1 // SPDX-License-Identifier: GPL-2.0-only
5 * Copyright (c) 1999-2002 Vojtech Pavlik
9 #define pr_fmt(fmt) KBUILD_BASENAME ": " fmt
11 #include <linux/init.h>
12 #include <linux/types.h>
13 #include <linux/idr.h>
14 #include <linux/input/mt.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/random.h>
18 #include <linux/major.h>
19 #include <linux/proc_fs.h>
20 #include <linux/sched.h>
21 #include <linux/seq_file.h>
22 #include <linux/poll.h>
23 #include <linux/device.h>
24 #include <linux/mutex.h>
25 #include <linux/rcupdate.h>
26 #include "input-compat.h"
27 #include "input-poller.h"
29 MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>");
30 MODULE_DESCRIPTION("Input core");
31 MODULE_LICENSE("GPL");
33 #define INPUT_MAX_CHAR_DEVICES 1024
34 #define INPUT_FIRST_DYNAMIC_DEV 256
35 static DEFINE_IDA(input_ida
);
37 static LIST_HEAD(input_dev_list
);
38 static LIST_HEAD(input_handler_list
);
41 * input_mutex protects access to both input_dev_list and input_handler_list.
42 * This also causes input_[un]register_device and input_[un]register_handler
43 * be mutually exclusive which simplifies locking in drivers implementing
46 static DEFINE_MUTEX(input_mutex
);
48 static const struct input_value input_value_sync
= { EV_SYN
, SYN_REPORT
, 1 };
50 static inline int is_event_supported(unsigned int code
,
51 unsigned long *bm
, unsigned int max
)
53 return code
<= max
&& test_bit(code
, bm
);
56 static int input_defuzz_abs_event(int value
, int old_val
, int fuzz
)
59 if (value
> old_val
- fuzz
/ 2 && value
< old_val
+ fuzz
/ 2)
62 if (value
> old_val
- fuzz
&& value
< old_val
+ fuzz
)
63 return (old_val
* 3 + value
) / 4;
65 if (value
> old_val
- fuzz
* 2 && value
< old_val
+ fuzz
* 2)
66 return (old_val
+ value
) / 2;
72 static void input_start_autorepeat(struct input_dev
*dev
, int code
)
74 if (test_bit(EV_REP
, dev
->evbit
) &&
75 dev
->rep
[REP_PERIOD
] && dev
->rep
[REP_DELAY
] &&
76 dev
->timer
.function
) {
77 dev
->repeat_key
= code
;
78 mod_timer(&dev
->timer
,
79 jiffies
+ msecs_to_jiffies(dev
->rep
[REP_DELAY
]));
83 static void input_stop_autorepeat(struct input_dev
*dev
)
85 del_timer(&dev
->timer
);
89 * Pass event first through all filters and then, if event has not been
90 * filtered out, through all open handles. This function is called with
91 * dev->event_lock held and interrupts disabled.
93 static unsigned int input_to_handler(struct input_handle
*handle
,
94 struct input_value
*vals
, unsigned int count
)
96 struct input_handler
*handler
= handle
->handler
;
97 struct input_value
*end
= vals
;
98 struct input_value
*v
;
100 if (handler
->filter
) {
101 for (v
= vals
; v
!= vals
+ count
; v
++) {
102 if (handler
->filter(handle
, v
->type
, v
->code
, v
->value
))
115 handler
->events(handle
, vals
, count
);
116 else if (handler
->event
)
117 for (v
= vals
; v
!= vals
+ count
; v
++)
118 handler
->event(handle
, v
->type
, v
->code
, v
->value
);
124 * Pass values first through all filters and then, if event has not been
125 * filtered out, through all open handles. This function is called with
126 * dev->event_lock held and interrupts disabled.
128 static void input_pass_values(struct input_dev
*dev
,
129 struct input_value
*vals
, unsigned int count
)
131 struct input_handle
*handle
;
132 struct input_value
*v
;
139 handle
= rcu_dereference(dev
->grab
);
141 count
= input_to_handler(handle
, vals
, count
);
143 list_for_each_entry_rcu(handle
, &dev
->h_list
, d_node
)
145 count
= input_to_handler(handle
, vals
, count
);
153 /* trigger auto repeat for key events */
154 if (test_bit(EV_REP
, dev
->evbit
) && test_bit(EV_KEY
, dev
->evbit
)) {
155 for (v
= vals
; v
!= vals
+ count
; v
++) {
156 if (v
->type
== EV_KEY
&& v
->value
!= 2) {
158 input_start_autorepeat(dev
, v
->code
);
160 input_stop_autorepeat(dev
);
166 static void input_pass_event(struct input_dev
*dev
,
167 unsigned int type
, unsigned int code
, int value
)
169 struct input_value vals
[] = { { type
, code
, value
} };
171 input_pass_values(dev
, vals
, ARRAY_SIZE(vals
));
175 * Generate software autorepeat event. Note that we take
176 * dev->event_lock here to avoid racing with input_event
177 * which may cause keys get "stuck".
179 static void input_repeat_key(struct timer_list
*t
)
181 struct input_dev
*dev
= from_timer(dev
, t
, timer
);
184 spin_lock_irqsave(&dev
->event_lock
, flags
);
186 if (test_bit(dev
->repeat_key
, dev
->key
) &&
187 is_event_supported(dev
->repeat_key
, dev
->keybit
, KEY_MAX
)) {
188 struct input_value vals
[] = {
189 { EV_KEY
, dev
->repeat_key
, 2 },
193 input_pass_values(dev
, vals
, ARRAY_SIZE(vals
));
195 if (dev
->rep
[REP_PERIOD
])
196 mod_timer(&dev
->timer
, jiffies
+
197 msecs_to_jiffies(dev
->rep
[REP_PERIOD
]));
200 spin_unlock_irqrestore(&dev
->event_lock
, flags
);
203 #define INPUT_IGNORE_EVENT 0
204 #define INPUT_PASS_TO_HANDLERS 1
205 #define INPUT_PASS_TO_DEVICE 2
207 #define INPUT_FLUSH 8
208 #define INPUT_PASS_TO_ALL (INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE)
210 static int input_handle_abs_event(struct input_dev
*dev
,
211 unsigned int code
, int *pval
)
213 struct input_mt
*mt
= dev
->mt
;
217 if (code
== ABS_MT_SLOT
) {
219 * "Stage" the event; we'll flush it later, when we
220 * get actual touch data.
222 if (mt
&& *pval
>= 0 && *pval
< mt
->num_slots
)
225 return INPUT_IGNORE_EVENT
;
228 is_mt_event
= input_is_mt_value(code
);
231 pold
= &dev
->absinfo
[code
].value
;
233 pold
= &mt
->slots
[mt
->slot
].abs
[code
- ABS_MT_FIRST
];
236 * Bypass filtering for multi-touch events when
237 * not employing slots.
243 *pval
= input_defuzz_abs_event(*pval
, *pold
,
244 dev
->absinfo
[code
].fuzz
);
246 return INPUT_IGNORE_EVENT
;
251 /* Flush pending "slot" event */
252 if (is_mt_event
&& mt
&& mt
->slot
!= input_abs_get_val(dev
, ABS_MT_SLOT
)) {
253 input_abs_set_val(dev
, ABS_MT_SLOT
, mt
->slot
);
254 return INPUT_PASS_TO_HANDLERS
| INPUT_SLOT
;
257 return INPUT_PASS_TO_HANDLERS
;
260 static int input_get_disposition(struct input_dev
*dev
,
261 unsigned int type
, unsigned int code
, int *pval
)
263 int disposition
= INPUT_IGNORE_EVENT
;
271 disposition
= INPUT_PASS_TO_ALL
;
275 disposition
= INPUT_PASS_TO_HANDLERS
| INPUT_FLUSH
;
278 disposition
= INPUT_PASS_TO_HANDLERS
;
284 if (is_event_supported(code
, dev
->keybit
, KEY_MAX
)) {
286 /* auto-repeat bypasses state updates */
288 disposition
= INPUT_PASS_TO_HANDLERS
;
292 if (!!test_bit(code
, dev
->key
) != !!value
) {
294 __change_bit(code
, dev
->key
);
295 disposition
= INPUT_PASS_TO_HANDLERS
;
301 if (is_event_supported(code
, dev
->swbit
, SW_MAX
) &&
302 !!test_bit(code
, dev
->sw
) != !!value
) {
304 __change_bit(code
, dev
->sw
);
305 disposition
= INPUT_PASS_TO_HANDLERS
;
310 if (is_event_supported(code
, dev
->absbit
, ABS_MAX
))
311 disposition
= input_handle_abs_event(dev
, code
, &value
);
316 if (is_event_supported(code
, dev
->relbit
, REL_MAX
) && value
)
317 disposition
= INPUT_PASS_TO_HANDLERS
;
322 if (is_event_supported(code
, dev
->mscbit
, MSC_MAX
))
323 disposition
= INPUT_PASS_TO_ALL
;
328 if (is_event_supported(code
, dev
->ledbit
, LED_MAX
) &&
329 !!test_bit(code
, dev
->led
) != !!value
) {
331 __change_bit(code
, dev
->led
);
332 disposition
= INPUT_PASS_TO_ALL
;
337 if (is_event_supported(code
, dev
->sndbit
, SND_MAX
)) {
339 if (!!test_bit(code
, dev
->snd
) != !!value
)
340 __change_bit(code
, dev
->snd
);
341 disposition
= INPUT_PASS_TO_ALL
;
346 if (code
<= REP_MAX
&& value
>= 0 && dev
->rep
[code
] != value
) {
347 dev
->rep
[code
] = value
;
348 disposition
= INPUT_PASS_TO_ALL
;
354 disposition
= INPUT_PASS_TO_ALL
;
358 disposition
= INPUT_PASS_TO_ALL
;
366 static void input_handle_event(struct input_dev
*dev
,
367 unsigned int type
, unsigned int code
, int value
)
369 int disposition
= input_get_disposition(dev
, type
, code
, &value
);
371 if (disposition
!= INPUT_IGNORE_EVENT
&& type
!= EV_SYN
)
372 add_input_randomness(type
, code
, value
);
374 if ((disposition
& INPUT_PASS_TO_DEVICE
) && dev
->event
)
375 dev
->event(dev
, type
, code
, value
);
380 if (disposition
& INPUT_PASS_TO_HANDLERS
) {
381 struct input_value
*v
;
383 if (disposition
& INPUT_SLOT
) {
384 v
= &dev
->vals
[dev
->num_vals
++];
386 v
->code
= ABS_MT_SLOT
;
387 v
->value
= dev
->mt
->slot
;
390 v
= &dev
->vals
[dev
->num_vals
++];
396 if (disposition
& INPUT_FLUSH
) {
397 if (dev
->num_vals
>= 2)
398 input_pass_values(dev
, dev
->vals
, dev
->num_vals
);
401 * Reset the timestamp on flush so we won't end up
402 * with a stale one. Note we only need to reset the
403 * monolithic one as we use its presence when deciding
404 * whether to generate a synthetic timestamp.
