interconnect: qcom: Fix Kconfig indentation
[linux/fpc-iii.git] / drivers / nvme / host / fc.c
blob679a721ae229aaaf8432dc7206f4adbd3f305ec6
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2016 Avago Technologies. All rights reserved.
4 */
5 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
6 #include <linux/module.h>
7 #include <linux/parser.h>
8 #include <uapi/scsi/fc/fc_fs.h>
9 #include <uapi/scsi/fc/fc_els.h>
10 #include <linux/delay.h>
11 #include <linux/overflow.h>
13 #include "nvme.h"
14 #include "fabrics.h"
15 #include <linux/nvme-fc-driver.h>
16 #include <linux/nvme-fc.h>
17 #include <scsi/scsi_transport_fc.h>
19 /* *************************** Data Structures/Defines ****************** */
22 enum nvme_fc_queue_flags {
23 NVME_FC_Q_CONNECTED = 0,
24 NVME_FC_Q_LIVE,
27 #define NVME_FC_DEFAULT_DEV_LOSS_TMO 60 /* seconds */
29 struct nvme_fc_queue {
30 struct nvme_fc_ctrl *ctrl;
31 struct device *dev;
32 struct blk_mq_hw_ctx *hctx;
33 void *lldd_handle;
34 size_t cmnd_capsule_len;
35 u32 qnum;
36 u32 rqcnt;
37 u32 seqno;
39 u64 connection_id;
40 atomic_t csn;
42 unsigned long flags;
43 } __aligned(sizeof(u64)); /* alignment for other things alloc'd with */
45 enum nvme_fcop_flags {
46 FCOP_FLAGS_TERMIO = (1 << 0),
47 FCOP_FLAGS_AEN = (1 << 1),
50 struct nvmefc_ls_req_op {
51 struct nvmefc_ls_req ls_req;
53 struct nvme_fc_rport *rport;
54 struct nvme_fc_queue *queue;
55 struct request *rq;
56 u32 flags;
58 int ls_error;
59 struct completion ls_done;
60 struct list_head lsreq_list; /* rport->ls_req_list */
61 bool req_queued;
64 enum nvme_fcpop_state {
65 FCPOP_STATE_UNINIT = 0,
66 FCPOP_STATE_IDLE = 1,
67 FCPOP_STATE_ACTIVE = 2,
68 FCPOP_STATE_ABORTED = 3,
69 FCPOP_STATE_COMPLETE = 4,
72 struct nvme_fc_fcp_op {
73 struct nvme_request nreq; /*
74 * nvme/host/core.c
75 * requires this to be
76 * the 1st element in the
77 * private structure
78 * associated with the
79 * request.
81 struct nvmefc_fcp_req fcp_req;
83 struct nvme_fc_ctrl *ctrl;
84 struct nvme_fc_queue *queue;
85 struct request *rq;
87 atomic_t state;
88 u32 flags;
89 u32 rqno;
90 u32 nents;
92 struct nvme_fc_cmd_iu cmd_iu;
93 struct nvme_fc_ersp_iu rsp_iu;
96 struct nvme_fcp_op_w_sgl {
97 struct nvme_fc_fcp_op op;
98 struct scatterlist sgl[SG_CHUNK_SIZE];
99 uint8_t priv[0];
102 struct nvme_fc_lport {
103 struct nvme_fc_local_port localport;
105 struct ida endp_cnt;
106 struct list_head port_list; /* nvme_fc_port_list */
107 struct list_head endp_list;
108 struct device *dev; /* physical device for dma */
109 struct nvme_fc_port_template *ops;
110 struct kref ref;
111 atomic_t act_rport_cnt;
112 } __aligned(sizeof(u64)); /* alignment for other things alloc'd with */
114 struct nvme_fc_rport {
115 struct nvme_fc_remote_port remoteport;
117 struct list_head endp_list; /* for lport->endp_list */
118 struct list_head ctrl_list;
119 struct list_head ls_req_list;
120 struct list_head disc_list;
121 struct device *dev; /* physical device for dma */
122 struct nvme_fc_lport *lport;
123 spinlock_t lock;
124 struct kref ref;
125 atomic_t act_ctrl_cnt;
126 unsigned long dev_loss_end;
127 } __aligned(sizeof(u64)); /* alignment for other things alloc'd with */
129 enum nvme_fcctrl_flags {
130 FCCTRL_TERMIO = (1 << 0),
133 struct nvme_fc_ctrl {
134 spinlock_t lock;
135 struct nvme_fc_queue *queues;
136 struct device *dev;
137 struct nvme_fc_lport *lport;
138 struct nvme_fc_rport *rport;
139 u32 cnum;
141 bool ioq_live;
142 bool assoc_active;
143 atomic_t err_work_active;
144 u64 association_id;
146 struct list_head ctrl_list; /* rport->ctrl_list */
148 struct blk_mq_tag_set admin_tag_set;
149 struct blk_mq_tag_set tag_set;
151 struct delayed_work connect_work;
152 struct work_struct err_work;
154 struct kref ref;
155 u32 flags;
156 u32 iocnt;
157 wait_queue_head_t ioabort_wait;
159 struct nvme_fc_fcp_op aen_ops[NVME_NR_AEN_COMMANDS];
161 struct nvme_ctrl ctrl;
164 static inline struct nvme_fc_ctrl *
165 to_fc_ctrl(struct nvme_ctrl *ctrl)
167 return container_of(ctrl, struct nvme_fc_ctrl, ctrl);
170 static inline struct nvme_fc_lport *
171 localport_to_lport(struct nvme_fc_local_port *portptr)
173 return container_of(portptr, struct nvme_fc_lport, localport);
176 static inline struct nvme_fc_rport *
177 remoteport_to_rport(struct nvme_fc_remote_port *portptr)
179 return container_of(portptr, struct nvme_fc_rport, remoteport);
182 static inline struct nvmefc_ls_req_op *
183 ls_req_to_lsop(struct nvmefc_ls_req *lsreq)
185 return container_of(lsreq, struct nvmefc_ls_req_op, ls_req);
188 static inline struct nvme_fc_fcp_op *
189 fcp_req_to_fcp_op(struct nvmefc_fcp_req *fcpreq)
191 return container_of(fcpreq, struct nvme_fc_fcp_op, fcp_req);
196 /* *************************** Globals **************************** */
199 static DEFINE_SPINLOCK(nvme_fc_lock);
201 static LIST_HEAD(nvme_fc_lport_list);
202 static DEFINE_IDA(nvme_fc_local_port_cnt);
203 static DEFINE_IDA(nvme_fc_ctrl_cnt);
205 static struct workqueue_struct *nvme_fc_wq;
207 static bool nvme_fc_waiting_to_unload;
208 static DECLARE_COMPLETION(nvme_fc_unload_proceed);
211 * These items are short-term. They will eventually be moved into
212 * a generic FC class. See comments in module init.
214 static struct device *fc_udev_device;
217 /* *********************** FC-NVME Port Management ************************ */
219 static void __nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *,
220 struct nvme_fc_queue *, unsigned int);
222 static void
223 nvme_fc_free_lport(struct kref *ref)
225 struct nvme_fc_lport *lport =
226 container_of(ref, struct nvme_fc_lport, ref);
227 unsigned long flags;
229 WARN_ON(lport->localport.port_state != FC_OBJSTATE_DELETED);
230 WARN_ON(!list_empty(&lport->endp_list));
232 /* remove from transport list */
233 spin_lock_irqsave(&nvme_fc_lock, flags);
234 list_del(&lport->port_list);
235 if (nvme_fc_waiting_to_unload && list_empty(&nvme_fc_lport_list))
236 complete(&nvme_fc_unload_proceed);
237 spin_unlock_irqrestore(&nvme_fc_lock, flags);
239 ida_simple_remove(&nvme_fc_local_port_cnt, lport->localport.port_num);
240 ida_destroy(&lport->endp_cnt);
242 put_device(lport->dev);
244 kfree(lport);
247 static void
248 nvme_fc_lport_put(struct nvme_fc_lport *lport)
250 kref_put(&lport->ref, nvme_fc_free_lport);
253 static int
254 nvme_fc_lport_get(struct nvme_fc_lport *lport)
256 return kref_get_unless_zero(&lport->ref);
260 static struct nvme_fc_lport *
261 nvme_fc_attach_to_unreg_lport(struct nvme_fc_port_info *pinfo,
262 struct nvme_fc_port_template *ops,
263 struct device *dev)
265 struct nvme_fc_lport *lport;
266 unsigned long flags;
268 spin_lock_irqsave(&nvme_fc_lock, flags);
270 list_for_each_entry(lport, &nvme_fc_lport_list, port_list) {
271 if (lport->localport.node_name != pinfo->node_name ||
272 lport->localport.port_name != pinfo->port_name)
273 continue;
275 if (lport->dev != dev) {
276 lport = ERR_PTR(-EXDEV);
277 goto out_done;
280 if (lport->localport.port_state != FC_OBJSTATE_DELETED) {
281 lport = ERR_PTR(-EEXIST);
282 goto out_done;
285 if (!nvme_fc_lport_get(lport)) {
287 * fails if ref cnt already 0. If so,
288 * act as if lport already deleted
290 lport = NULL;
291 goto out_done;
294 /* resume the lport */
296 lport->ops = ops;
297 lport->localport.port_role = pinfo->port_role;
298 lport->localport.port_id = pinfo->port_id;
299 lport->localport.port_state = FC_OBJSTATE_ONLINE;
301 spin_unlock_irqrestore(&nvme_fc_lock, flags);
303 return lport;
306 lport = NULL;
308 out_done:
309 spin_unlock_irqrestore(&nvme_fc_lock, flags);
311 return lport;
315 * nvme_fc_register_localport - transport entry point called by an
316 * LLDD to register the existence of a NVME
317 * host FC port.
318 * @pinfo: pointer to information about the port to be registered
319 * @template: LLDD entrypoints and operational parameters for the port
320 * @dev: physical hardware device node port corresponds to. Will be
321 * used for DMA mappings
322 * @portptr: pointer to a local port pointer. Upon success, the routine
323 * will allocate a nvme_fc_local_port structure and place its
324 * address in the local port pointer. Upon failure, local port
325 * pointer will be set to 0.
327 * Returns:
328 * a completion status. Must be 0 upon success; a negative errno
329 * (ex: -ENXIO) upon failure.
332 nvme_fc_register_localport(struct nvme_fc_port_info *pinfo,
333 struct nvme_fc_port_template *template,
334 struct device *dev,
335 struct nvme_fc_local_port **portptr)
337 struct nvme_fc_lport *newrec;
338 unsigned long flags;
339 int ret, idx;
341 if (!template->localport_delete || !template->remoteport_delete ||
342 !template->ls_req || !template->fcp_io ||
343 !template->ls_abort || !template->fcp_abort ||
344 !template->max_hw_queues || !template->max_sgl_segments ||
345 !template->max_dif_sgl_segments || !template->dma_boundary) {
346 ret = -EINVAL;
347 goto out_reghost_failed;
351 * look to see if there is already a localport that had been
352 * deregistered and in the process of waiting for all the
353 * references to fully be removed. If the references haven't
354 * expired, we can simply re-enable the localport. Remoteports
355 * and controller reconnections should resume naturally.
357 newrec = nvme_fc_attach_to_unreg_lport(pinfo, template, dev);
359 /* found an lport, but something about its state is bad */
360 if (IS_ERR(newrec)) {
361 ret = PTR_ERR(newrec);
362 goto out_reghost_failed;
364 /* found existing lport, which was resumed */
365 } else if (newrec) {
366 *portptr = &newrec->localport;
367 return 0;
370 /* nothing found - allocate a new localport struct */
372 newrec = kmalloc((sizeof(*newrec) + template->local_priv_sz),
373 GFP_KERNEL);
374 if (!newrec) {
375 ret = -ENOMEM;
376 goto out_reghost_failed;
379 idx = ida_simple_get(&nvme_fc_local_port_cnt, 0, 0, GFP_KERNEL);
380 if (idx < 0) {
381 ret = -ENOSPC;
382 goto out_fail_kfree;
385 if (!get_device(dev) && dev) {
386 ret = -ENODEV;
387 goto out_ida_put;
390 INIT_LIST_HEAD(&newrec->port_list);
391 INIT_LIST_HEAD(&newrec->endp_list);
392 kref_init(&newrec->ref);
393 atomic_set(&newrec->act_rport_cnt, 0);
394 newrec->ops = template;
395 newrec->dev = dev;
396 ida_init(&newrec->endp_cnt);
397 newrec->localport.private = &newrec[1];
398 newrec->localport.node_name = pinfo->node_name;
399 newrec->localport.port_name = pinfo->port_name;
400 newrec->localport.port_role = pinfo->port_role;
401 newrec->localport.port_id = pinfo->port_id;
402 newrec->localport.port_state = FC_OBJSTATE_ONLINE;
403 newrec->localport.port_num = idx;
405 spin_lock_irqsave(&nvme_fc_lock, flags);
406 list_add_tail(&newrec->port_list, &nvme_fc_lport_list);
407 spin_unlock_irqrestore(&nvme_fc_lock, flags);
409 if (dev)
410 dma_set_seg_boundary(dev, template->dma_boundary);
412 *portptr = &newrec->localport;
413 return 0;
415 out_ida_put:
416 ida_simple_remove(&nvme_fc_local_port_cnt, idx);
417 out_fail_kfree:
418 kfree(newrec);
419 out_reghost_failed:
420 *portptr = NULL;
422 return ret;
424 EXPORT_SYMBOL_GPL(nvme_fc_register_localport);
427 * nvme_fc_unregister_localport - transport entry point called by an
428 * LLDD to deregister/remove a previously
429 * registered a NVME host FC port.
430 * @portptr: pointer to the (registered) local port that is to be deregistered.
432 * Returns:
433 * a completion status. Must be 0 upon success; a negative errno
434 * (ex: -ENXIO) upon failure.
437 nvme_fc_unregister_localport(struct nvme_fc_local_port *portptr)
439 struct nvme_fc_lport *lport = localport_to_lport(portptr);
440 unsigned long flags;
442 if (!portptr)
443 return -EINVAL;
445 spin_lock_irqsave(&nvme_fc_lock, flags);
447 if (portptr->port_state != FC_OBJSTATE_ONLINE) {
448 spin_unlock_irqrestore(&nvme_fc_lock, flags);
449 return -EINVAL;
451 portptr->port_state = FC_OBJSTATE_DELETED;
453 spin_unlock_irqrestore(&nvme_fc_lock, flags);
455 if (atomic_read(&lport->act_rport_cnt) == 0)
456 lport->ops->localport_delete(&lport->localport);
458 nvme_fc_lport_put(lport);
460 return 0;
462 EXPORT_SYMBOL_GPL(nvme_fc_unregister_localport);
465 * TRADDR strings, per FC-NVME are fixed format:
466 * "nn-0x<16hexdigits>:pn-0x<16hexdigits>" - 43 characters
467 * udev event will only differ by prefix of what field is
468 * being specified:
469 * "NVMEFC_HOST_TRADDR=" or "NVMEFC_TRADDR=" - 19 max characters
470 * 19 + 43 + null_fudge = 64 characters
472 #define FCNVME_TRADDR_LENGTH 64
474 static void
475 nvme_fc_signal_discovery_scan(struct nvme_fc_lport *lport,
476 struct nvme_fc_rport *rport)
478 char hostaddr[FCNVME_TRADDR_LENGTH]; /* NVMEFC_HOST_TRADDR=...*/
479 char tgtaddr[FCNVME_TRADDR_LENGTH]; /* NVMEFC_TRADDR=...*/
480 char *envp[4] = { "FC_EVENT=nvmediscovery", hostaddr, tgtaddr, NULL };
482 if (!(rport->remoteport.port_role & FC_PORT_ROLE_NVME_DISCOVERY))
483 return;
485 snprintf(hostaddr, sizeof(hostaddr),
486 "NVMEFC_HOST_TRADDR=nn-0x%016llx:pn-0x%016llx",
487 lport->localport.node_name, lport->localport.port_name);
488 snprintf(tgtaddr, sizeof(tgtaddr),
489 "NVMEFC_TRADDR=nn-0x%016llx:pn-0x%016llx",
490 rport->remoteport.node_name, rport->remoteport.port_name);
491 kobject_uevent_env(&fc_udev_device->kobj, KOBJ_CHANGE, envp);
494 static void
495 nvme_fc_free_rport(struct kref *ref)
497 struct nvme_fc_rport *rport =
498 container_of(ref, struct nvme_fc_rport, ref);
499 struct nvme_fc_lport *lport =
500 localport_to_lport(rport->remoteport.localport);
501 unsigned long flags;
503 WARN_ON(rport->remoteport.port_state != FC_OBJSTATE_DELETED);
504 WARN_ON(!list_empty(&rport->ctrl_list));
506 /* remove from lport list */
507 spin_lock_irqsave(&nvme_fc_lock, flags);
508 list_del(&rport->endp_list);
509 spin_unlock_irqrestore(&nvme_fc_lock, flags);
511 WARN_ON(!list_empty(&rport->disc_list));
512 ida_simple_remove(&lport->endp_cnt, rport->remoteport.port_num);
514 kfree(rport);
516 nvme_fc_lport_put(lport);
519 static void
520 nvme_fc_rport_put(struct nvme_fc_rport *rport)
522 kref_put(&rport->ref, nvme_fc_free_rport);
525 static int
526 nvme_fc_rport_get(struct nvme_fc_rport *rport)
528 return kref_get_unless_zero(&rport->ref);
531 static void
532 nvme_fc_resume_controller(struct nvme_fc_ctrl *ctrl)
534 switch (ctrl->ctrl.state) {
535 case NVME_CTRL_NEW:
536 case NVME_CTRL_CONNECTING:
538 * As all reconnects were suppressed, schedule a
539 * connect.
