1 // SPDX-License-Identifier: GPL-2.0-or-later
4 // Copyright (C) 2005 David Brownell
5 // Copyright (C) 2008 Secret Lab Technologies Ltd.
7 #include <linux/kernel.h>
8 #include <linux/device.h>
9 #include <linux/init.h>
10 #include <linux/cache.h>
11 #include <linux/dma-mapping.h>
12 #include <linux/dmaengine.h>
13 #include <linux/mutex.h>
14 #include <linux/of_device.h>
15 #include <linux/of_irq.h>
16 #include <linux/clk/clk-conf.h>
17 #include <linux/slab.h>
18 #include <linux/mod_devicetable.h>
19 #include <linux/spi/spi.h>
20 #include <linux/spi/spi-mem.h>
21 #include <linux/of_gpio.h>
22 #include <linux/gpio/consumer.h>
23 #include <linux/pm_runtime.h>
24 #include <linux/pm_domain.h>
25 #include <linux/property.h>
26 #include <linux/export.h>
27 #include <linux/sched/rt.h>
28 #include <uapi/linux/sched/types.h>
29 #include <linux/delay.h>
30 #include <linux/kthread.h>
31 #include <linux/ioport.h>
32 #include <linux/acpi.h>
33 #include <linux/highmem.h>
34 #include <linux/idr.h>
35 #include <linux/platform_data/x86/apple.h>
37 #define CREATE_TRACE_POINTS
38 #include <trace/events/spi.h>
39 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_start
);
40 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_stop
);
42 #include "internals.h"
44 static DEFINE_IDR(spi_master_idr
);
46 static void spidev_release(struct device
*dev
)
48 struct spi_device
*spi
= to_spi_device(dev
);
50 /* spi controllers may cleanup for released devices */
51 if (spi
->controller
->cleanup
)
52 spi
->controller
->cleanup(spi
);
54 spi_controller_put(spi
->controller
);
55 kfree(spi
->driver_override
);
60 modalias_show(struct device
*dev
, struct device_attribute
*a
, char *buf
)
62 const struct spi_device
*spi
= to_spi_device(dev
);
65 len
= acpi_device_modalias(dev
, buf
, PAGE_SIZE
- 1);
69 return sprintf(buf
, "%s%s\n", SPI_MODULE_PREFIX
, spi
->modalias
);
71 static DEVICE_ATTR_RO(modalias
);
73 static ssize_t
driver_override_store(struct device
*dev
,
74 struct device_attribute
*a
,
75 const char *buf
, size_t count
)
77 struct spi_device
*spi
= to_spi_device(dev
);
78 const char *end
= memchr(buf
, '\n', count
);
79 const size_t len
= end
? end
- buf
: count
;
80 const char *driver_override
, *old
;
82 /* We need to keep extra room for a newline when displaying value */
83 if (len
>= (PAGE_SIZE
- 1))
86 driver_override
= kstrndup(buf
, len
, GFP_KERNEL
);
91 old
= spi
->driver_override
;
93 spi
->driver_override
= driver_override
;
95 /* Empty string, disable driver override */
96 spi
->driver_override
= NULL
;
97 kfree(driver_override
);
105 static ssize_t
driver_override_show(struct device
*dev
,
106 struct device_attribute
*a
, char *buf
)
108 const struct spi_device
*spi
= to_spi_device(dev
);
112 len
= snprintf(buf
, PAGE_SIZE
, "%s\n", spi
->driver_override
? : "");
116 static DEVICE_ATTR_RW(driver_override
);
118 #define SPI_STATISTICS_ATTRS(field, file) \
119 static ssize_t spi_controller_##field##_show(struct device *dev, \
120 struct device_attribute *attr, \
123 struct spi_controller *ctlr = container_of(dev, \
124 struct spi_controller, dev); \
125 return spi_statistics_##field##_show(&ctlr->statistics, buf); \
127 static struct device_attribute dev_attr_spi_controller_##field = { \
128 .attr = { .name = file, .mode = 0444 }, \
129 .show = spi_controller_##field##_show, \
131 static ssize_t spi_device_##field##_show(struct device *dev, \
132 struct device_attribute *attr, \
135 struct spi_device *spi = to_spi_device(dev); \
136 return spi_statistics_##field##_show(&spi->statistics, buf); \
138 static struct device_attribute dev_attr_spi_device_##field = { \
139 .attr = { .name = file, .mode = 0444 }, \
140 .show = spi_device_##field##_show, \
143 #define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string) \
144 static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \
147 unsigned long flags; \
149 spin_lock_irqsave(&stat->lock, flags); \
150 len = sprintf(buf, format_string, stat->field); \
151 spin_unlock_irqrestore(&stat->lock, flags); \
154 SPI_STATISTICS_ATTRS(name, file)
156 #define SPI_STATISTICS_SHOW(field, format_string) \
157 SPI_STATISTICS_SHOW_NAME(field, __stringify(field), \
158 field, format_string)
160 SPI_STATISTICS_SHOW(messages
, "%lu");
161 SPI_STATISTICS_SHOW(transfers
, "%lu");
162 SPI_STATISTICS_SHOW(errors
, "%lu");
163 SPI_STATISTICS_SHOW(timedout
, "%lu");
165 SPI_STATISTICS_SHOW(spi_sync
, "%lu");
166 SPI_STATISTICS_SHOW(spi_sync_immediate
, "%lu");
167 SPI_STATISTICS_SHOW(spi_async
, "%lu");
169 SPI_STATISTICS_SHOW(bytes
, "%llu");
170 SPI_STATISTICS_SHOW(bytes_rx
, "%llu");
171 SPI_STATISTICS_SHOW(bytes_tx
, "%llu");
173 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number) \
174 SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index, \
175 "transfer_bytes_histo_" number, \
176 transfer_bytes_histo[index], "%lu")
177 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0, "0-1");
178 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1, "2-3");
179 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2, "4-7");
180 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3, "8-15");
181 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4, "16-31");
182 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5, "32-63");
183 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6, "64-127");
184 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7, "128-255");
185 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8, "256-511");
186 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9, "512-1023");
187 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
188 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
189 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
190 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
191 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
192 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
193 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
195 SPI_STATISTICS_SHOW(transfers_split_maxsize
, "%lu");
197 static struct attribute
*spi_dev_attrs
[] = {
198 &dev_attr_modalias
.attr
,
199 &dev_attr_driver_override
.attr
,
203 static const struct attribute_group spi_dev_group
= {
204 .attrs
= spi_dev_attrs
,
207 static struct attribute
*spi_device_statistics_attrs
[] = {
208 &dev_attr_spi_device_messages
.attr
,
209 &dev_attr_spi_device_transfers
.attr
,
210 &dev_attr_spi_device_errors
.attr
,
211 &dev_attr_spi_device_timedout
.attr
,
212 &dev_attr_spi_device_spi_sync
.attr
,
213 &dev_attr_spi_device_spi_sync_immediate
.attr
,
214 &dev_attr_spi_device_spi_async
.attr
,
215 &dev_attr_spi_device_bytes
.attr
,
216 &dev_attr_spi_device_bytes_rx
.attr
,
217 &dev_attr_spi_device_bytes_tx
.attr
,
218 &dev_attr_spi_device_transfer_bytes_histo0
.attr
,
219 &dev_attr_spi_device_transfer_bytes_histo1
.attr
,
220 &dev_attr_spi_device_transfer_bytes_histo2
.attr
,
221 &dev_attr_spi_device_transfer_bytes_histo3
.attr
,
222 &dev_attr_spi_device_transfer_bytes_histo4
.attr
,
223 &dev_attr_spi_device_transfer_bytes_histo5
.attr
,
224 &dev_attr_spi_device_transfer_bytes_histo6
.attr
,
225 &dev_attr_spi_device_transfer_bytes_histo7
.attr
,
226 &dev_attr_spi_device_transfer_bytes_histo8
.attr
,
227 &dev_attr_spi_device_transfer_bytes_histo9
.attr
,
228 &dev_attr_spi_device_transfer_bytes_histo10
.attr
,
229 &dev_attr_spi_device_transfer_bytes_histo11
.attr
,
230 &dev_attr_spi_device_transfer_bytes_histo12
.attr
,
231 &dev_attr_spi_device_transfer_bytes_histo13
.attr
,
232 &dev_attr_spi_device_transfer_bytes_histo14
.attr
,
233 &dev_attr_spi_device_transfer_bytes_histo15
.attr
,
234 &dev_attr_spi_device_transfer_bytes_histo16
.attr
,
235 &dev_attr_spi_device_transfers_split_maxsize
.attr
,
239 static const struct attribute_group spi_device_statistics_group
= {
240 .name
= "statistics",
241 .attrs
= spi_device_statistics_attrs
,
244 static const struct attribute_group
*spi_dev_groups
[] = {
246 &spi_device_statistics_group
,
250 static struct attribute
*spi_controller_statistics_attrs
[] = {
251 &dev_attr_spi_controller_messages
.attr
,
252 &dev_attr_spi_controller_transfers
.attr
,
253 &dev_attr_spi_controller_errors
.attr
,
254 &dev_attr_spi_controller_timedout
.attr
,
255 &dev_attr_spi_controller_spi_sync
.attr
,
256 &dev_attr_spi_controller_spi_sync_immediate
.attr
,
257 &dev_attr_spi_controller_spi_async
.attr
,
258 &dev_attr_spi_controller_bytes
.attr
,
259 &dev_attr_spi_controller_bytes_rx
.attr
,
260 &dev_attr_spi_controller_bytes_tx
.attr
,
261 &dev_attr_spi_controller_transfer_bytes_histo0
.attr
,
262 &dev_attr_spi_controller_transfer_bytes_histo1
.attr
,
263 &dev_attr_spi_controller_transfer_bytes_histo2
.attr
,
264 &dev_attr_spi_controller_transfer_bytes_histo3
.attr
,
265 &dev_attr_spi_controller_transfer_bytes_histo4
.attr
,
266 &dev_attr_spi_controller_transfer_bytes_histo5
.attr
,
267 &dev_attr_spi_controller_transfer_bytes_histo6
.attr
,
268 &dev_attr_spi_controller_transfer_bytes_histo7
.attr
,
269 &dev_attr_spi_controller_transfer_bytes_histo8
.attr
,
270 &dev_attr_spi_controller_transfer_bytes_histo9
.attr
,
271 &dev_attr_spi_controller_transfer_bytes_histo10
.attr
,
272 &dev_attr_spi_controller_transfer_bytes_histo11
.attr
,
273 &dev_attr_spi_controller_transfer_bytes_histo12
.attr
,
274 &dev_attr_spi_controller_transfer_bytes_histo13
.attr
,
275 &dev_attr_spi_controller_transfer_bytes_histo14
.attr
,
276 &dev_attr_spi_controller_transfer_bytes_histo15
.attr
,
277 &dev_attr_spi_controller_transfer_bytes_histo16
.attr
,
278 &dev_attr_spi_controller_transfers_split_maxsize
.attr
,
282 static const struct attribute_group spi_controller_statistics_group
= {
283 .name
= "statistics",
284 .attrs
= spi_controller_statistics_attrs
,
287 static const struct attribute_group
*spi_master_groups
[] = {
288 &spi_controller_statistics_group
,
292 void spi_statistics_add_transfer_stats(struct spi_statistics
*stats
,
293 struct spi_transfer
*xfer
,
294 struct spi_controller
*ctlr
)
297 int l2len
= min(fls(xfer
->len
), SPI_STATISTICS_HISTO_SIZE
) - 1;
302 spin_lock_irqsave(&stats
->lock
, flags
);
305 stats
->transfer_bytes_histo
[l2len
]++;
307 stats
->bytes
+= xfer
->len
;
308 if ((xfer
->tx_buf
) &&
309 (xfer
->tx_buf
!= ctlr
->dummy_tx
))
310 stats
->bytes_tx
+= xfer
->len
;
311 if ((xfer
->rx_buf
) &&
312 (xfer
->rx_buf
!= ctlr
->dummy_rx
))
313 stats
->bytes_rx
+= xfer
->len
;
315 spin_unlock_irqrestore(&stats
->lock
, flags
);
317 EXPORT_SYMBOL_GPL(spi_statistics_add_transfer_stats
);
319 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
320 * and the sysfs version makes coldplug work too.