406 dev
->timestamp
[INPUT_CLK_MONO
] = ktime_set(0, 0);
407 } else if (dev
->num_vals
>= dev
->max_vals
- 2) {
408 dev
->vals
[dev
->num_vals
++] = input_value_sync
;
409 input_pass_values(dev
, dev
->vals
, dev
->num_vals
);
416 * input_event() - report new input event
417 * @dev: device that generated the event
418 * @type: type of the event
420 * @value: value of the event
422 * This function should be used by drivers implementing various input
423 * devices to report input events. See also input_inject_event().
425 * NOTE: input_event() may be safely used right after input device was
426 * allocated with input_allocate_device(), even before it is registered
427 * with input_register_device(), but the event will not reach any of the
428 * input handlers. Such early invocation of input_event() may be used
429 * to 'seed' initial state of a switch or initial position of absolute
432 void input_event(struct input_dev
*dev
,
433 unsigned int type
, unsigned int code
, int value
)
437 if (is_event_supported(type
, dev
->evbit
, EV_MAX
)) {
439 spin_lock_irqsave(&dev
->event_lock
, flags
);
440 input_handle_event(dev
, type
, code
, value
);
441 spin_unlock_irqrestore(&dev
->event_lock
, flags
);
444 EXPORT_SYMBOL(input_event
);
447 * input_inject_event() - send input event from input handler
448 * @handle: input handle to send event through
449 * @type: type of the event
451 * @value: value of the event
453 * Similar to input_event() but will ignore event if device is
454 * "grabbed" and handle injecting event is not the one that owns
457 void input_inject_event(struct input_handle
*handle
,
458 unsigned int type
, unsigned int code
, int value
)
460 struct input_dev
*dev
= handle
->dev
;
461 struct input_handle
*grab
;
464 if (is_event_supported(type
, dev
->evbit
, EV_MAX
)) {
465 spin_lock_irqsave(&dev
->event_lock
, flags
);
468 grab
= rcu_dereference(dev
->grab
);
469 if (!grab
|| grab
== handle
)
470 input_handle_event(dev
, type
, code
, value
);
473 spin_unlock_irqrestore(&dev
->event_lock
, flags
);
476 EXPORT_SYMBOL(input_inject_event
);
479 * input_alloc_absinfo - allocates array of input_absinfo structs
480 * @dev: the input device emitting absolute events
482 * If the absinfo struct the caller asked for is already allocated, this
483 * functions will not do anything.
485 void input_alloc_absinfo(struct input_dev
*dev
)
490 dev
->absinfo
= kcalloc(ABS_CNT
, sizeof(*dev
->absinfo
), GFP_KERNEL
);
492 dev_err(dev
->dev
.parent
?: &dev
->dev
,
493 "%s: unable to allocate memory\n", __func__
);
495 * We will handle this allocation failure in
496 * input_register_device() when we refuse to register input
497 * device with ABS bits but without absinfo.
501 EXPORT_SYMBOL(input_alloc_absinfo
);
503 void input_set_abs_params(struct input_dev
*dev
, unsigned int axis
,
504 int min
, int max
, int fuzz
, int flat
)
506 struct input_absinfo
*absinfo
;
508 input_alloc_absinfo(dev
);
512 absinfo
= &dev
->absinfo
[axis
];
513 absinfo
->minimum
= min
;
514 absinfo
->maximum
= max
;
515 absinfo
->fuzz
= fuzz
;
516 absinfo
->flat
= flat
;
518 __set_bit(EV_ABS
, dev
->evbit
);
519 __set_bit(axis
, dev
->absbit
);
521 EXPORT_SYMBOL(input_set_abs_params
);
525 * input_grab_device - grabs device for exclusive use
526 * @handle: input handle that wants to own the device
528 * When a device is grabbed by an input handle all events generated by
529 * the device are delivered only to this handle. Also events injected
530 * by other input handles are ignored while device is grabbed.
532 int input_grab_device(struct input_handle
*handle
)
534 struct input_dev
*dev
= handle
->dev
;
537 retval
= mutex_lock_interruptible(&dev
->mutex
);
546 rcu_assign_pointer(dev
->grab
, handle
);
549 mutex_unlock(&dev
->mutex
);
552 EXPORT_SYMBOL(input_grab_device
);
554 static void __input_release_device(struct input_handle
*handle
)
556 struct input_dev
*dev
= handle
->dev
;
557 struct input_handle
*grabber
;
559 grabber
= rcu_dereference_protected(dev
->grab
,
560 lockdep_is_held(&dev
->mutex
));
561 if (grabber
== handle
) {
562 rcu_assign_pointer(dev
->grab
, NULL
);
563 /* Make sure input_pass_event() notices that grab is gone */
566 list_for_each_entry(handle
, &dev
->h_list
, d_node
)
567 if (handle
->open
&& handle
->handler
->start
)
568 handle
->handler
->start(handle
);
573 * input_release_device - release previously grabbed device
574 * @handle: input handle that owns the device
576 * Releases previously grabbed device so that other input handles can
577 * start receiving input events. Upon release all handlers attached
578 * to the device have their start() method called so they have a change
579 * to synchronize device state with the rest of the system.
581 void input_release_device(struct input_handle
*handle
)
583 struct input_dev
*dev
= handle
->dev
;
585 mutex_lock(&dev
->mutex
);
586 __input_release_device(handle
);
587 mutex_unlock(&dev
->mutex
);
589 EXPORT_SYMBOL(input_release_device
);
592 * input_open_device - open input device
593 * @handle: handle through which device is being accessed
595 * This function should be called by input handlers when they
596 * want to start receive events from given input device.
598 int input_open_device(struct input_handle
*handle
)
600 struct input_dev
*dev
= handle
->dev
;
603 retval
= mutex_lock_interruptible(&dev
->mutex
);
607 if (dev
->going_away
) {
616 * Device is already opened, so we can exit immediately and
623 retval
= dev
->open(dev
);
628 * Make sure we are not delivering any more events
629 * through this handle
637 input_dev_poller_start(dev
->poller
);
640 mutex_unlock(&dev
->mutex
);
643 EXPORT_SYMBOL(input_open_device
);
645 int input_flush_device(struct input_handle
*handle
, struct file
*file
)
647 struct input_dev
*dev
= handle
->dev
;
650 retval
= mutex_lock_interruptible(&dev
->mutex
);
655 retval
= dev
->flush(dev
, file
);
657 mutex_unlock(&dev
->mutex
);
660 EXPORT_SYMBOL(input_flush_device
);
663 * input_close_device - close input device
664 * @handle: handle through which device is being accessed
666 * This function should be called by input handlers when they
667 * want to stop receive events from given input device.
669 void input_close_device(struct input_handle
*handle
)
671 struct input_dev
*dev
= handle
->dev
;
673 mutex_lock(&dev
->mutex
);
675 __input_release_device(handle
);
679 input_dev_poller_stop(dev
->poller
);
685 if (!--handle
->open
) {
687 * synchronize_rcu() makes sure that input_pass_event()
688 * completed and that no more input events are delivered
689 * through this handle
694 mutex_unlock(&dev
->mutex
);
696 EXPORT_SYMBOL(input_close_device
);
699 * Simulate keyup events for all keys that are marked as pressed.
700 * The function must be called with dev->event_lock held.
