WARN_ON(sense_data_len > sizeof(ioctx->sense_data));
1384 memset(srp_rsp, 0, sizeof(*srp_rsp));
1385 srp_rsp->opcode = SRP_RSP;
1386 srp_rsp->req_lim_delta =
1387 cpu_to_be32(1 + atomic_xchg(&ch->req_lim_delta, 0));
1388 srp_rsp->tag = tag;
1389 srp_rsp->status = status;
1391 if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) {
1392 if (cmd->data_direction == DMA_TO_DEVICE) {
1393 /* residual data from an underflow write */
1394 srp_rsp->flags = SRP_RSP_FLAG_DOUNDER;
1395 srp_rsp->data_out_res_cnt = cpu_to_be32(resid);
1396 } else if (cmd->data_direction == DMA_FROM_DEVICE) {
1397 /* residual data from an underflow read */
1398 srp_rsp->flags = SRP_RSP_FLAG_DIUNDER;
1399 srp_rsp->data_in_res_cnt = cpu_to_be32(resid);
1401 } else if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
1402 if (cmd->data_direction == DMA_TO_DEVICE) {
1403 /* residual data from an overflow write */
1404 srp_rsp->flags = SRP_RSP_FLAG_DOOVER;
1405 srp_rsp->data_out_res_cnt = cpu_to_be32(resid);
1406 } else if (cmd->data_direction == DMA_FROM_DEVICE) {
1407 /* residual data from an overflow read */
1408 srp_rsp->flags = SRP_RSP_FLAG_DIOVER;
1409 srp_rsp->data_in_res_cnt = cpu_to_be32(resid);
1413 if (sense_data_len) {
1414 BUILD_BUG_ON(MIN_MAX_RSP_SIZE <= sizeof(*srp_rsp));
1415 max_sense_len = ch->max_ti_iu_len - sizeof(*srp_rsp);
1416 if (sense_data_len > max_sense_len) {
1417 pr_warn("truncated sense data from %d to %d bytes\n",
1418 sense_data_len, max_sense_len);
1419 sense_data_len = max_sense_len;
1422 srp_rsp->flags |= SRP_RSP_FLAG_SNSVALID;
1423 srp_rsp->sense_data_len = cpu_to_be32(sense_data_len);
1424 memcpy(srp_rsp + 1, sense_data, sense_data_len);
1427 return sizeof(*srp_rsp) + sense_data_len;
1431 * srpt_build_tskmgmt_rsp - build a task management response
1432 * @ch: RDMA channel through which the request has been received.
1433 * @ioctx: I/O context in which the SRP_RSP response will be built.
1434 * @rsp_code: RSP_CODE that will be stored in the response.
1435 * @tag: Tag of the request for which this response is being generated.
1437 * Returns the size in bytes of the SRP_RSP response.
1439 * An SRP_RSP response contains a SCSI status or service response. See also
1440 * section 6.9 in the SRP r16a document for the format of an SRP_RSP
1441 * response.
1443 static int srpt_build_tskmgmt_rsp(struct srpt_rdma_ch *ch,
1444 struct srpt_send_ioctx *ioctx,
1445 u8 rsp_code, u64 tag)
1447 struct srp_rsp *srp_rsp;
1448 int resp_data_len;
1449 int resp_len;
1451 resp_data_len = 4;
1452 resp_len = sizeof(*srp_rsp) + resp_data_len;
1454 srp_rsp = ioctx->ioctx.buf;
1455 BUG_ON(!srp_rsp);
1456 memset(srp_rsp, 0, sizeof(*srp_rsp));
1458 srp_rsp->opcode = SRP_RSP;
1459 srp_rsp->req_lim_delta =
1460 cpu_to_be32(1 + atomic_xchg(&ch->req_lim_delta, 0));
1461 srp_rsp->tag = tag;
1463 srp_rsp->flags |= SRP_RSP_FLAG_RSPVALID;
1464 srp_rsp->resp_data_len = cpu_to_be32(resp_data_len);
1465 srp_rsp->data[3] = rsp_code;
1467 return resp_len;
1470 static int srpt_check_stop_free(struct se_cmd *cmd)
1472 struct srpt_send_ioctx *ioctx = container_of(cmd,
1473 struct srpt_send_ioctx, cmd);
1475 return target_put_sess_cmd(&ioctx->cmd);
1479 * srpt_handle_cmd - process a SRP_CMD information unit
1480 * @ch: SRPT RDMA channel.
1481 * @recv_ioctx: Receive I/O context.
1482 * @send_ioctx: Send I/O context.
1484 static void srpt_handle_cmd(struct srpt_rdma_ch *ch,
1485 struct srpt_recv_ioctx *recv_ioctx,
1486 struct srpt_send_ioctx *send_ioctx)
1488 struct se_cmd *cmd;
1489 struct srp_cmd *srp_cmd;
1490 struct scatterlist *sg = NULL;
1491 unsigned sg_cnt = 0;
1492 u64 data_len;
1493 enum dma_data_direction dir;
1494 int rc;
1496 BUG_ON(!send_ioctx);
1498 srp_cmd = recv_ioctx->ioctx.buf + recv_ioctx->ioctx.offset;
1499 cmd = &send_ioctx->cmd;
1500 cmd->tag = srp_cmd->tag;
1502 switch (srp_cmd->task_attr) {
1503 case SRP_CMD_SIMPLE_Q:
1504 cmd->sam_task_attr = TCM_SIMPLE_TAG;
1505 break;
1506 case SRP_CMD_ORDERED_Q:
1507 default:
1508 cmd->sam_task_attr = TCM_ORDERED_TAG;
1509 break;
1510 case SRP_CMD_HEAD_OF_Q:
1511 cmd->sam_task_attr = TCM_HEAD_TAG;
1512 break;
1513 case SRP_CMD_ACA:
1514 cmd->sam_task_attr = TCM_ACA_TAG;
1515 break;
1518 rc = srpt_get_desc_tbl(recv_ioctx, send_ioctx, srp_cmd, &dir,
1519 &sg, &sg_cnt, &data_len, ch->imm_data_offset);
1520 if (rc) {
1521 if (rc != -EAGAIN) {
1522 pr_err("0x%llx: parsing SRP descriptor table failed.\n",
1523 srp_cmd->tag);
1525 goto busy;
1528 rc = target_submit_cmd_map_sgls(cmd, ch->sess, srp_cmd->cdb,
1529 &send_ioctx->sense_data[0],
1530 scsilun_to_int(&srp_cmd->lun), data_len,
1531 TCM_SIMPLE_TAG, dir, TARGET_SCF_ACK_KREF,
1532 sg, sg_cnt, NULL, 0, NULL, 0);
1533 if (rc != 0) {
1534 pr_debug("target_submit_cmd() returned %d for tag %#llx\n", rc,
1535 srp_cmd->tag);
1536 goto busy;
1538 return;
1540 busy:
1541 target_send_busy(cmd);
1544 static int srp_tmr_to_tcm(int fn)
1546 switch (fn) {
1547 case SRP_TSK_ABORT_TASK:
1548 return TMR_ABORT_TASK;
1549 case SRP_TSK_ABORT_TASK_SET:
1550 return TMR_ABORT_TASK_SET;
1551 case SRP_TSK_CLEAR_TASK_SET:
1552 return TMR_CLEAR_TASK_SET;
1553 case SRP_TSK_LUN_RESET:
1554 return TMR_LUN_RESET;
1555 case SRP_TSK_CLEAR_ACA:
1556 return TMR_CLEAR_ACA;
1557 default:
1558 return -1;
1563 * srpt_handle_tsk_mgmt - process a SRP_TSK_MGMT information unit
1564 * @ch: SRPT RDMA channel.
1565 * @recv_ioctx: Receive I/O context.
1566 * @send_ioctx: Send I/O context.
1568 * Returns 0 if and only if the request will be processed by the target core.
1570 * For more information about SRP_TSK_MGMT information units, see also section
1571 * 6.7 in the SRP r16a document.
1573 static void srpt_handle_tsk_mgmt(struct srpt_rdma_ch *ch,
1574 struct srpt_recv_ioctx *recv_ioctx,
1575 struct srpt_send_ioctx *send_ioctx)
1577 struct srp_tsk_mgmt *srp_tsk;
1578 struct se_cmd *cmd;
1579 struct se_session *sess = ch->sess;
1580 int tcm_tmr;
1581 int rc;
1583 BUG_ON(!send_ioctx);
1585 srp_tsk = recv_ioctx->ioctx.buf + recv_ioctx->ioctx.offset;
1586 cmd = &send_ioctx->cmd;
1588 pr_debug("recv tsk_mgmt fn %d for task_tag %lld and cmd tag %lld ch %p sess %p\n",
1589 srp_tsk->tsk_mgmt_func, srp_tsk->task_tag, srp_tsk->tag, ch,
1590 ch->sess);
1592 srpt_set_cmd_state(send_ioctx, SRPT_STATE_MGMT);
1593 send_ioctx->cmd.tag = srp_tsk->tag;
1594 tcm_tmr = srp_tmr_to_tcm(srp_tsk->tsk_mgmt_func);
1595 rc = target_submit_tmr(&send_ioctx->cmd, sess, NULL,
1596 scsilun_to_int(&srp_tsk->lun), srp_tsk, tcm_tmr,
1597 GFP_KERNEL, srp_tsk->task_tag,
1598 TARGET_SCF_ACK_KREF);
1599 if (rc != 0) {
1600 send_ioctx->cmd.se_tmr_req->response = TMR_FUNCTION_REJECTED;
1601 cmd->se_tfo->queue_tm_rsp(cmd);
1603 return;
1607 * srpt_handle_new_iu - process a newly received information unit
1608 * @ch: RDMA channel through which the information unit has been received.
1609 * @recv_ioctx: Receive I/O context associated with the information unit.
1611 static bool
1612 srpt_handle_new_iu(struct srpt_rdma_ch *ch, struct srpt_recv_ioctx *recv_ioctx)
1614 struct srpt_send_ioctx *send_ioctx = NULL;
1615 struct srp_cmd *srp_cmd;
1616 bool res = false;
1617 u8 opcode;
1619 BUG_ON(!ch);
1620 BUG_ON(!recv_ioctx);
1622 if (unlikely(ch->state == CH_CONNECTING))
1623 goto push;
1625 ib_dma_sync_single_for_cpu(ch->sport->sdev->device,
1626 recv_ioctx->ioctx.dma,
1627 recv_ioctx->ioctx.offset + srp_max_req_size,
1628 DMA_FROM_DEVICE);
1630 srp_cmd = recv_ioctx->ioctx.buf + recv_ioctx->ioctx.offset;
1631 opcode = srp_cmd->opcode;
1632 if (opcode == SRP_CMD || opcode == SRP_TSK_MGMT) {
1633 send_ioctx = srpt_get_send_ioctx(ch);
1634 if (unlikely(!send_ioctx))
1635 goto push;
1638 if (!list_empty(&recv_ioctx->wait_list)) {
1639 WARN_ON_ONCE(!ch->processing_wait_list);
1640 list_del_init(&recv_ioctx->wait_list);
1643 switch (opcode) {
1644 case SRP_CMD:
1645 srpt_handle_cmd(ch, recv_ioctx, send_ioctx);
1646 break;
1647 case SRP_TSK_MGMT:
1648 srpt_handle_tsk_mgmt(ch, recv_ioctx, send_ioctx);
1649 break;
1650 case SRP_I_LOGOUT:
1651 pr_err("Not yet implemented: SRP_I_LOGOUT\n");
1652 break;
1653 case SRP_CRED_RSP:
1654 pr_debug("received SRP_CRED_RSP\n");
1655 break;
1656 case SRP_AER_RSP:
1657 pr_debug("received SRP_AER_RSP\n");
1658 break;
1659 case SRP_RSP:
1660 pr_err("Received SRP_RSP\n");
1661 break;
1662 default:
1663 pr_err("received IU with unknown opcode 0x%x\n", opcode);
1664 break;
1667 if (!send_ioctx || !send_ioctx->recv_ioctx)
1668 srpt_post_recv(ch->sport->sdev, ch, recv_ioctx);
1669 res = true;
1671 out:
1672 return res;
1674 push:
1675 if (list_empty(&recv_ioctx->wait_list)) {
1676 WARN_ON_ONCE(ch->processing_wait_list);
1677 list_add_tail(&recv_ioctx->wait_list, &ch->cmd_wait_list);
1679 goto out;
1682 static void srpt_recv_done(struct ib_cq *cq, struct ib_wc *wc)
1684 struct srpt_rdma_ch *ch = cq->cq_context;
1685 struct srpt_recv_ioctx *ioctx =
1686 container_of(wc->wr_cqe, struct srpt_recv_ioctx, ioctx.cqe);
1688 if (wc->status == IB_WC_SUCCESS) {
1689 int req_lim;
1691 req_lim = atomic_dec_return(&ch->req_lim);
1692 if (unlikely(req_lim < 0))
1693 pr_err("req_lim = %d < 0\n", req_lim);
1694 ioctx->byte_len = wc->byte_len;
1695 srpt_handle_new_iu(ch, ioctx);
1696 } else {
1697 pr_info_ratelimited("receiving failed for ioctx %p with status %d\n",
1698 ioctx, wc->status);
1703 * This function must be called from the context in which RDMA completions are
1704 * processed because it accesses the wait list without protection against
1705 * access from other threads.