541 dev_info(ctrl->ctrl.device,
542 "NVME-FC{%d}: connectivity re-established. "
543 "Attempting reconnect\n", ctrl->cnum);
545 queue_delayed_work(nvme_wq, &ctrl->connect_work, 0);
546 break;
548 case NVME_CTRL_RESETTING:
550 * Controller is already in the process of terminating the
551 * association. No need to do anything further. The reconnect
552 * step will naturally occur after the reset completes.
554 break;
556 default:
557 /* no action to take - let it delete */
558 break;
562 static struct nvme_fc_rport *
563 nvme_fc_attach_to_suspended_rport(struct nvme_fc_lport *lport,
564 struct nvme_fc_port_info *pinfo)
566 struct nvme_fc_rport *rport;
567 struct nvme_fc_ctrl *ctrl;
568 unsigned long flags;
570 spin_lock_irqsave(&nvme_fc_lock, flags);
572 list_for_each_entry(rport, &lport->endp_list, endp_list) {
573 if (rport->remoteport.node_name != pinfo->node_name ||
574 rport->remoteport.port_name != pinfo->port_name)
575 continue;
577 if (!nvme_fc_rport_get(rport)) {
578 rport = ERR_PTR(-ENOLCK);
579 goto out_done;
582 spin_unlock_irqrestore(&nvme_fc_lock, flags);
584 spin_lock_irqsave(&rport->lock, flags);
586 /* has it been unregistered */
587 if (rport->remoteport.port_state != FC_OBJSTATE_DELETED) {
588 /* means lldd called us twice */
589 spin_unlock_irqrestore(&rport->lock, flags);
590 nvme_fc_rport_put(rport);
591 return ERR_PTR(-ESTALE);
594 rport->remoteport.port_role = pinfo->port_role;
595 rport->remoteport.port_id = pinfo->port_id;
596 rport->remoteport.port_state = FC_OBJSTATE_ONLINE;
597 rport->dev_loss_end = 0;
600 * kick off a reconnect attempt on all associations to the
601 * remote port. A successful reconnects will resume i/o.
603 list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list)
604 nvme_fc_resume_controller(ctrl);
606 spin_unlock_irqrestore(&rport->lock, flags);
608 return rport;
611 rport = NULL;
613 out_done:
614 spin_unlock_irqrestore(&nvme_fc_lock, flags);
616 return rport;
619 static inline void
620 __nvme_fc_set_dev_loss_tmo(struct nvme_fc_rport *rport,
621 struct nvme_fc_port_info *pinfo)
623 if (pinfo->dev_loss_tmo)
624 rport->remoteport.dev_loss_tmo = pinfo->dev_loss_tmo;
625 else
626 rport->remoteport.dev_loss_tmo = NVME_FC_DEFAULT_DEV_LOSS_TMO;
630 * nvme_fc_register_remoteport - transport entry point called by an
631 * LLDD to register the existence of a NVME
632 * subsystem FC port on its fabric.
633 * @localport: pointer to the (registered) local port that the remote
634 * subsystem port is connected to.
635 * @pinfo: pointer to information about the port to be registered
636 * @portptr: pointer to a remote port pointer. Upon success, the routine
637 * will allocate a nvme_fc_remote_port structure and place its
638 * address in the remote port pointer. Upon failure, remote port
639 * pointer will be set to 0.
641 * Returns:
642 * a completion status. Must be 0 upon success; a negative errno
643 * (ex: -ENXIO) upon failure.
646 nvme_fc_register_remoteport(struct nvme_fc_local_port *localport,
647 struct nvme_fc_port_info *pinfo,
648 struct nvme_fc_remote_port **portptr)
650 struct nvme_fc_lport *lport = localport_to_lport(localport);
651 struct nvme_fc_rport *newrec;
652 unsigned long flags;
653 int ret, idx;
655 if (!nvme_fc_lport_get(lport)) {
656 ret = -ESHUTDOWN;
657 goto out_reghost_failed;
661 * look to see if there is already a remoteport that is waiting
662 * for a reconnect (within dev_loss_tmo) with the same WWN's.
663 * If so, transition to it and reconnect.
665 newrec = nvme_fc_attach_to_suspended_rport(lport, pinfo);
667 /* found an rport, but something about its state is bad */
668 if (IS_ERR(newrec)) {
669 ret = PTR_ERR(newrec);
670 goto out_lport_put;
672 /* found existing rport, which was resumed */
673 } else if (newrec) {
674 nvme_fc_lport_put(lport);
675 __nvme_fc_set_dev_loss_tmo(newrec, pinfo);
676 nvme_fc_signal_discovery_scan(lport, newrec);
677 *portptr = &newrec->remoteport;
678 return 0;
681 /* nothing found - allocate a new remoteport struct */
683 newrec = kmalloc((sizeof(*newrec) + lport->ops->remote_priv_sz),
684 GFP_KERNEL);
685 if (!newrec) {
686 ret = -ENOMEM;
687 goto out_lport_put;
690 idx = ida_simple_get(&lport->endp_cnt, 0, 0, GFP_KERNEL);
691 if (idx < 0) {
692 ret = -ENOSPC;
693 goto out_kfree_rport;
696 INIT_LIST_HEAD(&newrec->endp_list);
697 INIT_LIST_HEAD(&newrec->ctrl_list);
698 INIT_LIST_HEAD(&newrec->ls_req_list);
699 INIT_LIST_HEAD(&newrec->disc_list);
700 kref_init(&newrec->ref);
701 atomic_set(&newrec->act_ctrl_cnt, 0);
702 spin_lock_init(&newrec->lock);
703 newrec->remoteport.localport = &lport->localport;
704 newrec->dev = lport->dev;
705 newrec->lport = lport;
706 newrec->remoteport.private = &newrec[1];
707 newrec->remoteport.port_role = pinfo->port_role;
708 newrec->remoteport.node_name = pinfo->node_name;
709 newrec->remoteport.port_name = pinfo->port_name;
710 newrec->remoteport.port_id = pinfo->port_id;
711 newrec->remoteport.port_state = FC_OBJSTATE_ONLINE;
712 newrec->remoteport.port_num = idx;
713 __nvme_fc_set_dev_loss_tmo(newrec, pinfo);
715 spin_lock_irqsave(&nvme_fc_lock, flags);
716 list_add_tail(&newrec->endp_list, &lport->endp_list);
717 spin_unlock_irqrestore(&nvme_fc_lock, flags);
719 nvme_fc_signal_discovery_scan(lport, newrec);
721 *portptr = &newrec->remoteport;
722 return 0;
724 out_kfree_rport:
725 kfree(newrec);
726 out_lport_put:
727 nvme_fc_lport_put(lport);
728 out_reghost_failed:
729 *portptr = NULL;
730 return ret;
732 EXPORT_SYMBOL_GPL(nvme_fc_register_remoteport);
734 static int
735 nvme_fc_abort_lsops(struct nvme_fc_rport *rport)
737 struct nvmefc_ls_req_op *lsop;
738 unsigned long flags;
740 restart:
741 spin_lock_irqsave(&rport->lock, flags);
743 list_for_each_entry(lsop, &rport->ls_req_list, lsreq_list) {
744 if (!(lsop->flags & FCOP_FLAGS_TERMIO)) {
745 lsop->flags |= FCOP_FLAGS_TERMIO;
746 spin_unlock_irqrestore(&rport->lock, flags);
747 rport->lport->ops->ls_abort(&rport->lport->localport,
748 &rport->remoteport,
749 &lsop->ls_req);
750 goto restart;
753 spin_unlock_irqrestore(&rport->lock, flags);
755 return 0;
758 static void
759 nvme_fc_ctrl_connectivity_loss(struct nvme_fc_ctrl *ctrl)
761 dev_info(ctrl->ctrl.device,
762 "NVME-FC{%d}: controller connectivity lost. Awaiting "
763 "Reconnect", ctrl->cnum);
765 switch (ctrl->ctrl.state) {
766 case NVME_CTRL_NEW:
767 case NVME_CTRL_LIVE:
769 * Schedule a controller reset. The reset will terminate the
770 * association and schedule the reconnect timer. Reconnects
771 * will be attempted until either the ctlr_loss_tmo
772 * (max_retries * connect_delay) expires or the remoteport's
773 * dev_loss_tmo expires.
775 if (nvme_reset_ctrl(&ctrl->ctrl)) {
776 dev_warn(ctrl->ctrl.device,
777 "NVME-FC{%d}: Couldn't schedule reset.\n",
778 ctrl->cnum);
779 nvme_delete_ctrl(&ctrl->ctrl);
781 break;
783 case NVME_CTRL_CONNECTING:
785 * The association has already been terminated and the
786 * controller is attempting reconnects. No need to do anything
787 * futher. Reconnects will be attempted until either the
788 * ctlr_loss_tmo (max_retries * connect_delay) expires or the
789 * remoteport's dev_loss_tmo expires.
791 break;
793 case NVME_CTRL_RESETTING:
795 * Controller is already in the process of terminating the
796 * association. No need to do anything further. The reconnect
797 * step will kick in naturally after the association is
798 * terminated.
800 break;
802 case NVME_CTRL_DELETING:
803 default:
804 /* no action to take - let it delete */
805 break;
810 * nvme_fc_unregister_remoteport - transport entry point called by an
811 * LLDD to deregister/remove a previously
812 * registered a NVME subsystem FC port.
813 * @portptr: pointer to the (registered) remote port that is to be
814 * deregistered.
816 * Returns:
817 * a completion status. Must be 0 upon success; a negative errno
818 * (ex: -ENXIO) upon failure.
821 nvme_fc_unregister_remoteport(struct nvme_fc_remote_port *portptr)
823 struct nvme_fc_rport *rport = remoteport_to_rport(portptr);
824 struct nvme_fc_ctrl *ctrl;
825 unsigned long flags;
827 if (!portptr)
828 return -EINVAL;
830 spin_lock_irqsave(&rport->lock, flags);
832 if (portptr->port_state != FC_OBJSTATE_ONLINE) {
833 spin_unlock_irqrestore(&rport->lock, flags);
834 return -EINVAL;
836 portptr->port_state = FC_OBJSTATE_DELETED;
838 rport->dev_loss_end = jiffies + (portptr->dev_loss_tmo * HZ);
840 list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) {
841 /* if dev_loss_tmo==0, dev loss is immediate */
842 if (!portptr->dev_loss_tmo) {
843 dev_warn(ctrl->ctrl.device,
844 "NVME-FC{%d}: controller connectivity lost.\n",
845 ctrl->cnum);
846 nvme_delete_ctrl(&ctrl->ctrl);
847 } else
848 nvme_fc_ctrl_connectivity_loss(ctrl);
851 spin_unlock_irqrestore(&rport->lock, flags);
853 nvme_fc_abort_lsops(rport);
855 if (atomic_read(&rport->act_ctrl_cnt) == 0)
856 rport->lport->ops->remoteport_delete(portptr);
859 * release the reference, which will allow, if all controllers
860 * go away, which should only occur after dev_loss_tmo occurs,
861 * for the rport to be torn down.
863 nvme_fc_rport_put(rport);
865 return 0;
867 EXPORT_SYMBOL_GPL(nvme_fc_unregister_remoteport);
870 * nvme_fc_rescan_remoteport - transport entry point called by an
871 * LLDD to request a nvme device rescan.
872 * @remoteport: pointer to the (registered) remote port that is to be
873 * rescanned.
875 * Returns: N/A
877 void
878 nvme_fc_rescan_remoteport(struct nvme_fc_remote_port *remoteport)
880 struct nvme_fc_rport *rport = remoteport_to_rport(remoteport);
882 nvme_fc_signal_discovery_scan(rport->lport, rport);
884 EXPORT_SYMBOL_GPL(nvme_fc_rescan_remoteport);
887 nvme_fc_set_remoteport_devloss(struct nvme_fc_remote_port *portptr,
888 u32 dev_loss_tmo)
890 struct nvme_fc_rport *rport = remoteport_to_rport(portptr);
891 unsigned long flags;
893 spin_lock_irqsave(&rport->lock, flags);
895 if (portptr->port_state != FC_OBJSTATE_ONLINE) {
896 spin_unlock_irqrestore(&rport->lock, flags);
897 return -EINVAL;
900 /* a dev_loss_tmo of 0 (immediate) is allowed to be set */
901 rport->remoteport.dev_loss_tmo = dev_loss_tmo;
903 spin_unlock_irqrestore(&rport->lock, flags);
905 return 0;
907 EXPORT_SYMBOL_GPL(nvme_fc_set_remoteport_devloss);
910 /* *********************** FC-NVME DMA Handling **************************** */
913 * The fcloop device passes in a NULL device pointer. Real LLD's will
914 * pass in a valid device pointer. If NULL is passed to the dma mapping
915 * routines, depending on the platform, it may or may not succeed, and
916 * may crash.
918 * As such:
919 * Wrapper all the dma routines and check the dev pointer.
921 * If simple mappings (return just a dma address, we'll noop them,
922 * returning a dma address of 0.
924 * On more complex mappings (dma_map_sg), a pseudo routine fills
925 * in the scatter list, setting all dma addresses to 0.