702 static void input_dev_release_keys(struct input_dev
*dev
)
704 bool need_sync
= false;
707 if (is_event_supported(EV_KEY
, dev
->evbit
, EV_MAX
)) {
708 for_each_set_bit(code
, dev
->key
, KEY_CNT
) {
709 input_pass_event(dev
, EV_KEY
, code
, 0);
714 input_pass_event(dev
, EV_SYN
, SYN_REPORT
, 1);
716 memset(dev
->key
, 0, sizeof(dev
->key
));
721 * Prepare device for unregistering
723 static void input_disconnect_device(struct input_dev
*dev
)
725 struct input_handle
*handle
;
728 * Mark device as going away. Note that we take dev->mutex here
729 * not to protect access to dev->going_away but rather to ensure
730 * that there are no threads in the middle of input_open_device()
732 mutex_lock(&dev
->mutex
);
733 dev
->going_away
= true;
734 mutex_unlock(&dev
->mutex
);
736 spin_lock_irq(&dev
->event_lock
);
739 * Simulate keyup events for all pressed keys so that handlers
740 * are not left with "stuck" keys. The driver may continue
741 * generate events even after we done here but they will not
742 * reach any handlers.
744 input_dev_release_keys(dev
);
746 list_for_each_entry(handle
, &dev
->h_list
, d_node
)
749 spin_unlock_irq(&dev
->event_lock
);
753 * input_scancode_to_scalar() - converts scancode in &struct input_keymap_entry
754 * @ke: keymap entry containing scancode to be converted.
755 * @scancode: pointer to the location where converted scancode should
758 * This function is used to convert scancode stored in &struct keymap_entry
759 * into scalar form understood by legacy keymap handling methods. These
760 * methods expect scancodes to be represented as 'unsigned int'.
762 int input_scancode_to_scalar(const struct input_keymap_entry
*ke
,
763 unsigned int *scancode
)
767 *scancode
= *((u8
*)ke
->scancode
);
771 *scancode
= *((u16
*)ke
->scancode
);
775 *scancode
= *((u32
*)ke
->scancode
);
784 EXPORT_SYMBOL(input_scancode_to_scalar
);
787 * Those routines handle the default case where no [gs]etkeycode() is
788 * defined. In this case, an array indexed by the scancode is used.
791 static unsigned int input_fetch_keycode(struct input_dev
*dev
,
794 switch (dev
->keycodesize
) {
796 return ((u8
*)dev
->keycode
)[index
];
799 return ((u16
*)dev
->keycode
)[index
];
802 return ((u32
*)dev
->keycode
)[index
];
806 static int input_default_getkeycode(struct input_dev
*dev
,
807 struct input_keymap_entry
*ke
)
812 if (!dev
->keycodesize
)
815 if (ke
->flags
& INPUT_KEYMAP_BY_INDEX
)
818 error
= input_scancode_to_scalar(ke
, &index
);
823 if (index
>= dev
->keycodemax
)
826 ke
->keycode
= input_fetch_keycode(dev
, index
);
828 ke
->len
= sizeof(index
);
829 memcpy(ke
->scancode
, &index
, sizeof(index
));
834 static int input_default_setkeycode(struct input_dev
*dev
,
835 const struct input_keymap_entry
*ke
,
836 unsigned int *old_keycode
)
842 if (!dev
->keycodesize
)
845 if (ke
->flags
& INPUT_KEYMAP_BY_INDEX
) {
848 error
= input_scancode_to_scalar(ke
, &index
);
853 if (index
>= dev
->keycodemax
)
856 if (dev
->keycodesize
< sizeof(ke
->keycode
) &&
857 (ke
->keycode
>> (dev
->keycodesize
* 8)))
860 switch (dev
->keycodesize
) {
862 u8
*k
= (u8
*)dev
->keycode
;
863 *old_keycode
= k
[index
];
864 k
[index
] = ke
->keycode
;
868 u16
*k
= (u16
*)dev
->keycode
;
869 *old_keycode
= k
[index
];
870 k
[index
] = ke
->keycode
;
874 u32
*k
= (u32
*)dev
->keycode
;
875 *old_keycode
= k
[index
];
876 k
[index
] = ke
->keycode
;
881 __clear_bit(*old_keycode
, dev
->keybit
);
882 __set_bit(ke
->keycode
, dev
->keybit
);
884 for (i
= 0; i
< dev
->keycodemax
; i
++) {
885 if (input_fetch_keycode(dev
, i
) == *old_keycode
) {
886 __set_bit(*old_keycode
, dev
->keybit
);
887 break; /* Setting the bit twice is useless, so break */
895 * input_get_keycode - retrieve keycode currently mapped to a given scancode
896 * @dev: input device which keymap is being queried
899 * This function should be called by anyone interested in retrieving current
900 * keymap. Presently evdev handlers use it.
902 int input_get_keycode(struct input_dev
*dev
, struct input_keymap_entry
*ke
)
907 spin_lock_irqsave(&dev
->event_lock
, flags
);
908 retval
= dev
->getkeycode(dev
, ke
);
909 spin_unlock_irqrestore(&dev
->event_lock
, flags
);
913 EXPORT_SYMBOL(input_get_keycode
);
916 * input_set_keycode - attribute a keycode to a given scancode
917 * @dev: input device which keymap is being updated
918 * @ke: new keymap entry
920 * This function should be called by anyone needing to update current
921 * keymap. Presently keyboard and evdev handlers use it.
923 int input_set_keycode(struct input_dev
*dev
,
924 const struct input_keymap_entry
*ke
)
927 unsigned int old_keycode
;
930 if (ke
->keycode
> KEY_MAX
)
933 spin_lock_irqsave(&dev
->event_lock
, flags
);
935 retval
= dev
->setkeycode(dev
, ke
, &old_keycode
);
939 /* Make sure KEY_RESERVED did not get enabled. */
940 __clear_bit(KEY_RESERVED
, dev
->keybit
);
943 * Simulate keyup event if keycode is not present
944 * in the keymap anymore
946 if (test_bit(EV_KEY
, dev
->evbit
) &&
947 !is_event_supported(old_keycode
, dev
->keybit
, KEY_MAX
) &&
948 __test_and_clear_bit(old_keycode
, dev
->key
)) {
949 struct input_value vals
[] = {
950 { EV_KEY
, old_keycode
, 0 },
954 input_pass_values(dev
, vals
, ARRAY_SIZE(vals
));
958 spin_unlock_irqrestore(&dev
->event_lock
, flags
);
962 EXPORT_SYMBOL(input_set_keycode
);
964 bool input_match_device_id(const struct input_dev
*dev
,
965 const struct input_device_id
*id
)
967 if (id
->flags
& INPUT_DEVICE_ID_MATCH_BUS
)
968 if (id
->bustype
!= dev
->id
.bustype
)
971 if (id
->flags
& INPUT_DEVICE_ID_MATCH_VENDOR
)
972 if (id
->vendor
!= dev
->id
.vendor
)
975 if (id
->flags
& INPUT_DEVICE_ID_MATCH_PRODUCT
)
976 if (id
->product
!= dev
->id
.product
)
979 if (id
->flags
& INPUT_DEVICE_ID_MATCH_VERSION
)
980 if (id
->version
!= dev
->id
.version
)
983 if (!bitmap_subset(id
->evbit
, dev
->evbit
, EV_MAX
) ||
984 !bitmap_subset(id
->keybit
, dev
->keybit
, KEY_MAX
) ||
985 !bitmap_subset(id
->relbit
, dev
->relbit
, REL_MAX
) ||
986 !bitmap_subset(id
->absbit
, dev
->absbit
, ABS_MAX
) ||
987 !bitmap_subset(id
->mscbit
, dev
->mscbit
, MSC_MAX
) ||
988 !bitmap_subset(id
->ledbit
, dev
->ledbit
, LED_MAX
) ||
989 !bitmap_subset(id
->sndbit
, dev
->sndbit
, SND_MAX
) ||
990 !bitmap_subset(id
->ffbit
, dev
->ffbit
, FF_MAX
) ||
991 !bitmap_subset(id
->swbit
, dev
->swbit
, SW_MAX
) ||
992 !bitmap_subset(id
->propbit
, dev
->propbit
, INPUT_PROP_MAX
)) {
998 EXPORT_SYMBOL(input_match_device_id
);
1000 static const struct input_device_id
*input_match_device(struct input_handler
*handler
,
1001 struct input_dev
*dev
)
1003 const struct input_device_id
*id
;
1005 for (id
= handler
->id_table
; id
->flags
|| id
->driver_info
; id
++) {
1006 if (input_match_device_id(dev
, id
) &&
1007 (!handler
->match
|| handler
->match(handler
, dev
))) {
1015 static int input_attach_handler(struct input_dev
*dev
, struct input_handler
*handler
)
1017 const struct input_device_id
*id
;
1020 id
= input_match_device(handler
, dev
);
1024 error
= handler
->connect(handler
, dev
, id
);
1025 if (error
&& error
!= -ENODEV
)
1026 pr_err("failed to attach handler %s to device %s, error: %d\n",
1027 handler
->name
, kobject_name(&dev
->dev
.kobj
), error
);
1032 #ifdef CONFIG_COMPAT
1034 static int input_bits_to_string(char *buf
, int buf_size
,
1035 unsigned long bits
, bool skip_empty
)
1039 if (in_compat_syscall()) {
1040 u32 dword
= bits
>> 32;
1041 if (dword
|| !skip_empty
)
1042 len
+= snprintf(buf
, buf_size
, "%x ", dword
);
1044 dword
= bits
& 0xffffffffUL
;
1045 if (dword
|| !skip_empty
|| len
)
1046 len
+= snprintf(buf
+ len
, max(buf_size
- len
, 0),
1049 if (bits
|| !skip_empty
)
1050 len
+= snprintf(buf
, buf_size
, "%lx", bits
);
1056 #else /* !CONFIG_COMPAT */
1058 static int input_bits_to_string(char *buf
, int buf_size
,
1059 unsigned long bits
, bool skip_empty
)
1061 return bits
|| !skip_empty
?