323 static const struct spi_device_id
*spi_match_id(const struct spi_device_id
*id
,
324 const struct spi_device
*sdev
)
326 while (id
->name
[0]) {
327 if (!strcmp(sdev
->modalias
, id
->name
))
334 const struct spi_device_id
*spi_get_device_id(const struct spi_device
*sdev
)
336 const struct spi_driver
*sdrv
= to_spi_driver(sdev
->dev
.driver
);
338 return spi_match_id(sdrv
->id_table
, sdev
);
340 EXPORT_SYMBOL_GPL(spi_get_device_id
);
342 static int spi_match_device(struct device
*dev
, struct device_driver
*drv
)
344 const struct spi_device
*spi
= to_spi_device(dev
);
345 const struct spi_driver
*sdrv
= to_spi_driver(drv
);
347 /* Check override first, and if set, only use the named driver */
348 if (spi
->driver_override
)
349 return strcmp(spi
->driver_override
, drv
->name
) == 0;
351 /* Attempt an OF style match */
352 if (of_driver_match_device(dev
, drv
))
356 if (acpi_driver_match_device(dev
, drv
))
360 return !!spi_match_id(sdrv
->id_table
, spi
);
362 return strcmp(spi
->modalias
, drv
->name
) == 0;
365 static int spi_uevent(struct device
*dev
, struct kobj_uevent_env
*env
)
367 const struct spi_device
*spi
= to_spi_device(dev
);
370 rc
= acpi_device_uevent_modalias(dev
, env
);
374 return add_uevent_var(env
, "MODALIAS=%s%s", SPI_MODULE_PREFIX
, spi
->modalias
);
377 struct bus_type spi_bus_type
= {
379 .dev_groups
= spi_dev_groups
,
380 .match
= spi_match_device
,
381 .uevent
= spi_uevent
,
383 EXPORT_SYMBOL_GPL(spi_bus_type
);
386 static int spi_drv_probe(struct device
*dev
)
388 const struct spi_driver
*sdrv
= to_spi_driver(dev
->driver
);
389 struct spi_device
*spi
= to_spi_device(dev
);
392 ret
= of_clk_set_defaults(dev
->of_node
, false);
397 spi
->irq
= of_irq_get(dev
->of_node
, 0);
398 if (spi
->irq
== -EPROBE_DEFER
)
399 return -EPROBE_DEFER
;
404 ret
= dev_pm_domain_attach(dev
, true);
408 ret
= sdrv
->probe(spi
);
410 dev_pm_domain_detach(dev
, true);
415 static int spi_drv_remove(struct device
*dev
)
417 const struct spi_driver
*sdrv
= to_spi_driver(dev
->driver
);
420 ret
= sdrv
->remove(to_spi_device(dev
));
421 dev_pm_domain_detach(dev
, true);
426 static void spi_drv_shutdown(struct device
*dev
)
428 const struct spi_driver
*sdrv
= to_spi_driver(dev
->driver
);
430 sdrv
->shutdown(to_spi_device(dev
));
434 * __spi_register_driver - register a SPI driver
435 * @owner: owner module of the driver to register
436 * @sdrv: the driver to register
439 * Return: zero on success, else a negative error code.
441 int __spi_register_driver(struct module
*owner
, struct spi_driver
*sdrv
)
443 sdrv
->driver
.owner
= owner
;
444 sdrv
->driver
.bus
= &spi_bus_type
;
446 sdrv
->driver
.probe
= spi_drv_probe
;
448 sdrv
->driver
.remove
= spi_drv_remove
;
450 sdrv
->driver
.shutdown
= spi_drv_shutdown
;
451 return driver_register(&sdrv
->driver
);
453 EXPORT_SYMBOL_GPL(__spi_register_driver
);
455 /*-------------------------------------------------------------------------*/
457 /* SPI devices should normally not be created by SPI device drivers; that
458 * would make them board-specific. Similarly with SPI controller drivers.
459 * Device registration normally goes into like arch/.../mach.../board-YYY.c
460 * with other readonly (flashable) information about mainboard devices.
464 struct list_head list
;
465 struct spi_board_info board_info
;
468 static LIST_HEAD(board_list
);
469 static LIST_HEAD(spi_controller_list
);
472 * Used to protect add/del operation for board_info list and
473 * spi_controller list, and their matching process
474 * also used to protect object of type struct idr
476 static DEFINE_MUTEX(board_lock
);
479 * spi_alloc_device - Allocate a new SPI device
480 * @ctlr: Controller to which device is connected
483 * Allows a driver to allocate and initialize a spi_device without
484 * registering it immediately. This allows a driver to directly
485 * fill the spi_device with device parameters before calling
486 * spi_add_device() on it.
488 * Caller is responsible to call spi_add_device() on the returned
489 * spi_device structure to add it to the SPI controller. If the caller
490 * needs to discard the spi_device without adding it, then it should
491 * call spi_dev_put() on it.
493 * Return: a pointer to the new device, or NULL.
495 struct spi_device
*spi_alloc_device(struct spi_controller
*ctlr
)
497 struct spi_device
*spi
;
499 if (!spi_controller_get(ctlr
))
502 spi
= kzalloc(sizeof(*spi
), GFP_KERNEL
);
504 spi_controller_put(ctlr
);
508 spi
->master
= spi
->controller
= ctlr
;
509 spi
->dev
.parent
= &ctlr
->dev
;
510 spi
->dev
.bus
= &spi_bus_type
;
511 spi
->dev
.release
= spidev_release
;
512 spi
->cs_gpio
= -ENOENT
;
514 spin_lock_init(&spi
->statistics
.lock
);
516 device_initialize(&spi
->dev
);
519 EXPORT_SYMBOL_GPL(spi_alloc_device
);
521 static void spi_dev_set_name(struct spi_device
*spi
)
523 struct acpi_device
*adev
= ACPI_COMPANION(&spi
->dev
);
526 dev_set_name(&spi
->dev
, "spi-%s", acpi_dev_name(adev
));
530 dev_set_name(&spi
->dev
, "%s.%u", dev_name(&spi
->controller
->dev
),
534 static int spi_dev_check(struct device
*dev
, void *data
)
536 struct spi_device
*spi
= to_spi_device(dev
);
537 struct spi_device
*new_spi
= data
;
539 if (spi
->controller
== new_spi
->controller
&&
540 spi
->chip_select
== new_spi
->chip_select
)
546 * spi_add_device - Add spi_device allocated with spi_alloc_device
547 * @spi: spi_device to register
549 * Companion function to spi_alloc_device. Devices allocated with
550 * spi_alloc_device can be added onto the spi bus with this function.