928 static inline dma_addr_t
929 fc_dma_map_single(struct device *dev, void *ptr, size_t size,
930 enum dma_data_direction dir)
932 return dev ? dma_map_single(dev, ptr, size, dir) : (dma_addr_t)0L;
935 static inline int
936 fc_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
938 return dev ? dma_mapping_error(dev, dma_addr) : 0;
941 static inline void
942 fc_dma_unmap_single(struct device *dev, dma_addr_t addr, size_t size,
943 enum dma_data_direction dir)
945 if (dev)
946 dma_unmap_single(dev, addr, size, dir);
949 static inline void
950 fc_dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size,
951 enum dma_data_direction dir)
953 if (dev)
954 dma_sync_single_for_cpu(dev, addr, size, dir);
957 static inline void
958 fc_dma_sync_single_for_device(struct device *dev, dma_addr_t addr, size_t size,
959 enum dma_data_direction dir)
961 if (dev)
962 dma_sync_single_for_device(dev, addr, size, dir);
965 /* pseudo dma_map_sg call */
966 static int
967 fc_map_sg(struct scatterlist *sg, int nents)
969 struct scatterlist *s;
970 int i;
972 WARN_ON(nents == 0 || sg[0].length == 0);
974 for_each_sg(sg, s, nents, i) {
975 s->dma_address = 0L;
976 #ifdef CONFIG_NEED_SG_DMA_LENGTH
977 s->dma_length = s->length;
978 #endif
980 return nents;
983 static inline int
984 fc_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
985 enum dma_data_direction dir)
987 return dev ? dma_map_sg(dev, sg, nents, dir) : fc_map_sg(sg, nents);
990 static inline void
991 fc_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
992 enum dma_data_direction dir)
994 if (dev)
995 dma_unmap_sg(dev, sg, nents, dir);
998 /* *********************** FC-NVME LS Handling **************************** */
1000 static void nvme_fc_ctrl_put(struct nvme_fc_ctrl *);
1001 static int nvme_fc_ctrl_get(struct nvme_fc_ctrl *);
1004 static void
1005 __nvme_fc_finish_ls_req(struct nvmefc_ls_req_op *lsop)
1007 struct nvme_fc_rport *rport = lsop->rport;
1008 struct nvmefc_ls_req *lsreq = &lsop->ls_req;
1009 unsigned long flags;
1011 spin_lock_irqsave(&rport->lock, flags);
1013 if (!lsop->req_queued) {
1014 spin_unlock_irqrestore(&rport->lock, flags);
1015 return;
1018 list_del(&lsop->lsreq_list);
1020 lsop->req_queued = false;
1022 spin_unlock_irqrestore(&rport->lock, flags);
1024 fc_dma_unmap_single(rport->dev, lsreq->rqstdma,
1025 (lsreq->rqstlen + lsreq->rsplen),
1026 DMA_BIDIRECTIONAL);
1028 nvme_fc_rport_put(rport);
1031 static int
1032 __nvme_fc_send_ls_req(struct nvme_fc_rport *rport,
1033 struct nvmefc_ls_req_op *lsop,
1034 void (*done)(struct nvmefc_ls_req *req, int status))
1036 struct nvmefc_ls_req *lsreq = &lsop->ls_req;
1037 unsigned long flags;
1038 int ret = 0;
1040 if (rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
1041 return -ECONNREFUSED;
1043 if (!nvme_fc_rport_get(rport))
1044 return -ESHUTDOWN;
1046 lsreq->done = done;
1047 lsop->rport = rport;
1048 lsop->req_queued = false;
1049 INIT_LIST_HEAD(&lsop->lsreq_list);
1050 init_completion(&lsop->ls_done);
1052 lsreq->rqstdma = fc_dma_map_single(rport->dev, lsreq->rqstaddr,
1053 lsreq->rqstlen + lsreq->rsplen,
1054 DMA_BIDIRECTIONAL);
1055 if (fc_dma_mapping_error(rport->dev, lsreq->rqstdma)) {
1056 ret = -EFAULT;
1057 goto out_putrport;
1059 lsreq->rspdma = lsreq->rqstdma + lsreq->rqstlen;
1061 spin_lock_irqsave(&rport->lock, flags);
1063 list_add_tail(&lsop->lsreq_list, &rport->ls_req_list);
1065 lsop->req_queued = true;
1067 spin_unlock_irqrestore(&rport->lock, flags);
1069 ret = rport->lport->ops->ls_req(&rport->lport->localport,
1070 &rport->remoteport, lsreq);
1071 if (ret)
1072 goto out_unlink;
1074 return 0;
1076 out_unlink:
1077 lsop->ls_error = ret;
1078 spin_lock_irqsave(&rport->lock, flags);
1079 lsop->req_queued = false;
1080 list_del(&lsop->lsreq_list);
1081 spin_unlock_irqrestore(&rport->lock, flags);
1082 fc_dma_unmap_single(rport->dev, lsreq->rqstdma,
1083 (lsreq->rqstlen + lsreq->rsplen),
1084 DMA_BIDIRECTIONAL);
1085 out_putrport:
1086 nvme_fc_rport_put(rport);
1088 return ret;
1091 static void
1092 nvme_fc_send_ls_req_done(struct nvmefc_ls_req *lsreq, int status)
1094 struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq);
1096 lsop->ls_error = status;
1097 complete(&lsop->ls_done);
1100 static int
1101 nvme_fc_send_ls_req(struct nvme_fc_rport *rport, struct nvmefc_ls_req_op *lsop)
1103 struct nvmefc_ls_req *lsreq = &lsop->ls_req;
1104 struct fcnvme_ls_rjt *rjt = lsreq->rspaddr;
1105 int ret;
1107 ret = __nvme_fc_send_ls_req(rport, lsop, nvme_fc_send_ls_req_done);
1109 if (!ret) {
1111 * No timeout/not interruptible as we need the struct
1112 * to exist until the lldd calls us back. Thus mandate
1113 * wait until driver calls back. lldd responsible for
1114 * the timeout action
1116 wait_for_completion(&lsop->ls_done);
1118 __nvme_fc_finish_ls_req(lsop);
1120 ret = lsop->ls_error;
1123 if (ret)
1124 return ret;
1126 /* ACC or RJT payload ? */
1127 if (rjt->w0.ls_cmd == FCNVME_LS_RJT)
1128 return -ENXIO;
1130 return 0;
1133 static int
1134 nvme_fc_send_ls_req_async(struct nvme_fc_rport *rport,
1135 struct nvmefc_ls_req_op *lsop,
1136 void (*done)(struct nvmefc_ls_req *req, int status))
1138 /* don't wait for completion */
1140 return __nvme_fc_send_ls_req(rport, lsop, done);
1143 /* Validation Error indexes into the string table below */
1144 enum {
1145 VERR_NO_ERROR = 0,
1146 VERR_LSACC = 1,
1147 VERR_LSDESC_RQST = 2,
1148 VERR_LSDESC_RQST_LEN = 3,
1149 VERR_ASSOC_ID = 4,
1150 VERR_ASSOC_ID_LEN = 5,
1151 VERR_CONN_ID = 6,
1152 VERR_CONN_ID_LEN = 7,
1153 VERR_CR_ASSOC = 8,
1154 VERR_CR_ASSOC_ACC_LEN = 9,
1155 VERR_CR_CONN = 10,
1156 VERR_CR_CONN_ACC_LEN = 11,
1157 VERR_DISCONN = 12,
1158 VERR_DISCONN_ACC_LEN = 13,
1161 static char *validation_errors[] = {
1162 "OK",
1163 "Not LS_ACC",
1164 "Not LSDESC_RQST",
1165 "Bad LSDESC_RQST Length",
1166 "Not Association ID",
1167 "Bad Association ID Length",
1168 "Not Connection ID",
1169 "Bad Connection ID Length",
1170 "Not CR_ASSOC Rqst",
1171 "Bad CR_ASSOC ACC Length",
1172 "Not CR_CONN Rqst",
1173 "Bad CR_CONN ACC Length",
1174 "Not Disconnect Rqst",
1175 "Bad Disconnect ACC Length",
1178 static int
1179 nvme_fc_connect_admin_queue(struct nvme_fc_ctrl *ctrl,
1180 struct nvme_fc_queue *queue, u16 qsize, u16 ersp_ratio)
1182 struct nvmefc_ls_req_op *lsop;
1183 struct nvmefc_ls_req *lsreq;
1184 struct fcnvme_ls_cr_assoc_rqst *assoc_rqst;
1185 struct fcnvme_ls_cr_assoc_acc *assoc_acc;
1186 int ret, fcret = 0;
1188 lsop = kzalloc((sizeof(*lsop) +
1189 ctrl->lport->ops->lsrqst_priv_sz +
1190 sizeof(*assoc_rqst) + sizeof(*assoc_acc)), GFP_KERNEL);
1191 if (!lsop) {
1192 ret = -ENOMEM;
1193 goto out_no_memory;
1195 lsreq = &lsop->ls_req;
1197 lsreq->private = (void *)&lsop[1];
1198 assoc_rqst = (struct fcnvme_ls_cr_assoc_rqst *)
1199 (lsreq->private + ctrl->lport->ops->lsrqst_priv_sz);
1200 assoc_acc = (struct fcnvme_ls_cr_assoc_acc *)&assoc_rqst[1];
1202 assoc_rqst->w0.ls_cmd = FCNVME_LS_CREATE_ASSOCIATION;
1203 assoc_rqst->desc_list_len =
1204 cpu_to_be32(sizeof(struct fcnvme_lsdesc_cr_assoc_cmd));
1206 assoc_rqst->assoc_cmd.desc_tag =
1207 cpu_to_be32(FCNVME_LSDESC_CREATE_ASSOC_CMD);
1208 assoc_rqst->assoc_cmd.desc_len =
1209 fcnvme_lsdesc_len(
1210 sizeof(struct fcnvme_lsdesc_cr_assoc_cmd));
1212 assoc_rqst->assoc_cmd.ersp_ratio = cpu_to_be16(ersp_ratio);
1213 assoc_rqst->assoc_cmd.sqsize = cpu_to_be16(qsize - 1);
1214 /* Linux supports only Dynamic controllers */
1215 assoc_rqst->assoc_cmd.cntlid = cpu_to_be16(0xffff);
1216 uuid_copy(&assoc_rqst->assoc_cmd.hostid, &ctrl->ctrl.opts->host->id);
1217 strncpy(assoc_rqst->assoc_cmd.hostnqn, ctrl->ctrl.opts->host->nqn,
1218 min(FCNVME_ASSOC_HOSTNQN_LEN, NVMF_NQN_SIZE));
1219 strncpy(assoc_rqst->assoc_cmd.subnqn, ctrl->ctrl.opts->subsysnqn,
1220 min(FCNVME_ASSOC_SUBNQN_LEN, NVMF_NQN_SIZE));
1222 lsop->queue = queue;
1223 lsreq->rqstaddr = assoc_rqst;
1224 lsreq->rqstlen = sizeof(*assoc_rqst);
1225 lsreq->rspaddr = assoc_acc;
1226 lsreq->rsplen = sizeof(*assoc_acc);
1227 lsreq->timeout = NVME_FC_LS_TIMEOUT_SEC;
1229 ret = nvme_fc_send_ls_req(ctrl->rport, lsop);
1230 if (ret)
1231 goto out_free_buffer;
1233 /* process connect LS completion */
1235 /* validate the ACC response */
1236 if (assoc_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC)
1237 fcret = VERR_LSACC;
1238 else if (assoc_acc->hdr.desc_list_len !=
1239 fcnvme_lsdesc_len(
1240 sizeof(struct fcnvme_ls_cr_assoc_acc)))
1241 fcret = VERR_CR_ASSOC_ACC_LEN;
1242 else if (assoc_acc->hdr.rqst.desc_tag !=
1243 cpu_to_be32(FCNVME_LSDESC_RQST))
1244 fcret = VERR_LSDESC_RQST;
1245 else if (assoc_acc->hdr.rqst.desc_len !=
1246 fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst)))
1247 fcret = VERR_LSDESC_RQST_LEN;
1248 else if (assoc_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_ASSOCIATION)
1249 fcret = VERR_CR_ASSOC;
1250 else if (assoc_acc->associd.desc_tag !=
1251 cpu_to_be32(FCNVME_LSDESC_ASSOC_ID))
1252 fcret = VERR_ASSOC_ID;
1253 else if (assoc_acc->associd.desc_len !=
1254 fcnvme_lsdesc_len(
1255 sizeof(struct fcnvme_lsdesc_assoc_id)))
1256 fcret = VERR_ASSOC_ID_LEN;
1257 else if (assoc_acc->connectid.desc_tag !=
1258 cpu_to_be32(FCNVME_LSDESC_CONN_ID))
1259 fcret = VERR_CONN_ID;
1260 else if (assoc_acc->connectid.desc_len !=
1261 fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id)))
1262 fcret = VERR_CONN_ID_LEN;
1264 if (fcret) {
1265 ret = -EBADF;
1266 dev_err(ctrl->dev,
1267 "q %d Create Association LS failed: %s\n",
1268 queue->qnum, validation_errors[fcret]);
1269 } else {
1270 ctrl->association_id =
1271 be64_to_cpu(assoc_acc->associd.association_id);
1272 queue->connection_id =
1273 be64_to_cpu(assoc_acc->connectid.connection_id);
1274 set_bit(NVME_FC_Q_CONNECTED, &queue->flags);
1277 out_free_buffer:
1278 kfree(lsop);
1279 out_no_memory:
1280 if (ret)
1281 dev_err(ctrl->dev,
1282 "queue %d connect admin queue failed (%d).\n",
1283 queue->qnum, ret);
1284 return ret;
1287 static int
1288 nvme_fc_connect_queue(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue,
1289 u16 qsize, u16 ersp_ratio)
1291 struct nvmefc_ls_req_op *lsop;
1292 struct nvmefc_ls_req *lsreq;
1293 struct fcnvme_ls_cr_conn_rqst *conn_rqst;
1294 struct fcnvme_ls_cr_conn_acc *conn_acc;
1295 int ret, fcret = 0;
1297 lsop = kzalloc((sizeof(*lsop) +
1298 ctrl->lport->ops->lsrqst_priv_sz +
1299 sizeof(*conn_rqst) + sizeof(*conn_acc)), GFP_KERNEL);
1300 if (!lsop) {
1301 ret = -ENOMEM;
1302 goto out_no_memory;
1304 lsreq = &lsop->ls_req;
1306 lsreq->private = (void *)&lsop[1];
1307 conn_rqst = (struct fcnvme_ls_cr_conn_rqst *)
1308 (lsreq->private + ctrl->lport->ops->lsrqst_priv_sz);
1309 conn_acc = (struct fcnvme_ls_cr_conn_acc *)&conn_rqst[1];
1311 conn_rqst->w0.ls_cmd = FCNVME_LS_CREATE_CONNECTION;
1312 conn_rqst->desc_list_len = cpu_to_be32(
1313 sizeof(struct fcnvme_lsdesc_assoc_id) +
1314 sizeof(struct fcnvme_lsdesc_cr_conn_cmd));
1316 conn_rqst->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID);
1317 conn_rqst->associd.desc_len =
1318 fcnvme_lsdesc_len(
1319 sizeof(struct fcnvme_lsdesc_assoc_id));
1320 conn_rqst->associd.association_id = cpu_to_be64(ctrl->association_id);
1321 conn_rqst->connect_cmd.desc_tag =
1322 cpu_to_be32(FCNVME_LSDESC_CREATE_CONN_CMD);
1323 conn_rqst->connect_cmd.desc_len =
1324 fcnvme_lsdesc_len(
1325 sizeof(struct fcnvme_lsdesc_cr_conn_cmd));
1326 conn_rqst->connect_cmd.ersp_ratio = cpu_to_be16(ersp_ratio);
1327 conn_rqst->connect_cmd.qid = cpu_to_be16(queue->qnum);
1328 conn_rqst->connect_cmd.sqsize = cpu_to_be16(qsize - 1);
1330 lsop->queue = queue;
1331 lsreq->rqstaddr = conn_rqst;
1332 lsreq->rqstlen = sizeof(*conn_rqst);
1333 lsreq->rspaddr = conn_acc;
1334 lsreq->rsplen = sizeof(*conn_acc);
1335 lsreq->timeout = NVME_FC_LS_TIMEOUT_SEC;
1337 ret = nvme_fc_send_ls_req(ctrl->rport, lsop);
1338 if (ret)
1339 goto out_free_buffer;
1341 /* process connect LS completion */
1343 /* validate the ACC response */
1344 if (conn_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC)
1345 fcret = VERR_LSACC;
1346 else if (conn_acc->hdr.desc_list_len !=
1347 fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_cr_conn_acc)))
1348 fcret = VERR_CR_CONN_ACC_LEN;
1349 else if (conn_acc->hdr.rqst.desc_tag != cpu_to_be32(FCNVME_LSDESC_RQST))
1350 fcret = VERR_LSDESC_RQST;
1351 else if (conn_acc->hdr.rqst.desc_len !=
1352 fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst)))
1353 fcret = VERR_LSDESC_RQST_LEN;
1354 else if (conn_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_CONNECTION)
1355 fcret = VERR_CR_CONN;
1356 else if (conn_acc->connectid.desc_tag !=
1357 cpu_to_be32(FCNVME_LSDESC_CONN_ID))
1358 fcret = VERR_CONN_ID;
1359 else if (conn_acc->connectid.desc_len !=
1360 fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id)))
1361 fcret = VERR_CONN_ID_LEN;
1363 if (fcret) {
1364 ret = -EBADF;
1365 dev_err(ctrl->dev,
1366 "q %d Create I/O Connection LS failed: %s\n",
1367 queue->qnum, validation_errors[fcret]);
1368 } else {
1369 queue->connection_id =
1370 be64_to_cpu(conn_acc->connectid.connection_id);
1371 set_bit(NVME_FC_Q_CONNECTED, &queue->flags);
1374 out_free_buffer:
1375 kfree(lsop);
1376 out_no_memory:
1377 if (ret)
1378 dev_err(ctrl->dev,
1379 "queue %d connect I/O queue failed (%d).\n",
1380 queue->qnum, ret);
1381 return ret;
1384 static void
1385 nvme_fc_disconnect_assoc_done(struct nvmefc_ls_req *lsreq, int status)
1387 struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq);
1389 __nvme_fc_finish_ls_req(lsop);
1391 /* fc-nvme initiator doesn't care about success or failure of cmd */
1393 kfree(lsop);
1397 * This routine sends a FC-NVME LS to disconnect (aka terminate)
1398 * the FC-NVME Association. Terminating the association also
1399 * terminates the FC-NVME connections (per queue, both admin and io
1400 * queues) that are part of the association. E.g. things are torn
1401 * down, and the related FC-NVME Association ID and Connection IDs
1402 * become invalid.