1062 snprintf(buf
, buf_size
, "%lx", bits
) : 0;
1067 #ifdef CONFIG_PROC_FS
1069 static struct proc_dir_entry
*proc_bus_input_dir
;
1070 static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait
);
1071 static int input_devices_state
;
1073 static inline void input_wakeup_procfs_readers(void)
1075 input_devices_state
++;
1076 wake_up(&input_devices_poll_wait
);
1079 static __poll_t
input_proc_devices_poll(struct file
*file
, poll_table
*wait
)
1081 poll_wait(file
, &input_devices_poll_wait
, wait
);
1082 if (file
->f_version
!= input_devices_state
) {
1083 file
->f_version
= input_devices_state
;
1084 return EPOLLIN
| EPOLLRDNORM
;
1090 union input_seq_state
{
1093 bool mutex_acquired
;
1098 static void *input_devices_seq_start(struct seq_file
*seq
, loff_t
*pos
)
1100 union input_seq_state
*state
= (union input_seq_state
*)&seq
->private;
1103 /* We need to fit into seq->private pointer */
1104 BUILD_BUG_ON(sizeof(union input_seq_state
) != sizeof(seq
->private));
1106 error
= mutex_lock_interruptible(&input_mutex
);
1108 state
->mutex_acquired
= false;
1109 return ERR_PTR(error
);
1112 state
->mutex_acquired
= true;
1114 return seq_list_start(&input_dev_list
, *pos
);
1117 static void *input_devices_seq_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
1119 return seq_list_next(v
, &input_dev_list
, pos
);
1122 static void input_seq_stop(struct seq_file
*seq
, void *v
)
1124 union input_seq_state
*state
= (union input_seq_state
*)&seq
->private;
1126 if (state
->mutex_acquired
)
1127 mutex_unlock(&input_mutex
);
1130 static void input_seq_print_bitmap(struct seq_file
*seq
, const char *name
,
1131 unsigned long *bitmap
, int max
)
1134 bool skip_empty
= true;
1137 seq_printf(seq
, "B: %s=", name
);
1139 for (i
= BITS_TO_LONGS(max
) - 1; i
>= 0; i
--) {
1140 if (input_bits_to_string(buf
, sizeof(buf
),
1141 bitmap
[i
], skip_empty
)) {
1143 seq_printf(seq
, "%s%s", buf
, i
> 0 ? " " : "");
1148 * If no output was produced print a single 0.
1153 seq_putc(seq
, '\n');
1156 static int input_devices_seq_show(struct seq_file
*seq
, void *v
)
1158 struct input_dev
*dev
= container_of(v
, struct input_dev
, node
);
1159 const char *path
= kobject_get_path(&dev
->dev
.kobj
, GFP_KERNEL
);
1160 struct input_handle
*handle
;
1162 seq_printf(seq
, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n",
1163 dev
->id
.bustype
, dev
->id
.vendor
, dev
->id
.product
, dev
->id
.version
);
1165 seq_printf(seq
, "N: Name=\"%s\"\n", dev
->name
? dev
->name
: "");
1166 seq_printf(seq
, "P: Phys=%s\n", dev
->phys
? dev
->phys
: "");
1167 seq_printf(seq
, "S: Sysfs=%s\n", path
? path
: "");
1168 seq_printf(seq
, "U: Uniq=%s\n", dev
->uniq
? dev
->uniq
: "");
1169 seq_puts(seq
, "H: Handlers=");
1171 list_for_each_entry(handle
, &dev
->h_list
, d_node
)
1172 seq_printf(seq
, "%s ", handle
->name
);
1173 seq_putc(seq
, '\n');
1175 input_seq_print_bitmap(seq
, "PROP", dev
->propbit
, INPUT_PROP_MAX
);
1177 input_seq_print_bitmap(seq
, "EV", dev
->evbit
, EV_MAX
);
1178 if (test_bit(EV_KEY
, dev
->evbit
))
1179 input_seq_print_bitmap(seq
, "KEY", dev
->keybit
, KEY_MAX
);
1180 if (test_bit(EV_REL
, dev
->evbit
))
1181 input_seq_print_bitmap(seq
, "REL", dev
->relbit
, REL_MAX
);
1182 if (test_bit(EV_ABS
, dev
->evbit
))
1183 input_seq_print_bitmap(seq
, "ABS", dev
->absbit
, ABS_MAX
);
1184 if (test_bit(EV_MSC
, dev
->evbit
))
1185 input_seq_print_bitmap(seq
, "MSC", dev
->mscbit
, MSC_MAX
);
1186 if (test_bit(EV_LED
, dev
->evbit
))
1187 input_seq_print_bitmap(seq
, "LED", dev
->ledbit
, LED_MAX
);
1188 if (test_bit(EV_SND
, dev
->evbit
))
1189 input_seq_print_bitmap(seq
, "SND", dev
->sndbit
, SND_MAX
);
1190 if (test_bit(EV_FF
, dev
->evbit
))
1191 input_seq_print_bitmap(seq
, "FF", dev
->ffbit
, FF_MAX
);
1192 if (test_bit(EV_SW
, dev
->evbit
))
1193 input_seq_print_bitmap(seq
, "SW", dev
->swbit
, SW_MAX
);
1195 seq_putc(seq
, '\n');
1201 static const struct seq_operations input_devices_seq_ops
= {
1202 .start
= input_devices_seq_start
,
1203 .next
= input_devices_seq_next
,
1204 .stop
= input_seq_stop
,
1205 .show
= input_devices_seq_show
,
1208 static int input_proc_devices_open(struct inode
*inode
, struct file
*file
)
1210 return seq_open(file
, &input_devices_seq_ops
);
1213 static const struct file_operations input_devices_fileops
= {
1214 .owner
= THIS_MODULE
,
1215 .open
= input_proc_devices_open
,
1216 .poll
= input_proc_devices_poll
,
1218 .llseek
= seq_lseek
,
1219 .release
= seq_release
,
1222 static void *input_handlers_seq_start(struct seq_file
*seq
, loff_t
*pos
)
1224 union input_seq_state
*state
= (union input_seq_state
*)&seq
->private;
1227 /* We need to fit into seq->private pointer */
1228 BUILD_BUG_ON(sizeof(union input_seq_state
) != sizeof(seq
->private));
1230 error
= mutex_lock_interruptible(&input_mutex
);
1232 state
->mutex_acquired
= false;
1233 return ERR_PTR(error
);
1236 state
->mutex_acquired
= true;
1239 return seq_list_start(&input_handler_list
, *pos
);
1242 static void *input_handlers_seq_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
1244 union input_seq_state
*state
= (union input_seq_state
*)&seq
->private;
1246 state
->pos
= *pos
+ 1;
1247 return seq_list_next(v
, &input_handler_list
, pos
);
1250 static int input_handlers_seq_show(struct seq_file
*seq
, void *v
)
1252 struct input_handler
*handler
= container_of(v
, struct input_handler
, node
);
1253 union input_seq_state
*state
= (union input_seq_state
*)&seq
->private;
1255 seq_printf(seq
, "N: Number=%u Name=%s", state
->pos
, handler
->name
);
1256 if (handler
->filter
)
1257 seq_puts(seq
, " (filter)");
1258 if (handler
->legacy_minors
)
1259 seq_printf(seq
, " Minor=%d", handler
->minor
);
1260 seq_putc(seq
, '\n');
1265 static const struct seq_operations input_handlers_seq_ops
= {
1266 .start
= input_handlers_seq_start
,
1267 .next
= input_handlers_seq_next
,
1268 .stop
= input_seq_stop
,
1269 .show
= input_handlers_seq_show
,
1272 static int input_proc_handlers_open(struct inode
*inode
, struct file
*file
)
1274 return seq_open(file
, &input_handlers_seq_ops
);
1277 static const struct file_operations input_handlers_fileops
= {
1278 .owner
= THIS_MODULE
,
1279 .open
= input_proc_handlers_open
,
1281 .llseek
= seq_lseek
,
1282 .release
= seq_release
,
1285 static int __init
input_proc_init(void)
1287 struct proc_dir_entry
*entry
;
1289 proc_bus_input_dir
= proc_mkdir("bus/input", NULL
);
1290 if (!proc_bus_input_dir
)
1293 entry
= proc_create("devices", 0, proc_bus_input_dir
,
1294 &input_devices_fileops
);
1298 entry
= proc_create("handlers", 0, proc_bus_input_dir
,
1299 &input_handlers_fileops
);
1305 fail2
: remove_proc_entry("devices", proc_bus_input_dir
);
1306 fail1
: remove_proc_entry("bus/input", NULL
);
1310 static void input_proc_exit(void)
1312 remove_proc_entry("devices", proc_bus_input_dir
);
1313 remove_proc_entry("handlers", proc_bus_input_dir
);
1314 remove_proc_entry("bus/input", NULL
);
1317 #else /* !CONFIG_PROC_FS */
1318 static inline void input_wakeup_procfs_readers(void) { }
1319 static inline int input_proc_init(void) { return 0; }
1320 static inline void input_proc_exit(void) { }
1323 #define INPUT_DEV_STRING_ATTR_SHOW(name) \
1324 static ssize_t input_dev_show_##name(struct device *dev, \
1325 struct device_attribute *attr, \
1328 struct input_dev *input_dev = to_input_dev(dev); \
1330 return scnprintf(buf, PAGE_SIZE, "%s\n", \
1331 input_dev->name ? input_dev->name : ""); \
1333 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL)