1707 static void srpt_process_wait_list(struct srpt_rdma_ch *ch)
1709 struct srpt_recv_ioctx *recv_ioctx, *tmp;
1711 WARN_ON_ONCE(ch->state == CH_CONNECTING);
1713 if (list_empty(&ch->cmd_wait_list))
1714 return;
1716 WARN_ON_ONCE(ch->processing_wait_list);
1717 ch->processing_wait_list = true;
1718 list_for_each_entry_safe(recv_ioctx, tmp, &ch->cmd_wait_list,
1719 wait_list) {
1720 if (!srpt_handle_new_iu(ch, recv_ioctx))
1721 break;
1723 ch->processing_wait_list = false;
1727 * srpt_send_done - send completion callback
1728 * @cq: Completion queue.
1729 * @wc: Work completion.
1731 * Note: Although this has not yet been observed during tests, at least in
1732 * theory it is possible that the srpt_get_send_ioctx() call invoked by
1733 * srpt_handle_new_iu() fails. This is possible because the req_lim_delta
1734 * value in each response is set to one, and it is possible that this response
1735 * makes the initiator send a new request before the send completion for that
1736 * response has been processed. This could e.g. happen if the call to
1737 * srpt_put_send_iotcx() is delayed because of a higher priority interrupt or
1738 * if IB retransmission causes generation of the send completion to be
1739 * delayed. Incoming information units for which srpt_get_send_ioctx() fails
1740 * are queued on cmd_wait_list. The code below processes these delayed
1741 * requests one at a time.
1743 static void srpt_send_done(struct ib_cq *cq, struct ib_wc *wc)
1745 struct srpt_rdma_ch *ch = cq->cq_context;
1746 struct srpt_send_ioctx *ioctx =
1747 container_of(wc->wr_cqe, struct srpt_send_ioctx, ioctx.cqe);
1748 enum srpt_command_state state;
1750 state = srpt_set_cmd_state(ioctx, SRPT_STATE_DONE);
1752 WARN_ON(state != SRPT_STATE_CMD_RSP_SENT &&
1753 state != SRPT_STATE_MGMT_RSP_SENT);
1755 atomic_add(1 + ioctx->n_rdma, &ch->sq_wr_avail);
1757 if (wc->status != IB_WC_SUCCESS)
1758 pr_info("sending response for ioctx 0x%p failed with status %d\n",
1759 ioctx, wc->status);
1761 if (state != SRPT_STATE_DONE) {
1762 transport_generic_free_cmd(&ioctx->cmd, 0);
1763 } else {
1764 pr_err("IB completion has been received too late for wr_id = %u.\n",
1765 ioctx->ioctx.index);
1768 srpt_process_wait_list(ch);
1772 * srpt_create_ch_ib - create receive and send completion queues
1773 * @ch: SRPT RDMA channel.
1775 static int srpt_create_ch_ib(struct srpt_rdma_ch *ch)
1777 struct ib_qp_init_attr *qp_init;
1778 struct srpt_port *sport = ch->sport;
1779 struct srpt_device *sdev = sport->sdev;
1780 const struct ib_device_attr *attrs = &sdev->device->attrs;
1781 int sq_size = sport->port_attrib.srp_sq_size;
1782 int i, ret;
1784 WARN_ON(ch->rq_size < 1);
1786 ret = -ENOMEM;
1787 qp_init = kzalloc(sizeof(*qp_init), GFP_KERNEL);
1788 if (!qp_init)
1789 goto out;
1791 retry:
1792 ch->cq = ib_alloc_cq_any(sdev->device, ch, ch->rq_size + sq_size,
1793 IB_POLL_WORKQUEUE);
1794 if (IS_ERR(ch->cq)) {
1795 ret = PTR_ERR(ch->cq);
1796 pr_err("failed to create CQ cqe= %d ret= %d\n",
1797 ch->rq_size + sq_size, ret);
1798 goto out;
1801 qp_init->qp_context = (void *)ch;
1802 qp_init->event_handler
1803 = (void(*)(struct ib_event *, void*))srpt_qp_event;
1804 qp_init->send_cq = ch->cq;
1805 qp_init->recv_cq = ch->cq;
1806 qp_init->sq_sig_type = IB_SIGNAL_REQ_WR;
1807 qp_init->qp_type = IB_QPT_RC;
1809 * We divide up our send queue size into half SEND WRs to send the
1810 * completions, and half R/W contexts to actually do the RDMA
1811 * READ/WRITE transfers. Note that we need to allocate CQ slots for
1812 * both both, as RDMA contexts will also post completions for the
1813 * RDMA READ case.
1815 qp_init->cap.max_send_wr = min(sq_size / 2, attrs->max_qp_wr);
1816 qp_init->cap.max_rdma_ctxs = sq_size / 2;
1817 qp_init->cap.max_send_sge = min(attrs->max_send_sge,
1818 SRPT_MAX_SG_PER_WQE);
1819 qp_init->cap.max_recv_sge = min(attrs->max_recv_sge,
1820 SRPT_MAX_SG_PER_WQE);
1821 qp_init->port_num = ch->sport->port;
1822 if (sdev->use_srq) {
1823 qp_init->srq = sdev->srq;
1824 } else {
1825 qp_init->cap.max_recv_wr = ch->rq_size;
1826 qp_init->cap.max_recv_sge = min(attrs->max_recv_sge,
1827 SRPT_MAX_SG_PER_WQE);
1830 if (ch->using_rdma_cm) {
1831 ret = rdma_create_qp(ch->rdma_cm.cm_id, sdev->pd, qp_init);
1832 ch->qp = ch->rdma_cm.cm_id->qp;
1833 } else {
1834 ch->qp = ib_create_qp(sdev->pd, qp_init);
1835 if (!IS_ERR(ch->qp)) {
1836 ret = srpt_init_ch_qp(ch, ch->qp);
1837 if (ret)
1838 ib_destroy_qp(ch->qp);
1839 } else {
1840 ret = PTR_ERR(ch->qp);
1843 if (ret) {
1844 bool retry = sq_size > MIN_SRPT_SQ_SIZE;
1846 if (retry) {
1847 pr_debug("failed to create queue pair with sq_size = %d (%d) - retrying\n",
1848 sq_size, ret);
1849 ib_free_cq(ch->cq);
1850 sq_size = max(sq_size / 2, MIN_SRPT_SQ_SIZE);
1851 goto retry;
1852 } else {
1853 pr_err("failed to create queue pair with sq_size = %d (%d)\n",
1854 sq_size, ret);
1855 goto err_destroy_cq;
1859 atomic_set(&ch->sq_wr_avail, qp_init->cap.max_send_wr);
1861 pr_debug("%s: max_cqe= %d max_sge= %d sq_size = %d ch= %p\n",
1862 __func__, ch->cq->cqe, qp_init->cap.max_send_sge,
1863 qp_init->cap.max_send_wr, ch);
1865 if (!sdev->use_srq)
1866 for (i = 0; i < ch->rq_size; i++)
1867 srpt_post_recv(sdev, ch, ch->ioctx_recv_ring[i]);
1869 out:
1870 kfree(qp_init);
1871 return ret;
1873 err_destroy_cq:
1874 ch->qp = NULL;
1875 ib_free_cq(ch->cq);
1876 goto out;
1879 static void srpt_destroy_ch_ib(struct srpt_rdma_ch *ch)
1881 ib_destroy_qp(ch->qp);
1882 ib_free_cq(ch->cq);
1886 * srpt_close_ch - close a RDMA channel
1887 * @ch: SRPT RDMA channel.
1889 * Make sure all resources associated with the channel will be deallocated at
1890 * an appropriate time.
1892 * Returns true if and only if the channel state has been modified into
1893 * CH_DRAINING.
1895 static bool srpt_close_ch(struct srpt_rdma_ch *ch)
1897 int ret;
1899 if (!srpt_set_ch_state(ch, CH_DRAINING)) {
1900 pr_debug("%s: already closed\n", ch->sess_name);
1901 return false;
1904 kref_get(&ch->kref);
1906 ret = srpt_ch_qp_err(ch);
1907 if (ret < 0)
1908 pr_err("%s-%d: changing queue pair into error state failed: %d\n",
1909 ch->sess_name, ch->qp->qp_num, ret);
1911 ret = srpt_zerolength_write(ch);
1912 if (ret < 0) {
1913 pr_err("%s-%d: queuing zero-length write failed: %d\n",
1914 ch->sess_name, ch->qp->qp_num, ret);
1915 if (srpt_set_ch_state(ch, CH_DISCONNECTED))
1916 schedule_work(&ch->release_work);
1917 else
1918 WARN_ON_ONCE(true);
1921 kref_put(&ch->kref, srpt_free_ch);
1923 return true;
1927 * Change the channel state into CH_DISCONNECTING. If a channel has not yet
1928 * reached the connected state, close it. If a channel is in the connected
1929 * state, send a DREQ. If a DREQ has been received, send a DREP. Note: it is
1930 * the responsibility of the caller to ensure that this function is not
1931 * invoked concurrently with the code that accepts a connection. This means
1932 * that this function must either be invoked from inside a CM callback
1933 * function or that it must be invoked with the srpt_port.mutex held.
1935 static int srpt_disconnect_ch(struct srpt_rdma_ch *ch)
1937 int ret;
1939 if (!srpt_set_ch_state(ch, CH_DISCONNECTING))
1940 return -ENOTCONN;
1942 if (ch->using_rdma_cm) {
1943 ret = rdma_disconnect(ch->rdma_cm.cm_id);
1944 } else {
1945 ret = ib_send_cm_dreq(ch->ib_cm.cm_id, NULL, 0);
1946 if (ret < 0)
1947 ret = ib_send_cm_drep(ch->ib_cm.cm_id, NULL, 0);
1950 if (ret < 0 && srpt_close_ch(ch))
1951 ret = 0;
1953 return ret;
1956 /* Send DREQ and wait for DREP. */
1957 static void srpt_disconnect_ch_sync(struct srpt_rdma_ch *ch)
1959 DECLARE_COMPLETION_ONSTACK(closed);
1960 struct srpt_port *sport = ch->sport;
1962 pr_debug("ch %s-%d state %d\n", ch->sess_name, ch->qp->qp_num,
1963 ch->state);
1965 ch->closed = &closed;
1967 mutex_lock(&sport->mutex);
1968 srpt_disconnect_ch(ch);
1969 mutex_unlock(&sport->mutex);
1971 while (wait_for_completion_timeout(&closed, 5 * HZ) == 0)
1972 pr_info("%s(%s-%d state %d): still waiting ...\n", __func__,
1973 ch->sess_name, ch->qp->qp_num, ch->state);
1977 static void __srpt_close_all_ch(struct srpt_port *sport)
1979 struct srpt_nexus *nexus;
1980 struct srpt_rdma_ch *ch;
1982 lockdep_assert_held(&sport->mutex);
1984 list_for_each_entry(nexus, &sport->nexus_list, entry) {
1985 list_for_each_entry(ch, &nexus->ch_list, list) {
1986 if (srpt_disconnect_ch(ch) >= 0)
1987 pr_info("Closing channel %s because target %s_%d has been disabled\n",
1988 ch->sess_name,
1989 dev_name(&sport->sdev->device->dev),
1990 sport->port);
1991 srpt_close_ch(ch);
1997 * Look up (i_port_id, t_port_id) in sport->nexus_list. Create an entry if
1998 * it does not yet exist.