1404 * The behavior of the fc-nvme initiator is such that it's
1405 * understanding of the association and connections will implicitly
1406 * be torn down. The action is implicit as it may be due to a loss of
1407 * connectivity with the fc-nvme target, so you may never get a
1408 * response even if you tried. As such, the action of this routine
1409 * is to asynchronously send the LS, ignore any results of the LS, and
1410 * continue on with terminating the association. If the fc-nvme target
1411 * is present and receives the LS, it too can tear down.
1413 static void
1414 nvme_fc_xmt_disconnect_assoc(struct nvme_fc_ctrl *ctrl)
1416 struct fcnvme_ls_disconnect_assoc_rqst *discon_rqst;
1417 struct fcnvme_ls_disconnect_assoc_acc *discon_acc;
1418 struct nvmefc_ls_req_op *lsop;
1419 struct nvmefc_ls_req *lsreq;
1420 int ret;
1422 lsop = kzalloc((sizeof(*lsop) +
1423 ctrl->lport->ops->lsrqst_priv_sz +
1424 sizeof(*discon_rqst) + sizeof(*discon_acc)),
1425 GFP_KERNEL);
1426 if (!lsop)
1427 /* couldn't sent it... too bad */
1428 return;
1430 lsreq = &lsop->ls_req;
1432 lsreq->private = (void *)&lsop[1];
1433 discon_rqst = (struct fcnvme_ls_disconnect_assoc_rqst *)
1434 (lsreq->private + ctrl->lport->ops->lsrqst_priv_sz);
1435 discon_acc = (struct fcnvme_ls_disconnect_assoc_acc *)&discon_rqst[1];
1437 discon_rqst->w0.ls_cmd = FCNVME_LS_DISCONNECT_ASSOC;
1438 discon_rqst->desc_list_len = cpu_to_be32(
1439 sizeof(struct fcnvme_lsdesc_assoc_id) +
1440 sizeof(struct fcnvme_lsdesc_disconn_cmd));
1442 discon_rqst->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID);
1443 discon_rqst->associd.desc_len =
1444 fcnvme_lsdesc_len(
1445 sizeof(struct fcnvme_lsdesc_assoc_id));
1447 discon_rqst->associd.association_id = cpu_to_be64(ctrl->association_id);
1449 discon_rqst->discon_cmd.desc_tag = cpu_to_be32(
1450 FCNVME_LSDESC_DISCONN_CMD);
1451 discon_rqst->discon_cmd.desc_len =
1452 fcnvme_lsdesc_len(
1453 sizeof(struct fcnvme_lsdesc_disconn_cmd));
1455 lsreq->rqstaddr = discon_rqst;
1456 lsreq->rqstlen = sizeof(*discon_rqst);
1457 lsreq->rspaddr = discon_acc;
1458 lsreq->rsplen = sizeof(*discon_acc);
1459 lsreq->timeout = NVME_FC_LS_TIMEOUT_SEC;
1461 ret = nvme_fc_send_ls_req_async(ctrl->rport, lsop,
1462 nvme_fc_disconnect_assoc_done);
1463 if (ret)
1464 kfree(lsop);
1468 /* *********************** NVME Ctrl Routines **************************** */
1470 static void nvme_fc_error_recovery(struct nvme_fc_ctrl *ctrl, char *errmsg);
1472 static void
1473 __nvme_fc_exit_request(struct nvme_fc_ctrl *ctrl,
1474 struct nvme_fc_fcp_op *op)
1476 fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.rspdma,
1477 sizeof(op->rsp_iu), DMA_FROM_DEVICE);
1478 fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.cmddma,
1479 sizeof(op->cmd_iu), DMA_TO_DEVICE);
1481 atomic_set(&op->state, FCPOP_STATE_UNINIT);
1484 static void
1485 nvme_fc_exit_request(struct blk_mq_tag_set *set, struct request *rq,
1486 unsigned int hctx_idx)
1488 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1490 return __nvme_fc_exit_request(set->driver_data, op);
1493 static int
1494 __nvme_fc_abort_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_fcp_op *op)
1496 unsigned long flags;
1497 int opstate;
1499 spin_lock_irqsave(&ctrl->lock, flags);
1500 opstate = atomic_xchg(&op->state, FCPOP_STATE_ABORTED);
1501 if (opstate != FCPOP_STATE_ACTIVE)
1502 atomic_set(&op->state, opstate);
1503 else if (ctrl->flags & FCCTRL_TERMIO)
1504 ctrl->iocnt++;
1505 spin_unlock_irqrestore(&ctrl->lock, flags);
1507 if (opstate != FCPOP_STATE_ACTIVE)
1508 return -ECANCELED;
1510 ctrl->lport->ops->fcp_abort(&ctrl->lport->localport,
1511 &ctrl->rport->remoteport,
1512 op->queue->lldd_handle,
1513 &op->fcp_req);
1515 return 0;
1518 static void
1519 nvme_fc_abort_aen_ops(struct nvme_fc_ctrl *ctrl)
1521 struct nvme_fc_fcp_op *aen_op = ctrl->aen_ops;
1522 int i;
1524 /* ensure we've initialized the ops once */
1525 if (!(aen_op->flags & FCOP_FLAGS_AEN))
1526 return;
1528 for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++)
1529 __nvme_fc_abort_op(ctrl, aen_op);
1532 static inline void
1533 __nvme_fc_fcpop_chk_teardowns(struct nvme_fc_ctrl *ctrl,
1534 struct nvme_fc_fcp_op *op, int opstate)
1536 unsigned long flags;
1538 if (opstate == FCPOP_STATE_ABORTED) {
1539 spin_lock_irqsave(&ctrl->lock, flags);
1540 if (ctrl->flags & FCCTRL_TERMIO) {
1541 if (!--ctrl->iocnt)
1542 wake_up(&ctrl->ioabort_wait);
1544 spin_unlock_irqrestore(&ctrl->lock, flags);
1548 static void
1549 nvme_fc_fcpio_done(struct nvmefc_fcp_req *req)
1551 struct nvme_fc_fcp_op *op = fcp_req_to_fcp_op(req);
1552 struct request *rq = op->rq;
1553 struct nvmefc_fcp_req *freq = &op->fcp_req;
1554 struct nvme_fc_ctrl *ctrl = op->ctrl;
1555 struct nvme_fc_queue *queue = op->queue;
1556 struct nvme_completion *cqe = &op->rsp_iu.cqe;
1557 struct nvme_command *sqe = &op->cmd_iu.sqe;
1558 __le16 status = cpu_to_le16(NVME_SC_SUCCESS << 1);
1559 union nvme_result result;
1560 bool terminate_assoc = true;
1561 int opstate;
1564 * WARNING:
1565 * The current linux implementation of a nvme controller
1566 * allocates a single tag set for all io queues and sizes
1567 * the io queues to fully hold all possible tags. Thus, the
1568 * implementation does not reference or care about the sqhd
1569 * value as it never needs to use the sqhd/sqtail pointers
1570 * for submission pacing.
1572 * This affects the FC-NVME implementation in two ways:
1573 * 1) As the value doesn't matter, we don't need to waste
1574 * cycles extracting it from ERSPs and stamping it in the
1575 * cases where the transport fabricates CQEs on successful
1576 * completions.
1577 * 2) The FC-NVME implementation requires that delivery of
1578 * ERSP completions are to go back to the nvme layer in order
1579 * relative to the rsn, such that the sqhd value will always
1580 * be "in order" for the nvme layer. As the nvme layer in
1581 * linux doesn't care about sqhd, there's no need to return
1582 * them in order.
1584 * Additionally:
1585 * As the core nvme layer in linux currently does not look at
1586 * every field in the cqe - in cases where the FC transport must
1587 * fabricate a CQE, the following fields will not be set as they
1588 * are not referenced:
1589 * cqe.sqid, cqe.sqhd, cqe.command_id
1591 * Failure or error of an individual i/o, in a transport
1592 * detected fashion unrelated to the nvme completion status,
1593 * potentially cause the initiator and target sides to get out
1594 * of sync on SQ head/tail (aka outstanding io count allowed).
1595 * Per FC-NVME spec, failure of an individual command requires
1596 * the connection to be terminated, which in turn requires the
1597 * association to be terminated.
1600 opstate = atomic_xchg(&op->state, FCPOP_STATE_COMPLETE);
1602 fc_dma_sync_single_for_cpu(ctrl->lport->dev, op->fcp_req.rspdma,
1603 sizeof(op->rsp_iu), DMA_FROM_DEVICE);
1605 if (opstate == FCPOP_STATE_ABORTED)
1606 status = cpu_to_le16(NVME_SC_HOST_PATH_ERROR << 1);
1607 else if (freq->status) {
1608 status = cpu_to_le16(NVME_SC_HOST_PATH_ERROR << 1);
1609 dev_info(ctrl->ctrl.device,
1610 "NVME-FC{%d}: io failed due to lldd error %d\n",
1611 ctrl->cnum, freq->status);
1615 * For the linux implementation, if we have an unsuccesful
1616 * status, they blk-mq layer can typically be called with the
1617 * non-zero status and the content of the cqe isn't important.
1619 if (status)
1620 goto done;
1623 * command completed successfully relative to the wire
1624 * protocol. However, validate anything received and
1625 * extract the status and result from the cqe (create it
1626 * where necessary).
1629 switch (freq->rcv_rsplen) {
1631 case 0:
1632 case NVME_FC_SIZEOF_ZEROS_RSP:
1634 * No response payload or 12 bytes of payload (which
1635 * should all be zeros) are considered successful and
1636 * no payload in the CQE by the transport.
1638 if (freq->transferred_length !=
1639 be32_to_cpu(op->cmd_iu.data_len)) {
1640 status = cpu_to_le16(NVME_SC_HOST_PATH_ERROR << 1);
1641 dev_info(ctrl->ctrl.device,
1642 "NVME-FC{%d}: io failed due to bad transfer "
1643 "length: %d vs expected %d\n",
1644 ctrl->cnum, freq->transferred_length,
1645 be32_to_cpu(op->cmd_iu.data_len));
1646 goto done;
1648 result.u64 = 0;
1649 break;
1651 case sizeof(struct nvme_fc_ersp_iu):
1653 * The ERSP IU contains a full completion with CQE.
1654 * Validate ERSP IU and look at cqe.
1656 if (unlikely(be16_to_cpu(op->rsp_iu.iu_len) !=
1657 (freq->rcv_rsplen / 4) ||
1658 be32_to_cpu(op->rsp_iu.xfrd_len) !=
1659 freq->transferred_length ||
1660 op->rsp_iu.ersp_result ||
1661 sqe->common.command_id != cqe->command_id)) {
1662 status = cpu_to_le16(NVME_SC_HOST_PATH_ERROR << 1);
1663 dev_info(ctrl->ctrl.device,
1664 "NVME-FC{%d}: io failed due to bad NVMe_ERSP: "
1665 "iu len %d, xfr len %d vs %d, status code "
1666 "%d, cmdid %d vs %d\n",
1667 ctrl->cnum, be16_to_cpu(op->rsp_iu.iu_len),
1668 be32_to_cpu(op->rsp_iu.xfrd_len),
1669 freq->transferred_length,
1670 op->rsp_iu.ersp_result,
1671 sqe->common.command_id,
1672 cqe->command_id);
1673 goto done;
1675 result = cqe->result;
1676 status = cqe->status;
1677 break;
1679 default:
1680 status = cpu_to_le16(NVME_SC_HOST_PATH_ERROR << 1);
1681 dev_info(ctrl->ctrl.device,
1682 "NVME-FC{%d}: io failed due to odd NVMe_xRSP iu "
1683 "len %d\n",
1684 ctrl->cnum, freq->rcv_rsplen);
1685 goto done;
1688 terminate_assoc = false;
1690 done:
1691 if (op->flags & FCOP_FLAGS_AEN) {
1692 nvme_complete_async_event(&queue->ctrl->ctrl, status, &result);
1693 __nvme_fc_fcpop_chk_teardowns(ctrl, op, opstate);
1694 atomic_set(&op->state, FCPOP_STATE_IDLE);
1695 op->flags = FCOP_FLAGS_AEN; /* clear other flags */
1696 nvme_fc_ctrl_put(ctrl);
1697 goto check_error;
1700 __nvme_fc_fcpop_chk_teardowns(ctrl, op, opstate);
1701 nvme_end_request(rq, status, result);
1703 check_error:
1704 if (terminate_assoc)
1705 nvme_fc_error_recovery(ctrl, "transport detected io error");
1708 static int
1709 __nvme_fc_init_request(struct nvme_fc_ctrl *ctrl,
1710 struct nvme_fc_queue *queue, struct nvme_fc_fcp_op *op,
1711 struct request *rq, u32 rqno)
1713 struct nvme_fcp_op_w_sgl *op_w_sgl =
1714 container_of(op, typeof(*op_w_sgl), op);
1715 struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
1716 int ret = 0;
1718 memset(op, 0, sizeof(*op));
1719 op->fcp_req.cmdaddr = &op->cmd_iu;
1720 op->fcp_req.cmdlen = sizeof(op->cmd_iu);
1721 op->fcp_req.rspaddr = &op->rsp_iu;
1722 op->fcp_req.rsplen = sizeof(op->rsp_iu);
1723 op->fcp_req.done = nvme_fc_fcpio_done;
1724 op->ctrl = ctrl;
1725 op->queue = queue;
1726 op->rq = rq;
1727 op->rqno = rqno;
1729 cmdiu->format_id = NVME_CMD_FORMAT_ID;
1730 cmdiu->fc_id = NVME_CMD_FC_ID;
1731 cmdiu->iu_len = cpu_to_be16(sizeof(*cmdiu) / sizeof(u32));
1732 if (queue->qnum)
1733 cmdiu->rsv_cat = fccmnd_set_cat_css(0,
1734 (NVME_CC_CSS_NVM >> NVME_CC_CSS_SHIFT));
1735 else
1736 cmdiu->rsv_cat = fccmnd_set_cat_admin(0);
1738 op->fcp_req.cmddma = fc_dma_map_single(ctrl->lport->dev,
1739 &op->cmd_iu, sizeof(op->cmd_iu), DMA_TO_DEVICE);
1740 if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.cmddma)) {
1741 dev_err(ctrl->dev,
1742 "FCP Op failed - cmdiu dma mapping failed.\n");
1743 ret = EFAULT;
1744 goto out_on_error;
1747 op->fcp_req.rspdma = fc_dma_map_single(ctrl->lport->dev,
1748 &op->rsp_iu, sizeof(op->rsp_iu),
1749 DMA_FROM_DEVICE);
1750 if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.rspdma)) {
1751 dev_err(ctrl->dev,
1752 "FCP Op failed - rspiu dma mapping failed.\n");
1753 ret = EFAULT;
1756 atomic_set(&op->state, FCPOP_STATE_IDLE);
1757 out_on_error:
1758 return ret;
1761 static int
1762 nvme_fc_init_request(struct blk_mq_tag_set *set, struct request *rq,
1763 unsigned int hctx_idx, unsigned int numa_node)
1765 struct nvme_fc_ctrl *ctrl = set->driver_data;
1766 struct nvme_fcp_op_w_sgl *op = blk_mq_rq_to_pdu(rq);
1767 int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
1768 struct nvme_fc_queue *queue = &ctrl->queues[queue_idx];
1769 int res;
1771 res = __nvme_fc_init_request(ctrl, queue, &op->op, rq, queue->rqcnt++);
1772 if (res)
1773 return res;
1774 op->op.fcp_req.first_sgl = &op->sgl[0];
1775 op->op.fcp_req.private = &op->priv[0];
1776 nvme_req(rq)->ctrl = &ctrl->ctrl;
1777 return res;
1780 static int
1781 nvme_fc_init_aen_ops(struct nvme_fc_ctrl *ctrl)
1783 struct nvme_fc_fcp_op *aen_op;
1784 struct nvme_fc_cmd_iu *cmdiu;
1785 struct nvme_command *sqe;
1786 void *private;
1787 int i, ret;
1789 aen_op = ctrl->aen_ops;
1790 for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++) {
1791 private = kzalloc(ctrl->lport->ops->fcprqst_priv_sz,
1792 GFP_KERNEL);
1793 if (!private)
1794 return -ENOMEM;
1796 cmdiu = &aen_op->cmd_iu;
1797 sqe = &cmdiu->sqe;
1798 ret = __nvme_fc_init_request(ctrl, &ctrl->queues[0],
1799 aen_op, (struct request *)NULL,
1800 (NVME_AQ_BLK_MQ_DEPTH + i));
1801 if (ret) {
1802 kfree(private);
1803 return ret;
1806 aen_op->flags = FCOP_FLAGS_AEN;
1807 aen_op->fcp_req.private = private;
1809 memset(sqe, 0, sizeof(*sqe));
1810 sqe->common.opcode = nvme_admin_async_event;
1811 /* Note: core layer may overwrite the sqe.command_id value */
1812 sqe->common.command_id = NVME_AQ_BLK_MQ_DEPTH + i;
1814 return 0;
1817 static void
1818 nvme_fc_term_aen_ops(struct nvme_fc_ctrl *ctrl)
1820 struct nvme_fc_fcp_op *aen_op;
1821 int i;
1823 aen_op = ctrl->aen_ops;
1824 for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++) {
1825 if (!aen_op->fcp_req.private)
1826 continue;
1828 __nvme_fc_exit_request(ctrl, aen_op);
1830 kfree(aen_op->fcp_req.private);
1831 aen_op->fcp_req.private = NULL;
1835 static inline void
1836 __nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, struct nvme_fc_ctrl *ctrl,
1837 unsigned int qidx)
1839 struct nvme_fc_queue *queue = &ctrl->queues[qidx];
1841 hctx->driver_data = queue;
1842 queue->hctx = hctx;
1845 static int
1846 nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
1847 unsigned int hctx_idx)
1849 struct nvme_fc_ctrl *ctrl = data;
1851 __nvme_fc_init_hctx(hctx, ctrl, hctx_idx + 1);
1853 return 0;
1856 static int
1857 nvme_fc_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
1858 unsigned int hctx_idx)
1860 struct nvme_fc_ctrl *ctrl = data;
1862 __nvme_fc_init_hctx(hctx, ctrl, hctx_idx);
1864 return 0;
1867 static void
1868 nvme_fc_init_queue(struct nvme_fc_ctrl *ctrl, int idx)
1870 struct nvme_fc_queue *queue;
1872 queue = &ctrl->queues[idx];
1873 memset(queue, 0, sizeof(*queue));
1874 queue->ctrl = ctrl;
1875 queue->qnum = idx;
1876 atomic_set(&queue->csn, 0);
1877 queue->dev = ctrl->dev;
1879 if (idx > 0)
1880 queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
1881 else
1882 queue->cmnd_capsule_len = sizeof(struct nvme_command);
1885 * Considered whether we should allocate buffers for all SQEs
1886 * and CQEs and dma map them - mapping their respective entries
1887 * into the request structures (kernel vm addr and dma address)
1888 * thus the driver could use the buffers/mappings directly.