552 * Return: 0 on success; negative errno on failure
554 int spi_add_device(struct spi_device
*spi
)
556 static DEFINE_MUTEX(spi_add_lock
);
557 struct spi_controller
*ctlr
= spi
->controller
;
558 struct device
*dev
= ctlr
->dev
.parent
;
561 /* Chipselects are numbered 0..max; validate. */
562 if (spi
->chip_select
>= ctlr
->num_chipselect
) {
563 dev_err(dev
, "cs%d >= max %d\n", spi
->chip_select
,
564 ctlr
->num_chipselect
);
568 /* Set the bus ID string */
569 spi_dev_set_name(spi
);
571 /* We need to make sure there's no other device with this
572 * chipselect **BEFORE** we call setup(), else we'll trash
573 * its configuration. Lock against concurrent add() calls.
575 mutex_lock(&spi_add_lock
);
577 status
= bus_for_each_dev(&spi_bus_type
, NULL
, spi
, spi_dev_check
);
579 dev_err(dev
, "chipselect %d already in use\n",
584 /* Descriptors take precedence */
586 spi
->cs_gpiod
= ctlr
->cs_gpiods
[spi
->chip_select
];
587 else if (ctlr
->cs_gpios
)
588 spi
->cs_gpio
= ctlr
->cs_gpios
[spi
->chip_select
];
590 /* Drivers may modify this initial i/o setup, but will
591 * normally rely on the device being setup. Devices
592 * using SPI_CS_HIGH can't coexist well otherwise...
594 status
= spi_setup(spi
);
596 dev_err(dev
, "can't setup %s, status %d\n",
597 dev_name(&spi
->dev
), status
);
601 /* Device may be bound to an active driver when this returns */
602 status
= device_add(&spi
->dev
);
604 dev_err(dev
, "can't add %s, status %d\n",
605 dev_name(&spi
->dev
), status
);
607 dev_dbg(dev
, "registered child %s\n", dev_name(&spi
->dev
));
610 mutex_unlock(&spi_add_lock
);
613 EXPORT_SYMBOL_GPL(spi_add_device
);
616 * spi_new_device - instantiate one new SPI device
617 * @ctlr: Controller to which device is connected
618 * @chip: Describes the SPI device
621 * On typical mainboards, this is purely internal; and it's not needed
622 * after board init creates the hard-wired devices. Some development
623 * platforms may not be able to use spi_register_board_info though, and
624 * this is exported so that for example a USB or parport based adapter
625 * driver could add devices (which it would learn about out-of-band).
627 * Return: the new device, or NULL.
629 struct spi_device
*spi_new_device(struct spi_controller
*ctlr
,
630 struct spi_board_info
*chip
)
632 struct spi_device
*proxy
;
635 /* NOTE: caller did any chip->bus_num checks necessary.
637 * Also, unless we change the return value convention to use
638 * error-or-pointer (not NULL-or-pointer), troubleshootability
639 * suggests syslogged diagnostics are best here (ugh).
642 proxy
= spi_alloc_device(ctlr
);
646 WARN_ON(strlen(chip
->modalias
) >= sizeof(proxy
->modalias
));
648 proxy
->chip_select
= chip
->chip_select
;
649 proxy
->max_speed_hz
= chip
->max_speed_hz
;
650 proxy
->mode
= chip
->mode
;
651 proxy
->irq
= chip
->irq
;
652 strlcpy(proxy
->modalias
, chip
->modalias
, sizeof(proxy
->modalias
));
653 proxy
->dev
.platform_data
= (void *) chip
->platform_data
;
654 proxy
->controller_data
= chip
->controller_data
;
655 proxy
->controller_state
= NULL
;
657 if (chip
->properties
) {
658 status
= device_add_properties(&proxy
->dev
, chip
->properties
);
661 "failed to add properties to '%s': %d\n",
662 chip
->modalias
, status
);
667 status
= spi_add_device(proxy
);
669 goto err_remove_props
;
674 if (chip
->properties
)
675 device_remove_properties(&proxy
->dev
);
680 EXPORT_SYMBOL_GPL(spi_new_device
);
683 * spi_unregister_device - unregister a single SPI device
684 * @spi: spi_device to unregister
686 * Start making the passed SPI device vanish. Normally this would be handled
687 * by spi_unregister_controller().
689 void spi_unregister_device(struct spi_device
*spi
)
694 if (spi
->dev
.of_node
) {
695 of_node_clear_flag(spi
->dev
.of_node
, OF_POPULATED
);
696 of_node_put(spi
->dev
.of_node
);
698 if (ACPI_COMPANION(&spi
->dev
))
699 acpi_device_clear_enumerated(ACPI_COMPANION(&spi
->dev
));
700 device_unregister(&spi
->dev
);
702 EXPORT_SYMBOL_GPL(spi_unregister_device
);
704 static void spi_match_controller_to_boardinfo(struct spi_controller
*ctlr
,
705 struct spi_board_info
*bi
)
707 struct spi_device
*dev
;
709 if (ctlr
->bus_num
!= bi
->bus_num
)
712 dev
= spi_new_device(ctlr
, bi
);
714 dev_err(ctlr
->dev
.parent
, "can't create new device for %s\n",
719 * spi_register_board_info - register SPI devices for a given board
720 * @info: array of chip descriptors
721 * @n: how many descriptors are provided
724 * Board-specific early init code calls this (probably during arch_initcall)
725 * with segments of the SPI device table. Any device nodes are created later,
726 * after the relevant parent SPI controller (bus_num) is defined. We keep
727 * this table of devices forever, so that reloading a controller driver will
728 * not make Linux forget about these hard-wired devices.
730 * Other code can also call this, e.g. a particular add-on board might provide
731 * SPI devices through its expansion connector, so code initializing that board
732 * would naturally declare its SPI devices.
734 * The board info passed can safely be __initdata ... but be careful of
735 * any embedded pointers (platform_data, etc), they're copied as-is.
736 * Device properties are deep-copied though.
738 * Return: zero on success, else a negative error code.
740 int spi_register_board_info(struct spi_board_info
const *info
, unsigned n
)
742 struct boardinfo
*bi
;
748 bi
= kcalloc(n
, sizeof(*bi
), GFP_KERNEL
);
752 for (i
= 0; i
< n
; i
++, bi
++, info
++) {
753 struct spi_controller
*ctlr
;
755 memcpy(&bi
->board_info
, info
, sizeof(*info
));
756 if (info
->properties
) {
757 bi
->board_info
.properties
=
758 property_entries_dup(info
->properties
);
759 if (IS_ERR(bi
->board_info
.properties
))
760 return PTR_ERR(bi
->board_info
.properties
);
763 mutex_lock(&board_lock
);
764 list_add_tail(&bi
->list
, &board_list
);
765 list_for_each_entry(ctlr
, &spi_controller_list
, list
)
766 spi_match_controller_to_boardinfo(ctlr
,
768 mutex_unlock(&board_lock
);
774 /*-------------------------------------------------------------------------*/
776 static void spi_set_cs(struct spi_device
*spi
, bool enable
)
778 bool enable1
= enable
;
780 if (!spi
->controller
->set_cs_timing
) {
782 spi_delay_exec(&spi
->controller
->cs_setup
, NULL
);
784 spi_delay_exec(&spi
->controller
->cs_hold
, NULL
);
787 if (spi
->mode
& SPI_CS_HIGH
)
790 if (spi
->cs_gpiod
|| gpio_is_valid(spi
->cs_gpio
)) {
792 * Honour the SPI_NO_CS flag and invert the enable line, as
793 * active low is default for SPI. Execution paths that handle
794 * polarity inversion in gpiolib (such as device tree) will
795 * enforce active high using the SPI_CS_HIGH resulting in a
796 * double inversion through the code above.