2000 static struct srpt_nexus *srpt_get_nexus(struct srpt_port *sport,
2001 const u8 i_port_id[16],
2002 const u8 t_port_id[16])
2004 struct srpt_nexus *nexus = NULL, *tmp_nexus = NULL, *n;
2006 for (;;) {
2007 mutex_lock(&sport->mutex);
2008 list_for_each_entry(n, &sport->nexus_list, entry) {
2009 if (memcmp(n->i_port_id, i_port_id, 16) == 0 &&
2010 memcmp(n->t_port_id, t_port_id, 16) == 0) {
2011 nexus = n;
2012 break;
2015 if (!nexus && tmp_nexus) {
2016 list_add_tail_rcu(&tmp_nexus->entry,
2017 &sport->nexus_list);
2018 swap(nexus, tmp_nexus);
2020 mutex_unlock(&sport->mutex);
2022 if (nexus)
2023 break;
2024 tmp_nexus = kzalloc(sizeof(*nexus), GFP_KERNEL);
2025 if (!tmp_nexus) {
2026 nexus = ERR_PTR(-ENOMEM);
2027 break;
2029 INIT_LIST_HEAD(&tmp_nexus->ch_list);
2030 memcpy(tmp_nexus->i_port_id, i_port_id, 16);
2031 memcpy(tmp_nexus->t_port_id, t_port_id, 16);
2034 kfree(tmp_nexus);
2036 return nexus;
2039 static void srpt_set_enabled(struct srpt_port *sport, bool enabled)
2040 __must_hold(&sport->mutex)
2042 lockdep_assert_held(&sport->mutex);
2044 if (sport->enabled == enabled)
2045 return;
2046 sport->enabled = enabled;
2047 if (!enabled)
2048 __srpt_close_all_ch(sport);
2051 static void srpt_drop_sport_ref(struct srpt_port *sport)
2053 if (atomic_dec_return(&sport->refcount) == 0 && sport->freed_channels)
2054 complete(sport->freed_channels);
2057 static void srpt_free_ch(struct kref *kref)
2059 struct srpt_rdma_ch *ch = container_of(kref, struct srpt_rdma_ch, kref);
2061 srpt_drop_sport_ref(ch->sport);
2062 kfree_rcu(ch, rcu);
2066 * Shut down the SCSI target session, tell the connection manager to
2067 * disconnect the associated RDMA channel, transition the QP to the error
2068 * state and remove the channel from the channel list. This function is
2069 * typically called from inside srpt_zerolength_write_done(). Concurrent
2070 * srpt_zerolength_write() calls from inside srpt_close_ch() are possible
2071 * as long as the channel is on sport->nexus_list.
2073 static void srpt_release_channel_work(struct work_struct *w)
2075 struct srpt_rdma_ch *ch;
2076 struct srpt_device *sdev;
2077 struct srpt_port *sport;
2078 struct se_session *se_sess;
2080 ch = container_of(w, struct srpt_rdma_ch, release_work);
2081 pr_debug("%s-%d\n", ch->sess_name, ch->qp->qp_num);
2083 sdev = ch->sport->sdev;
2084 BUG_ON(!sdev);
2086 se_sess = ch->sess;
2087 BUG_ON(!se_sess);
2089 target_sess_cmd_list_set_waiting(se_sess);
2090 target_wait_for_sess_cmds(se_sess);
2092 target_remove_session(se_sess);
2093 ch->sess = NULL;
2095 if (ch->using_rdma_cm)
2096 rdma_destroy_id(ch->rdma_cm.cm_id);
2097 else
2098 ib_destroy_cm_id(ch->ib_cm.cm_id);
2100 sport = ch->sport;
2101 mutex_lock(&sport->mutex);
2102 list_del_rcu(&ch->list);
2103 mutex_unlock(&sport->mutex);
2105 if (ch->closed)
2106 complete(ch->closed);
2108 srpt_destroy_ch_ib(ch);
2110 srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring,
2111 ch->sport->sdev, ch->rq_size,
2112 ch->rsp_buf_cache, DMA_TO_DEVICE);
2114 kmem_cache_destroy(ch->rsp_buf_cache);
2116 srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_recv_ring,
2117 sdev, ch->rq_size,
2118 ch->req_buf_cache, DMA_FROM_DEVICE);
2120 kmem_cache_destroy(ch->req_buf_cache);
2122 kref_put(&ch->kref, srpt_free_ch);
2126 * srpt_cm_req_recv - process the event IB_CM_REQ_RECEIVED
2127 * @sdev: HCA through which the login request was received.
2128 * @ib_cm_id: IB/CM connection identifier in case of IB/CM.
2129 * @rdma_cm_id: RDMA/CM connection identifier in case of RDMA/CM.
2130 * @port_num: Port through which the REQ message was received.
2131 * @pkey: P_Key of the incoming connection.
2132 * @req: SRP login request.
2133 * @src_addr: GID (IB/CM) or IP address (RDMA/CM) of the port that submitted
2134 * the login request.
2136 * Ownership of the cm_id is transferred to the target session if this
2137 * function returns zero. Otherwise the caller remains the owner of cm_id.
2139 static int srpt_cm_req_recv(struct srpt_device *const sdev,
2140 struct ib_cm_id *ib_cm_id,
2141 struct rdma_cm_id *rdma_cm_id,
2142 u8 port_num, __be16 pkey,
2143 const struct srp_login_req *req,
2144 const char *src_addr)
2146 struct srpt_port *sport = &sdev->port[port_num - 1];
2147 struct srpt_nexus *nexus;
2148 struct srp_login_rsp *rsp = NULL;
2149 struct srp_login_rej *rej = NULL;
2150 union {
2151 struct rdma_conn_param rdma_cm;
2152 struct ib_cm_rep_param ib_cm;
2153 } *rep_param = NULL;
2154 struct srpt_rdma_ch *ch = NULL;
2155 char i_port_id[36];
2156 u32 it_iu_len;
2157 int i, tag_num, tag_size, ret;
2158 struct srpt_tpg *stpg;
2160 WARN_ON_ONCE(irqs_disabled());
2162 if (WARN_ON(!sdev || !req))
2163 return -EINVAL;
2165 it_iu_len = be32_to_cpu(req->req_it_iu_len);
2167 pr_info("Received SRP_LOGIN_REQ with i_port_id %pI6, t_port_id %pI6 and it_iu_len %d on port %d (guid=%pI6); pkey %#04x\n",
2168 req->initiator_port_id, req->target_port_id, it_iu_len,
2169 port_num, &sport->gid, be16_to_cpu(pkey));
2171 nexus = srpt_get_nexus(sport, req->initiator_port_id,
2172 req->target_port_id);
2173 if (IS_ERR(nexus)) {
2174 ret = PTR_ERR(nexus);
2175 goto out;
2178 ret = -ENOMEM;
2179 rsp = kzalloc(sizeof(*rsp), GFP_KERNEL);
2180 rej = kzalloc(sizeof(*rej), GFP_KERNEL);
2181 rep_param = kzalloc(sizeof(*rep_param), GFP_KERNEL);
2182 if (!rsp || !rej || !rep_param)
2183 goto out;
2185 ret = -EINVAL;
2186 if (it_iu_len > srp_max_req_size || it_iu_len < 64) {
2187 rej->reason = cpu_to_be32(
2188 SRP_LOGIN_REJ_REQ_IT_IU_LENGTH_TOO_LARGE);
2189 pr_err("rejected SRP_LOGIN_REQ because its length (%d bytes) is out of range (%d .. %d)\n",
2190 it_iu_len, 64, srp_max_req_size);
2191 goto reject;
2194 if (!sport->enabled) {
2195 rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2196 pr_info("rejected SRP_LOGIN_REQ because target port %s_%d has not yet been enabled\n",
2197 dev_name(&sport->sdev->device->dev), port_num);
2198 goto reject;
2201 if (*(__be64 *)req->target_port_id != cpu_to_be64(srpt_service_guid)
2202 || *(__be64 *)(req->target_port_id + 8) !=
2203 cpu_to_be64(srpt_service_guid)) {
2204 rej->reason = cpu_to_be32(
2205 SRP_LOGIN_REJ_UNABLE_ASSOCIATE_CHANNEL);
2206 pr_err("rejected SRP_LOGIN_REQ because it has an invalid target port identifier.\n");
2207 goto reject;
2210 ret = -ENOMEM;
2211 ch = kzalloc(sizeof(*ch), GFP_KERNEL);
2212 if (!ch) {
2213 rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2214 pr_err("rejected SRP_LOGIN_REQ because out of memory.\n");
2215 goto reject;
2218 kref_init(&ch->kref);
2219 ch->pkey = be16_to_cpu(pkey);
2220 ch->nexus = nexus;
2221 ch->zw_cqe.done = srpt_zerolength_write_done;
2222 INIT_WORK(&ch->release_work, srpt_release_channel_work);
2223 ch->sport = sport;
2224 if (ib_cm_id) {
2225 ch->ib_cm.cm_id = ib_cm_id;
2226 ib_cm_id->context = ch;
2227 } else {
2228 ch->using_rdma_cm = true;
2229 ch->rdma_cm.cm_id = rdma_cm_id;
2230 rdma_cm_id->context = ch;
2233 * ch->rq_size should be at least as large as the initiator queue
2234 * depth to avoid that the initiator driver has to report QUEUE_FULL
2235 * to the SCSI mid-layer.
2237 ch->rq_size = min(MAX_SRPT_RQ_SIZE, sdev->device->attrs.max_qp_wr);
2238 spin_lock_init(&ch->spinlock);
2239 ch->state = CH_CONNECTING;
2240 INIT_LIST_HEAD(&ch->cmd_wait_list);
2241 ch->max_rsp_size = ch->sport->port_attrib.srp_max_rsp_size;
2243 ch->rsp_buf_cache = kmem_cache_create("srpt-rsp-buf", ch->max_rsp_size,
2244 512, 0, NULL);
2245 if (!ch->rsp_buf_cache)
2246 goto free_ch;
2248 ch->ioctx_ring = (struct srpt_send_ioctx **)
2249 srpt_alloc_ioctx_ring(ch->sport->sdev, ch->rq_size,
2250 sizeof(*ch->ioctx_ring[0]),
2251 ch->rsp_buf_cache, 0, DMA_TO_DEVICE);
2252 if (!ch->ioctx_ring) {
2253 pr_err("rejected SRP_LOGIN_REQ because creating a new QP SQ ring failed.\n");
2254 rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2255 goto free_rsp_cache;
2258 for (i = 0; i < ch->rq_size; i++)
2259 ch->ioctx_ring[i]->ch = ch;
2260 if (!sdev->use_srq) {
2261 u16 imm_data_offset = req->req_flags & SRP_IMMED_REQUESTED ?