1889 * It only makes sense if the LLDD would use them for its
1890 * messaging api. It's very unlikely most adapter api's would use
1891 * a native NVME sqe/cqe. More reasonable if FC-NVME IU payload
1892 * structures were used instead.
1897 * This routine terminates a queue at the transport level.
1898 * The transport has already ensured that all outstanding ios on
1899 * the queue have been terminated.
1900 * The transport will send a Disconnect LS request to terminate
1901 * the queue's connection. Termination of the admin queue will also
1902 * terminate the association at the target.
1904 static void
1905 nvme_fc_free_queue(struct nvme_fc_queue *queue)
1907 if (!test_and_clear_bit(NVME_FC_Q_CONNECTED, &queue->flags))
1908 return;
1910 clear_bit(NVME_FC_Q_LIVE, &queue->flags);
1912 * Current implementation never disconnects a single queue.
1913 * It always terminates a whole association. So there is never
1914 * a disconnect(queue) LS sent to the target.
1917 queue->connection_id = 0;
1918 atomic_set(&queue->csn, 0);
1921 static void
1922 __nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *ctrl,
1923 struct nvme_fc_queue *queue, unsigned int qidx)
1925 if (ctrl->lport->ops->delete_queue)
1926 ctrl->lport->ops->delete_queue(&ctrl->lport->localport, qidx,
1927 queue->lldd_handle);
1928 queue->lldd_handle = NULL;
1931 static void
1932 nvme_fc_free_io_queues(struct nvme_fc_ctrl *ctrl)
1934 int i;
1936 for (i = 1; i < ctrl->ctrl.queue_count; i++)
1937 nvme_fc_free_queue(&ctrl->queues[i]);
1940 static int
1941 __nvme_fc_create_hw_queue(struct nvme_fc_ctrl *ctrl,
1942 struct nvme_fc_queue *queue, unsigned int qidx, u16 qsize)
1944 int ret = 0;
1946 queue->lldd_handle = NULL;
1947 if (ctrl->lport->ops->create_queue)
1948 ret = ctrl->lport->ops->create_queue(&ctrl->lport->localport,
1949 qidx, qsize, &queue->lldd_handle);
1951 return ret;
1954 static void
1955 nvme_fc_delete_hw_io_queues(struct nvme_fc_ctrl *ctrl)
1957 struct nvme_fc_queue *queue = &ctrl->queues[ctrl->ctrl.queue_count - 1];
1958 int i;
1960 for (i = ctrl->ctrl.queue_count - 1; i >= 1; i--, queue--)
1961 __nvme_fc_delete_hw_queue(ctrl, queue, i);
1964 static int
1965 nvme_fc_create_hw_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize)
1967 struct nvme_fc_queue *queue = &ctrl->queues[1];
1968 int i, ret;
1970 for (i = 1; i < ctrl->ctrl.queue_count; i++, queue++) {
1971 ret = __nvme_fc_create_hw_queue(ctrl, queue, i, qsize);
1972 if (ret)
1973 goto delete_queues;
1976 return 0;
1978 delete_queues:
1979 for (; i >= 0; i--)
1980 __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[i], i);
1981 return ret;
1984 static int
1985 nvme_fc_connect_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize)
1987 int i, ret = 0;
1989 for (i = 1; i < ctrl->ctrl.queue_count; i++) {
1990 ret = nvme_fc_connect_queue(ctrl, &ctrl->queues[i], qsize,
1991 (qsize / 5));
1992 if (ret)
1993 break;
1994 ret = nvmf_connect_io_queue(&ctrl->ctrl, i, false);
1995 if (ret)
1996 break;
1998 set_bit(NVME_FC_Q_LIVE, &ctrl->queues[i].flags);
2001 return ret;
2004 static void
2005 nvme_fc_init_io_queues(struct nvme_fc_ctrl *ctrl)
2007 int i;
2009 for (i = 1; i < ctrl->ctrl.queue_count; i++)
2010 nvme_fc_init_queue(ctrl, i);
2013 static void
2014 nvme_fc_ctrl_free(struct kref *ref)
2016 struct nvme_fc_ctrl *ctrl =
2017 container_of(ref, struct nvme_fc_ctrl, ref);
2018 unsigned long flags;
2020 if (ctrl->ctrl.tagset) {
2021 blk_cleanup_queue(ctrl->ctrl.connect_q);
2022 blk_mq_free_tag_set(&ctrl->tag_set);
2025 /* remove from rport list */
2026 spin_lock_irqsave(&ctrl->rport->lock, flags);
2027 list_del(&ctrl->ctrl_list);
2028 spin_unlock_irqrestore(&ctrl->rport->lock, flags);
2030 blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
2031 blk_cleanup_queue(ctrl->ctrl.admin_q);
2032 blk_cleanup_queue(ctrl->ctrl.fabrics_q);
2033 blk_mq_free_tag_set(&ctrl->admin_tag_set);
2035 kfree(ctrl->queues);
2037 put_device(ctrl->dev);
2038 nvme_fc_rport_put(ctrl->rport);
2040 ida_simple_remove(&nvme_fc_ctrl_cnt, ctrl->cnum);
2041 if (ctrl->ctrl.opts)
2042 nvmf_free_options(ctrl->ctrl.opts);
2043 kfree(ctrl);
2046 static void
2047 nvme_fc_ctrl_put(struct nvme_fc_ctrl *ctrl)
2049 kref_put(&ctrl->ref, nvme_fc_ctrl_free);
2052 static int
2053 nvme_fc_ctrl_get(struct nvme_fc_ctrl *ctrl)
2055 return kref_get_unless_zero(&ctrl->ref);
2059 * All accesses from nvme core layer done - can now free the
2060 * controller. Called after last nvme_put_ctrl() call
2062 static void
2063 nvme_fc_nvme_ctrl_freed(struct nvme_ctrl *nctrl)
2065 struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
2067 WARN_ON(nctrl != &ctrl->ctrl);
2069 nvme_fc_ctrl_put(ctrl);
2072 static void
2073 nvme_fc_error_recovery(struct nvme_fc_ctrl *ctrl, char *errmsg)
2075 int active;
2078 * if an error (io timeout, etc) while (re)connecting,
2079 * it's an error on creating the new association.
2080 * Start the error recovery thread if it hasn't already
2081 * been started. It is expected there could be multiple
2082 * ios hitting this path before things are cleaned up.
2084 if (ctrl->ctrl.state == NVME_CTRL_CONNECTING) {
2085 active = atomic_xchg(&ctrl->err_work_active, 1);
2086 if (!active && !queue_work(nvme_fc_wq, &ctrl->err_work)) {
2087 atomic_set(&ctrl->err_work_active, 0);
2088 WARN_ON(1);
2090 return;
2093 /* Otherwise, only proceed if in LIVE state - e.g. on first error */
2094 if (ctrl->ctrl.state != NVME_CTRL_LIVE)
2095 return;
2097 dev_warn(ctrl->ctrl.device,
2098 "NVME-FC{%d}: transport association error detected: %s\n",
2099 ctrl->cnum, errmsg);
2100 dev_warn(ctrl->ctrl.device,
2101 "NVME-FC{%d}: resetting controller\n", ctrl->cnum);
2103 nvme_reset_ctrl(&ctrl->ctrl);
2106 static enum blk_eh_timer_return
2107 nvme_fc_timeout(struct request *rq, bool reserved)
2109 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2110 struct nvme_fc_ctrl *ctrl = op->ctrl;
2113 * we can't individually ABTS an io without affecting the queue,
2114 * thus killing the queue, and thus the association.
2115 * So resolve by performing a controller reset, which will stop
2116 * the host/io stack, terminate the association on the link,
2117 * and recreate an association on the link.
2119 nvme_fc_error_recovery(ctrl, "io timeout error");
2122 * the io abort has been initiated. Have the reset timer
2123 * restarted and the abort completion will complete the io
2124 * shortly. Avoids a synchronous wait while the abort finishes.
2126 return BLK_EH_RESET_TIMER;
2129 static int
2130 nvme_fc_map_data(struct nvme_fc_ctrl *ctrl, struct request *rq,
2131 struct nvme_fc_fcp_op *op)
2133 struct nvmefc_fcp_req *freq = &op->fcp_req;
2134 int ret;
2136 freq->sg_cnt = 0;
2138 if (!blk_rq_nr_phys_segments(rq))
2139 return 0;
2141 freq->sg_table.sgl = freq->first_sgl;
2142 ret = sg_alloc_table_chained(&freq->sg_table,
2143 blk_rq_nr_phys_segments(rq), freq->sg_table.sgl,
2144 SG_CHUNK_SIZE);
2145 if (ret)
2146 return -ENOMEM;
2148 op->nents = blk_rq_map_sg(rq->q, rq, freq->sg_table.sgl);
2149 WARN_ON(op->nents > blk_rq_nr_phys_segments(rq));
2150 freq->sg_cnt = fc_dma_map_sg(ctrl->lport->dev, freq->sg_table.sgl,
2151 op->nents, rq_dma_dir(rq));
2152 if (unlikely(freq->sg_cnt <= 0)) {
2153 sg_free_table_chained(&freq->sg_table, SG_CHUNK_SIZE);
2154 freq->sg_cnt = 0;
2155 return -EFAULT;
2159 * TODO: blk_integrity_rq(rq) for DIF
2161 return 0;
2164 static void
2165 nvme_fc_unmap_data(struct nvme_fc_ctrl *ctrl, struct request *rq,
2166 struct nvme_fc_fcp_op *op)
2168 struct nvmefc_fcp_req *freq = &op->fcp_req;
2170 if (!freq->sg_cnt)
2171 return;
2173 fc_dma_unmap_sg(ctrl->lport->dev, freq->sg_table.sgl, op->nents,
2174 rq_dma_dir(rq));
2176 sg_free_table_chained(&freq->sg_table, SG_CHUNK_SIZE);
2178 freq->sg_cnt = 0;
2182 * In FC, the queue is a logical thing. At transport connect, the target
2183 * creates its "queue" and returns a handle that is to be given to the
2184 * target whenever it posts something to the corresponding SQ. When an
2185 * SQE is sent on a SQ, FC effectively considers the SQE, or rather the
2186 * command contained within the SQE, an io, and assigns a FC exchange
2187 * to it. The SQE and the associated SQ handle are sent in the initial
2188 * CMD IU sents on the exchange. All transfers relative to the io occur
2189 * as part of the exchange. The CQE is the last thing for the io,
2190 * which is transferred (explicitly or implicitly) with the RSP IU
2191 * sent on the exchange. After the CQE is received, the FC exchange is
2192 * terminaed and the Exchange may be used on a different io.
2194 * The transport to LLDD api has the transport making a request for a
2195 * new fcp io request to the LLDD. The LLDD then allocates a FC exchange
2196 * resource and transfers the command. The LLDD will then process all
2197 * steps to complete the io. Upon completion, the transport done routine
2198 * is called.
2200 * So - while the operation is outstanding to the LLDD, there is a link
2201 * level FC exchange resource that is also outstanding. This must be
2202 * considered in all cleanup operations.
2204 static blk_status_t
2205 nvme_fc_start_fcp_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue,
2206 struct nvme_fc_fcp_op *op, u32 data_len,
2207 enum nvmefc_fcp_datadir io_dir)
2209 struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
2210 struct nvme_command *sqe = &cmdiu->sqe;
2211 int ret, opstate;
2214 * before attempting to send the io, check to see if we believe
2215 * the target device is present
2217 if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
2218 return BLK_STS_RESOURCE;
2220 if (!nvme_fc_ctrl_get(ctrl))
2221 return BLK_STS_IOERR;
2223 /* format the FC-NVME CMD IU and fcp_req */
2224 cmdiu->connection_id = cpu_to_be64(queue->connection_id);
2225 cmdiu->data_len = cpu_to_be32(data_len);
2226 switch (io_dir) {
2227 case NVMEFC_FCP_WRITE:
2228 cmdiu->flags = FCNVME_CMD_FLAGS_WRITE;
2229 break;
2230 case NVMEFC_FCP_READ:
2231 cmdiu->flags = FCNVME_CMD_FLAGS_READ;
2232 break;
2233 case NVMEFC_FCP_NODATA:
2234 cmdiu->flags = 0;
2235 break;
2237 op->fcp_req.payload_length = data_len;
2238 op->fcp_req.io_dir = io_dir;
2239 op->fcp_req.transferred_length = 0;
2240 op->fcp_req.rcv_rsplen = 0;
2241 op->fcp_req.status = NVME_SC_SUCCESS;
2242 op->fcp_req.sqid = cpu_to_le16(queue->qnum);
2245 * validate per fabric rules, set fields mandated by fabric spec
2246 * as well as those by FC-NVME spec.