1335 INPUT_DEV_STRING_ATTR_SHOW(name
);
1336 INPUT_DEV_STRING_ATTR_SHOW(phys
);
1337 INPUT_DEV_STRING_ATTR_SHOW(uniq
);
1339 static int input_print_modalias_bits(char *buf
, int size
,
1340 char name
, unsigned long *bm
,
1341 unsigned int min_bit
, unsigned int max_bit
)
1345 len
+= snprintf(buf
, max(size
, 0), "%c", name
);
1346 for (i
= min_bit
; i
< max_bit
; i
++)
1347 if (bm
[BIT_WORD(i
)] & BIT_MASK(i
))
1348 len
+= snprintf(buf
+ len
, max(size
- len
, 0), "%X,", i
);
1352 static int input_print_modalias(char *buf
, int size
, struct input_dev
*id
,
1357 len
= snprintf(buf
, max(size
, 0),
1358 "input:b%04Xv%04Xp%04Xe%04X-",
1359 id
->id
.bustype
, id
->id
.vendor
,
1360 id
->id
.product
, id
->id
.version
);
1362 len
+= input_print_modalias_bits(buf
+ len
, size
- len
,
1363 'e', id
->evbit
, 0, EV_MAX
);
1364 len
+= input_print_modalias_bits(buf
+ len
, size
- len
,
1365 'k', id
->keybit
, KEY_MIN_INTERESTING
, KEY_MAX
);
1366 len
+= input_print_modalias_bits(buf
+ len
, size
- len
,
1367 'r', id
->relbit
, 0, REL_MAX
);
1368 len
+= input_print_modalias_bits(buf
+ len
, size
- len
,
1369 'a', id
->absbit
, 0, ABS_MAX
);
1370 len
+= input_print_modalias_bits(buf
+ len
, size
- len
,
1371 'm', id
->mscbit
, 0, MSC_MAX
);
1372 len
+= input_print_modalias_bits(buf
+ len
, size
- len
,
1373 'l', id
->ledbit
, 0, LED_MAX
);
1374 len
+= input_print_modalias_bits(buf
+ len
, size
- len
,
1375 's', id
->sndbit
, 0, SND_MAX
);
1376 len
+= input_print_modalias_bits(buf
+ len
, size
- len
,
1377 'f', id
->ffbit
, 0, FF_MAX
);
1378 len
+= input_print_modalias_bits(buf
+ len
, size
- len
,
1379 'w', id
->swbit
, 0, SW_MAX
);
1382 len
+= snprintf(buf
+ len
, max(size
- len
, 0), "\n");
1387 static ssize_t
input_dev_show_modalias(struct device
*dev
,
1388 struct device_attribute
*attr
,
1391 struct input_dev
*id
= to_input_dev(dev
);
1394 len
= input_print_modalias(buf
, PAGE_SIZE
, id
, 1);
1396 return min_t(int, len
, PAGE_SIZE
);
1398 static DEVICE_ATTR(modalias
, S_IRUGO
, input_dev_show_modalias
, NULL
);
1400 static int input_print_bitmap(char *buf
, int buf_size
, unsigned long *bitmap
,
1401 int max
, int add_cr
);
1403 static ssize_t
input_dev_show_properties(struct device
*dev
,
1404 struct device_attribute
*attr
,
1407 struct input_dev
*input_dev
= to_input_dev(dev
);
1408 int len
= input_print_bitmap(buf
, PAGE_SIZE
, input_dev
->propbit
,
1409 INPUT_PROP_MAX
, true);
1410 return min_t(int, len
, PAGE_SIZE
);
1412 static DEVICE_ATTR(properties
, S_IRUGO
, input_dev_show_properties
, NULL
);
1414 static struct attribute
*input_dev_attrs
[] = {
1415 &dev_attr_name
.attr
,
1416 &dev_attr_phys
.attr
,
1417 &dev_attr_uniq
.attr
,
1418 &dev_attr_modalias
.attr
,
1419 &dev_attr_properties
.attr
,
1423 static const struct attribute_group input_dev_attr_group
= {
1424 .attrs
= input_dev_attrs
,
1427 #define INPUT_DEV_ID_ATTR(name) \
1428 static ssize_t input_dev_show_id_##name(struct device *dev, \
1429 struct device_attribute *attr, \
1432 struct input_dev *input_dev = to_input_dev(dev); \
1433 return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name); \
1435 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL)
1437 INPUT_DEV_ID_ATTR(bustype
);
1438 INPUT_DEV_ID_ATTR(vendor
);
1439 INPUT_DEV_ID_ATTR(product
);
1440 INPUT_DEV_ID_ATTR(version
);
1442 static struct attribute
*input_dev_id_attrs
[] = {
1443 &dev_attr_bustype
.attr
,
1444 &dev_attr_vendor
.attr
,
1445 &dev_attr_product
.attr
,
1446 &dev_attr_version
.attr
,
1450 static const struct attribute_group input_dev_id_attr_group
= {
1452 .attrs
= input_dev_id_attrs
,
1455 static int input_print_bitmap(char *buf
, int buf_size
, unsigned long *bitmap
,
1456 int max
, int add_cr
)
1460 bool skip_empty
= true;
1462 for (i
= BITS_TO_LONGS(max
) - 1; i
>= 0; i
--) {
1463 len
+= input_bits_to_string(buf
+ len
, max(buf_size
- len
, 0),
1464 bitmap
[i
], skip_empty
);
1468 len
+= snprintf(buf
+ len
, max(buf_size
- len
, 0), " ");
1473 * If no output was produced print a single 0.
1476 len
= snprintf(buf
, buf_size
, "%d", 0);
1479 len
+= snprintf(buf
+ len
, max(buf_size
- len
, 0), "\n");
1484 #define INPUT_DEV_CAP_ATTR(ev, bm) \
1485 static ssize_t input_dev_show_cap_##bm(struct device *dev, \
1486 struct device_attribute *attr, \
1489 struct input_dev *input_dev = to_input_dev(dev); \
1490 int len = input_print_bitmap(buf, PAGE_SIZE, \
1491 input_dev->bm##bit, ev##_MAX, \
1493 return min_t(int, len, PAGE_SIZE); \
1495 static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL)
1497 INPUT_DEV_CAP_ATTR(EV
, ev
);
1498 INPUT_DEV_CAP_ATTR(KEY
, key
);
1499 INPUT_DEV_CAP_ATTR(REL
, rel
);
1500 INPUT_DEV_CAP_ATTR(ABS
, abs
);
1501 INPUT_DEV_CAP_ATTR(MSC
, msc
);
1502 INPUT_DEV_CAP_ATTR(LED
, led
);
1503 INPUT_DEV_CAP_ATTR(SND
, snd
);
1504 INPUT_DEV_CAP_ATTR(FF
, ff
);
1505 INPUT_DEV_CAP_ATTR(SW
, sw
);
1507 static struct attribute
*input_dev_caps_attrs
[] = {
1520 static const struct attribute_group input_dev_caps_attr_group
= {
1521 .name
= "capabilities",
1522 .attrs
= input_dev_caps_attrs
,
1525 static const struct attribute_group
*input_dev_attr_groups
[] = {
1526 &input_dev_attr_group
,
1527 &input_dev_id_attr_group
,
1528 &input_dev_caps_attr_group
,
1529 &input_poller_attribute_group
,
1533 static void input_dev_release(struct device
*device
)
1535 struct input_dev
*dev
= to_input_dev(device
);
1537 input_ff_destroy(dev
);
1538 input_mt_destroy_slots(dev
);
1540 kfree(dev
->absinfo
);
1544 module_put(THIS_MODULE
);
1548 * Input uevent interface - loading event handlers based on
1551 static int input_add_uevent_bm_var(struct kobj_uevent_env
*env
,
1552 const char *name
, unsigned long *bitmap
, int max
)
1556 if (add_uevent_var(env
, "%s", name
))
1559 len
= input_print_bitmap(&env
->buf
[env
->buflen
- 1],
1560 sizeof(env
->buf
) - env
->buflen
,
1561 bitmap
, max
, false);
1562 if (len
>= (sizeof(env
->buf
) - env
->buflen
))
1569 static int input_add_uevent_modalias_var(struct kobj_uevent_env
*env
,
1570 struct input_dev
*dev
)
1574 if (add_uevent_var(env
, "MODALIAS="))
1577 len
= input_print_modalias(&env
->buf
[env
->buflen
- 1],
1578 sizeof(env
->buf
) - env
->buflen
,
1580 if (len
>= (sizeof(env
->buf
) - env
->buflen
))
1587 #define INPUT_ADD_HOTPLUG_VAR(fmt, val...) \
1589 int err = add_uevent_var(env, fmt, val); \
1594 #define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max) \
1596 int err = input_add_uevent_bm_var(env, name, bm, max); \
1601 #define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev) \
1603 int err = input_add_uevent_modalias_var(env, dev); \
1608 static int input_dev_uevent(struct device
*device
, struct kobj_uevent_env
*env
)
1610 struct input_dev
*dev
= to_input_dev(device
);
1612 INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x",
1613 dev
->id
.bustype
, dev
->id
.vendor
,
1614 dev
->id
.product
, dev
->id
.version
);
1616 INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev
->name
);
1618 INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev
->phys
);
1620 INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev
->uniq
);
1622 INPUT_ADD_HOTPLUG_BM_VAR("PROP=", dev
->propbit
, INPUT_PROP_MAX
);
1624 INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev
->evbit
, EV_MAX
);
1625 if (test_bit(EV_KEY
, dev
->evbit
))
1626 INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev
->keybit
, KEY_MAX
);
1627 if (test_bit(EV_REL
, dev
->evbit
))
1628 INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev
->relbit