2262 be16_to_cpu(req->imm_data_offset) : 0;
2263 u16 alignment_offset;
2264 u32 req_sz;
2266 if (req->req_flags & SRP_IMMED_REQUESTED)
2267 pr_debug("imm_data_offset = %d\n",
2268 be16_to_cpu(req->imm_data_offset));
2269 if (imm_data_offset >= sizeof(struct srp_cmd)) {
2270 ch->imm_data_offset = imm_data_offset;
2271 rsp->rsp_flags |= SRP_LOGIN_RSP_IMMED_SUPP;
2272 } else {
2273 ch->imm_data_offset = 0;
2275 alignment_offset = round_up(imm_data_offset, 512) -
2276 imm_data_offset;
2277 req_sz = alignment_offset + imm_data_offset + srp_max_req_size;
2278 ch->req_buf_cache = kmem_cache_create("srpt-req-buf", req_sz,
2279 512, 0, NULL);
2280 if (!ch->req_buf_cache)
2281 goto free_rsp_ring;
2283 ch->ioctx_recv_ring = (struct srpt_recv_ioctx **)
2284 srpt_alloc_ioctx_ring(ch->sport->sdev, ch->rq_size,
2285 sizeof(*ch->ioctx_recv_ring[0]),
2286 ch->req_buf_cache,
2287 alignment_offset,
2288 DMA_FROM_DEVICE);
2289 if (!ch->ioctx_recv_ring) {
2290 pr_err("rejected SRP_LOGIN_REQ because creating a new QP RQ ring failed.\n");
2291 rej->reason =
2292 cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2293 goto free_recv_cache;
2295 for (i = 0; i < ch->rq_size; i++)
2296 INIT_LIST_HEAD(&ch->ioctx_recv_ring[i]->wait_list);
2299 ret = srpt_create_ch_ib(ch);
2300 if (ret) {
2301 rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2302 pr_err("rejected SRP_LOGIN_REQ because creating a new RDMA channel failed.\n");
2303 goto free_recv_ring;
2306 strlcpy(ch->sess_name, src_addr, sizeof(ch->sess_name));
2307 snprintf(i_port_id, sizeof(i_port_id), "0x%016llx%016llx",
2308 be64_to_cpu(*(__be64 *)nexus->i_port_id),
2309 be64_to_cpu(*(__be64 *)(nexus->i_port_id + 8)));
2311 pr_debug("registering src addr %s or i_port_id %s\n", ch->sess_name,
2312 i_port_id);
2314 tag_num = ch->rq_size;
2315 tag_size = 1; /* ib_srpt does not use se_sess->sess_cmd_map */
2317 mutex_lock(&sport->port_guid_id.mutex);
2318 list_for_each_entry(stpg, &sport->port_guid_id.tpg_list, entry) {
2319 if (!IS_ERR_OR_NULL(ch->sess))
2320 break;
2321 ch->sess = target_setup_session(&stpg->tpg, tag_num,
2322 tag_size, TARGET_PROT_NORMAL,
2323 ch->sess_name, ch, NULL);
2325 mutex_unlock(&sport->port_guid_id.mutex);
2327 mutex_lock(&sport->port_gid_id.mutex);
2328 list_for_each_entry(stpg, &sport->port_gid_id.tpg_list, entry) {
2329 if (!IS_ERR_OR_NULL(ch->sess))
2330 break;
2331 ch->sess = target_setup_session(&stpg->tpg, tag_num,
2332 tag_size, TARGET_PROT_NORMAL, i_port_id,
2333 ch, NULL);
2334 if (!IS_ERR_OR_NULL(ch->sess))
2335 break;
2336 /* Retry without leading "0x" */
2337 ch->sess = target_setup_session(&stpg->tpg, tag_num,
2338 tag_size, TARGET_PROT_NORMAL,
2339 i_port_id + 2, ch, NULL);
2341 mutex_unlock(&sport->port_gid_id.mutex);
2343 if (IS_ERR_OR_NULL(ch->sess)) {
2344 WARN_ON_ONCE(ch->sess == NULL);
2345 ret = PTR_ERR(ch->sess);
2346 ch->sess = NULL;
2347 pr_info("Rejected login for initiator %s: ret = %d.\n",
2348 ch->sess_name, ret);
2349 rej->reason = cpu_to_be32(ret == -ENOMEM ?
2350 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES :
2351 SRP_LOGIN_REJ_CHANNEL_LIMIT_REACHED);
2352 goto destroy_ib;
2356 * Once a session has been created destruction of srpt_rdma_ch objects
2357 * will decrement sport->refcount. Hence increment sport->refcount now.
2359 atomic_inc(&sport->refcount);
2361 mutex_lock(&sport->mutex);
2363 if ((req->req_flags & SRP_MTCH_ACTION) == SRP_MULTICHAN_SINGLE) {
2364 struct srpt_rdma_ch *ch2;
2366 list_for_each_entry(ch2, &nexus->ch_list, list) {
2367 if (srpt_disconnect_ch(ch2) < 0)
2368 continue;
2369 pr_info("Relogin - closed existing channel %s\n",
2370 ch2->sess_name);
2371 rsp->rsp_flags |= SRP_LOGIN_RSP_MULTICHAN_TERMINATED;
2373 } else {
2374 rsp->rsp_flags |= SRP_LOGIN_RSP_MULTICHAN_MAINTAINED;
2377 list_add_tail_rcu(&ch->list, &nexus->ch_list);
2379 if (!sport->enabled) {
2380 rej->reason = cpu_to_be32(
2381 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2382 pr_info("rejected SRP_LOGIN_REQ because target %s_%d is not enabled\n",
2383 dev_name(&sdev->device->dev), port_num);
2384 mutex_unlock(&sport->mutex);
2385 goto reject;
2388 mutex_unlock(&sport->mutex);
2390 ret = ch->using_rdma_cm ? 0 : srpt_ch_qp_rtr(ch, ch->qp);
2391 if (ret) {
2392 rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2393 pr_err("rejected SRP_LOGIN_REQ because enabling RTR failed (error code = %d)\n",
2394 ret);
2395 goto reject;
2398 pr_debug("Establish connection sess=%p name=%s ch=%p\n", ch->sess,
2399 ch->sess_name, ch);
2401 /* create srp_login_response */
2402 rsp->opcode = SRP_LOGIN_RSP;
2403 rsp->tag = req->tag;
2404 rsp->max_it_iu_len = cpu_to_be32(srp_max_req_size);
2405 rsp->max_ti_iu_len = req->req_it_iu_len;
2406 ch->max_ti_iu_len = it_iu_len;
2407 rsp->buf_fmt = cpu_to_be16(SRP_BUF_FORMAT_DIRECT |
2408 SRP_BUF_FORMAT_INDIRECT);
2409 rsp->req_lim_delta = cpu_to_be32(ch->rq_size);
2410 atomic_set(&ch->req_lim, ch->rq_size);
2411 atomic_set(&ch->req_lim_delta, 0);
2413 /* create cm reply */
2414 if (ch->using_rdma_cm) {
2415 rep_param->rdma_cm.private_data = (void *)rsp;
2416 rep_param->rdma_cm.private_data_len = sizeof(*rsp);
2417 rep_param->rdma_cm.rnr_retry_count = 7;
2418 rep_param->rdma_cm.flow_control = 1;
2419 rep_param->rdma_cm.responder_resources = 4;
2420 rep_param->rdma_cm.initiator_depth = 4;
2421 } else {
2422 rep_param->ib_cm.qp_num = ch->qp->qp_num;
2423 rep_param->ib_cm.private_data = (void *)rsp;
2424 rep_param->ib_cm.private_data_len = sizeof(*rsp);
2425 rep_param->ib_cm.rnr_retry_count = 7;
2426 rep_param->ib_cm.flow_control = 1;
2427 rep_param->ib_cm.failover_accepted = 0;
2428 rep_param->ib_cm.srq = 1;
2429 rep_param->ib_cm.responder_resources = 4;
2430 rep_param->ib_cm.initiator_depth = 4;
2434 * Hold the sport mutex while accepting a connection to avoid that
2435 * srpt_disconnect_ch() is invoked concurrently with this code.
2437 mutex_lock(&sport->mutex);
2438 if (sport->enabled && ch->state == CH_CONNECTING) {
2439 if (ch->using_rdma_cm)
2440 ret = rdma_accept(rdma_cm_id, &rep_param->rdma_cm);
2441 else
2442 ret = ib_send_cm_rep(ib_cm_id, &rep_param->ib_cm);
2443 } else {
2444 ret = -EINVAL;
2446 mutex_unlock(&sport->mutex);
2448 switch (ret) {
2449 case 0:
2450 break;
2451 case -EINVAL:
2452 goto reject;
2453 default:
2454 rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2455 pr_err("sending SRP_LOGIN_REQ response failed (error code = %d)\n",
2456 ret);
2457 goto reject;
2460 goto out;
2462 destroy_ib:
2463 srpt_destroy_ch_ib(ch);
2465 free_recv_ring:
2466 srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_recv_ring,
2467 ch->sport->sdev, ch->rq_size,
2468 ch->req_buf_cache, DMA_FROM_DEVICE);
2470 free_recv_cache:
2471 kmem_cache_destroy(ch->req_buf_cache);
2473 free_rsp_ring:
2474 srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring,
2475 ch->sport->sdev, ch->rq_size,
2476 ch->rsp_buf_cache, DMA_TO_DEVICE);
2478 free_rsp_cache:
2479 kmem_cache_destroy(ch->rsp_buf_cache);
2481 free_ch:
2482 if (rdma_cm_id)
2483 rdma_cm_id->context = NULL;
2484 else
2485 ib_cm_id->context = NULL;
2486 kfree(ch);
2487 ch = NULL;
2489 WARN_ON_ONCE(ret == 0);
2491 reject:
2492 pr_info("Rejecting login with reason %#x\n", be32_to_cpu(rej->reason));
2493 rej->opcode = SRP_LOGIN_REJ;
2494 rej->tag = req->tag;
2495 rej->buf_fmt = cpu_to_be16(SRP_BUF_FORMAT_DIRECT |
2496 SRP_BUF_FORMAT_INDIRECT);
2498 if (rdma_cm_id)
2499 rdma_reject(rdma_cm_id, rej, sizeof(*rej));
2500 else
2501 ib_send_cm_rej(ib_cm_id, IB_CM_REJ_CONSUMER_DEFINED, NULL, 0,
2502 rej, sizeof(*rej));
2504 if (ch && ch->sess) {
2505 srpt_close_ch(ch);
2507 * Tell the caller not to free cm_id since
2508 * srpt_release_channel_work() will do that.
2510 ret = 0;
2513 out:
2514 kfree(rep_param);
2515 kfree(rsp);
2516 kfree(rej);
2518 return ret;
2521 static int srpt_ib_cm_req_recv(struct ib_cm_id *cm_id,
2522 const struct ib_cm_req_event_param *param,
2523 void *private_data)
2525 char sguid[40];
2527 srpt_format_guid(sguid, sizeof(sguid),
2528 &param->primary_path->dgid.global.interface_id);
2530 return srpt_cm_req_recv(cm_id->context, cm_id, NULL, param->port,
2531 param->primary_path->pkey,
2532 private_data, sguid);
2535 static int srpt_rdma_cm_req_recv(struct rdma_cm_id *cm_id,
2536 struct rdma_cm_event *event)
2538 struct srpt_device *sdev;
2539 struct srp_login_req req;
2540 const struct srp_login_req_rdma *req_rdma;
2541 struct sa_path_rec *path_rec = cm_id->route.path_rec;
2542 char src_addr[40];
2544 sdev = ib_get_client_data(cm_id->device, &srpt_client);
2545 if (!sdev)
2546 return -ECONNREFUSED;
2548 if (event->param.conn.private_data_len < sizeof(*req_rdma))
2549 return -EINVAL;
2551 /* Transform srp_login_req_rdma into srp_login_req. */
2552 req_rdma = event->param.conn.private_data;
2553 memset(&req, 0, sizeof(req));
2554 req.opcode = req_rdma->opcode;
2555 req.tag = req_rdma->tag;
2556 req.req_it_iu_len = req_rdma->req_it_iu_len;
2557 req.req_buf_fmt = req_rdma->req_buf_fmt;
2558 req.req_flags = req_rdma->req_flags;
2559 memcpy(req.initiator_port_id, req_rdma->initiator_port_id, 16);
2560 memcpy(req.target_port_id, req_rdma->target_port_id, 16);
2561 req.imm_data_offset = req_rdma->imm_data_offset;
2563 snprintf(src_addr, sizeof(src_addr), "%pIS",
2564 &cm_id->route.addr.src_addr);
2566 return srpt_cm_req_recv(sdev, NULL, cm_id, cm_id->port_num,
2567 path_rec ? path_rec->pkey : 0, &req, src_addr);
2570 static void srpt_cm_rej_recv(struct srpt_rdma_ch *ch,
2571 enum ib_cm_rej_reason reason,
2572 const u8 *private_data,
2573 u8 private_data_len)
2575 char *priv = NULL;
2576 int i;
2578 if (private_data_len && (priv = kmalloc(private_data_len * 3 + 1,
2579 GFP_KERNEL))) {
2580 for (i = 0; i < private_data_len; i++)
2581 sprintf(priv + 3 * i, " %02x", private_data[i]);
2583 pr_info("Received CM REJ for ch %s-%d; reason %d%s%s.\n",
2584 ch->sess_name, ch->qp->qp_num, reason, private_data_len ?