798 if (!(spi
->mode
& SPI_NO_CS
)) {
800 gpiod_set_value_cansleep(spi
->cs_gpiod
,
803 gpio_set_value_cansleep(spi
->cs_gpio
, !enable
);
805 /* Some SPI masters need both GPIO CS & slave_select */
806 if ((spi
->controller
->flags
& SPI_MASTER_GPIO_SS
) &&
807 spi
->controller
->set_cs
)
808 spi
->controller
->set_cs(spi
, !enable
);
809 } else if (spi
->controller
->set_cs
) {
810 spi
->controller
->set_cs(spi
, !enable
);
813 if (!spi
->controller
->set_cs_timing
) {
815 spi_delay_exec(&spi
->controller
->cs_inactive
, NULL
);
819 #ifdef CONFIG_HAS_DMA
820 int spi_map_buf(struct spi_controller
*ctlr
, struct device
*dev
,
821 struct sg_table
*sgt
, void *buf
, size_t len
,
822 enum dma_data_direction dir
)
824 const bool vmalloced_buf
= is_vmalloc_addr(buf
);
825 unsigned int max_seg_size
= dma_get_max_seg_size(dev
);
826 #ifdef CONFIG_HIGHMEM
827 const bool kmap_buf
= ((unsigned long)buf
>= PKMAP_BASE
&&
828 (unsigned long)buf
< (PKMAP_BASE
+
829 (LAST_PKMAP
* PAGE_SIZE
)));
831 const bool kmap_buf
= false;
835 struct page
*vm_page
;
836 struct scatterlist
*sg
;
841 if (vmalloced_buf
|| kmap_buf
) {
842 desc_len
= min_t(int, max_seg_size
, PAGE_SIZE
);
843 sgs
= DIV_ROUND_UP(len
+ offset_in_page(buf
), desc_len
);
844 } else if (virt_addr_valid(buf
)) {
845 desc_len
= min_t(int, max_seg_size
, ctlr
->max_dma_len
);
846 sgs
= DIV_ROUND_UP(len
, desc_len
);
851 ret
= sg_alloc_table(sgt
, sgs
, GFP_KERNEL
);
856 for (i
= 0; i
< sgs
; i
++) {
858 if (vmalloced_buf
|| kmap_buf
) {
860 * Next scatterlist entry size is the minimum between
861 * the desc_len and the remaining buffer length that
864 min
= min_t(size_t, desc_len
,
866 PAGE_SIZE
- offset_in_page(buf
)));
868 vm_page
= vmalloc_to_page(buf
);
870 vm_page
= kmap_to_page(buf
);
875 sg_set_page(sg
, vm_page
,
876 min
, offset_in_page(buf
));
878 min
= min_t(size_t, len
, desc_len
);
880 sg_set_buf(sg
, sg_buf
, min
);
888 ret
= dma_map_sg(dev
, sgt
->sgl
, sgt
->nents
, dir
);
901 void spi_unmap_buf(struct spi_controller
*ctlr
, struct device
*dev
,
902 struct sg_table
*sgt
, enum dma_data_direction dir
)
904 if (sgt
->orig_nents
) {
905 dma_unmap_sg(dev
, sgt
->sgl
, sgt
->orig_nents
, dir
);
910 static int __spi_map_msg(struct spi_controller
*ctlr
, struct spi_message
*msg
)
912 struct device
*tx_dev
, *rx_dev
;
913 struct spi_transfer
*xfer
;
920 tx_dev
= ctlr
->dma_tx
->device
->dev
;
922 tx_dev
= ctlr
->dev
.parent
;
925 rx_dev
= ctlr
->dma_rx
->device
->dev
;
927 rx_dev
= ctlr
->dev
.parent
;
929 list_for_each_entry(xfer
, &msg
->transfers
, transfer_list
) {
930 if (!ctlr
->can_dma(ctlr
, msg
->spi
, xfer
))
933 if (xfer
->tx_buf
!= NULL
) {
934 ret
= spi_map_buf(ctlr
, tx_dev
, &xfer
->tx_sg
,
935 (void *)xfer
->tx_buf
, xfer
->len
,
941 if (xfer
->rx_buf
!= NULL
) {
942 ret
= spi_map_buf(ctlr
, rx_dev
, &xfer
->rx_sg
,
943 xfer
->rx_buf
, xfer
->len
,
946 spi_unmap_buf(ctlr
, tx_dev
, &xfer
->tx_sg
,
953 ctlr
->cur_msg_mapped
= true;
958 static int __spi_unmap_msg(struct spi_controller
*ctlr
, struct spi_message
*msg
)
960 struct spi_transfer
*xfer
;
961 struct device
*tx_dev
, *rx_dev
;
963 if (!ctlr
->cur_msg_mapped
|| !ctlr
->can_dma
)
967 tx_dev
= ctlr
->dma_tx
->device
->dev
;
969 tx_dev
= ctlr
->dev
.parent
;
972 rx_dev
= ctlr
->dma_rx
->device
->dev
;
974 rx_dev
= ctlr
->dev
.parent
;
976 list_for_each_entry(xfer
, &msg
->transfers
, transfer_list
) {
977 if (!ctlr
->can_dma(ctlr
, msg
->spi
, xfer
))
980 spi_unmap_buf(ctlr
, rx_dev
, &xfer
->rx_sg
, DMA_FROM_DEVICE
);
981 spi_unmap_buf(ctlr
, tx_dev
, &xfer
->tx_sg
, DMA_TO_DEVICE
);
986 #else /* !CONFIG_HAS_DMA */
987 static inline int __spi_map_msg(struct spi_controller
*ctlr
,
988 struct spi_message
*msg
)
993 static inline int __spi_unmap_msg(struct spi_controller
*ctlr
,
994 struct spi_message
*msg
)
998 #endif /* !CONFIG_HAS_DMA */
1000 static inline int spi_unmap_msg(struct spi_controller
*ctlr
,
1001 struct spi_message
*msg
)
1003 struct spi_transfer
*xfer
;
1005 list_for_each_entry(xfer
, &msg
->transfers
, transfer_list
) {
1007 * Restore the original value of tx_buf or rx_buf if they are
1010 if (xfer
->tx_buf
== ctlr
->dummy_tx
)
1011 xfer
->tx_buf
= NULL
;
1012 if (xfer
->rx_buf
== ctlr
->dummy_rx
)
1013 xfer
->rx_buf
= NULL
;
1016 return __spi_unmap_msg(ctlr
, msg
);
1019 static int spi_map_msg(struct spi_controller
*ctlr
, struct spi_message
*msg
)
1021 struct spi_transfer
*xfer
;
1023 unsigned int max_tx
, max_rx
;
1025 if (ctlr
->flags
& (SPI_CONTROLLER_MUST_RX
| SPI_CONTROLLER_MUST_TX
)) {
1029 list_for_each_entry(xfer
, &msg
->transfers
, transfer_list
) {
1030 if ((ctlr
->flags
& SPI_CONTROLLER_MUST_TX
) &&
1032 max_tx
= max(xfer
->len
, max_tx
);
1033 if ((ctlr
->flags
& SPI_CONTROLLER_MUST_RX
) &&
1035 max_rx
= max(xfer
->len
, max_rx
);
1039 tmp
= krealloc(ctlr
->dummy_tx
, max_tx
,
1040 GFP_KERNEL
| GFP_DMA
);
1043 ctlr
->dummy_tx
= tmp
;
1044 memset(tmp
, 0, max_tx
);
1048 tmp
= krealloc(ctlr
->dummy_rx
, max_rx
,
1049 GFP_KERNEL
| GFP_DMA
);
1052 ctlr
->dummy_rx
= tmp
;
1055 if (max_tx
|| max_rx
) {
1056 list_for_each_entry(xfer
, &msg
->transfers
,
1061 xfer
->tx_buf
= ctlr
->dummy_tx
;
1063 xfer
->rx_buf
= ctlr
->dummy_rx
;
1068 return __spi_map_msg(ctlr
, msg
);
1071 static int spi_transfer_wait(struct spi_controller
*ctlr
,
1072 struct spi_message
*msg
,
1073 struct spi_transfer
*xfer
)
1075 struct spi_statistics
*statm
= &ctlr
->statistics
;
1076 struct spi_statistics
*stats
= &msg
->spi
->statistics
;
1077 unsigned long long ms
= 1;
1079 if (spi_controller_is_slave(ctlr
)) {
1080 if (wait_for_completion_interruptible(&ctlr
->xfer_completion
)) {
1081 dev_dbg(&msg
->spi
->dev
, "SPI transfer interrupted\n");
1085 ms
= 8LL * 1000LL * xfer
->len
;
1086 do_div(ms
, xfer
->speed_hz
);
1087 ms
+= ms
+ 200; /* some tolerance */
1092 ms
= wait_for_completion_timeout(&ctlr
->xfer_completion
,
1093 msecs_to_jiffies(ms
));
1096 SPI_STATISTICS_INCREMENT_FIELD(statm
, timedout
);
1097 SPI_STATISTICS_INCREMENT_FIELD(stats
, timedout
);
1098 dev_err(&msg
->spi
->dev
,
1099 "SPI transfer timed out\n");
1107 static void _spi_transfer_delay_ns(u32 ns
)
1114 u32 us
= DIV_ROUND_UP(ns
, 1000);
1119 usleep_range(us
, us
+ DIV_ROUND_UP(us
, 10));
1123 int spi_delay_to_ns(struct spi_delay
*_delay
, struct spi_transfer
*xfer
)
1125 u32 delay
= _delay
->value
;
1126 u32 unit
= _delay
->unit
;
1133 case SPI_DELAY_UNIT_USECS
:
1136 case SPI_DELAY_UNIT_NSECS
: /* nothing to do here */
1138 case SPI_DELAY_UNIT_SCK
:
1139 /* clock cycles need to be obtained from spi_transfer */
1142 /* if there is no effective speed know, then approximate
1143 * by underestimating with half the requested hz
1145 hz
= xfer
->effective_speed_hz
?: xfer
->speed_hz
/ 2;
1148 delay
*= DIV_ROUND_UP(1000000000, hz
);
1156 EXPORT_SYMBOL_GPL(spi_delay_to_ns
);
1158 int spi_delay_exec(struct spi_delay
*_delay
, struct spi_transfer
*xfer
)
1165 delay
= spi_delay_to_ns(_delay
, xfer
);
1169 _spi_transfer_delay_ns(delay
);
1173 EXPORT_SYMBOL_GPL(spi_delay_exec
);
1175 static void _spi_transfer_cs_change_delay(struct spi_message
*msg
,
1176 struct spi_transfer
*xfer
)
1178 u32 delay
= xfer
->cs_change_delay
.value
;
1179 u32 unit
= xfer
->cs_change_delay
.unit
;
1182 /* return early on "fast" mode - for everything but USECS */
1184 if (unit
== SPI_DELAY_UNIT_USECS
)
1185 _spi_transfer_delay_ns(10000);
1189 ret
= spi_delay_exec(&xfer
->cs_change_delay
, xfer
);
1191 dev_err_once(&msg
->spi
->dev
,
1192 "Use of unsupported delay unit %i, using default of 10us\n",
1194 _spi_transfer_delay_ns(10000);
1199 * spi_transfer_one_message - Default implementation of transfer_one_message()
1201 * This is a standard implementation of transfer_one_message() for
1202 * drivers which implement a transfer_one() operation. It provides
1203 * standard handling of delays and chip select management.