, REL_MAX
);
1629 if (test_bit(EV_ABS
, dev
->evbit
))
1630 INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev
->absbit
, ABS_MAX
);
1631 if (test_bit(EV_MSC
, dev
->evbit
))
1632 INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev
->mscbit
, MSC_MAX
);
1633 if (test_bit(EV_LED
, dev
->evbit
))
1634 INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev
->ledbit
, LED_MAX
);
1635 if (test_bit(EV_SND
, dev
->evbit
))
1636 INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev
->sndbit
, SND_MAX
);
1637 if (test_bit(EV_FF
, dev
->evbit
))
1638 INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev
->ffbit
, FF_MAX
);
1639 if (test_bit(EV_SW
, dev
->evbit
))
1640 INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev
->swbit
, SW_MAX
);
1642 INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev
);
1647 #define INPUT_DO_TOGGLE(dev, type, bits, on) \
1652 if (!test_bit(EV_##type, dev->evbit)) \
1655 for_each_set_bit(i, dev->bits##bit, type##_CNT) { \
1656 active = test_bit(i, dev->bits); \
1657 if (!active && !on) \
1660 dev->event(dev, EV_##type, i, on ? active : 0); \
1664 static void input_dev_toggle(struct input_dev
*dev
, bool activate
)
1669 INPUT_DO_TOGGLE(dev
, LED
, led
, activate
);
1670 INPUT_DO_TOGGLE(dev
, SND
, snd
, activate
);
1672 if (activate
&& test_bit(EV_REP
, dev
->evbit
)) {
1673 dev
->event(dev
, EV_REP
, REP_PERIOD
, dev
->rep
[REP_PERIOD
]);
1674 dev
->event(dev
, EV_REP
, REP_DELAY
, dev
->rep
[REP_DELAY
]);
1679 * input_reset_device() - reset/restore the state of input device
1680 * @dev: input device whose state needs to be reset
1682 * This function tries to reset the state of an opened input device and
1683 * bring internal state and state if the hardware in sync with each other.
1684 * We mark all keys as released, restore LED state, repeat rate, etc.
1686 void input_reset_device(struct input_dev
*dev
)
1688 unsigned long flags
;
1690 mutex_lock(&dev
->mutex
);
1691 spin_lock_irqsave(&dev
->event_lock
, flags
);
1693 input_dev_toggle(dev
, true);
1694 input_dev_release_keys(dev
);
1696 spin_unlock_irqrestore(&dev
->event_lock
, flags
);
1697 mutex_unlock(&dev
->mutex
);
1699 EXPORT_SYMBOL(input_reset_device
);
1701 #ifdef CONFIG_PM_SLEEP
1702 static int input_dev_suspend(struct device
*dev
)
1704 struct input_dev
*input_dev
= to_input_dev(dev
);
1706 spin_lock_irq(&input_dev
->event_lock
);
1709 * Keys that are pressed now are unlikely to be
1710 * still pressed when we resume.
1712 input_dev_release_keys(input_dev
);
1714 /* Turn off LEDs and sounds, if any are active. */
1715 input_dev_toggle(input_dev
, false);
1717 spin_unlock_irq(&input_dev
->event_lock
);
1722 static int input_dev_resume(struct device
*dev
)
1724 struct input_dev
*input_dev
= to_input_dev(dev
);
1726 spin_lock_irq(&input_dev
->event_lock
);
1728 /* Restore state of LEDs and sounds, if any were active. */
1729 input_dev_toggle(input_dev
, true);
1731 spin_unlock_irq(&input_dev
->event_lock
);
1736 static int input_dev_freeze(struct device
*dev
)
1738 struct input_dev
*input_dev
= to_input_dev(dev
);
1740 spin_lock_irq(&input_dev
->event_lock
);
1743 * Keys that are pressed now are unlikely to be
1744 * still pressed when we resume.
1746 input_dev_release_keys(input_dev
);
1748 spin_unlock_irq(&input_dev
->event_lock
);
1753 static int input_dev_poweroff(struct device
*dev
)
1755 struct input_dev
*input_dev
= to_input_dev(dev
);
1757 spin_lock_irq(&input_dev
->event_lock
);
1759 /* Turn off LEDs and sounds, if any are active. */
1760 input_dev_toggle(input_dev
, false);
1762 spin_unlock_irq(&input_dev
->event_lock
);
1767 static const struct dev_pm_ops input_dev_pm_ops
= {
1768 .suspend
= input_dev_suspend
,
1769 .resume
= input_dev_resume
,
1770 .freeze
= input_dev_freeze
,
1771 .poweroff
= input_dev_poweroff
,
1772 .restore
= input_dev_resume
,
1774 #endif /* CONFIG_PM */
1776 static const struct device_type input_dev_type
= {
1777 .groups
= input_dev_attr_groups
,
1778 .release
= input_dev_release
,
1779 .uevent
= input_dev_uevent
,
1780 #ifdef CONFIG_PM_SLEEP
1781 .pm
= &input_dev_pm_ops
,
1785 static char *input_devnode(struct device
*dev
, umode_t
*mode
)
1787 return kasprintf(GFP_KERNEL
, "input/%s", dev_name(dev
));
1790 struct class input_class
= {
1792 .devnode
= input_devnode
,
1794 EXPORT_SYMBOL_GPL(input_class
);
1797 * input_allocate_device - allocate memory for new input device
1799 * Returns prepared struct input_dev or %NULL.
1801 * NOTE: Use input_free_device() to free devices that have not been
1802 * registered; input_unregister_device() should be used for already
1803 * registered devices.
1805 struct input_dev
*input_allocate_device(void)
1807 static atomic_t input_no
= ATOMIC_INIT(-1);
1808 struct input_dev
*dev
;
1810 dev
= kzalloc(sizeof(*dev
), GFP_KERNEL
);
1812 dev
->dev
.type
= &input_dev_type
;
1813 dev
->dev
.class = &input_class
;
1814 device_initialize(&dev
->dev
);
1815 mutex_init(&dev
->mutex
);
1816 spin_lock_init(&dev
->event_lock
);
1817 timer_setup(&dev
->timer
, NULL
, 0);
1818 INIT_LIST_HEAD(&dev
->h_list
);
1819 INIT_LIST_HEAD(&dev
->node
);
1821 dev_set_name(&dev
->dev
, "input%lu",
1822 (unsigned long)atomic_inc_return(&input_no
));
1824 __module_get(THIS_MODULE
);
1829 EXPORT_SYMBOL(input_allocate_device
);
1831 struct input_devres
{
1832 struct input_dev
*input
;
1835 static int devm_input_device_match(struct device
*dev
, void *res
, void *data
)
1837 struct input_devres
*devres
= res
;
1839 return devres
->input
== data
;
1842 static void devm_input_device_release(struct device
*dev
, void *res
)
1844 struct input_devres
*devres
= res
;
1845 struct input_dev
*input
= devres
->input
;
1847 dev_dbg(dev
, "%s: dropping reference to %s\n",
1848 __func__
, dev_name(&input
->dev
));
1849 input_put_device(input
);
1853 * devm_input_allocate_device - allocate managed input device
1854 * @dev: device owning the input device being created
1856 * Returns prepared struct input_dev or %NULL.
1858 * Managed input devices do not need to be explicitly unregistered or
1859 * freed as it will be done automatically when owner device unbinds from
1860 * its driver (or binding fails). Once managed input device is allocated,
1861 * it is ready to be set up and registered in the same fashion as regular
1862 * input device. There are no special devm_input_device_[un]register()
1863 * variants, regular ones work with both managed and unmanaged devices,
1864 * should you need them. In most cases however, managed input device need
1865 * not be explicitly unregistered or freed.
1867 * NOTE: the owner device is set up as parent of input device and users
1868 * should not override it.
1870 struct input_dev
*devm_input_allocate_device(struct device
*dev
)
1872 struct input_dev
*input
;
1873 struct input_devres
*devres
;
1875 devres
= devres_alloc(devm_input_device_release
,
1876 sizeof(*devres
), GFP_KERNEL
);
1880 input
= input_allocate_device();
1882 devres_free(devres
);
1886 input
->dev
.parent
= dev
;
1887 input
->devres_managed
= true;
1889 devres
->input
= input
;
1890 devres_add(dev
, devres
);
1894 EXPORT_SYMBOL(devm_input_allocate_device
);
1897 * input_free_device - free memory occupied by input_dev structure
1898 * @dev: input device to free
1900 * This function should only be used if input_register_device()
1901 * was not called yet or if it failed. Once device was registered
1902 * use input_unregister_device() and memory will be freed once last
1903 * reference to the device is dropped.