2248 WARN_ON_ONCE(sqe->common.metadata);
2249 sqe->common.flags |= NVME_CMD_SGL_METABUF;
2252 * format SQE DPTR field per FC-NVME rules:
2253 * type=0x5 Transport SGL Data Block Descriptor
2254 * subtype=0xA Transport-specific value
2255 * address=0
2256 * length=length of the data series
2258 sqe->rw.dptr.sgl.type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
2259 NVME_SGL_FMT_TRANSPORT_A;
2260 sqe->rw.dptr.sgl.length = cpu_to_le32(data_len);
2261 sqe->rw.dptr.sgl.addr = 0;
2263 if (!(op->flags & FCOP_FLAGS_AEN)) {
2264 ret = nvme_fc_map_data(ctrl, op->rq, op);
2265 if (ret < 0) {
2266 nvme_cleanup_cmd(op->rq);
2267 nvme_fc_ctrl_put(ctrl);
2268 if (ret == -ENOMEM || ret == -EAGAIN)
2269 return BLK_STS_RESOURCE;
2270 return BLK_STS_IOERR;
2274 fc_dma_sync_single_for_device(ctrl->lport->dev, op->fcp_req.cmddma,
2275 sizeof(op->cmd_iu), DMA_TO_DEVICE);
2277 atomic_set(&op->state, FCPOP_STATE_ACTIVE);
2279 if (!(op->flags & FCOP_FLAGS_AEN))
2280 blk_mq_start_request(op->rq);
2282 cmdiu->csn = cpu_to_be32(atomic_inc_return(&queue->csn));
2283 ret = ctrl->lport->ops->fcp_io(&ctrl->lport->localport,
2284 &ctrl->rport->remoteport,
2285 queue->lldd_handle, &op->fcp_req);
2287 if (ret) {
2289 * If the lld fails to send the command is there an issue with
2290 * the csn value? If the command that fails is the Connect,
2291 * no - as the connection won't be live. If it is a command
2292 * post-connect, it's possible a gap in csn may be created.
2293 * Does this matter? As Linux initiators don't send fused
2294 * commands, no. The gap would exist, but as there's nothing
2295 * that depends on csn order to be delivered on the target
2296 * side, it shouldn't hurt. It would be difficult for a
2297 * target to even detect the csn gap as it has no idea when the
2298 * cmd with the csn was supposed to arrive.
2300 opstate = atomic_xchg(&op->state, FCPOP_STATE_COMPLETE);
2301 __nvme_fc_fcpop_chk_teardowns(ctrl, op, opstate);
2303 if (!(op->flags & FCOP_FLAGS_AEN))
2304 nvme_fc_unmap_data(ctrl, op->rq, op);
2306 nvme_cleanup_cmd(op->rq);
2307 nvme_fc_ctrl_put(ctrl);
2309 if (ctrl->rport->remoteport.port_state == FC_OBJSTATE_ONLINE &&
2310 ret != -EBUSY)
2311 return BLK_STS_IOERR;
2313 return BLK_STS_RESOURCE;
2316 return BLK_STS_OK;
2319 static blk_status_t
2320 nvme_fc_queue_rq(struct blk_mq_hw_ctx *hctx,
2321 const struct blk_mq_queue_data *bd)
2323 struct nvme_ns *ns = hctx->queue->queuedata;
2324 struct nvme_fc_queue *queue = hctx->driver_data;
2325 struct nvme_fc_ctrl *ctrl = queue->ctrl;
2326 struct request *rq = bd->rq;
2327 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2328 struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
2329 struct nvme_command *sqe = &cmdiu->sqe;
2330 enum nvmefc_fcp_datadir io_dir;
2331 bool queue_ready = test_bit(NVME_FC_Q_LIVE, &queue->flags);
2332 u32 data_len;
2333 blk_status_t ret;
2335 if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE ||
2336 !nvmf_check_ready(&queue->ctrl->ctrl, rq, queue_ready))
2337 return nvmf_fail_nonready_command(&queue->ctrl->ctrl, rq);
2339 ret = nvme_setup_cmd(ns, rq, sqe);
2340 if (ret)
2341 return ret;
2344 * nvme core doesn't quite treat the rq opaquely. Commands such
2345 * as WRITE ZEROES will return a non-zero rq payload_bytes yet
2346 * there is no actual payload to be transferred.
2347 * To get it right, key data transmission on there being 1 or
2348 * more physical segments in the sg list. If there is no
2349 * physical segments, there is no payload.
2351 if (blk_rq_nr_phys_segments(rq)) {
2352 data_len = blk_rq_payload_bytes(rq);
2353 io_dir = ((rq_data_dir(rq) == WRITE) ?
2354 NVMEFC_FCP_WRITE : NVMEFC_FCP_READ);
2355 } else {
2356 data_len = 0;
2357 io_dir = NVMEFC_FCP_NODATA;
2361 return nvme_fc_start_fcp_op(ctrl, queue, op, data_len, io_dir);
2364 static void
2365 nvme_fc_submit_async_event(struct nvme_ctrl *arg)
2367 struct nvme_fc_ctrl *ctrl = to_fc_ctrl(arg);
2368 struct nvme_fc_fcp_op *aen_op;
2369 unsigned long flags;
2370 bool terminating = false;
2371 blk_status_t ret;
2373 spin_lock_irqsave(&ctrl->lock, flags);
2374 if (ctrl->flags & FCCTRL_TERMIO)
2375 terminating = true;
2376 spin_unlock_irqrestore(&ctrl->lock, flags);
2378 if (terminating)
2379 return;
2381 aen_op = &ctrl->aen_ops[0];
2383 ret = nvme_fc_start_fcp_op(ctrl, aen_op->queue, aen_op, 0,
2384 NVMEFC_FCP_NODATA);
2385 if (ret)
2386 dev_err(ctrl->ctrl.device,
2387 "failed async event work\n");
2390 static void
2391 nvme_fc_complete_rq(struct request *rq)
2393 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2394 struct nvme_fc_ctrl *ctrl = op->ctrl;
2396 atomic_set(&op->state, FCPOP_STATE_IDLE);
2398 nvme_fc_unmap_data(ctrl, rq, op);
2399 nvme_complete_rq(rq);
2400 nvme_fc_ctrl_put(ctrl);
2404 * This routine is used by the transport when it needs to find active
2405 * io on a queue that is to be terminated. The transport uses
2406 * blk_mq_tagset_busy_itr() to find the busy requests, which then invoke
2407 * this routine to kill them on a 1 by 1 basis.
2409 * As FC allocates FC exchange for each io, the transport must contact
2410 * the LLDD to terminate the exchange, thus releasing the FC exchange.
2411 * After terminating the exchange the LLDD will call the transport's
2412 * normal io done path for the request, but it will have an aborted
2413 * status. The done path will return the io request back to the block
2414 * layer with an error status.
2416 static bool
2417 nvme_fc_terminate_exchange(struct request *req, void *data, bool reserved)
2419 struct nvme_ctrl *nctrl = data;
2420 struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
2421 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(req);
2423 __nvme_fc_abort_op(ctrl, op);
2424 return true;
2428 static const struct blk_mq_ops nvme_fc_mq_ops = {
2429 .queue_rq = nvme_fc_queue_rq,
2430 .complete = nvme_fc_complete_rq,
2431 .init_request = nvme_fc_init_request,
2432 .exit_request = nvme_fc_exit_request,
2433 .init_hctx = nvme_fc_init_hctx,
2434 .timeout = nvme_fc_timeout,
2437 static int
2438 nvme_fc_create_io_queues(struct nvme_fc_ctrl *ctrl)
2440 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2441 unsigned int nr_io_queues;
2442 int ret;
2444 nr_io_queues = min(min(opts->nr_io_queues, num_online_cpus()),
2445 ctrl->lport->ops->max_hw_queues);
2446 ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
2447 if (ret) {
2448 dev_info(ctrl->ctrl.device,
2449 "set_queue_count failed: %d\n", ret);
2450 return ret;
2453 ctrl->ctrl.queue_count = nr_io_queues + 1;
2454 if (!nr_io_queues)
2455 return 0;
2457 nvme_fc_init_io_queues(ctrl);
2459 memset(&ctrl->tag_set, 0, sizeof(ctrl->tag_set));
2460 ctrl->tag_set.ops = &nvme_fc_mq_ops;
2461 ctrl->tag_set.queue_depth = ctrl->ctrl.opts->queue_size;
2462 ctrl->tag_set.reserved_tags = 1; /* fabric connect */
2463 ctrl->tag_set.numa_node = ctrl->ctrl.numa_node;
2464 ctrl->tag_set.flags = BLK_MQ_F_SHOULD_MERGE;
2465 ctrl->tag_set.cmd_size =
2466 struct_size((struct nvme_fcp_op_w_sgl *)NULL, priv,
2467 ctrl->lport->ops->fcprqst_priv_sz);
2468 ctrl->tag_set.driver_data = ctrl;
2469 ctrl->tag_set.nr_hw_queues = ctrl->ctrl.queue_count - 1;
2470 ctrl->tag_set.timeout = NVME_IO_TIMEOUT;
2472 ret = blk_mq_alloc_tag_set(&ctrl->tag_set);
2473 if (ret)
2474 return ret;
2476 ctrl->ctrl.tagset = &ctrl->tag_set;
2478 ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set);
2479 if (IS_ERR(ctrl->ctrl.connect_q)) {
2480 ret = PTR_ERR(ctrl->ctrl.connect_q);
2481 goto out_free_tag_set;
2484 ret = nvme_fc_create_hw_io_queues(ctrl, ctrl->ctrl.sqsize + 1);
2485 if (ret)
2486 goto out_cleanup_blk_queue;
2488 ret = nvme_fc_connect_io_queues(ctrl, ctrl->ctrl.sqsize + 1);
2489 if (ret)
2490 goto out_delete_hw_queues;
2492 ctrl->ioq_live = true;
2494 return 0;
2496 out_delete_hw_queues:
2497 nvme_fc_delete_hw_io_queues(ctrl);
2498 out_cleanup_blk_queue:
2499 blk_cleanup_queue(ctrl->ctrl.connect_q);
2500 out_free_tag_set:
2501 blk_mq_free_tag_set(&ctrl->tag_set);
2502 nvme_fc_free_io_queues(ctrl);
2504 /* force put free routine to ignore io queues */
2505 ctrl->ctrl.tagset = NULL;
2507 return ret;
2510 static int
2511 nvme_fc_recreate_io_queues(struct nvme_fc_ctrl *ctrl)
2513 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2514 u32 prior_ioq_cnt = ctrl->ctrl.queue_count - 1;
2515 unsigned int nr_io_queues;
2516 int ret;
2518 nr_io_queues = min(min(opts->nr_io_queues, num_online_cpus()),
2519 ctrl->lport->ops->max_hw_queues);
2520 ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
2521 if (ret) {
2522 dev_info(ctrl->ctrl.device,
2523 "set_queue_count failed: %d\n", ret);
2524 return ret;
2527 if (!nr_io_queues && prior_ioq_cnt) {
2528 dev_info(ctrl->ctrl.device,
2529 "Fail Reconnect: At least 1 io queue "
2530 "required (was %d)\n", prior_ioq_cnt);
2531 return -ENOSPC;
2534 ctrl->ctrl.queue_count = nr_io_queues + 1;
2535 /* check for io queues existing */
2536 if (ctrl->ctrl.queue_count == 1)
2537 return 0;
2539 ret = nvme_fc_create_hw_io_queues(ctrl, ctrl->ctrl.sqsize + 1);
2540 if (ret)
2541 goto out_free_io_queues;
2543 ret = nvme_fc_connect_io_queues(ctrl, ctrl->ctrl.sqsize + 1);
2544 if (ret)
2545 goto out_delete_hw_queues;
2547 if (prior_ioq_cnt != nr_io_queues)
2548 dev_info(ctrl->ctrl.device,
2549 "reconnect: revising io queue count from %d to %d\n",
2550 prior_ioq_cnt, nr_io_queues);
2551 blk_mq_update_nr_hw_queues(&ctrl->tag_set, nr_io_queues);
2553 return 0;
2555 out_delete_hw_queues:
2556 nvme_fc_delete_hw_io_queues(ctrl);
2557 out_free_io_queues:
2558 nvme_fc_free_io_queues(ctrl);
2559 return ret;
2562 static void
2563 nvme_fc_rport_active_on_lport(struct nvme_fc_rport *rport)
2565 struct nvme_fc_lport *lport = rport->lport;
2567 atomic_inc(&lport->act_rport_cnt);
2570 static void
2571 nvme_fc_rport_inactive_on_lport(struct nvme_fc_rport *rport)
2573 struct nvme_fc_lport *lport = rport->lport;
2574 u32 cnt;
2576 cnt = atomic_dec_return(&lport->act_rport_cnt);
2577 if (cnt == 0 && lport->localport.port_state == FC_OBJSTATE_DELETED)
2578 lport->ops->localport_delete(&lport->localport);
2581 static int
2582 nvme_fc_ctlr_active_on_rport(struct nvme_fc_ctrl *ctrl)
2584 struct nvme_fc_rport *rport = ctrl->rport;
2585 u32 cnt;
2587 if (ctrl->assoc_active)
2588 return 1;
2590 ctrl->assoc_active = true;
2591 cnt = atomic_inc_return(&rport->act_ctrl_cnt);
2592 if (cnt == 1)
2593 nvme_fc_rport_active_on_lport(rport);
2595 return 0;
2598 static int
2599 nvme_fc_ctlr_inactive_on_rport(struct nvme_fc_ctrl *ctrl)
2601 struct nvme_fc_rport *rport = ctrl->rport;
2602 struct nvme_fc_lport *lport = rport->lport;
2603 u32 cnt;
2605 /* ctrl->assoc_active=false will be set independently */
2607 cnt = atomic_dec_return(&rport->act_ctrl_cnt);
2608 if (cnt == 0) {
2609 if (rport->remoteport.port_state == FC_OBJSTATE_DELETED)
2610 lport->ops->remoteport_delete(&rport->remoteport);
2611 nvme_fc_rport_inactive_on_lport(rport);
2614 return 0;
2618 * This routine restarts the controller on the host side, and
2619 * on the link side, recreates the controller association.
2621 static int
2622 nvme_fc_create_association(struct nvme_fc_ctrl *ctrl)
2624 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2625 int ret;
2626 bool changed;
2628 ++ctrl->ctrl.nr_reconnects;
2630 if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
2631 return -ENODEV;
2633 if (nvme_fc_ctlr_active_on_rport(ctrl))
2634 return -ENOTUNIQ;
2636 dev_info(ctrl->ctrl.device,
2637 "NVME-FC{%d}: create association : host wwpn 0x%016llx "
2638 " rport wwpn 0x%016llx: NQN \"%s\"\n",
2639 ctrl->cnum, ctrl->lport->localport.port_name,
2640 ctrl->rport->remoteport.port_name, ctrl->ctrl.opts->subsysnqn);
2643 * Create the admin queue
2646 ret = __nvme_fc_create_hw_queue(ctrl, &ctrl->queues[0], 0,
2647 NVME_AQ_DEPTH);
2648 if (ret)
2649 goto out_free_queue;
2651 ret = nvme_fc_connect_admin_queue(ctrl, &ctrl->queues[0],
2652 NVME_AQ_DEPTH, (NVME_AQ_DEPTH / 4));
2653 if (ret)
2654 goto out_delete_hw_queue;
2656 ret = nvmf_connect_admin_queue(&ctrl->ctrl);
2657 if (ret)
2658 goto out_disconnect_admin_queue;
2660 set_bit(NVME_FC_Q_LIVE, &ctrl->queues[0].flags);
2663 * Check controller capabilities
2665 * todo:- add code to check if ctrl attributes changed from
2666 * prior connection values
2669 ret = nvme_enable_ctrl(&ctrl->ctrl);
2670 if (ret)
2671 goto out_disconnect_admin_queue;
2673 ctrl->ctrl.max_hw_sectors =
2674 (ctrl->lport->ops->max_sgl_segments - 1) << (PAGE_SHIFT - 9);
2676 blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
2678 ret = nvme_init_identify(&ctrl->ctrl);
2679 if (ret)
2680 goto out_disconnect_admin_queue;
2682 /* sanity checks */
2684 /* FC-NVME does not have other data in the capsule */
2685 if (ctrl->ctrl.icdoff) {
2686 dev_err(ctrl->ctrl.device, "icdoff %d is not supported!\n",
2687 ctrl->ctrl.icdoff);
2688 goto out_disconnect_admin_queue;
2691 /* FC-NVME supports normal SGL Data Block Descriptors */
2693 if (opts->queue_size > ctrl->ctrl.maxcmd) {
2694 /* warn if maxcmd is lower than queue_size */
2695 dev_warn(ctrl->ctrl.device,
2696 "queue_size %zu > ctrl maxcmd %u, reducing "
2697 "to maxcmd\n",
2698 opts->queue_size, ctrl->ctrl.maxcmd);
2699 opts->queue_size = ctrl->ctrl.maxcmd;
2702 if (opts->queue_size > ctrl->ctrl.sqsize + 1) {
2703 /* warn if sqsize is lower than queue_size */
2704 dev_warn(ctrl->ctrl.device,
2705 "queue_size %zu > ctrl sqsize %u, reducing "
2706 "to sqsize\n",
2707 opts->queue_size, ctrl->ctrl.sqsize + 1);
2708 opts->queue_size = ctrl->ctrl.sqsize + 1;
2711 ret = nvme_fc_init_aen_ops(ctrl);
2712 if (ret)
2713 goto out_term_aen_ops;
2716 * Create the io queues
2719 if (ctrl->ctrl.queue_count > 1) {
2720 if (!ctrl->ioq_live)
2721 ret = nvme_fc_create_io_queues(ctrl);
2722 else
2723 ret = nvme_fc_recreate_io_queues(ctrl);
2724 if (ret)
2725 goto out_term_aen_ops;
2728 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
2730 ctrl->ctrl.nr_reconnects = 0;
2732 if (changed)
2733 nvme_start_ctrl(&ctrl->ctrl);
2735 return 0; /* Success */
2737 out_term_aen_ops:
2738 nvme_fc_term_aen_ops(ctrl);
2739 out_disconnect_admin_queue:
2740 /* send a Disconnect(association) LS to fc-nvme target */
2741 nvme_fc_xmt_disconnect_assoc(ctrl);
2742 ctrl->association_id = 0;
2743 out_delete_hw_queue:
2744 __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0);
2745 out_free_queue:
2746 nvme_fc_free_queue(&ctrl->queues[0]);
2747 ctrl->assoc_active = false;
2748 nvme_fc_ctlr_inactive_on_rport(ctrl);
2750 return ret;
2754 * This routine stops operation of the controller on the host side.