1205 static int spi_transfer_one_message(struct spi_controller
*ctlr
,
1206 struct spi_message
*msg
)
1208 struct spi_transfer
*xfer
;
1209 bool keep_cs
= false;
1211 struct spi_statistics
*statm
= &ctlr
->statistics
;
1212 struct spi_statistics
*stats
= &msg
->spi
->statistics
;
1214 spi_set_cs(msg
->spi
, true);
1216 SPI_STATISTICS_INCREMENT_FIELD(statm
, messages
);
1217 SPI_STATISTICS_INCREMENT_FIELD(stats
, messages
);
1219 list_for_each_entry(xfer
, &msg
->transfers
, transfer_list
) {
1220 trace_spi_transfer_start(msg
, xfer
);
1222 spi_statistics_add_transfer_stats(statm
, xfer
, ctlr
);
1223 spi_statistics_add_transfer_stats(stats
, xfer
, ctlr
);
1225 if (!ctlr
->ptp_sts_supported
) {
1226 xfer
->ptp_sts_word_pre
= 0;
1227 ptp_read_system_prets(xfer
->ptp_sts
);
1230 if (xfer
->tx_buf
|| xfer
->rx_buf
) {
1231 reinit_completion(&ctlr
->xfer_completion
);
1233 ret
= ctlr
->transfer_one(ctlr
, msg
->spi
, xfer
);
1235 SPI_STATISTICS_INCREMENT_FIELD(statm
,
1237 SPI_STATISTICS_INCREMENT_FIELD(stats
,
1239 dev_err(&msg
->spi
->dev
,
1240 "SPI transfer failed: %d\n", ret
);
1245 ret
= spi_transfer_wait(ctlr
, msg
, xfer
);
1251 dev_err(&msg
->spi
->dev
,
1252 "Bufferless transfer has length %u\n",
1256 if (!ctlr
->ptp_sts_supported
) {
1257 ptp_read_system_postts(xfer
->ptp_sts
);
1258 xfer
->ptp_sts_word_post
= xfer
->len
;
1261 trace_spi_transfer_stop(msg
, xfer
);
1263 if (msg
->status
!= -EINPROGRESS
)
1266 spi_transfer_delay_exec(xfer
);
1268 if (xfer
->cs_change
) {
1269 if (list_is_last(&xfer
->transfer_list
,
1273 spi_set_cs(msg
->spi
, false);
1274 _spi_transfer_cs_change_delay(msg
, xfer
);
1275 spi_set_cs(msg
->spi
, true);
1279 msg
->actual_length
+= xfer
->len
;
1283 if (ret
!= 0 || !keep_cs
)
1284 spi_set_cs(msg
->spi
, false);
1286 if (msg
->status
== -EINPROGRESS
)
1289 if (msg
->status
&& ctlr
->handle_err
)
1290 ctlr
->handle_err(ctlr
, msg
);
1292 spi_res_release(ctlr
, msg
);
1294 spi_finalize_current_message(ctlr
);
1300 * spi_finalize_current_transfer - report completion of a transfer
1301 * @ctlr: the controller reporting completion
1303 * Called by SPI drivers using the core transfer_one_message()
1304 * implementation to notify it that the current interrupt driven
1305 * transfer has finished and the next one may be scheduled.
1307 void spi_finalize_current_transfer(struct spi_controller
*ctlr
)
1309 complete(&ctlr
->xfer_completion
);
1311 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer
);
1314 * __spi_pump_messages - function which processes spi message queue
1315 * @ctlr: controller to process queue for
1316 * @in_kthread: true if we are in the context of the message pump thread
1318 * This function checks if there is any spi message in the queue that
1319 * needs processing and if so call out to the driver to initialize hardware
1320 * and transfer each message.
1322 * Note that it is called both from the kthread itself and also from
1323 * inside spi_sync(); the queue extraction handling at the top of the
1324 * function should deal with this safely.
1326 static void __spi_pump_messages(struct spi_controller
*ctlr
, bool in_kthread
)
1328 struct spi_transfer
*xfer
;
1329 struct spi_message
*msg
;
1330 bool was_busy
= false;
1331 unsigned long flags
;
1335 spin_lock_irqsave(&ctlr
->queue_lock
, flags
);
1337 /* Make sure we are not already running a message */
1338 if (ctlr
->cur_msg
) {
1339 spin_unlock_irqrestore(&ctlr
->queue_lock
, flags
);
1343 /* If another context is idling the device then defer */
1345 kthread_queue_work(&ctlr
->kworker
, &ctlr
->pump_messages
);
1346 spin_unlock_irqrestore(&ctlr
->queue_lock
, flags
);
1350 /* Check if the queue is idle */
1351 if (list_empty(&ctlr
->queue
) || !ctlr
->running
) {
1353 spin_unlock_irqrestore(&ctlr
->queue_lock
, flags
);
1357 /* Only do teardown in the thread */
1359 kthread_queue_work(&ctlr
->kworker
,
1360 &ctlr
->pump_messages
);
1361 spin_unlock_irqrestore(&ctlr
->queue_lock
, flags
);
1366 ctlr
->idling
= true;
1367 spin_unlock_irqrestore(&ctlr
->queue_lock
, flags
);
1369 kfree(ctlr
->dummy_rx
);
1370 ctlr
->dummy_rx
= NULL
;
1371 kfree(ctlr
->dummy_tx
);
1372 ctlr
->dummy_tx
= NULL
;
1373 if (ctlr
->unprepare_transfer_hardware
&&
1374 ctlr
->unprepare_transfer_hardware(ctlr
))
1376 "failed to unprepare transfer hardware\n");
1377 if (ctlr
->auto_runtime_pm
) {
1378 pm_runtime_mark_last_busy(ctlr
->dev
.parent
);
1379 pm_runtime_put_autosuspend(ctlr
->dev
.parent
);
1381 trace_spi_controller_idle(ctlr
);
1383 spin_lock_irqsave(&ctlr
->queue_lock
, flags
);
1384 ctlr
->idling
= false;
1385 spin_unlock_irqrestore(&ctlr
->queue_lock
, flags
);
1389 /* Extract head of queue */
1390 msg
= list_first_entry(&ctlr
->queue
, struct spi_message
, queue
);
1391 ctlr
->cur_msg
= msg
;
1393 list_del_init(&msg
->queue
);
1398 spin_unlock_irqrestore(&ctlr
->queue_lock
, flags
);
1400 mutex_lock(&ctlr
->io_mutex
);
1402 if (!was_busy
&& ctlr
->auto_runtime_pm
) {
1403 ret
= pm_runtime_get_sync(ctlr
->dev
.parent
);
1405 pm_runtime_put_noidle(ctlr
->dev
.parent
);
1406 dev_err(&ctlr
->dev
, "Failed to power device: %d\n",
1408 mutex_unlock(&ctlr
->io_mutex
);
1414 trace_spi_controller_busy(ctlr
);
1416 if (!was_busy
&& ctlr
->prepare_transfer_hardware
) {
1417 ret
= ctlr
->prepare_transfer_hardware(ctlr
);
1420 "failed to prepare transfer hardware: %d\n",
1423 if (ctlr
->auto_runtime_pm
)
1424 pm_runtime_put(ctlr
->dev
.parent
);
1427 spi_finalize_current_message(ctlr
);
1429 mutex_unlock(&ctlr
->io_mutex
);
1434 trace_spi_message_start(msg
);
1436 if (ctlr
->prepare_message
) {
1437 ret
= ctlr
->prepare_message(ctlr
, msg
);
1439 dev_err(&ctlr
->dev
, "failed to prepare message: %d\n",
1442 spi_finalize_current_message(ctlr
);
1445 ctlr
->cur_msg_prepared
= true;
1448 ret
= spi_map_msg(ctlr
, msg
);
1451 spi_finalize_current_message(ctlr
);
1455 if (!ctlr
->ptp_sts_supported
&& !ctlr
->transfer_one
) {
1456 list_for_each_entry(xfer
, &msg
->transfers
, transfer_list
) {
1457 xfer
->ptp_sts_word_pre
= 0;
1458 ptp_read_system_prets(xfer
->ptp_sts
);
1462 ret
= ctlr
->transfer_one_message(ctlr
, msg
);
1465 "failed to transfer one message from queue\n");
1470 mutex_unlock(&ctlr
->io_mutex
);
1472 /* Prod the scheduler in case transfer_one() was busy waiting */
1478 * spi_pump_messages - kthread work function which processes spi message queue
1479 * @work: pointer to kthread work struct contained in the controller struct
1481 static void spi_pump_messages(struct kthread_work
*work
)
1483 struct spi_controller
*ctlr
=
1484 container_of(work
, struct spi_controller
, pump_messages
);
1486 __spi_pump_messages(ctlr
, true);
1490 * spi_take_timestamp_pre - helper for drivers to collect the beginning of the
1491 * TX timestamp for the requested byte from the SPI
1492 * transfer. The frequency with which this function
1493 * must be called (once per word, once for the whole
1494 * transfer, once per batch of words etc) is arbitrary
1495 * as long as the @tx buffer offset is greater than or
1496 * equal to the requested byte at the time of the
1497 * call. The timestamp is only taken once, at the
1498 * first such call. It is assumed that the driver
1499 * advances its @tx buffer pointer monotonically.
1500 * @ctlr: Pointer to the spi_controller structure of the driver
1501 * @xfer: Pointer to the transfer being timestamped
1502 * @tx: Pointer to the current word within the xfer->tx_buf that the driver is
1503 * preparing to transmit right now.