2585 "; private data" : "", priv ? priv : " (?)");
2586 kfree(priv);
2590 * srpt_cm_rtu_recv - process an IB_CM_RTU_RECEIVED or USER_ESTABLISHED event
2591 * @ch: SRPT RDMA channel.
2593 * An RTU (ready to use) message indicates that the connection has been
2594 * established and that the recipient may begin transmitting.
2596 static void srpt_cm_rtu_recv(struct srpt_rdma_ch *ch)
2598 int ret;
2600 ret = ch->using_rdma_cm ? 0 : srpt_ch_qp_rts(ch, ch->qp);
2601 if (ret < 0) {
2602 pr_err("%s-%d: QP transition to RTS failed\n", ch->sess_name,
2603 ch->qp->qp_num);
2604 srpt_close_ch(ch);
2605 return;
2609 * Note: calling srpt_close_ch() if the transition to the LIVE state
2610 * fails is not necessary since that means that that function has
2611 * already been invoked from another thread.
2613 if (!srpt_set_ch_state(ch, CH_LIVE)) {
2614 pr_err("%s-%d: channel transition to LIVE state failed\n",
2615 ch->sess_name, ch->qp->qp_num);
2616 return;
2619 /* Trigger wait list processing. */
2620 ret = srpt_zerolength_write(ch);
2621 WARN_ONCE(ret < 0, "%d\n", ret);
2625 * srpt_cm_handler - IB connection manager callback function
2626 * @cm_id: IB/CM connection identifier.
2627 * @event: IB/CM event.
2629 * A non-zero return value will cause the caller destroy the CM ID.
2631 * Note: srpt_cm_handler() must only return a non-zero value when transferring
2632 * ownership of the cm_id to a channel by srpt_cm_req_recv() failed. Returning
2633 * a non-zero value in any other case will trigger a race with the
2634 * ib_destroy_cm_id() call in srpt_release_channel().
2636 static int srpt_cm_handler(struct ib_cm_id *cm_id,
2637 const struct ib_cm_event *event)
2639 struct srpt_rdma_ch *ch = cm_id->context;
2640 int ret;
2642 ret = 0;
2643 switch (event->event) {
2644 case IB_CM_REQ_RECEIVED:
2645 ret = srpt_ib_cm_req_recv(cm_id, &event->param.req_rcvd,
2646 event->private_data);
2647 break;
2648 case IB_CM_REJ_RECEIVED:
2649 srpt_cm_rej_recv(ch, event->param.rej_rcvd.reason,
2650 event->private_data,
2651 IB_CM_REJ_PRIVATE_DATA_SIZE);
2652 break;
2653 case IB_CM_RTU_RECEIVED:
2654 case IB_CM_USER_ESTABLISHED:
2655 srpt_cm_rtu_recv(ch);
2656 break;
2657 case IB_CM_DREQ_RECEIVED:
2658 srpt_disconnect_ch(ch);
2659 break;
2660 case IB_CM_DREP_RECEIVED:
2661 pr_info("Received CM DREP message for ch %s-%d.\n",
2662 ch->sess_name, ch->qp->qp_num);
2663 srpt_close_ch(ch);
2664 break;
2665 case IB_CM_TIMEWAIT_EXIT:
2666 pr_info("Received CM TimeWait exit for ch %s-%d.\n",
2667 ch->sess_name, ch->qp->qp_num);
2668 srpt_close_ch(ch);
2669 break;
2670 case IB_CM_REP_ERROR:
2671 pr_info("Received CM REP error for ch %s-%d.\n", ch->sess_name,
2672 ch->qp->qp_num);
2673 break;
2674 case IB_CM_DREQ_ERROR:
2675 pr_info("Received CM DREQ ERROR event.\n");
2676 break;
2677 case IB_CM_MRA_RECEIVED:
2678 pr_info("Received CM MRA event\n");
2679 break;
2680 default:
2681 pr_err("received unrecognized CM event %d\n", event->event);
2682 break;
2685 return ret;
2688 static int srpt_rdma_cm_handler(struct rdma_cm_id *cm_id,
2689 struct rdma_cm_event *event)
2691 struct srpt_rdma_ch *ch = cm_id->context;
2692 int ret = 0;
2694 switch (event->event) {
2695 case RDMA_CM_EVENT_CONNECT_REQUEST:
2696 ret = srpt_rdma_cm_req_recv(cm_id, event);
2697 break;
2698 case RDMA_CM_EVENT_REJECTED:
2699 srpt_cm_rej_recv(ch, event->status,
2700 event->param.conn.private_data,
2701 event->param.conn.private_data_len);
2702 break;
2703 case RDMA_CM_EVENT_ESTABLISHED:
2704 srpt_cm_rtu_recv(ch);
2705 break;
2706 case RDMA_CM_EVENT_DISCONNECTED:
2707 if (ch->state < CH_DISCONNECTING)
2708 srpt_disconnect_ch(ch);
2709 else
2710 srpt_close_ch(ch);
2711 break;
2712 case RDMA_CM_EVENT_TIMEWAIT_EXIT:
2713 srpt_close_ch(ch);
2714 break;
2715 case RDMA_CM_EVENT_UNREACHABLE:
2716 pr_info("Received CM REP error for ch %s-%d.\n", ch->sess_name,
2717 ch->qp->qp_num);
2718 break;
2719 case RDMA_CM_EVENT_DEVICE_REMOVAL:
2720 case RDMA_CM_EVENT_ADDR_CHANGE:
2721 break;
2722 default:
2723 pr_err("received unrecognized RDMA CM event %d\n",
2724 event->event);
2725 break;
2728 return ret;
2732 * srpt_write_pending - Start data transfer from initiator to target (write).
2734 static int srpt_write_pending(struct se_cmd *se_cmd)
2736 struct srpt_send_ioctx *ioctx =
2737 container_of(se_cmd, struct srpt_send_ioctx, cmd);
2738 struct srpt_rdma_ch *ch = ioctx->ch;
2739 struct ib_send_wr *first_wr = NULL;
2740 struct ib_cqe *cqe = &ioctx->rdma_cqe;
2741 enum srpt_command_state new_state;
2742 int ret, i;
2744 if (ioctx->recv_ioctx) {
2745 srpt_set_cmd_state(ioctx, SRPT_STATE_DATA_IN);
2746 target_execute_cmd(&ioctx->cmd);
2747 return 0;
2750 new_state = srpt_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA);
2751 WARN_ON(new_state == SRPT_STATE_DONE);
2753 if (atomic_sub_return(ioctx->n_rdma, &ch->sq_wr_avail) < 0) {
2754 pr_warn("%s: IB send queue full (needed %d)\n",
2755 __func__, ioctx->n_rdma);
2756 ret = -ENOMEM;
2757 goto out_undo;
2760 cqe->done = srpt_rdma_read_done;
2761 for (i = ioctx->n_rw_ctx - 1; i >= 0; i--) {
2762 struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i];
2764 first_wr = rdma_rw_ctx_wrs(&ctx->rw, ch->qp, ch->sport->port,
2765 cqe, first_wr);
2766 cqe = NULL;
2769 ret = ib_post_send(ch->qp, first_wr, NULL);
2770 if (ret) {
2771 pr_err("%s: ib_post_send() returned %d for %d (avail: %d)\n",
2772 __func__, ret, ioctx->n_rdma,
2773 atomic_read(&ch->sq_wr_avail));
2774 goto out_undo;
2777 return 0;
2778 out_undo:
2779 atomic_add(ioctx->n_rdma, &ch->sq_wr_avail);
2780 return ret;
2783 static u8 tcm_to_srp_tsk_mgmt_status(const int tcm_mgmt_status)
2785 switch (tcm_mgmt_status) {
2786 case TMR_FUNCTION_COMPLETE:
2787 return SRP_TSK_MGMT_SUCCESS;
2788 case TMR_FUNCTION_REJECTED:
2789 return SRP_TSK_MGMT_FUNC_NOT_SUPP;
2791 return SRP_TSK_MGMT_FAILED;
2795 * srpt_queue_response - transmit the response to a SCSI command
2796 * @cmd: SCSI target command.
2798 * Callback function called by the TCM core. Must not block since it can be
2799 * invoked on the context of the IB completion handler.
2801 static void srpt_queue_response(struct se_cmd *cmd)
2803 struct srpt_send_ioctx *ioctx =
2804 container_of(cmd, struct srpt_send_ioctx, cmd);
2805 struct srpt_rdma_ch *ch = ioctx->ch;
2806 struct srpt_device *sdev = ch->sport->sdev;
2807 struct ib_send_wr send_wr, *first_wr = &send_wr;
2808 struct ib_sge sge;
2809 enum srpt_command_state state;
2810 int resp_len, ret, i;
2811 u8 srp_tm_status;
2813 BUG_ON(!ch);
2815 state = ioctx->state;
2816 switch (state) {
2817 case SRPT_STATE_NEW:
2818 case SRPT_STATE_DATA_IN:
2819 ioctx->state = SRPT_STATE_CMD_RSP_SENT;
2820 break;
2821 case SRPT_STATE_MGMT:
2822 ioctx->state = SRPT_STATE_MGMT_RSP_SENT;
2823 break;
2824 default:
2825 WARN(true, "ch %p; cmd %d: unexpected command state %d\n",
2826 ch, ioctx->ioctx.index, ioctx->state);
2827 break;
2830 if (WARN_ON_ONCE(state == SRPT_STATE_CMD_RSP_SENT))
2831 return;
2833 /* For read commands, transfer the data to the initiator. */
2834 if (ioctx->cmd.data_direction == DMA_FROM_DEVICE &&
2835 ioctx->cmd.data_length &&
2836 !ioctx->queue_status_only) {
2837 for (i = ioctx->n_rw_ctx - 1; i >= 0; i--) {
2838 struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i];
2840 first_wr = rdma_rw_ctx_wrs(&ctx->rw, ch->qp,
2841 ch->sport->port, NULL, first_wr);
2845 if (state != SRPT_STATE_MGMT)
2846 resp_len = srpt_build_cmd_rsp(ch, ioctx, ioctx->cmd.tag,
2847 cmd->scsi_status);
2848 else {
2849 srp_tm_status
2850 = tcm_to_srp_tsk_mgmt_status(cmd->se_tmr_req->response);
2851 resp_len = srpt_build_tskmgmt_rsp(ch, ioctx, srp_tm_status,
2852 ioctx->cmd.tag);
2855 atomic_inc(&ch->req_lim);
2857 if (unlikely(atomic_sub_return(1 + ioctx->n_rdma,
2858 &ch->sq_wr_avail) < 0)) {
2859 pr_warn("%s: IB send queue full (needed %d)\n",
2860 __func__, ioctx->n_rdma);
2861 ret = -ENOMEM;
2862 goto out;
2865 ib_dma_sync_single_for_device(sdev->device, ioctx->ioctx.dma, resp_len,
2866 DMA_TO_DEVICE);
2868 sge.addr = ioctx->ioctx.dma;
2869 sge.length = resp_len;
2870 sge.lkey = sdev->lkey;
2872 ioctx->ioctx.cqe.done = srpt_send_done;
2873 send_wr.next = NULL;
2874 send_wr.wr_cqe = &ioctx->ioctx.cqe;
2875 send_wr.sg_list = &sge;
2876 send_wr.num_sge = 1;
2877 send_wr.opcode = IB_WR_SEND;
2878 send_wr.send_flags = IB_SEND_SIGNALED;
2880 ret = ib_post_send(ch->qp, first_wr, NULL);
2881 if (ret < 0) {
2882 pr_err("%s: sending cmd response failed for tag %llu (%d)\n",
2883 __func__, ioctx->cmd.tag, ret);
2884 goto out;
2887 return;
2889 out:
2890 atomic_add(1 + ioctx->n_rdma, &ch->sq_wr_avail);
2891 atomic_dec(&ch->req_lim);
2892 srpt_set_cmd_state(ioctx, SRPT_STATE_DONE);
2893 target_put_sess_cmd(&ioctx->cmd);
2896 static int srpt_queue_data_in(struct se_cmd *cmd)
2898 srpt_queue_response(cmd);
2899 return 0;
2902 static void srpt_queue_tm_rsp(struct se_cmd *cmd)
2904 srpt_queue_response(cmd);
2908 * This function is called for aborted commands if no response is sent to the
2909 * initiator. Make sure that the credits freed by aborting a command are
2910 * returned to the initiator the next time a response is sent by incrementing
2911 * ch->req_lim_delta.