1905 * Device should be allocated by input_allocate_device().
1907 * NOTE: If there are references to the input device then memory
1908 * will not be freed until last reference is dropped.
1910 void input_free_device(struct input_dev
*dev
)
1913 if (dev
->devres_managed
)
1914 WARN_ON(devres_destroy(dev
->dev
.parent
,
1915 devm_input_device_release
,
1916 devm_input_device_match
,
1918 input_put_device(dev
);
1921 EXPORT_SYMBOL(input_free_device
);
1924 * input_set_timestamp - set timestamp for input events
1925 * @dev: input device to set timestamp for
1926 * @timestamp: the time at which the event has occurred
1927 * in CLOCK_MONOTONIC
1929 * This function is intended to provide to the input system a more
1930 * accurate time of when an event actually occurred. The driver should
1931 * call this function as soon as a timestamp is acquired ensuring
1932 * clock conversions in input_set_timestamp are done correctly.
1934 * The system entering suspend state between timestamp acquisition and
1935 * calling input_set_timestamp can result in inaccurate conversions.
1937 void input_set_timestamp(struct input_dev
*dev
, ktime_t timestamp
)
1939 dev
->timestamp
[INPUT_CLK_MONO
] = timestamp
;
1940 dev
->timestamp
[INPUT_CLK_REAL
] = ktime_mono_to_real(timestamp
);
1941 dev
->timestamp
[INPUT_CLK_BOOT
] = ktime_mono_to_any(timestamp
,
1944 EXPORT_SYMBOL(input_set_timestamp
);
1947 * input_get_timestamp - get timestamp for input events
1948 * @dev: input device to get timestamp from
1950 * A valid timestamp is a timestamp of non-zero value.
1952 ktime_t
*input_get_timestamp(struct input_dev
*dev
)
1954 const ktime_t invalid_timestamp
= ktime_set(0, 0);
1956 if (!ktime_compare(dev
->timestamp
[INPUT_CLK_MONO
], invalid_timestamp
))
1957 input_set_timestamp(dev
, ktime_get());
1959 return dev
->timestamp
;
1961 EXPORT_SYMBOL(input_get_timestamp
);
1964 * input_set_capability - mark device as capable of a certain event
1965 * @dev: device that is capable of emitting or accepting event
1966 * @type: type of the event (EV_KEY, EV_REL, etc...)
1969 * In addition to setting up corresponding bit in appropriate capability
1970 * bitmap the function also adjusts dev->evbit.
1972 void input_set_capability(struct input_dev
*dev
, unsigned int type
, unsigned int code
)
1976 __set_bit(code
, dev
->keybit
);
1980 __set_bit(code
, dev
->relbit
);
1984 input_alloc_absinfo(dev
);
1988 __set_bit(code
, dev
->absbit
);
1992 __set_bit(code
, dev
->mscbit
);
1996 __set_bit(code
, dev
->swbit
);
2000 __set_bit(code
, dev
->ledbit
);
2004 __set_bit(code
, dev
->sndbit
);
2008 __set_bit(code
, dev
->ffbit
);
2016 pr_err("%s: unknown type %u (code %u)\n", __func__
, type
, code
);
2021 __set_bit(type
, dev
->evbit
);
2023 EXPORT_SYMBOL(input_set_capability
);
2025 static unsigned int input_estimate_events_per_packet(struct input_dev
*dev
)
2029 unsigned int events
;
2032 mt_slots
= dev
->mt
->num_slots
;
2033 } else if (test_bit(ABS_MT_TRACKING_ID
, dev
->absbit
)) {
2034 mt_slots
= dev
->absinfo
[ABS_MT_TRACKING_ID
].maximum
-
2035 dev
->absinfo
[ABS_MT_TRACKING_ID
].minimum
+ 1,
2036 mt_slots
= clamp(mt_slots
, 2, 32);
2037 } else if (test_bit(ABS_MT_POSITION_X
, dev
->absbit
)) {
2043 events
= mt_slots
+ 1; /* count SYN_MT_REPORT and SYN_REPORT */
2045 if (test_bit(EV_ABS
, dev
->evbit
))
2046 for_each_set_bit(i
, dev
->absbit
, ABS_CNT
)
2047 events
+= input_is_mt_axis(i
) ? mt_slots
: 1;
2049 if (test_bit(EV_REL
, dev
->evbit
))
2050 events
+= bitmap_weight(dev
->relbit
, REL_CNT
);
2052 /* Make room for KEY and MSC events */
2058 #define INPUT_CLEANSE_BITMASK(dev, type, bits) \
2060 if (!test_bit(EV_##type, dev->evbit)) \
2061 memset(dev->bits##bit, 0, \
2062 sizeof(dev->bits##bit)); \
2065 static void input_cleanse_bitmasks(struct input_dev
*dev
)
2067 INPUT_CLEANSE_BITMASK(dev
, KEY
, key
);
2068 INPUT_CLEANSE_BITMASK(dev
, REL
, rel
);
2069 INPUT_CLEANSE_BITMASK(dev
, ABS
, abs
);
2070 INPUT_CLEANSE_BITMASK(dev
, MSC
, msc
);
2071 INPUT_CLEANSE_BITMASK(dev
, LED
, led
);
2072 INPUT_CLEANSE_BITMASK(dev
, SND
, snd
);
2073 INPUT_CLEANSE_BITMASK(dev
, FF
, ff
);
2074 INPUT_CLEANSE_BITMASK(dev
, SW
, sw
);
2077 static void __input_unregister_device(struct input_dev
*dev
)
2079 struct input_handle
*handle
, *next
;
2081 input_disconnect_device(dev
);
2083 mutex_lock(&input_mutex
);
2085 list_for_each_entry_safe(handle
, next
, &dev
->h_list
, d_node
)
2086 handle
->handler
->disconnect(handle
);
2087 WARN_ON(!list_empty(&dev
->h_list
));
2089 del_timer_sync(&dev
->timer
);
2090 list_del_init(&dev
->node
);
2092 input_wakeup_procfs_readers();
2094 mutex_unlock(&input_mutex
);
2096 device_del(&dev
->dev
);
2099 static void devm_input_device_unregister(struct device
*dev
, void *res
)
2101 struct input_devres
*devres
= res
;
2102 struct input_dev
*input
= devres
->input
;
2104 dev_dbg(dev
, "%s: unregistering device %s\n",
2105 __func__
, dev_name(&input
->dev
));
2106 __input_unregister_device(input
);
2110 * input_enable_softrepeat - enable software autorepeat
2111 * @dev: input device
2112 * @delay: repeat delay
2113 * @period: repeat period
2115 * Enable software autorepeat on the input device.
2117 void input_enable_softrepeat(struct input_dev
*dev
, int delay
, int period
)
2119 dev
->timer
.function
= input_repeat_key
;
2120 dev
->rep
[REP_DELAY
] = delay
;
2121 dev
->rep
[REP_PERIOD
] = period
;
2123 EXPORT_SYMBOL(input_enable_softrepeat
);
2126 * input_register_device - register device with input core
2127 * @dev: device to be registered
2129 * This function registers device with input core. The device must be
2130 * allocated with input_allocate_device() and all it's capabilities
2131 * set up before registering.
2132 * If function fails the device must be freed with input_free_device().
2133 * Once device has been successfully registered it can be unregistered
2134 * with input_unregister_device(); input_free_device() should not be
2135 * called in this case.
2137 * Note that this function is also used to register managed input devices
2138 * (ones allocated with devm_input_allocate_device()). Such managed input
2139 * devices need not be explicitly unregistered or freed, their tear down
2140 * is controlled by the devres infrastructure. It is also worth noting
2141 * that tear down of managed input devices is internally a 2-step process:
2142 * registered managed input device is first unregistered, but stays in
2143 * memory and can still handle input_event() calls (although events will
2144 * not be delivered anywhere). The freeing of managed input device will
2145 * happen later, when devres stack is unwound to the point where device
2146 * allocation was made.
2148 int input_register_device(struct input_dev
*dev
)
2150 struct input_devres
*devres
= NULL
;
2151 struct input_handler
*handler
;
2152 unsigned int packet_size
;
2156 if (test_bit(EV_ABS
, dev
->evbit
) && !dev
->absinfo
) {
2158 "Absolute device without dev->absinfo, refusing to register\n");
2162 if (dev
->devres_managed
) {
2163 devres
= devres_alloc(devm_input_device_unregister
,
2164 sizeof(*devres
), GFP_KERNEL
);
2168 devres
->input
= dev
;
2171 /* Every input device generates EV_SYN/SYN_REPORT events. */
2172 __set_bit(EV_SYN
, dev
->evbit
);
2174 /* KEY_RESERVED is not supposed to be transmitted to userspace. */
2175 __clear_bit(KEY_RESERVED
, dev
->keybit
);
2177 /* Make sure that bitmasks not mentioned in dev->evbit are clean. */
2178 input_cleanse_bitmasks(dev
);
2180 packet_size
= input_estimate_events_per_packet(dev
);
2181 if (dev
->hint_events_per_packet
< packet_size
)
2182 dev
->hint_events_per_packet
= packet_size
;
2184 dev
->max_vals
= dev
->hint_events_per_packet
+ 2;
2185 dev
->vals
= kcalloc(dev
->max_vals
, sizeof(*dev
->vals
), GFP_KERNEL
);
2188 goto err_devres_free
;
2192 * If delay and period are pre-set by the driver, then autorepeating
2193 * is handled by the driver itself and we don't do it in input.c.