1504 * @irqs_off: If true, will disable IRQs and preemption for the duration of the
1505 * transfer, for less jitter in time measurement. Only compatible
1506 * with PIO drivers. If true, must follow up with
1507 * spi_take_timestamp_post or otherwise system will crash.
1508 * WARNING: for fully predictable results, the CPU frequency must
1509 * also be under control (governor).
1511 void spi_take_timestamp_pre(struct spi_controller
*ctlr
,
1512 struct spi_transfer
*xfer
,
1513 const void *tx
, bool irqs_off
)
1515 u8 bytes_per_word
= DIV_ROUND_UP(xfer
->bits_per_word
, 8);
1520 if (xfer
->timestamped_pre
)
1523 if (tx
< (xfer
->tx_buf
+ xfer
->ptp_sts_word_pre
* bytes_per_word
))
1526 /* Capture the resolution of the timestamp */
1527 xfer
->ptp_sts_word_pre
= (tx
- xfer
->tx_buf
) / bytes_per_word
;
1529 xfer
->timestamped_pre
= true;
1532 local_irq_save(ctlr
->irq_flags
);
1536 ptp_read_system_prets(xfer
->ptp_sts
);
1538 EXPORT_SYMBOL_GPL(spi_take_timestamp_pre
);
1541 * spi_take_timestamp_post - helper for drivers to collect the end of the
1542 * TX timestamp for the requested byte from the SPI
1543 * transfer. Can be called with an arbitrary
1544 * frequency: only the first call where @tx exceeds
1545 * or is equal to the requested word will be
1547 * @ctlr: Pointer to the spi_controller structure of the driver
1548 * @xfer: Pointer to the transfer being timestamped
1549 * @tx: Pointer to the current word within the xfer->tx_buf that the driver has
1551 * @irqs_off: If true, will re-enable IRQs and preemption for the local CPU.
1553 void spi_take_timestamp_post(struct spi_controller
*ctlr
,
1554 struct spi_transfer
*xfer
,
1555 const void *tx
, bool irqs_off
)
1557 u8 bytes_per_word
= DIV_ROUND_UP(xfer
->bits_per_word
, 8);
1562 if (xfer
->timestamped_post
)
1565 if (tx
< (xfer
->tx_buf
+ xfer
->ptp_sts_word_post
* bytes_per_word
))
1568 ptp_read_system_postts(xfer
->ptp_sts
);
1571 local_irq_restore(ctlr
->irq_flags
);
1575 /* Capture the resolution of the timestamp */
1576 xfer
->ptp_sts_word_post
= (tx
- xfer
->tx_buf
) / bytes_per_word
;
1578 xfer
->timestamped_post
= true;
1580 EXPORT_SYMBOL_GPL(spi_take_timestamp_post
);
1583 * spi_set_thread_rt - set the controller to pump at realtime priority
1584 * @ctlr: controller to boost priority of
1586 * This can be called because the controller requested realtime priority
1587 * (by setting the ->rt value before calling spi_register_controller()) or
1588 * because a device on the bus said that its transfers needed realtime
1591 * NOTE: at the moment if any device on a bus says it needs realtime then
1592 * the thread will be at realtime priority for all transfers on that
1593 * controller. If this eventually becomes a problem we may see if we can
1594 * find a way to boost the priority only temporarily during relevant
1597 static void spi_set_thread_rt(struct spi_controller
*ctlr
)
1599 struct sched_param param
= { .sched_priority
= MAX_RT_PRIO
/ 2 };
1601 dev_info(&ctlr
->dev
,
1602 "will run message pump with realtime priority\n");
1603 sched_setscheduler(ctlr
->kworker_task
, SCHED_FIFO
, ¶m
);
1606 static int spi_init_queue(struct spi_controller
*ctlr
)
1608 ctlr
->running
= false;
1611 kthread_init_worker(&ctlr
->kworker
);
1612 ctlr
->kworker_task
= kthread_run(kthread_worker_fn
, &ctlr
->kworker
,
1613 "%s", dev_name(&ctlr
->dev
));
1614 if (IS_ERR(ctlr
->kworker_task
)) {
1615 dev_err(&ctlr
->dev
, "failed to create message pump task\n");
1616 return PTR_ERR(ctlr
->kworker_task
);
1618 kthread_init_work(&ctlr
->pump_messages
, spi_pump_messages
);
1621 * Controller config will indicate if this controller should run the
1622 * message pump with high (realtime) priority to reduce the transfer
1623 * latency on the bus by minimising the delay between a transfer
1624 * request and the scheduling of the message pump thread. Without this
1625 * setting the message pump thread will remain at default priority.
1628 spi_set_thread_rt(ctlr
);
1634 * spi_get_next_queued_message() - called by driver to check for queued
1636 * @ctlr: the controller to check for queued messages
1638 * If there are more messages in the queue, the next message is returned from
1641 * Return: the next message in the queue, else NULL if the queue is empty.
1643 struct spi_message
*spi_get_next_queued_message(struct spi_controller
*ctlr
)
1645 struct spi_message
*next
;
1646 unsigned long flags
;
1648 /* get a pointer to the next message, if any */
1649 spin_lock_irqsave(&ctlr
->queue_lock
, flags
);
1650 next
= list_first_entry_or_null(&ctlr
->queue
, struct spi_message
,
1652 spin_unlock_irqrestore(&ctlr
->queue_lock
, flags
);
1656 EXPORT_SYMBOL_GPL(spi_get_next_queued_message
);
1659 * spi_finalize_current_message() - the current message is complete
1660 * @ctlr: the controller to return the message to
1662 * Called by the driver to notify the core that the message in the front of the
1663 * queue is complete and can be removed from the queue.
1665 void spi_finalize_current_message(struct spi_controller
*ctlr
)
1667 struct spi_transfer
*xfer
;
1668 struct spi_message
*mesg
;
1669 unsigned long flags
;
1672 spin_lock_irqsave(&ctlr
->queue_lock
, flags
);
1673 mesg
= ctlr
->cur_msg
;
1674 spin_unlock_irqrestore(&ctlr
->queue_lock
, flags
);
1676 if (!ctlr
->ptp_sts_supported
&& !ctlr
->transfer_one
) {
1677 list_for_each_entry(xfer
, &mesg
->transfers
, transfer_list
) {
1678 ptp_read_system_postts(xfer
->ptp_sts
);
1679 xfer
->ptp_sts_word_post
= xfer
->len
;
1683 spi_unmap_msg(ctlr
, mesg
);
1685 if (ctlr
->cur_msg_prepared
&& ctlr
->unprepare_message
) {
1686 ret
= ctlr
->unprepare_message(ctlr
, mesg
);
1688 dev_err(&ctlr
->dev
, "failed to unprepare message: %d\n",
1693 spin_lock_irqsave(&ctlr
->queue_lock
, flags
);
1694 ctlr
->cur_msg
= NULL
;
1695 ctlr
->cur_msg_prepared
= false;
1696 kthread_queue_work(&ctlr
->kworker
, &ctlr
->pump_messages
);
1697 spin_unlock_irqrestore(&ctlr
->queue_lock
, flags
);
1699 trace_spi_message_done(mesg
);
1703 mesg
->complete(mesg
->context
);
1705 EXPORT_SYMBOL_GPL(spi_finalize_current_message
);
1707 static int spi_start_queue(struct spi_controller
*ctlr
)
1709 unsigned long flags
;
1711 spin_lock_irqsave(&ctlr
->queue_lock
, flags
);
1713 if (ctlr
->running
|| ctlr
->busy
) {
1714 spin_unlock_irqrestore(&ctlr
->queue_lock
, flags
);
1718 ctlr
->running
= true;
1719 ctlr
->cur_msg
= NULL
;
1720 spin_unlock_irqrestore(&ctlr
->queue_lock
, flags
);
1722 kthread_queue_work(&ctlr
->kworker
, &ctlr
->pump_messages
);
1727 static int spi_stop_queue(struct spi_controller
*ctlr
)
1729 unsigned long flags
;
1730 unsigned limit
= 500;
1733 spin_lock_irqsave(&ctlr
->queue_lock
, flags
);
1736 * This is a bit lame, but is optimized for the common execution path.
1737 * A wait_queue on the ctlr->busy could be used, but then the common
1738 * execution path (pump_messages) would be required to call wake_up or
1739 * friends on every SPI message. Do this instead.
1741 while ((!list_empty(&ctlr
->queue
) || ctlr
->busy
) && limit
--) {
1742 spin_unlock_irqrestore(&ctlr
->queue_lock
, flags
);
1743 usleep_range(10000, 11000);
1744 spin_lock_irqsave(&ctlr
->queue_lock
, flags
);
1747 if (!list_empty(&ctlr
->queue
) || ctlr
->busy
)
1750 ctlr
->running
= false;
1752 spin_unlock_irqrestore(&ctlr
->queue_lock
, flags
);
1755 dev_warn(&ctlr
->dev
, "could not stop message queue\n");
1761 static int spi_destroy_queue(struct spi_controller
*ctlr
)
1765 ret
= spi_stop_queue(ctlr
);
1768 * kthread_flush_worker will block until all work is done.