2913 static void srpt_aborted_task(struct se_cmd *cmd)
2915 struct srpt_send_ioctx *ioctx = container_of(cmd,
2916 struct srpt_send_ioctx, cmd);
2917 struct srpt_rdma_ch *ch = ioctx->ch;
2919 atomic_inc(&ch->req_lim_delta);
2922 static int srpt_queue_status(struct se_cmd *cmd)
2924 struct srpt_send_ioctx *ioctx;
2926 ioctx = container_of(cmd, struct srpt_send_ioctx, cmd);
2927 BUG_ON(ioctx->sense_data != cmd->sense_buffer);
2928 if (cmd->se_cmd_flags &
2929 (SCF_TRANSPORT_TASK_SENSE | SCF_EMULATED_TASK_SENSE))
2930 WARN_ON(cmd->scsi_status != SAM_STAT_CHECK_CONDITION);
2931 ioctx->queue_status_only = true;
2932 srpt_queue_response(cmd);
2933 return 0;
2936 static void srpt_refresh_port_work(struct work_struct *work)
2938 struct srpt_port *sport = container_of(work, struct srpt_port, work);
2940 srpt_refresh_port(sport);
2944 * srpt_release_sport - disable login and wait for associated channels
2945 * @sport: SRPT HCA port.
2947 static int srpt_release_sport(struct srpt_port *sport)
2949 DECLARE_COMPLETION_ONSTACK(c);
2950 struct srpt_nexus *nexus, *next_n;
2951 struct srpt_rdma_ch *ch;
2953 WARN_ON_ONCE(irqs_disabled());
2955 sport->freed_channels = &c;
2957 mutex_lock(&sport->mutex);
2958 srpt_set_enabled(sport, false);
2959 mutex_unlock(&sport->mutex);
2961 while (atomic_read(&sport->refcount) > 0 &&
2962 wait_for_completion_timeout(&c, 5 * HZ) <= 0) {
2963 pr_info("%s_%d: waiting for unregistration of %d sessions ...\n",
2964 dev_name(&sport->sdev->device->dev), sport->port,
2965 atomic_read(&sport->refcount));
2966 rcu_read_lock();
2967 list_for_each_entry(nexus, &sport->nexus_list, entry) {
2968 list_for_each_entry(ch, &nexus->ch_list, list) {
2969 pr_info("%s-%d: state %s\n",
2970 ch->sess_name, ch->qp->qp_num,
2971 get_ch_state_name(ch->state));
2974 rcu_read_unlock();
2977 mutex_lock(&sport->mutex);
2978 list_for_each_entry_safe(nexus, next_n, &sport->nexus_list, entry) {
2979 list_del(&nexus->entry);
2980 kfree_rcu(nexus, rcu);
2982 mutex_unlock(&sport->mutex);
2984 return 0;
2987 static struct se_wwn *__srpt_lookup_wwn(const char *name)
2989 struct ib_device *dev;
2990 struct srpt_device *sdev;
2991 struct srpt_port *sport;
2992 int i;
2994 list_for_each_entry(sdev, &srpt_dev_list, list) {
2995 dev = sdev->device;
2996 if (!dev)
2997 continue;
2999 for (i = 0; i < dev->phys_port_cnt; i++) {
3000 sport = &sdev->port[i];
3002 if (strcmp(sport->port_guid_id.name, name) == 0)
3003 return &sport->port_guid_id.wwn;
3004 if (strcmp(sport->port_gid_id.name, name) == 0)
3005 return &sport->port_gid_id.wwn;
3009 return NULL;
3012 static struct se_wwn *srpt_lookup_wwn(const char *name)
3014 struct se_wwn *wwn;
3016 spin_lock(&srpt_dev_lock);
3017 wwn = __srpt_lookup_wwn(name);
3018 spin_unlock(&srpt_dev_lock);
3020 return wwn;
3023 static void srpt_free_srq(struct srpt_device *sdev)
3025 if (!sdev->srq)
3026 return;
3028 ib_destroy_srq(sdev->srq);
3029 srpt_free_ioctx_ring((struct srpt_ioctx **)sdev->ioctx_ring, sdev,
3030 sdev->srq_size, sdev->req_buf_cache,
3031 DMA_FROM_DEVICE);
3032 kmem_cache_destroy(sdev->req_buf_cache);
3033 sdev->srq = NULL;
3036 static int srpt_alloc_srq(struct srpt_device *sdev)
3038 struct ib_srq_init_attr srq_attr = {
3039 .event_handler = srpt_srq_event,
3040 .srq_context = (void *)sdev,
3041 .attr.max_wr = sdev->srq_size,
3042 .attr.max_sge = 1,
3043 .srq_type = IB_SRQT_BASIC,
3045 struct ib_device *device = sdev->device;
3046 struct ib_srq *srq;
3047 int i;
3049 WARN_ON_ONCE(sdev->srq);
3050 srq = ib_create_srq(sdev->pd, &srq_attr);
3051 if (IS_ERR(srq)) {
3052 pr_debug("ib_create_srq() failed: %ld\n", PTR_ERR(srq));
3053 return PTR_ERR(srq);
3056 pr_debug("create SRQ #wr= %d max_allow=%d dev= %s\n", sdev->srq_size,
3057 sdev->device->attrs.max_srq_wr, dev_name(&device->dev));
3059 sdev->req_buf_cache = kmem_cache_create("srpt-srq-req-buf",
3060 srp_max_req_size, 0, 0, NULL);
3061 if (!sdev->req_buf_cache)
3062 goto free_srq;
3064 sdev->ioctx_ring = (struct srpt_recv_ioctx **)
3065 srpt_alloc_ioctx_ring(sdev, sdev->srq_size,
3066 sizeof(*sdev->ioctx_ring[0]),
3067 sdev->req_buf_cache, 0, DMA_FROM_DEVICE);
3068 if (!sdev->ioctx_ring)
3069 goto free_cache;
3071 sdev->use_srq = true;
3072 sdev->srq = srq;
3074 for (i = 0; i < sdev->srq_size; ++i) {
3075 INIT_LIST_HEAD(&sdev->ioctx_ring[i]->wait_list);
3076 srpt_post_recv(sdev, NULL, sdev->ioctx_ring[i]);
3079 return 0;
3081 free_cache:
3082 kmem_cache_destroy(sdev->req_buf_cache);
3084 free_srq:
3085 ib_destroy_srq(srq);
3086 return -ENOMEM;
3089 static int srpt_use_srq(struct srpt_device *sdev, bool use_srq)
3091 struct ib_device *device = sdev->device;
3092 int ret = 0;
3094 if (!use_srq) {
3095 srpt_free_srq(sdev);
3096 sdev->use_srq = false;
3097 } else if (use_srq && !sdev->srq) {
3098 ret = srpt_alloc_srq(sdev);
3100 pr_debug("%s(%s): use_srq = %d; ret = %d\n", __func__,
3101 dev_name(&device->dev), sdev->use_srq, ret);
3102 return ret;
3106 * srpt_add_one - InfiniBand device addition callback function
3107 * @device: Describes a HCA.
3109 static void srpt_add_one(struct ib_device *device)
3111 struct srpt_device *sdev;
3112 struct srpt_port *sport;
3113 int i, ret;
3115 pr_debug("device = %p\n", device);
3117 sdev = kzalloc(struct_size(sdev, port, device->phys_port_cnt),
3118 GFP_KERNEL);
3119 if (!sdev)
3120 goto err;
3122 sdev->device = device;
3123 mutex_init(&sdev->sdev_mutex);
3125 sdev->pd = ib_alloc_pd(device, 0);
3126 if (IS_ERR(sdev->pd))
3127 goto free_dev;
3129 sdev->lkey = sdev->pd->local_dma_lkey;
3131 sdev->srq_size = min(srpt_srq_size, sdev->device->attrs.max_srq_wr);
3133 srpt_use_srq(sdev, sdev->port[0].port_attrib.use_srq);
3135 if (!srpt_service_guid)
3136 srpt_service_guid = be64_to_cpu(device->node_guid);
3138 if (rdma_port_get_link_layer(device, 1) == IB_LINK_LAYER_INFINIBAND)
3139 sdev->cm_id = ib_create_cm_id(device, srpt_cm_handler, sdev);
3140 if (IS_ERR(sdev->cm_id)) {
3141 pr_info("ib_create_cm_id() failed: %ld\n",
3142 PTR_ERR(sdev->cm_id));
3143 sdev->cm_id = NULL;
3144 if (!rdma_cm_id)
3145 goto err_ring;
3148 /* print out target login information */
3149 pr_debug("Target login info: id_ext=%016llx,ioc_guid=%016llx,pkey=ffff,service_id=%016llx\n",
3150 srpt_service_guid, srpt_service_guid, srpt_service_guid);
3153 * We do not have a consistent service_id (ie. also id_ext of target_id)
3154 * to identify this target. We currently use the guid of the first HCA
3155 * in the system as service_id; therefore, the target_id will change
3156 * if this HCA is gone bad and replaced by different HCA
3158 ret = sdev->cm_id ?
3159 ib_cm_listen(sdev->cm_id, cpu_to_be64(srpt_service_guid), 0) :
3161 if (ret < 0) {
3162 pr_err("ib_cm_listen() failed: %d (cm_id state = %d)\n", ret,
3163 sdev->cm_id->state);
3164 goto err_cm;
3167 INIT_IB_EVENT_HANDLER(&sdev->event_handler, sdev->device,
3168 srpt_event_handler);
3169 ib_register_event_handler(&sdev->event_handler);
3171 for (i = 1; i <= sdev->device->phys_port_cnt; i++) {
3172 sport = &sdev->port[i - 1];
3173 INIT_LIST_HEAD(&sport->nexus_list);
3174 mutex_init(&sport->mutex);
3175 sport->sdev = sdev;
3176 sport->port = i;
3177 sport->port_attrib.srp_max_rdma_size = DEFAULT_MAX_RDMA_SIZE;
3178 sport->port_attrib.srp_max_rsp_size = DEFAULT_MAX_RSP_SIZE;
3179 sport->port_attrib.srp_sq_size = DEF_SRPT_SQ_SIZE;
3180 sport->port_attrib.use_srq = false;
3181 INIT_WORK(&sport->work, srpt_refresh_port_work);
3182 mutex_init(&sport->port_guid_id.mutex);
3183 INIT_LIST_HEAD(&sport->port_guid_id.tpg_list);
3184 mutex_init(&sport->port_gid_id.mutex);
3185 INIT_LIST_HEAD(&sport->port_gid_id.tpg_list);
3187 if (srpt_refresh_port(sport)) {
3188 pr_err("MAD registration failed for %s-%d.\n",
3189 dev_name(&sdev->device->dev), i);
3190 goto err_event;
3194 spin_lock(&srpt_dev_lock);
3195 list_add_tail(&sdev->list, &srpt_dev_list);
3196 spin_unlock(&srpt_dev_lock);
3198 out:
3199 ib_set_client_data(device, &srpt_client, sdev);
3200 pr_debug("added %s.\n", dev_name(&device->dev));
3201 return;
3203 err_event:
3204 ib_unregister_event_handler(&sdev->event_handler);
3205 err_cm:
3206 if (sdev->cm_id)
3207 ib_destroy_cm_id(sdev->cm_id);
3208 err_ring:
3209 srpt_free_srq(sdev);
3210 ib_dealloc_pd(sdev->pd);
3211 free_dev:
3212 kfree(sdev);
3213 err:
3214 sdev = NULL;
3215 pr_info("%s(%s) failed.\n", __func__, dev_name(&device->dev));
3216 goto out;
3220 * srpt_remove_one - InfiniBand device removal callback function
3221 * @device: Describes a HCA.
3222 * @client_data: The value passed as the third argument to ib_set_client_data().