2755 * On the host os stack side: Admin and IO queues are stopped,
2756 * outstanding ios on them terminated via FC ABTS.
2757 * On the link side: the association is terminated.
2759 static void
2760 nvme_fc_delete_association(struct nvme_fc_ctrl *ctrl)
2762 unsigned long flags;
2764 if (!ctrl->assoc_active)
2765 return;
2766 ctrl->assoc_active = false;
2768 spin_lock_irqsave(&ctrl->lock, flags);
2769 ctrl->flags |= FCCTRL_TERMIO;
2770 ctrl->iocnt = 0;
2771 spin_unlock_irqrestore(&ctrl->lock, flags);
2774 * If io queues are present, stop them and terminate all outstanding
2775 * ios on them. As FC allocates FC exchange for each io, the
2776 * transport must contact the LLDD to terminate the exchange,
2777 * thus releasing the FC exchange. We use blk_mq_tagset_busy_itr()
2778 * to tell us what io's are busy and invoke a transport routine
2779 * to kill them with the LLDD. After terminating the exchange
2780 * the LLDD will call the transport's normal io done path, but it
2781 * will have an aborted status. The done path will return the
2782 * io requests back to the block layer as part of normal completions
2783 * (but with error status).
2785 if (ctrl->ctrl.queue_count > 1) {
2786 nvme_stop_queues(&ctrl->ctrl);
2787 blk_mq_tagset_busy_iter(&ctrl->tag_set,
2788 nvme_fc_terminate_exchange, &ctrl->ctrl);
2789 blk_mq_tagset_wait_completed_request(&ctrl->tag_set);
2793 * Other transports, which don't have link-level contexts bound
2794 * to sqe's, would try to gracefully shutdown the controller by
2795 * writing the registers for shutdown and polling (call
2796 * nvme_shutdown_ctrl()). Given a bunch of i/o was potentially
2797 * just aborted and we will wait on those contexts, and given
2798 * there was no indication of how live the controlelr is on the
2799 * link, don't send more io to create more contexts for the
2800 * shutdown. Let the controller fail via keepalive failure if
2801 * its still present.
2805 * clean up the admin queue. Same thing as above.
2806 * use blk_mq_tagset_busy_itr() and the transport routine to
2807 * terminate the exchanges.
2809 blk_mq_quiesce_queue(ctrl->ctrl.admin_q);
2810 blk_mq_tagset_busy_iter(&ctrl->admin_tag_set,
2811 nvme_fc_terminate_exchange, &ctrl->ctrl);
2812 blk_mq_tagset_wait_completed_request(&ctrl->admin_tag_set);
2814 /* kill the aens as they are a separate path */
2815 nvme_fc_abort_aen_ops(ctrl);
2817 /* wait for all io that had to be aborted */
2818 spin_lock_irq(&ctrl->lock);
2819 wait_event_lock_irq(ctrl->ioabort_wait, ctrl->iocnt == 0, ctrl->lock);
2820 ctrl->flags &= ~FCCTRL_TERMIO;
2821 spin_unlock_irq(&ctrl->lock);
2823 nvme_fc_term_aen_ops(ctrl);
2826 * send a Disconnect(association) LS to fc-nvme target
2827 * Note: could have been sent at top of process, but
2828 * cleaner on link traffic if after the aborts complete.
2829 * Note: if association doesn't exist, association_id will be 0
2831 if (ctrl->association_id)
2832 nvme_fc_xmt_disconnect_assoc(ctrl);
2834 ctrl->association_id = 0;
2836 if (ctrl->ctrl.tagset) {
2837 nvme_fc_delete_hw_io_queues(ctrl);
2838 nvme_fc_free_io_queues(ctrl);
2841 __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0);
2842 nvme_fc_free_queue(&ctrl->queues[0]);
2844 /* re-enable the admin_q so anything new can fast fail */
2845 blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
2847 /* resume the io queues so that things will fast fail */
2848 nvme_start_queues(&ctrl->ctrl);
2850 nvme_fc_ctlr_inactive_on_rport(ctrl);
2853 static void
2854 nvme_fc_delete_ctrl(struct nvme_ctrl *nctrl)
2856 struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
2858 cancel_work_sync(&ctrl->err_work);
2859 cancel_delayed_work_sync(&ctrl->connect_work);
2861 * kill the association on the link side. this will block
2862 * waiting for io to terminate
2864 nvme_fc_delete_association(ctrl);
2867 static void
2868 nvme_fc_reconnect_or_delete(struct nvme_fc_ctrl *ctrl, int status)
2870 struct nvme_fc_rport *rport = ctrl->rport;
2871 struct nvme_fc_remote_port *portptr = &rport->remoteport;
2872 unsigned long recon_delay = ctrl->ctrl.opts->reconnect_delay * HZ;
2873 bool recon = true;
2875 if (ctrl->ctrl.state != NVME_CTRL_CONNECTING)
2876 return;
2878 if (portptr->port_state == FC_OBJSTATE_ONLINE)
2879 dev_info(ctrl->ctrl.device,
2880 "NVME-FC{%d}: reset: Reconnect attempt failed (%d)\n",
2881 ctrl->cnum, status);
2882 else if (time_after_eq(jiffies, rport->dev_loss_end))
2883 recon = false;
2885 if (recon && nvmf_should_reconnect(&ctrl->ctrl)) {
2886 if (portptr->port_state == FC_OBJSTATE_ONLINE)
2887 dev_info(ctrl->ctrl.device,
2888 "NVME-FC{%d}: Reconnect attempt in %ld "
2889 "seconds\n",
2890 ctrl->cnum, recon_delay / HZ);
2891 else if (time_after(jiffies + recon_delay, rport->dev_loss_end))
2892 recon_delay = rport->dev_loss_end - jiffies;
2894 queue_delayed_work(nvme_wq, &ctrl->connect_work, recon_delay);
2895 } else {
2896 if (portptr->port_state == FC_OBJSTATE_ONLINE)
2897 dev_warn(ctrl->ctrl.device,
2898 "NVME-FC{%d}: Max reconnect attempts (%d) "
2899 "reached.\n",
2900 ctrl->cnum, ctrl->ctrl.nr_reconnects);
2901 else
2902 dev_warn(ctrl->ctrl.device,
2903 "NVME-FC{%d}: dev_loss_tmo (%d) expired "
2904 "while waiting for remoteport connectivity.\n",
2905 ctrl->cnum, portptr->dev_loss_tmo);
2906 WARN_ON(nvme_delete_ctrl(&ctrl->ctrl));
2910 static void
2911 __nvme_fc_terminate_io(struct nvme_fc_ctrl *ctrl)
2913 nvme_stop_keep_alive(&ctrl->ctrl);
2915 /* will block will waiting for io to terminate */
2916 nvme_fc_delete_association(ctrl);
2918 if (ctrl->ctrl.state != NVME_CTRL_CONNECTING &&
2919 !nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING))
2920 dev_err(ctrl->ctrl.device,
2921 "NVME-FC{%d}: error_recovery: Couldn't change state "
2922 "to CONNECTING\n", ctrl->cnum);
2925 static void
2926 nvme_fc_reset_ctrl_work(struct work_struct *work)
2928 struct nvme_fc_ctrl *ctrl =
2929 container_of(work, struct nvme_fc_ctrl, ctrl.reset_work);
2930 int ret;
2932 __nvme_fc_terminate_io(ctrl);
2934 nvme_stop_ctrl(&ctrl->ctrl);
2936 if (ctrl->rport->remoteport.port_state == FC_OBJSTATE_ONLINE)
2937 ret = nvme_fc_create_association(ctrl);
2938 else
2939 ret = -ENOTCONN;
2941 if (ret)
2942 nvme_fc_reconnect_or_delete(ctrl, ret);
2943 else
2944 dev_info(ctrl->ctrl.device,
2945 "NVME-FC{%d}: controller reset complete\n",
2946 ctrl->cnum);
2949 static void
2950 nvme_fc_connect_err_work(struct work_struct *work)
2952 struct nvme_fc_ctrl *ctrl =
2953 container_of(work, struct nvme_fc_ctrl, err_work);
2955 __nvme_fc_terminate_io(ctrl);
2957 atomic_set(&ctrl->err_work_active, 0);
2960 * Rescheduling the connection after recovering
2961 * from the io error is left to the reconnect work
2962 * item, which is what should have stalled waiting on
2963 * the io that had the error that scheduled this work.
2967 static const struct nvme_ctrl_ops nvme_fc_ctrl_ops = {
2968 .name = "fc",
2969 .module = THIS_MODULE,
2970 .flags = NVME_F_FABRICS,
2971 .reg_read32 = nvmf_reg_read32,
2972 .reg_read64 = nvmf_reg_read64,
2973 .reg_write32 = nvmf_reg_write32,
2974 .free_ctrl = nvme_fc_nvme_ctrl_freed,
2975 .submit_async_event = nvme_fc_submit_async_event,
2976 .delete_ctrl = nvme_fc_delete_ctrl,
2977 .get_address = nvmf_get_address,
2980 static void
2981 nvme_fc_connect_ctrl_work(struct work_struct *work)
2983 int ret;
2985 struct nvme_fc_ctrl *ctrl =
2986 container_of(to_delayed_work(work),
2987 struct nvme_fc_ctrl, connect_work);
2989 ret = nvme_fc_create_association(ctrl);
2990 if (ret)
2991 nvme_fc_reconnect_or_delete(ctrl, ret);
2992 else
2993 dev_info(ctrl->ctrl.device,
2994 "NVME-FC{%d}: controller connect complete\n",
2995 ctrl->cnum);
2999 static const struct blk_mq_ops nvme_fc_admin_mq_ops = {
3000 .queue_rq = nvme_fc_queue_rq,
3001 .complete = nvme_fc_complete_rq,
3002 .init_request = nvme_fc_init_request,
3003 .exit_request = nvme_fc_exit_request,
3004 .init_hctx = nvme_fc_init_admin_hctx,
3005 .timeout = nvme_fc_timeout,
3010 * Fails a controller request if it matches an existing controller
3011 * (association) with the same tuple:
3012 * <Host NQN, Host ID, local FC port, remote FC port, SUBSYS NQN>
3014 * The ports don't need to be compared as they are intrinsically
3015 * already matched by the port pointers supplied.
3017 static bool
3018 nvme_fc_existing_controller(struct nvme_fc_rport *rport,
3019 struct nvmf_ctrl_options *opts)
3021 struct nvme_fc_ctrl *ctrl;
3022 unsigned long flags;
3023 bool found = false;
3025 spin_lock_irqsave(&rport->lock, flags);
3026 list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) {
3027 found = nvmf_ctlr_matches_baseopts(&ctrl->ctrl, opts);
3028 if (found)
3029 break;
3031 spin_unlock_irqrestore(&rport->lock, flags);
3033 return found;
3036 static struct nvme_ctrl *
3037 nvme_fc_init_ctrl(struct device *dev, struct nvmf_ctrl_options *opts,
3038 struct nvme_fc_lport *lport, struct nvme_fc_rport *rport)
3040 struct nvme_fc_ctrl *ctrl;
3041 unsigned long flags;
3042 int ret, idx;
3044 if (!(rport->remoteport.port_role &
3045 (FC_PORT_ROLE_NVME_DISCOVERY | FC_PORT_ROLE_NVME_TARGET))) {
3046 ret = -EBADR;
3047 goto out_fail;
3050 if (!opts->duplicate_connect &&
3051 nvme_fc_existing_controller(rport, opts)) {
3052 ret = -EALREADY;
3053 goto out_fail;
3056 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
3057 if (!ctrl) {
3058 ret = -ENOMEM;
3059 goto out_fail;
3062 idx = ida_simple_get(&nvme_fc_ctrl_cnt, 0, 0, GFP_KERNEL);
3063 if (idx < 0) {
3064 ret = -ENOSPC;
3065 goto out_free_ctrl;
3068 ctrl->ctrl.opts = opts;
3069 ctrl->ctrl.nr_reconnects = 0;
3070 if (lport->dev)
3071 ctrl->ctrl.numa_node = dev_to_node(lport->dev);
3072 else
3073 ctrl->ctrl.numa_node = NUMA_NO_NODE;
3074 INIT_LIST_HEAD(&ctrl->ctrl_list);
3075 ctrl->lport = lport;
3076 ctrl->rport = rport;
3077 ctrl->dev = lport->dev;
3078 ctrl->cnum = idx;
3079 ctrl->ioq_live = false;
3080 ctrl->assoc_active = false;
3081 atomic_set(&ctrl->err_work_active, 0);
3082 init_waitqueue_head(&ctrl->ioabort_wait);
3084 get_device(ctrl->dev);
3085 kref_init(&ctrl->ref);
3087 INIT_WORK(&ctrl->ctrl.reset_work, nvme_fc_reset_ctrl_work);
3088 INIT_DELAYED_WORK(&ctrl->connect_work, nvme_fc_connect_ctrl_work);
3089 INIT_WORK(&ctrl->err_work, nvme_fc_connect_err_work);
3090 spin_lock_init(&ctrl->lock);
3092 /* io queue count */
3093 ctrl->ctrl.queue_count = min_t(unsigned int,
3094 opts->nr_io_queues,
3095 lport->ops->max_hw_queues);
3096 ctrl->ctrl.queue_count++; /* +1 for admin queue */
3098 ctrl->ctrl.sqsize = opts->queue_size - 1;
3099 ctrl->ctrl.kato = opts->kato;
3100 ctrl->ctrl.cntlid = 0xffff;
3102 ret = -ENOMEM;
3103 ctrl->queues = kcalloc(ctrl->ctrl.queue_count,
3104 sizeof(struct nvme_fc_queue), GFP_KERNEL);
3105 if (!ctrl->queues)
3106 goto out_free_ida;
3108 nvme_fc_init_queue(ctrl, 0);
3110 memset(&ctrl->admin_tag_set, 0, sizeof(ctrl->admin_tag_set));
3111 ctrl->admin_tag_set.ops = &nvme_fc_admin_mq_ops;
3112 ctrl->admin_tag_set.queue_depth = NVME_AQ_MQ_TAG_DEPTH;
3113 ctrl->admin_tag_set.reserved_tags = 2; /* fabric connect + Keep-Alive */
3114 ctrl->admin_tag_set.numa_node = ctrl->ctrl.numa_node;
3115 ctrl->admin_tag_set.cmd_size =
3116 struct_size((struct nvme_fcp_op_w_sgl *)NULL, priv,
3117 ctrl->lport->ops->fcprqst_priv_sz);
3118 ctrl->admin_tag_set.driver_data = ctrl;
3119 ctrl->admin_tag_set.nr_hw_queues = 1;
3120 ctrl->admin_tag_set.timeout = ADMIN_TIMEOUT;
3121 ctrl->admin_tag_set.flags = BLK_MQ_F_NO_SCHED;
3123 ret = blk_mq_alloc_tag_set(&ctrl->admin_tag_set);
3124 if (ret)
3125 goto out_free_queues;
3126 ctrl->ctrl.admin_tagset = &ctrl->admin_tag_set;
3128 ctrl->ctrl.fabrics_q = blk_mq_init_queue(&ctrl->admin_tag_set);
3129 if (IS_ERR(ctrl->ctrl.fabrics_q)) {
3130 ret = PTR_ERR(ctrl->ctrl.fabrics_q);
3131 goto out_free_admin_tag_set;
3134 ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set);
3135 if (IS_ERR(ctrl->ctrl.admin_q)) {
3136 ret = PTR_ERR(ctrl->ctrl.admin_q);
3137 goto out_cleanup_fabrics_q;
3141 * Would have been nice to init io queues tag set as well.