1769 * If the reason that stop_queue timed out is that the work will never
1770 * finish, then it does no good to call flush/stop thread, so
1774 dev_err(&ctlr
->dev
, "problem destroying queue\n");
1778 kthread_flush_worker(&ctlr
->kworker
);
1779 kthread_stop(ctlr
->kworker_task
);
1784 static int __spi_queued_transfer(struct spi_device
*spi
,
1785 struct spi_message
*msg
,
1788 struct spi_controller
*ctlr
= spi
->controller
;
1789 unsigned long flags
;
1791 spin_lock_irqsave(&ctlr
->queue_lock
, flags
);
1793 if (!ctlr
->running
) {
1794 spin_unlock_irqrestore(&ctlr
->queue_lock
, flags
);
1797 msg
->actual_length
= 0;
1798 msg
->status
= -EINPROGRESS
;
1800 list_add_tail(&msg
->queue
, &ctlr
->queue
);
1801 if (!ctlr
->busy
&& need_pump
)
1802 kthread_queue_work(&ctlr
->kworker
, &ctlr
->pump_messages
);
1804 spin_unlock_irqrestore(&ctlr
->queue_lock
, flags
);
1809 * spi_queued_transfer - transfer function for queued transfers
1810 * @spi: spi device which is requesting transfer
1811 * @msg: spi message which is to handled is queued to driver queue
1813 * Return: zero on success, else a negative error code.
1815 static int spi_queued_transfer(struct spi_device
*spi
, struct spi_message
*msg
)
1817 return __spi_queued_transfer(spi
, msg
, true);
1820 static int spi_controller_initialize_queue(struct spi_controller
*ctlr
)
1824 ctlr
->transfer
= spi_queued_transfer
;
1825 if (!ctlr
->transfer_one_message
)
1826 ctlr
->transfer_one_message
= spi_transfer_one_message
;
1828 /* Initialize and start queue */
1829 ret
= spi_init_queue(ctlr
);
1831 dev_err(&ctlr
->dev
, "problem initializing queue\n");
1832 goto err_init_queue
;
1834 ctlr
->queued
= true;
1835 ret
= spi_start_queue(ctlr
);
1837 dev_err(&ctlr
->dev
, "problem starting queue\n");
1838 goto err_start_queue
;
1844 spi_destroy_queue(ctlr
);
1850 * spi_flush_queue - Send all pending messages in the queue from the callers'
1852 * @ctlr: controller to process queue for
1854 * This should be used when one wants to ensure all pending messages have been
1855 * sent before doing something. Is used by the spi-mem code to make sure SPI
1856 * memory operations do not preempt regular SPI transfers that have been queued
1857 * before the spi-mem operation.
1859 void spi_flush_queue(struct spi_controller
*ctlr
)
1861 if (ctlr
->transfer
== spi_queued_transfer
)
1862 __spi_pump_messages(ctlr
, false);
1865 /*-------------------------------------------------------------------------*/
1867 #if defined(CONFIG_OF)
1868 static int of_spi_parse_dt(struct spi_controller
*ctlr
, struct spi_device
*spi
,
1869 struct device_node
*nc
)
1874 /* Mode (clock phase/polarity/etc.) */
1875 if (of_property_read_bool(nc
, "spi-cpha"))
1876 spi
->mode
|= SPI_CPHA
;
1877 if (of_property_read_bool(nc
, "spi-cpol"))
1878 spi
->mode
|= SPI_CPOL
;
1879 if (of_property_read_bool(nc
, "spi-3wire"))
1880 spi
->mode
|= SPI_3WIRE
;
1881 if (of_property_read_bool(nc
, "spi-lsb-first"))
1882 spi
->mode
|= SPI_LSB_FIRST
;
1883 if (of_property_read_bool(nc
, "spi-cs-high"))
1884 spi
->mode
|= SPI_CS_HIGH
;
1886 /* Device DUAL/QUAD mode */
1887 if (!of_property_read_u32(nc
, "spi-tx-bus-width", &value
)) {
1892 spi
->mode
|= SPI_TX_DUAL
;
1895 spi
->mode
|= SPI_TX_QUAD
;
1898 spi
->mode
|= SPI_TX_OCTAL
;
1901 dev_warn(&ctlr
->dev
,
1902 "spi-tx-bus-width %d not supported\n",
1908 if (!of_property_read_u32(nc
, "spi-rx-bus-width", &value
)) {
1913 spi
->mode
|= SPI_RX_DUAL
;
1916 spi
->mode
|= SPI_RX_QUAD
;
1919 spi
->mode
|= SPI_RX_OCTAL
;
1922 dev_warn(&ctlr
->dev
,
1923 "spi-rx-bus-width %d not supported\n",
1929 if (spi_controller_is_slave(ctlr
)) {
1930 if (!of_node_name_eq(nc
, "slave")) {
1931 dev_err(&ctlr
->dev
, "%pOF is not called 'slave'\n",
1938 /* Device address */
1939 rc
= of_property_read_u32(nc
, "reg", &value
);
1941 dev_err(&ctlr
->dev
, "%pOF has no valid 'reg' property (%d)\n",
1945 spi
->chip_select
= value
;
1948 * For descriptors associated with the device, polarity inversion is
1949 * handled in the gpiolib, so all gpio chip selects are "active high"
1950 * in the logical sense, the gpiolib will invert the line if need be.
1952 if ((ctlr
->use_gpio_descriptors
) && ctlr
->cs_gpiods
&&
1953 ctlr
->cs_gpiods
[spi
->chip_select
])
1954 spi
->mode
|= SPI_CS_HIGH
;
1957 rc
= of_property_read_u32(nc
, "spi-max-frequency", &value
);
1960 "%pOF has no valid 'spi-max-frequency' property (%d)\n", nc
, rc
);
1963 spi
->max_speed_hz
= value
;
1968 static struct spi_device
*
1969 of_register_spi_device(struct spi_controller
*ctlr
, struct device_node
*nc
)
1971 struct spi_device
*spi
;
1974 /* Alloc an spi_device */
1975 spi
= spi_alloc_device(ctlr
);
1977 dev_err(&ctlr
->dev
, "spi_device alloc error for %pOF\n", nc
);
1982 /* Select device driver */
1983 rc
= of_modalias_node(nc
, spi
->modalias
,
1984 sizeof(spi
->modalias
));
1986 dev_err(&ctlr
->dev
, "cannot find modalias for %pOF\n", nc
);
1990 rc
= of_spi_parse_dt(ctlr
, spi
, nc
);
1994 /* Store a pointer to the node in the device structure */
1996 spi
->dev
.of_node
= nc
;
1998 /* Register the new device */
1999 rc
= spi_add_device(spi
);
2001 dev_err(&ctlr
->dev
, "spi_device register error %pOF\n", nc
);
2002 goto err_of_node_put
;
2015 * of_register_spi_devices() - Register child devices onto the SPI bus
2016 * @ctlr: Pointer to spi_controller device
2018 * Registers an spi_device for each child node of controller node which
2019 * represents a valid SPI slave.
2021 static void of_register_spi_devices(struct spi_controller
*ctlr
)
2023 struct spi_device
*spi
;
2024 struct device_node
*nc
;
2026 if (!ctlr
->dev
.of_node
)
2029 for_each_available_child_of_node(ctlr
->dev
.of_node
, nc
) {
2030 if (of_node_test_and_set_flag(nc
, OF_POPULATED
))
2032 spi
= of_register_spi_device(ctlr
, nc
);
2034 dev_warn(&ctlr
->dev
,
2035 "Failed to create SPI device for %pOF\n", nc
);
2036 of_node_clear_flag(nc
, OF_POPULATED
);
2041 static void of_register_spi_devices(struct spi_controller
*ctlr
) { }
2045 struct acpi_spi_lookup
{
2046 struct spi_controller
*ctlr
;
2054 static void acpi_spi_parse_apple_properties(struct acpi_device
*dev
,
2055 struct acpi_spi_lookup
*lookup
)
2057 const union acpi_object
*obj
;
2059 if (!x86_apple_machine
)
2062 if (!acpi_dev_get_property(dev
, "spiSclkPeriod", ACPI_TYPE_BUFFER
, &obj
)
2063 && obj
->buffer
.length
>= 4)
2064 lookup
->max_speed_hz
= NSEC_PER_SEC
/ *(u32
*)obj
->buffer
.pointer
;
2066 if (!acpi_dev_get_property(dev
, "spiWordSize", ACPI_TYPE_BUFFER
, &obj
)
2067 && obj
->buffer
.length
== 8)
2068 lookup
->bits_per_word
= *(u64
*)obj
->buffer
.pointer
;
2070 if (!acpi_dev_get_property(dev
, "spiBitOrder", ACPI_TYPE_BUFFER
, &obj
)
2071 && obj
->buffer
.length
== 8 && !*(u64
*)obj
->buffer
.pointer
)
2072 lookup
->mode
|= SPI_LSB_FIRST
;
2074 if (!acpi_dev_get_property(dev
, "spiSPO", ACPI_TYPE_BUFFER
, &obj
)
2075 && obj
->buffer
.length
== 8 && *(u64
*)obj
->buffer
.pointer
)
2076 lookup
->mode
|= SPI_CPOL
;
2078 if (!acpi_dev_get_property(dev
, "spiSPH", ACPI_TYPE_BUFFER
, &obj
)
2079 && obj
->buffer
.length
== 8 && *(u64
*)obj
->buffer
.pointer
)
2080 lookup
->mode
|= SPI_CPHA
;
2083 static int acpi_spi_add_resource(struct acpi_resource
*ares
, void *data
)
2085 struct acpi_spi_lookup
*lookup
= data
;
2086 struct spi_controller
*ctlr
= lookup
->ctlr
;
2088 if (ares
->type
== ACPI_RESOURCE_TYPE_SERIAL_BUS
) {
2089 struct acpi_resource_spi_serialbus
*sb
;
2090 acpi_handle parent_handle
;
2093 sb
= &ares
->data
.spi_serial_bus
;
2094 if (sb
->type
== ACPI_RESOURCE_SERIAL_TYPE_SPI
) {
2096 status
= acpi_get_handle(NULL
,
2097 sb
->resource_source
.string_ptr
,
2100 if (ACPI_FAILURE(status
) ||
2101 ACPI_HANDLE(ctlr
->dev
.parent
) != parent_handle
)
2105 * ACPI DeviceSelection numbering is handled by the
2106 * host controller driver in Windows and can vary
2107 * from driver to driver. In Linux we always expect
2108 * 0 .. max - 1 so we need to ask the driver to
2109 * translate between the two schemes.