3224 static void srpt_remove_one(struct ib_device *device, void *client_data)
3226 struct srpt_device *sdev = client_data;
3227 int i;
3229 if (!sdev) {
3230 pr_info("%s(%s): nothing to do.\n", __func__,
3231 dev_name(&device->dev));
3232 return;
3235 srpt_unregister_mad_agent(sdev);
3237 ib_unregister_event_handler(&sdev->event_handler);
3239 /* Cancel any work queued by the just unregistered IB event handler. */
3240 for (i = 0; i < sdev->device->phys_port_cnt; i++)
3241 cancel_work_sync(&sdev->port[i].work);
3243 if (sdev->cm_id)
3244 ib_destroy_cm_id(sdev->cm_id);
3246 ib_set_client_data(device, &srpt_client, NULL);
3249 * Unregistering a target must happen after destroying sdev->cm_id
3250 * such that no new SRP_LOGIN_REQ information units can arrive while
3251 * destroying the target.
3253 spin_lock(&srpt_dev_lock);
3254 list_del(&sdev->list);
3255 spin_unlock(&srpt_dev_lock);
3257 for (i = 0; i < sdev->device->phys_port_cnt; i++)
3258 srpt_release_sport(&sdev->port[i]);
3260 srpt_free_srq(sdev);
3262 ib_dealloc_pd(sdev->pd);
3264 kfree(sdev);
3267 static struct ib_client srpt_client = {
3268 .name = DRV_NAME,
3269 .add = srpt_add_one,
3270 .remove = srpt_remove_one
3273 static int srpt_check_true(struct se_portal_group *se_tpg)
3275 return 1;
3278 static int srpt_check_false(struct se_portal_group *se_tpg)
3280 return 0;
3283 static struct srpt_port *srpt_tpg_to_sport(struct se_portal_group *tpg)
3285 return tpg->se_tpg_wwn->priv;
3288 static struct srpt_port_id *srpt_wwn_to_sport_id(struct se_wwn *wwn)
3290 struct srpt_port *sport = wwn->priv;
3292 if (wwn == &sport->port_guid_id.wwn)
3293 return &sport->port_guid_id;
3294 if (wwn == &sport->port_gid_id.wwn)
3295 return &sport->port_gid_id;
3296 WARN_ON_ONCE(true);
3297 return NULL;
3300 static char *srpt_get_fabric_wwn(struct se_portal_group *tpg)
3302 struct srpt_tpg *stpg = container_of(tpg, typeof(*stpg), tpg);
3304 return stpg->sport_id->name;
3307 static u16 srpt_get_tag(struct se_portal_group *tpg)
3309 return 1;
3312 static u32 srpt_tpg_get_inst_index(struct se_portal_group *se_tpg)
3314 return 1;
3317 static void srpt_release_cmd(struct se_cmd *se_cmd)
3319 struct srpt_send_ioctx *ioctx = container_of(se_cmd,
3320 struct srpt_send_ioctx, cmd);
3321 struct srpt_rdma_ch *ch = ioctx->ch;
3322 struct srpt_recv_ioctx *recv_ioctx = ioctx->recv_ioctx;
3324 WARN_ON_ONCE(ioctx->state != SRPT_STATE_DONE &&
3325 !(ioctx->cmd.transport_state & CMD_T_ABORTED));
3327 if (recv_ioctx) {
3328 WARN_ON_ONCE(!list_empty(&recv_ioctx->wait_list));
3329 ioctx->recv_ioctx = NULL;
3330 srpt_post_recv(ch->sport->sdev, ch, recv_ioctx);
3333 if (ioctx->n_rw_ctx) {
3334 srpt_free_rw_ctxs(ch, ioctx);
3335 ioctx->n_rw_ctx = 0;
3338 target_free_tag(se_cmd->se_sess, se_cmd);
3342 * srpt_close_session - forcibly close a session
3343 * @se_sess: SCSI target session.
3345 * Callback function invoked by the TCM core to clean up sessions associated
3346 * with a node ACL when the user invokes
3347 * rmdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id
3349 static void srpt_close_session(struct se_session *se_sess)
3351 struct srpt_rdma_ch *ch = se_sess->fabric_sess_ptr;
3353 srpt_disconnect_ch_sync(ch);
3357 * srpt_sess_get_index - return the value of scsiAttIntrPortIndex (SCSI-MIB)
3358 * @se_sess: SCSI target session.
3360 * A quote from RFC 4455 (SCSI-MIB) about this MIB object:
3361 * This object represents an arbitrary integer used to uniquely identify a
3362 * particular attached remote initiator port to a particular SCSI target port
3363 * within a particular SCSI target device within a particular SCSI instance.
3365 static u32 srpt_sess_get_index(struct se_session *se_sess)
3367 return 0;
3370 static void srpt_set_default_node_attrs(struct se_node_acl *nacl)
3374 /* Note: only used from inside debug printk's by the TCM core. */
3375 static int srpt_get_tcm_cmd_state(struct se_cmd *se_cmd)
3377 struct srpt_send_ioctx *ioctx;
3379 ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd);
3380 return ioctx->state;
3383 static int srpt_parse_guid(u64 *guid, const char *name)
3385 u16 w[4];
3386 int ret = -EINVAL;
3388 if (sscanf(name, "%hx:%hx:%hx:%hx", &w[0], &w[1], &w[2], &w[3]) != 4)
3389 goto out;
3390 *guid = get_unaligned_be64(w);
3391 ret = 0;
3392 out:
3393 return ret;
3397 * srpt_parse_i_port_id - parse an initiator port ID
3398 * @name: ASCII representation of a 128-bit initiator port ID.
3399 * @i_port_id: Binary 128-bit port ID.
3401 static int srpt_parse_i_port_id(u8 i_port_id[16], const char *name)
3403 const char *p;
3404 unsigned len, count, leading_zero_bytes;
3405 int ret;
3407 p = name;
3408 if (strncasecmp(p, "0x", 2) == 0)
3409 p += 2;
3410 ret = -EINVAL;
3411 len = strlen(p);
3412 if (len % 2)
3413 goto out;
3414 count = min(len / 2, 16U);
3415 leading_zero_bytes = 16 - count;
3416 memset(i_port_id, 0, leading_zero_bytes);
3417 ret = hex2bin(i_port_id + leading_zero_bytes, p, count);
3419 out:
3420 return ret;
3424 * configfs callback function invoked for mkdir
3425 * /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id
3427 * i_port_id must be an initiator port GUID, GID or IP address. See also the
3428 * target_alloc_session() calls in this driver. Examples of valid initiator
3429 * port IDs:
3430 * 0x0000000000000000505400fffe4a0b7b
3431 * 0000000000000000505400fffe4a0b7b
3432 * 5054:00ff:fe4a:0b7b
3433 * 192.168.122.76
3435 static int srpt_init_nodeacl(struct se_node_acl *se_nacl, const char *name)
3437 struct sockaddr_storage sa;
3438 u64 guid;
3439 u8 i_port_id[16];
3440 int ret;
3442 ret = srpt_parse_guid(&guid, name);
3443 if (ret < 0)
3444 ret = srpt_parse_i_port_id(i_port_id, name);
3445 if (ret < 0)
3446 ret = inet_pton_with_scope(&init_net, AF_UNSPEC, name, NULL,
3447 &sa);
3448 if (ret < 0)
3449 pr_err("invalid initiator port ID %s\n", name);
3450 return ret;
3453 static ssize_t srpt_tpg_attrib_srp_max_rdma_size_show(struct config_item *item,
3454 char *page)
3456 struct se_portal_group *se_tpg = attrib_to_tpg(item);
3457 struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3459 return sprintf(page, "%u\n", sport->port_attrib.srp_max_rdma_size);
3462 static ssize_t srpt_tpg_attrib_srp_max_rdma_size_store(struct config_item *item,
3463 const char *page, size_t count)
3465 struct se_portal_group *se_tpg = attrib_to_tpg(item);
3466 struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3467 unsigned long val;
3468 int ret;
3470 ret = kstrtoul(page, 0, &val);
3471 if (ret < 0) {
3472 pr_err("kstrtoul() failed with ret: %d\n", ret);
3473 return -EINVAL;
3475 if (val > MAX_SRPT_RDMA_SIZE) {
3476 pr_err("val: %lu exceeds MAX_SRPT_RDMA_SIZE: %d\n", val,
3477 MAX_SRPT_RDMA_SIZE);
3478 return -EINVAL;
3480 if (val < DEFAULT_MAX_RDMA_SIZE) {
3481 pr_err("val: %lu smaller than DEFAULT_MAX_RDMA_SIZE: %d\n",
3482 val, DEFAULT_MAX_RDMA_SIZE);
3483 return -EINVAL;
3485 sport->port_attrib.srp_max_rdma_size = val;
3487 return count;
3490 static ssize_t srpt_tpg_attrib_srp_max_rsp_size_show(struct config_item *item,
3491 char *page)
3493 struct se_portal_group *se_tpg = attrib_to_tpg(item);
3494 struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3496 return sprintf(page, "%u\n", sport->port_attrib.srp_max_rsp_size);
3499 static ssize_t srpt_tpg_attrib_srp_max_rsp_size_store(struct config_item *item,
3500 const char *page, size_t count)
3502 struct se_portal_group *se_tpg = attrib_to_tpg(item);
3503 struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3504 unsigned long val;
3505 int ret;
3507 ret = kstrtoul(page, 0, &val);
3508 if (ret < 0) {
3509 pr_err("kstrtoul() failed with ret: %d\n", ret);
3510 return -EINVAL;
3512 if (val > MAX_SRPT_RSP_SIZE) {
3513 pr_err("val: %lu exceeds MAX_SRPT_RSP_SIZE: %d\n", val,
3514 MAX_SRPT_RSP_SIZE);
3515 return -EINVAL;
3517 if (val < MIN_MAX_RSP_SIZE) {
3518 pr_err("val: %lu smaller than MIN_MAX_RSP_SIZE: %d\n", val,
3519 MIN_MAX_RSP_SIZE);
3520 return -EINVAL;
3522 sport->port_attrib.srp_max_rsp_size = val;
3524 return count;
3527 static ssize_t srpt_tpg_attrib_srp_sq_size_show(struct config_item *item,
3528 char *page)
3530 struct se_portal_group *se_tpg = attrib_to_tpg(item);
3531 struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3533 return sprintf(page, "%u\n", sport->port_attrib.srp_sq_size);
3536 static ssize_t srpt_tpg_attrib_srp_sq_size_store(struct config_item *item,
3537 const char *page, size_t count)
3539 struct se_portal_group *se_tpg = attrib_to_tpg(item);
3540 struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3541 unsigned long val;
3542 int ret;
3544 ret = kstrtoul(page, 0, &val);
3545 if (ret < 0) {
3546 pr_err("kstrtoul() failed with ret: %d\n", ret);
3547 return -EINVAL;
3549 if (val > MAX_SRPT_SRQ_SIZE) {
3550 pr_err("val: %lu exceeds MAX_SRPT_SRQ_SIZE: %d\n", val,
3551 MAX_SRPT_SRQ_SIZE);
3552 return -EINVAL;
3554 if (val < MIN_SRPT_SRQ_SIZE) {
3555 pr_err("val: %lu smaller than MIN_SRPT_SRQ_SIZE: %d\n", val,
3556 MIN_SRPT_SRQ_SIZE);
3557 return -EINVAL;
3559 sport->port_attrib.srp_sq_size = val;
3561 return count;
3564 static ssize_t srpt_tpg_attrib_use_srq_show(struct config_item *item,
3565 char *page)
3567 struct se_portal_group *se_tpg = attrib_to_tpg(item);
3568 struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3570 return sprintf(page, "%d\n", sport->port_attrib.use_srq);
3573 static ssize_t srpt_tpg_attrib_use_srq_store(struct config_item *item,
3574 const char *page, size_t count)
3576 struct se_portal_group *se_tpg = attrib_to_tpg(item);