3142 * However, we require interaction from the controller
3143 * for max io queue count before we can do so.
3144 * Defer this to the connect path.
3147 ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_fc_ctrl_ops, 0);
3148 if (ret)
3149 goto out_cleanup_admin_q;
3151 /* at this point, teardown path changes to ref counting on nvme ctrl */
3153 spin_lock_irqsave(&rport->lock, flags);
3154 list_add_tail(&ctrl->ctrl_list, &rport->ctrl_list);
3155 spin_unlock_irqrestore(&rport->lock, flags);
3157 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING) ||
3158 !nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
3159 dev_err(ctrl->ctrl.device,
3160 "NVME-FC{%d}: failed to init ctrl state\n", ctrl->cnum);
3161 goto fail_ctrl;
3164 nvme_get_ctrl(&ctrl->ctrl);
3166 if (!queue_delayed_work(nvme_wq, &ctrl->connect_work, 0)) {
3167 nvme_put_ctrl(&ctrl->ctrl);
3168 dev_err(ctrl->ctrl.device,
3169 "NVME-FC{%d}: failed to schedule initial connect\n",
3170 ctrl->cnum);
3171 goto fail_ctrl;
3174 flush_delayed_work(&ctrl->connect_work);
3176 dev_info(ctrl->ctrl.device,
3177 "NVME-FC{%d}: new ctrl: NQN \"%s\"\n",
3178 ctrl->cnum, ctrl->ctrl.opts->subsysnqn);
3180 return &ctrl->ctrl;
3182 fail_ctrl:
3183 nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_DELETING);
3184 cancel_work_sync(&ctrl->ctrl.reset_work);
3185 cancel_work_sync(&ctrl->err_work);
3186 cancel_delayed_work_sync(&ctrl->connect_work);
3188 ctrl->ctrl.opts = NULL;
3190 /* initiate nvme ctrl ref counting teardown */
3191 nvme_uninit_ctrl(&ctrl->ctrl);
3193 /* Remove core ctrl ref. */
3194 nvme_put_ctrl(&ctrl->ctrl);
3196 /* as we're past the point where we transition to the ref
3197 * counting teardown path, if we return a bad pointer here,
3198 * the calling routine, thinking it's prior to the
3199 * transition, will do an rport put. Since the teardown
3200 * path also does a rport put, we do an extra get here to
3201 * so proper order/teardown happens.
3203 nvme_fc_rport_get(rport);
3205 return ERR_PTR(-EIO);
3207 out_cleanup_admin_q:
3208 blk_cleanup_queue(ctrl->ctrl.admin_q);
3209 out_cleanup_fabrics_q:
3210 blk_cleanup_queue(ctrl->ctrl.fabrics_q);
3211 out_free_admin_tag_set:
3212 blk_mq_free_tag_set(&ctrl->admin_tag_set);
3213 out_free_queues:
3214 kfree(ctrl->queues);
3215 out_free_ida:
3216 put_device(ctrl->dev);
3217 ida_simple_remove(&nvme_fc_ctrl_cnt, ctrl->cnum);
3218 out_free_ctrl:
3219 kfree(ctrl);
3220 out_fail:
3221 /* exit via here doesn't follow ctlr ref points */
3222 return ERR_PTR(ret);
3226 struct nvmet_fc_traddr {
3227 u64 nn;
3228 u64 pn;
3231 static int
3232 __nvme_fc_parse_u64(substring_t *sstr, u64 *val)
3234 u64 token64;
3236 if (match_u64(sstr, &token64))
3237 return -EINVAL;
3238 *val = token64;
3240 return 0;
3244 * This routine validates and extracts the WWN's from the TRADDR string.
3245 * As kernel parsers need the 0x to determine number base, universally
3246 * build string to parse with 0x prefix before parsing name strings.
3248 static int
3249 nvme_fc_parse_traddr(struct nvmet_fc_traddr *traddr, char *buf, size_t blen)
3251 char name[2 + NVME_FC_TRADDR_HEXNAMELEN + 1];
3252 substring_t wwn = { name, &name[sizeof(name)-1] };
3253 int nnoffset, pnoffset;
3255 /* validate if string is one of the 2 allowed formats */
3256 if (strnlen(buf, blen) == NVME_FC_TRADDR_MAXLENGTH &&
3257 !strncmp(buf, "nn-0x", NVME_FC_TRADDR_OXNNLEN) &&
3258 !strncmp(&buf[NVME_FC_TRADDR_MAX_PN_OFFSET],
3259 "pn-0x", NVME_FC_TRADDR_OXNNLEN)) {
3260 nnoffset = NVME_FC_TRADDR_OXNNLEN;
3261 pnoffset = NVME_FC_TRADDR_MAX_PN_OFFSET +
3262 NVME_FC_TRADDR_OXNNLEN;
3263 } else if ((strnlen(buf, blen) == NVME_FC_TRADDR_MINLENGTH &&
3264 !strncmp(buf, "nn-", NVME_FC_TRADDR_NNLEN) &&
3265 !strncmp(&buf[NVME_FC_TRADDR_MIN_PN_OFFSET],
3266 "pn-", NVME_FC_TRADDR_NNLEN))) {
3267 nnoffset = NVME_FC_TRADDR_NNLEN;
3268 pnoffset = NVME_FC_TRADDR_MIN_PN_OFFSET + NVME_FC_TRADDR_NNLEN;
3269 } else
3270 goto out_einval;
3272 name[0] = '0';
3273 name[1] = 'x';
3274 name[2 + NVME_FC_TRADDR_HEXNAMELEN] = 0;
3276 memcpy(&name[2], &buf[nnoffset], NVME_FC_TRADDR_HEXNAMELEN);
3277 if (__nvme_fc_parse_u64(&wwn, &traddr->nn))
3278 goto out_einval;
3280 memcpy(&name[2], &buf[pnoffset], NVME_FC_TRADDR_HEXNAMELEN);
3281 if (__nvme_fc_parse_u64(&wwn, &traddr->pn))
3282 goto out_einval;
3284 return 0;
3286 out_einval:
3287 pr_warn("%s: bad traddr string\n", __func__);
3288 return -EINVAL;
3291 static struct nvme_ctrl *
3292 nvme_fc_create_ctrl(struct device *dev, struct nvmf_ctrl_options *opts)
3294 struct nvme_fc_lport *lport;
3295 struct nvme_fc_rport *rport;
3296 struct nvme_ctrl *ctrl;
3297 struct nvmet_fc_traddr laddr = { 0L, 0L };
3298 struct nvmet_fc_traddr raddr = { 0L, 0L };
3299 unsigned long flags;
3300 int ret;
3302 ret = nvme_fc_parse_traddr(&raddr, opts->traddr, NVMF_TRADDR_SIZE);
3303 if (ret || !raddr.nn || !raddr.pn)
3304 return ERR_PTR(-EINVAL);
3306 ret = nvme_fc_parse_traddr(&laddr, opts->host_traddr, NVMF_TRADDR_SIZE);
3307 if (ret || !laddr.nn || !laddr.pn)
3308 return ERR_PTR(-EINVAL);
3310 /* find the host and remote ports to connect together */
3311 spin_lock_irqsave(&nvme_fc_lock, flags);
3312 list_for_each_entry(lport, &nvme_fc_lport_list, port_list) {
3313 if (lport->localport.node_name != laddr.nn ||
3314 lport->localport.port_name != laddr.pn)
3315 continue;
3317 list_for_each_entry(rport, &lport->endp_list, endp_list) {
3318 if (rport->remoteport.node_name != raddr.nn ||
3319 rport->remoteport.port_name != raddr.pn)
3320 continue;
3322 /* if fail to get reference fall through. Will error */
3323 if (!nvme_fc_rport_get(rport))
3324 break;
3326 spin_unlock_irqrestore(&nvme_fc_lock, flags);
3328 ctrl = nvme_fc_init_ctrl(dev, opts, lport, rport);
3329 if (IS_ERR(ctrl))
3330 nvme_fc_rport_put(rport);
3331 return ctrl;
3334 spin_unlock_irqrestore(&nvme_fc_lock, flags);
3336 pr_warn("%s: %s - %s combination not found\n",
3337 __func__, opts->traddr, opts->host_traddr);
3338 return ERR_PTR(-ENOENT);
3342 static struct nvmf_transport_ops nvme_fc_transport = {
3343 .name = "fc",
3344 .module = THIS_MODULE,
3345 .required_opts = NVMF_OPT_TRADDR | NVMF_OPT_HOST_TRADDR,
3346 .allowed_opts = NVMF_OPT_RECONNECT_DELAY | NVMF_OPT_CTRL_LOSS_TMO,
3347 .create_ctrl = nvme_fc_create_ctrl,
3350 /* Arbitrary successive failures max. With lots of subsystems could be high */
3351 #define DISCOVERY_MAX_FAIL 20
3353 static ssize_t nvme_fc_nvme_discovery_store(struct device *dev,
3354 struct device_attribute *attr, const char *buf, size_t count)
3356 unsigned long flags;
3357 LIST_HEAD(local_disc_list);
3358 struct nvme_fc_lport *lport;
3359 struct nvme_fc_rport *rport;
3360 int failcnt = 0;
3362 spin_lock_irqsave(&nvme_fc_lock, flags);
3363 restart:
3364 list_for_each_entry(lport, &nvme_fc_lport_list, port_list) {
3365 list_for_each_entry(rport, &lport->endp_list, endp_list) {
3366 if (!nvme_fc_lport_get(lport))
3367 continue;
3368 if (!nvme_fc_rport_get(rport)) {
3370 * This is a temporary condition. Upon restart
3371 * this rport will be gone from the list.
3373 * Revert the lport put and retry. Anything
3374 * added to the list already will be skipped (as
3375 * they are no longer list_empty). Loops should
3376 * resume at rports that were not yet seen.
3378 nvme_fc_lport_put(lport);
3380 if (failcnt++ < DISCOVERY_MAX_FAIL)
3381 goto restart;
3383 pr_err("nvme_discovery: too many reference "
3384 "failures\n");
3385 goto process_local_list;
3387 if (list_empty(&rport->disc_list))
3388 list_add_tail(&rport->disc_list,
3389 &local_disc_list);
3393 process_local_list:
3394 while (!list_empty(&local_disc_list)) {
3395 rport = list_first_entry(&local_disc_list,
3396 struct nvme_fc_rport, disc_list);
3397 list_del_init(&rport->disc_list);
3398 spin_unlock_irqrestore(&nvme_fc_lock, flags);
3400 lport = rport->lport;
3401 /* signal discovery. Won't hurt if it repeats */
3402 nvme_fc_signal_discovery_scan(lport, rport);
3403 nvme_fc_rport_put(rport);
3404 nvme_fc_lport_put(lport);
3406 spin_lock_irqsave(&nvme_fc_lock, flags);
3408 spin_unlock_irqrestore(&nvme_fc_lock, flags);
3410 return count;
3412 static DEVICE_ATTR(nvme_discovery, 0200, NULL, nvme_fc_nvme_discovery_store);
3414 static struct attribute *nvme_fc_attrs[] = {
3415 &dev_attr_nvme_discovery.attr,
3416 NULL
3419 static struct attribute_group nvme_fc_attr_group = {
3420 .attrs = nvme_fc_attrs,
3423 static const struct attribute_group *nvme_fc_attr_groups[] = {
3424 &nvme_fc_attr_group,
3425 NULL
3428 static struct class fc_class = {
3429 .name = "fc",
3430 .dev_groups = nvme_fc_attr_groups,
3431 .owner = THIS_MODULE,
3434 static int __init nvme_fc_init_module(void)
3436 int ret;
3438 nvme_fc_wq = alloc_workqueue("nvme_fc_wq", WQ_MEM_RECLAIM, 0);
3439 if (!nvme_fc_wq)
3440 return -ENOMEM;
3443 * NOTE:
3444 * It is expected that in the future the kernel will combine
3445 * the FC-isms that are currently under scsi and now being
3446 * added to by NVME into a new standalone FC class. The SCSI
3447 * and NVME protocols and their devices would be under this
3448 * new FC class.
3450 * As we need something to post FC-specific udev events to,
3451 * specifically for nvme probe events, start by creating the
3452 * new device class. When the new standalone FC class is
3453 * put in place, this code will move to a more generic
3454 * location for the class.
3456 ret = class_register(&fc_class);
3457 if (ret) {
3458 pr_err("couldn't register class fc\n");
3459 goto out_destroy_wq;
3463 * Create a device for the FC-centric udev events
3465 fc_udev_device = device_create(&fc_class, NULL, MKDEV(0, 0), NULL,
3466 "fc_udev_device");
3467 if (IS_ERR(fc_udev_device)) {
3468 pr_err("couldn't create fc_udev device!\n");
3469 ret = PTR_ERR(fc_udev_device);
3470 goto out_destroy_class;
3473 ret = nvmf_register_transport(&nvme_fc_transport);
3474 if (ret)
3475 goto out_destroy_device;
3477 return 0;
3479 out_destroy_device:
3480 device_destroy(&fc_class, MKDEV(0, 0));
3481 out_destroy_class:
3482 class_unregister(&fc_class);
3483 out_destroy_wq:
3484 destroy_workqueue(nvme_fc_wq);
3486 return ret;
3489 static void
3490 nvme_fc_delete_controllers(struct nvme_fc_rport *rport)
3492 struct nvme_fc_ctrl *ctrl;
3494 spin_lock(&rport->lock);
3495 list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) {
3496 dev_warn(ctrl->ctrl.device,
3497 "NVME-FC{%d}: transport unloading: deleting ctrl\n",
3498 ctrl->cnum);
3499 nvme_delete_ctrl(&ctrl->ctrl);
3501 spin_unlock(&rport->lock);
3504 static void
3505 nvme_fc_cleanup_for_unload(void)
3507 struct nvme_fc_lport *lport;
3508 struct nvme_fc_rport *rport;
3510 list_for_each_entry(lport, &nvme_fc_lport_list, port_list) {
3511 list_for_each_entry(rport, &lport->endp_list, endp_list) {
3512 nvme_fc_delete_controllers(rport);
3517 static void __exit nvme_fc_exit_module(void)
3519 unsigned long flags;
3520 bool need_cleanup = false;
3522 spin_lock_irqsave(&nvme_fc_lock, flags);
3523 nvme_fc_waiting_to_unload = true;
3524 if (!list_empty(&nvme_fc_lport_list)) {
3525 need_cleanup = true;
3526 nvme_fc_cleanup_for_unload();
3528 spin_unlock_irqrestore(&nvme_fc_lock, flags);
3529 if (need_cleanup) {
3530 pr_info("%s: waiting for ctlr deletes\n", __func__);
3531 wait_for_completion(&nvme_fc_unload_proceed);
3532 pr_info("%s: ctrl deletes complete\n", __func__);
3535 nvmf_unregister_transport(&nvme_fc_transport);
3537 ida_destroy(&nvme_fc_local_port_cnt);
3538 ida_destroy(&nvme_fc_ctrl_cnt);
3540 device_destroy(&fc_class, MKDEV(0, 0));
3541 class_unregister(&fc_class);
3542 destroy_workqueue(nvme_fc_wq);
3545 module_init(nvme_fc_init_module);
3546 module_exit(nvme_fc_exit_module);
3548 MODULE_LICENSE("GPL v2");