2195 if (!dev
->rep
[REP_DELAY
] && !dev
->rep
[REP_PERIOD
])
2196 input_enable_softrepeat(dev
, 250, 33);
2198 if (!dev
->getkeycode
)
2199 dev
->getkeycode
= input_default_getkeycode
;
2201 if (!dev
->setkeycode
)
2202 dev
->setkeycode
= input_default_setkeycode
;
2205 input_dev_poller_finalize(dev
->poller
);
2207 error
= device_add(&dev
->dev
);
2211 path
= kobject_get_path(&dev
->dev
.kobj
, GFP_KERNEL
);
2212 pr_info("%s as %s\n",
2213 dev
->name
? dev
->name
: "Unspecified device",
2214 path
? path
: "N/A");
2217 error
= mutex_lock_interruptible(&input_mutex
);
2219 goto err_device_del
;
2221 list_add_tail(&dev
->node
, &input_dev_list
);
2223 list_for_each_entry(handler
, &input_handler_list
, node
)
2224 input_attach_handler(dev
, handler
);
2226 input_wakeup_procfs_readers();
2228 mutex_unlock(&input_mutex
);
2230 if (dev
->devres_managed
) {
2231 dev_dbg(dev
->dev
.parent
, "%s: registering %s with devres.\n",
2232 __func__
, dev_name(&dev
->dev
));
2233 devres_add(dev
->dev
.parent
, devres
);
2238 device_del(&dev
->dev
);
2243 devres_free(devres
);
2246 EXPORT_SYMBOL(input_register_device
);
2249 * input_unregister_device - unregister previously registered device
2250 * @dev: device to be unregistered
2252 * This function unregisters an input device. Once device is unregistered
2253 * the caller should not try to access it as it may get freed at any moment.
2255 void input_unregister_device(struct input_dev
*dev
)
2257 if (dev
->devres_managed
) {
2258 WARN_ON(devres_destroy(dev
->dev
.parent
,
2259 devm_input_device_unregister
,
2260 devm_input_device_match
,
2262 __input_unregister_device(dev
);
2264 * We do not do input_put_device() here because it will be done
2265 * when 2nd devres fires up.
2268 __input_unregister_device(dev
);
2269 input_put_device(dev
);
2272 EXPORT_SYMBOL(input_unregister_device
);
2275 * input_register_handler - register a new input handler
2276 * @handler: handler to be registered
2278 * This function registers a new input handler (interface) for input
2279 * devices in the system and attaches it to all input devices that
2280 * are compatible with the handler.
2282 int input_register_handler(struct input_handler
*handler
)
2284 struct input_dev
*dev
;
2287 error
= mutex_lock_interruptible(&input_mutex
);
2291 INIT_LIST_HEAD(&handler
->h_list
);
2293 list_add_tail(&handler
->node
, &input_handler_list
);
2295 list_for_each_entry(dev
, &input_dev_list
, node
)
2296 input_attach_handler(dev
, handler
);
2298 input_wakeup_procfs_readers();
2300 mutex_unlock(&input_mutex
);
2303 EXPORT_SYMBOL(input_register_handler
);
2306 * input_unregister_handler - unregisters an input handler
2307 * @handler: handler to be unregistered
2309 * This function disconnects a handler from its input devices and
2310 * removes it from lists of known handlers.
2312 void input_unregister_handler(struct input_handler
*handler
)
2314 struct input_handle
*handle
, *next
;
2316 mutex_lock(&input_mutex
);
2318 list_for_each_entry_safe(handle
, next
, &handler
->h_list
, h_node
)
2319 handler
->disconnect(handle
);
2320 WARN_ON(!list_empty(&handler
->h_list
));
2322 list_del_init(&handler
->node
);
2324 input_wakeup_procfs_readers();
2326 mutex_unlock(&input_mutex
);
2328 EXPORT_SYMBOL(input_unregister_handler
);
2331 * input_handler_for_each_handle - handle iterator
2332 * @handler: input handler to iterate
2333 * @data: data for the callback
2334 * @fn: function to be called for each handle
2336 * Iterate over @bus's list of devices, and call @fn for each, passing
2337 * it @data and stop when @fn returns a non-zero value. The function is
2338 * using RCU to traverse the list and therefore may be using in atomic
2339 * contexts. The @fn callback is invoked from RCU critical section and
2340 * thus must not sleep.
2342 int input_handler_for_each_handle(struct input_handler
*handler
, void *data
,
2343 int (*fn
)(struct input_handle
*, void *))
2345 struct input_handle
*handle
;
2350 list_for_each_entry_rcu(handle
, &handler
->h_list
, h_node
) {
2351 retval
= fn(handle
, data
);
2360 EXPORT_SYMBOL(input_handler_for_each_handle
);
2363 * input_register_handle - register a new input handle
2364 * @handle: handle to register
2366 * This function puts a new input handle onto device's
2367 * and handler's lists so that events can flow through
2368 * it once it is opened using input_open_device().
2370 * This function is supposed to be called from handler's
2373 int input_register_handle(struct input_handle
*handle
)
2375 struct input_handler
*handler
= handle
->handler
;
2376 struct input_dev
*dev
= handle
->dev
;
2380 * We take dev->mutex here to prevent race with
2381 * input_release_device().
2383 error
= mutex_lock_interruptible(&dev
->mutex
);
2388 * Filters go to the head of the list, normal handlers
2391 if (handler
->filter
)
2392 list_add_rcu(&handle
->d_node
, &dev
->h_list
);
2394 list_add_tail_rcu(&handle
->d_node
, &dev
->h_list
);
2396 mutex_unlock(&dev
->mutex
);
2399 * Since we are supposed to be called from ->connect()
2400 * which is mutually exclusive with ->disconnect()
2401 * we can't be racing with input_unregister_handle()
2402 * and so separate lock is not needed here.
2404 list_add_tail_rcu(&handle
->h_node
, &handler
->h_list
);
2407 handler
->start(handle
);
2411 EXPORT_SYMBOL(input_register_handle
);
2414 * input_unregister_handle - unregister an input handle
2415 * @handle: handle to unregister
2417 * This function removes input handle from device's
2418 * and handler's lists.
2420 * This function is supposed to be called from handler's
2421 * disconnect() method.
2423 void input_unregister_handle(struct input_handle
*handle
)
2425 struct input_dev
*dev
= handle
->dev
;
2427 list_del_rcu(&handle
->h_node
);
2430 * Take dev->mutex to prevent race with input_release_device().
2432 mutex_lock(&dev
->mutex
);
2433 list_del_rcu(&handle
->d_node
);
2434 mutex_unlock(&dev
->mutex
);
2438 EXPORT_SYMBOL(input_unregister_handle
);
2441 * input_get_new_minor - allocates a new input minor number
2442 * @legacy_base: beginning or the legacy range to be searched
2443 * @legacy_num: size of legacy range
2444 * @allow_dynamic: whether we can also take ID from the dynamic range
2446 * This function allocates a new device minor for from input major namespace.
2447 * Caller can request legacy minor by specifying @legacy_base and @legacy_num
2448 * parameters and whether ID can be allocated from dynamic range if there are
2449 * no free IDs in legacy range.
2451 int input_get_new_minor(int legacy_base
, unsigned int legacy_num
,
2455 * This function should be called from input handler's ->connect()
2456 * methods, which are serialized with input_mutex, so no additional
2457 * locking is needed here.
2459 if (legacy_base
>= 0) {
2460 int minor
= ida_simple_get(&input_ida
,
2462 legacy_base
+ legacy_num
,
2464 if (minor
>= 0 || !allow_dynamic
)
2468 return ida_simple_get(&input_ida
,
2469 INPUT_FIRST_DYNAMIC_DEV
, INPUT_MAX_CHAR_DEVICES
,
2472 EXPORT_SYMBOL(input_get_new_minor
);
2475 * input_free_minor - release previously allocated minor
2476 * @minor: minor to be released
2478 * This function releases previously allocated input minor so that it can be
2481 void input_free_minor(unsigned int minor
)
2483 ida_simple_remove(&input_ida
, minor
);
2485 EXPORT_SYMBOL(input_free_minor
);
2487 static int __init
input_init(void)
2491 err
= class_register(&input_class
);
2493 pr_err("unable to register input_dev class\n");
2497 err
= input_proc_init();
2501 err
= register_chrdev_region(MKDEV(INPUT_MAJOR
, 0),
2502 INPUT_MAX_CHAR_DEVICES
, "input");
2504 pr_err("unable to register char major %d", INPUT_MAJOR
);
2510 fail2
: input_proc_exit();
2511 fail1
: class_unregister(&input_class
);
2515 static void __exit
input_exit(void)
2518 unregister_chrdev_region(MKDEV(INPUT_MAJOR
, 0),
2519 INPUT_MAX_CHAR_DEVICES
);
2520 class_unregister(&input_class
);
2523 subsys_initcall(input_init
);
2524 module_exit(input_exit
);