3577 struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3578 struct srpt_device *sdev = sport->sdev;
3579 unsigned long val;
3580 bool enabled;
3581 int ret;
3583 ret = kstrtoul(page, 0, &val);
3584 if (ret < 0)
3585 return ret;
3586 if (val != !!val)
3587 return -EINVAL;
3589 ret = mutex_lock_interruptible(&sdev->sdev_mutex);
3590 if (ret < 0)
3591 return ret;
3592 ret = mutex_lock_interruptible(&sport->mutex);
3593 if (ret < 0)
3594 goto unlock_sdev;
3595 enabled = sport->enabled;
3596 /* Log out all initiator systems before changing 'use_srq'. */
3597 srpt_set_enabled(sport, false);
3598 sport->port_attrib.use_srq = val;
3599 srpt_use_srq(sdev, sport->port_attrib.use_srq);
3600 srpt_set_enabled(sport, enabled);
3601 ret = count;
3602 mutex_unlock(&sport->mutex);
3603 unlock_sdev:
3604 mutex_unlock(&sdev->sdev_mutex);
3606 return ret;
3609 CONFIGFS_ATTR(srpt_tpg_attrib_, srp_max_rdma_size);
3610 CONFIGFS_ATTR(srpt_tpg_attrib_, srp_max_rsp_size);
3611 CONFIGFS_ATTR(srpt_tpg_attrib_, srp_sq_size);
3612 CONFIGFS_ATTR(srpt_tpg_attrib_, use_srq);
3614 static struct configfs_attribute *srpt_tpg_attrib_attrs[] = {
3615 &srpt_tpg_attrib_attr_srp_max_rdma_size,
3616 &srpt_tpg_attrib_attr_srp_max_rsp_size,
3617 &srpt_tpg_attrib_attr_srp_sq_size,
3618 &srpt_tpg_attrib_attr_use_srq,
3619 NULL,
3622 static struct rdma_cm_id *srpt_create_rdma_id(struct sockaddr *listen_addr)
3624 struct rdma_cm_id *rdma_cm_id;
3625 int ret;
3627 rdma_cm_id = rdma_create_id(&init_net, srpt_rdma_cm_handler,
3628 NULL, RDMA_PS_TCP, IB_QPT_RC);
3629 if (IS_ERR(rdma_cm_id)) {
3630 pr_err("RDMA/CM ID creation failed: %ld\n",
3631 PTR_ERR(rdma_cm_id));
3632 goto out;
3635 ret = rdma_bind_addr(rdma_cm_id, listen_addr);
3636 if (ret) {
3637 char addr_str[64];
3639 snprintf(addr_str, sizeof(addr_str), "%pISp", listen_addr);
3640 pr_err("Binding RDMA/CM ID to address %s failed: %d\n",
3641 addr_str, ret);
3642 rdma_destroy_id(rdma_cm_id);
3643 rdma_cm_id = ERR_PTR(ret);
3644 goto out;
3647 ret = rdma_listen(rdma_cm_id, 128);
3648 if (ret) {
3649 pr_err("rdma_listen() failed: %d\n", ret);
3650 rdma_destroy_id(rdma_cm_id);
3651 rdma_cm_id = ERR_PTR(ret);
3654 out:
3655 return rdma_cm_id;
3658 static ssize_t srpt_rdma_cm_port_show(struct config_item *item, char *page)
3660 return sprintf(page, "%d\n", rdma_cm_port);
3663 static ssize_t srpt_rdma_cm_port_store(struct config_item *item,
3664 const char *page, size_t count)
3666 struct sockaddr_in addr4 = { .sin_family = AF_INET };
3667 struct sockaddr_in6 addr6 = { .sin6_family = AF_INET6 };
3668 struct rdma_cm_id *new_id = NULL;
3669 u16 val;
3670 int ret;
3672 ret = kstrtou16(page, 0, &val);
3673 if (ret < 0)
3674 return ret;
3675 ret = count;
3676 if (rdma_cm_port == val)
3677 goto out;
3679 if (val) {
3680 addr6.sin6_port = cpu_to_be16(val);
3681 new_id = srpt_create_rdma_id((struct sockaddr *)&addr6);
3682 if (IS_ERR(new_id)) {
3683 addr4.sin_port = cpu_to_be16(val);
3684 new_id = srpt_create_rdma_id((struct sockaddr *)&addr4);
3685 if (IS_ERR(new_id)) {
3686 ret = PTR_ERR(new_id);
3687 goto out;
3692 mutex_lock(&rdma_cm_mutex);
3693 rdma_cm_port = val;
3694 swap(rdma_cm_id, new_id);
3695 mutex_unlock(&rdma_cm_mutex);
3697 if (new_id)
3698 rdma_destroy_id(new_id);
3699 ret = count;
3700 out:
3701 return ret;
3704 CONFIGFS_ATTR(srpt_, rdma_cm_port);
3706 static struct configfs_attribute *srpt_da_attrs[] = {
3707 &srpt_attr_rdma_cm_port,
3708 NULL,
3711 static ssize_t srpt_tpg_enable_show(struct config_item *item, char *page)
3713 struct se_portal_group *se_tpg = to_tpg(item);
3714 struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3716 return snprintf(page, PAGE_SIZE, "%d\n", sport->enabled);
3719 static ssize_t srpt_tpg_enable_store(struct config_item *item,
3720 const char *page, size_t count)
3722 struct se_portal_group *se_tpg = to_tpg(item);
3723 struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3724 unsigned long tmp;
3725 int ret;
3727 ret = kstrtoul(page, 0, &tmp);
3728 if (ret < 0) {
3729 pr_err("Unable to extract srpt_tpg_store_enable\n");
3730 return -EINVAL;
3733 if ((tmp != 0) && (tmp != 1)) {
3734 pr_err("Illegal value for srpt_tpg_store_enable: %lu\n", tmp);
3735 return -EINVAL;
3738 mutex_lock(&sport->mutex);
3739 srpt_set_enabled(sport, tmp);
3740 mutex_unlock(&sport->mutex);
3742 return count;
3745 CONFIGFS_ATTR(srpt_tpg_, enable);
3747 static struct configfs_attribute *srpt_tpg_attrs[] = {
3748 &srpt_tpg_attr_enable,
3749 NULL,
3753 * srpt_make_tpg - configfs callback invoked for mkdir /sys/kernel/config/target/$driver/$port/$tpg
3754 * @wwn: Corresponds to $driver/$port.
3755 * @name: $tpg.
3757 static struct se_portal_group *srpt_make_tpg(struct se_wwn *wwn,
3758 const char *name)
3760 struct srpt_port_id *sport_id = srpt_wwn_to_sport_id(wwn);
3761 struct srpt_tpg *stpg;
3762 int res = -ENOMEM;
3764 stpg = kzalloc(sizeof(*stpg), GFP_KERNEL);
3765 if (!stpg)
3766 return ERR_PTR(res);
3767 stpg->sport_id = sport_id;
3768 res = core_tpg_register(wwn, &stpg->tpg, SCSI_PROTOCOL_SRP);
3769 if (res) {
3770 kfree(stpg);
3771 return ERR_PTR(res);
3774 mutex_lock(&sport_id->mutex);
3775 list_add_tail(&stpg->entry, &sport_id->tpg_list);
3776 mutex_unlock(&sport_id->mutex);
3778 return &stpg->tpg;
3782 * srpt_drop_tpg - configfs callback invoked for rmdir /sys/kernel/config/target/$driver/$port/$tpg
3783 * @tpg: Target portal group to deregister.
3785 static void srpt_drop_tpg(struct se_portal_group *tpg)
3787 struct srpt_tpg *stpg = container_of(tpg, typeof(*stpg), tpg);
3788 struct srpt_port_id *sport_id = stpg->sport_id;
3789 struct srpt_port *sport = srpt_tpg_to_sport(tpg);
3791 mutex_lock(&sport_id->mutex);
3792 list_del(&stpg->entry);
3793 mutex_unlock(&sport_id->mutex);
3795 sport->enabled = false;
3796 core_tpg_deregister(tpg);
3797 kfree(stpg);
3801 * srpt_make_tport - configfs callback invoked for mkdir /sys/kernel/config/target/$driver/$port
3802 * @tf: Not used.
3803 * @group: Not used.
3804 * @name: $port.
3806 static struct se_wwn *srpt_make_tport(struct target_fabric_configfs *tf,
3807 struct config_group *group,
3808 const char *name)
3810 return srpt_lookup_wwn(name) ? : ERR_PTR(-EINVAL);
3814 * srpt_drop_tport - configfs callback invoked for rmdir /sys/kernel/config/target/$driver/$port
3815 * @wwn: $port.
3817 static void srpt_drop_tport(struct se_wwn *wwn)
3821 static ssize_t srpt_wwn_version_show(struct config_item *item, char *buf)
3823 return scnprintf(buf, PAGE_SIZE, "\n");
3826 CONFIGFS_ATTR_RO(srpt_wwn_, version);
3828 static struct configfs_attribute *srpt_wwn_attrs[] = {
3829 &srpt_wwn_attr_version,
3830 NULL,
3833 static const struct target_core_fabric_ops srpt_template = {
3834 .module = THIS_MODULE,
3835 .fabric_name = "srpt",
3836 .tpg_get_wwn = srpt_get_fabric_wwn,
3837 .tpg_get_tag = srpt_get_tag,
3838 .tpg_check_demo_mode = srpt_check_false,
3839 .tpg_check_demo_mode_cache = srpt_check_true,
3840 .tpg_check_demo_mode_write_protect = srpt_check_true,
3841 .tpg_check_prod_mode_write_protect = srpt_check_false,
3842 .tpg_get_inst_index = srpt_tpg_get_inst_index,
3843 .release_cmd = srpt_release_cmd,
3844 .check_stop_free = srpt_check_stop_free,
3845 .close_session = srpt_close_session,
3846 .sess_get_index = srpt_sess_get_index,
3847 .sess_get_initiator_sid = NULL,
3848 .write_pending = srpt_write_pending,
3849 .set_default_node_attributes = srpt_set_default_node_attrs,
3850 .get_cmd_state = srpt_get_tcm_cmd_state,
3851 .queue_data_in = srpt_queue_data_in,
3852 .queue_status = srpt_queue_status,
3853 .queue_tm_rsp = srpt_queue_tm_rsp,
3854 .aborted_task = srpt_aborted_task,
3856 * Setup function pointers for generic logic in
3857 * target_core_fabric_configfs.c
3859 .fabric_make_wwn = srpt_make_tport,
3860 .fabric_drop_wwn = srpt_drop_tport,
3861 .fabric_make_tpg = srpt_make_tpg,
3862 .fabric_drop_tpg = srpt_drop_tpg,
3863 .fabric_init_nodeacl = srpt_init_nodeacl,
3865 .tfc_discovery_attrs = srpt_da_attrs,
3866 .tfc_wwn_attrs = srpt_wwn_attrs,
3867 .tfc_tpg_base_attrs = srpt_tpg_attrs,
3868 .tfc_tpg_attrib_attrs = srpt_tpg_attrib_attrs,
3872 * srpt_init_module - kernel module initialization
3874 * Note: Since ib_register_client() registers callback functions, and since at
3875 * least one of these callback functions (srpt_add_one()) calls target core
3876 * functions, this driver must be registered with the target core before
3877 * ib_register_client() is called.
3879 static int __init srpt_init_module(void)
3881 int ret;
3883 ret = -EINVAL;
3884 if (srp_max_req_size < MIN_MAX_REQ_SIZE) {
3885 pr_err("invalid value %d for kernel module parameter srp_max_req_size -- must be at least %d.\n",
3886 srp_max_req_size, MIN_MAX_REQ_SIZE);
3887 goto out;
3890 if (srpt_srq_size < MIN_SRPT_SRQ_SIZE
3891 || srpt_srq_size > MAX_SRPT_SRQ_SIZE) {
3892 pr_err("invalid value %d for kernel module parameter srpt_srq_size -- must be in the range [%d..%d].\n",
3893 srpt_srq_size, MIN_SRPT_SRQ_SIZE, MAX_SRPT_SRQ_SIZE);
3894 goto out;
3897 ret = target_register_template(&srpt_template);
3898 if (ret)
3899 goto out;
3901 ret = ib_register_client(&srpt_client);
3902 if (ret) {
3903 pr_err("couldn't register IB client\n");
3904 goto out_unregister_target;
3907 return 0;
3909 out_unregister_target:
3910 target_unregister_template(&srpt_template);
3911 out:
3912 return ret;
3915 static void __exit srpt_cleanup_module(void)
3917 if (rdma_cm_id)
3918 rdma_destroy_id(rdma_cm_id);
3919 ib_unregister_client(&srpt_client);
3920 target_unregister_template(&srpt_template);
3923 module_init(srpt_init_module);
3924 module_exit(srpt_cleanup_module);