2111 if (ctlr
->fw_translate_cs
) {
2112 int cs
= ctlr
->fw_translate_cs(ctlr
,
2113 sb
->device_selection
);
2116 lookup
->chip_select
= cs
;
2118 lookup
->chip_select
= sb
->device_selection
;
2121 lookup
->max_speed_hz
= sb
->connection_speed
;
2123 if (sb
->clock_phase
== ACPI_SPI_SECOND_PHASE
)
2124 lookup
->mode
|= SPI_CPHA
;
2125 if (sb
->clock_polarity
== ACPI_SPI_START_HIGH
)
2126 lookup
->mode
|= SPI_CPOL
;
2127 if (sb
->device_polarity
== ACPI_SPI_ACTIVE_HIGH
)
2128 lookup
->mode
|= SPI_CS_HIGH
;
2130 } else if (lookup
->irq
< 0) {
2133 if (acpi_dev_resource_interrupt(ares
, 0, &r
))
2134 lookup
->irq
= r
.start
;
2137 /* Always tell the ACPI core to skip this resource */
2141 static acpi_status
acpi_register_spi_device(struct spi_controller
*ctlr
,
2142 struct acpi_device
*adev
)
2144 acpi_handle parent_handle
= NULL
;
2145 struct list_head resource_list
;
2146 struct acpi_spi_lookup lookup
= {};
2147 struct spi_device
*spi
;
2150 if (acpi_bus_get_status(adev
) || !adev
->status
.present
||
2151 acpi_device_enumerated(adev
))
2157 INIT_LIST_HEAD(&resource_list
);
2158 ret
= acpi_dev_get_resources(adev
, &resource_list
,
2159 acpi_spi_add_resource
, &lookup
);
2160 acpi_dev_free_resource_list(&resource_list
);
2163 /* found SPI in _CRS but it points to another controller */
2166 if (!lookup
.max_speed_hz
&&
2167 !ACPI_FAILURE(acpi_get_parent(adev
->handle
, &parent_handle
)) &&
2168 ACPI_HANDLE(ctlr
->dev
.parent
) == parent_handle
) {
2169 /* Apple does not use _CRS but nested devices for SPI slaves */
2170 acpi_spi_parse_apple_properties(adev
, &lookup
);
2173 if (!lookup
.max_speed_hz
)
2176 spi
= spi_alloc_device(ctlr
);
2178 dev_err(&ctlr
->dev
, "failed to allocate SPI device for %s\n",
2179 dev_name(&adev
->dev
));
2180 return AE_NO_MEMORY
;
2183 ACPI_COMPANION_SET(&spi
->dev
, adev
);
2184 spi
->max_speed_hz
= lookup
.max_speed_hz
;
2185 spi
->mode
= lookup
.mode
;
2186 spi
->irq
= lookup
.irq
;
2187 spi
->bits_per_word
= lookup
.bits_per_word
;
2188 spi
->chip_select
= lookup
.chip_select
;
2190 acpi_set_modalias(adev
, acpi_device_hid(adev
), spi
->modalias
,
2191 sizeof(spi
->modalias
));
2194 spi
->irq
= acpi_dev_gpio_irq_get(adev
, 0);
2196 acpi_device_set_enumerated(adev
);
2198 adev
->power
.flags
.ignore_parent
= true;
2199 if (spi_add_device(spi
)) {
2200 adev
->power
.flags
.ignore_parent
= false;
2201 dev_err(&ctlr
->dev
, "failed to add SPI device %s from ACPI\n",
2202 dev_name(&adev
->dev
));
2209 static acpi_status
acpi_spi_add_device(acpi_handle handle
, u32 level
,
2210 void *data
, void **return_value
)
2212 struct spi_controller
*ctlr
= data
;
2213 struct acpi_device
*adev
;
2215 if (acpi_bus_get_device(handle
, &adev
))
2218 return acpi_register_spi_device(ctlr
, adev
);
2221 #define SPI_ACPI_ENUMERATE_MAX_DEPTH 32
2223 static void acpi_register_spi_devices(struct spi_controller
*ctlr
)
2228 handle
= ACPI_HANDLE(ctlr
->dev
.parent
);
2232 status
= acpi_walk_namespace(ACPI_TYPE_DEVICE
, ACPI_ROOT_OBJECT
,
2233 SPI_ACPI_ENUMERATE_MAX_DEPTH
,
2234 acpi_spi_add_device
, NULL
, ctlr
, NULL
);
2235 if (ACPI_FAILURE(status
))
2236 dev_warn(&ctlr
->dev
, "failed to enumerate SPI slaves\n");
2239 static inline void acpi_register_spi_devices(struct spi_controller
*ctlr
) {}
2240 #endif /* CONFIG_ACPI */
2242 static void spi_controller_release(struct device
*dev
)
2244 struct spi_controller
*ctlr
;
2246 ctlr
= container_of(dev
, struct spi_controller
, dev
);
2250 static struct class spi_master_class
= {
2251 .name
= "spi_master",
2252 .owner
= THIS_MODULE
,
2253 .dev_release
= spi_controller_release
,
2254 .dev_groups
= spi_master_groups
,
2257 #ifdef CONFIG_SPI_SLAVE
2259 * spi_slave_abort - abort the ongoing transfer request on an SPI slave
2261 * @spi: device used for the current transfer
2263 int spi_slave_abort(struct spi_device
*spi
)
2265 struct spi_controller
*ctlr
= spi
->controller
;
2267 if (spi_controller_is_slave(ctlr
) && ctlr
->slave_abort
)
2268 return ctlr
->slave_abort(ctlr
);
2272 EXPORT_SYMBOL_GPL(spi_slave_abort
);
2274 static int match_true(struct device
*dev
, void *data
)
2279 static ssize_t
slave_show(struct device
*dev
, struct device_attribute
*attr
,
2282 struct spi_controller
*ctlr
= container_of(dev
, struct spi_controller
,
2284 struct device
*child
;
2286 child
= device_find_child(&ctlr
->dev
, NULL
, match_true
);
2287 return sprintf(buf
, "%s\n",
2288 child
? to_spi_device(child
)->modalias
: NULL
);
2291 static ssize_t
slave_store(struct device
*dev
, struct device_attribute
*attr
,
2292 const char *buf
, size_t count
)
2294 struct spi_controller
*ctlr
= container_of(dev
, struct spi_controller
,
2296 struct spi_device
*spi
;
2297 struct device
*child
;
2301 rc
= sscanf(buf
, "%31s", name
);
2302 if (rc
!= 1 || !name
[0])
2305 child
= device_find_child(&ctlr
->dev
, NULL
, match_true
);
2307 /* Remove registered slave */
2308 device_unregister(child
);
2312 if (strcmp(name
, "(null)")) {
2313 /* Register new slave */
2314 spi
= spi_alloc_device(ctlr
);
2318 strlcpy(spi
->modalias
, name
, sizeof(spi
->modalias
));
2320 rc
= spi_add_device(spi
);
2330 static DEVICE_ATTR_RW(slave
);
2332 static struct attribute
*spi_slave_attrs
[] = {
2333 &dev_attr_slave
.attr
,
2337 static const struct attribute_group spi_slave_group
= {
2338 .attrs
= spi_slave_attrs
,
2341 static const struct attribute_group
*spi_slave_groups
[] = {
2342 &spi_controller_statistics_group
,
2347 static struct class spi_slave_class
= {
2348 .name
= "spi_slave",
2349 .owner
= THIS_MODULE
,
2350 .dev_release
= spi_controller_release
,
2351 .dev_groups
= spi_slave_groups
,
2354 extern struct class spi_slave_class
; /* dummy */
2358 * __spi_alloc_controller - allocate an SPI master or slave controller
2359 * @dev: the controller, possibly using the platform_bus
2360 * @size: how much zeroed driver-private data to allocate; the pointer to this
2361 * memory is in the driver_data field of the returned device, accessible
2362 * with spi_controller_get_devdata(); the memory is cacheline aligned;
2363 * drivers granting DMA access to portions of their private data need to
2364 * round up @size using ALIGN(size, dma_get_cache_alignment()).
2365 * @slave: flag indicating whether to allocate an SPI master (false) or SPI
2366 * slave (true) controller
2367 * Context: can sleep
2369 * This call is used only by SPI controller drivers, which are the
2370 * only ones directly touching chip registers. It's how they allocate
2371 * an spi_controller structure, prior to calling spi_register_controller().
2373 * This must be called from context that can sleep.
2375 * The caller is responsible for assigning the bus number and initializing the
2376 * controller's methods before calling spi_register_controller(); and (after
2377 * errors adding the device) calling spi_controller_put() to prevent a memory
2380 * Return: the SPI controller structure on success, else NULL.
2382 struct spi_controller
*__spi_alloc_controller(struct device
*dev
,
2383 unsigned int size
, bool slave
)
2385 struct spi_controller
*ctlr
;
2386 size_t ctlr_size
= ALIGN(sizeof(*ctlr
), dma_get_cache_alignment());
2391 ctlr
= kzalloc(size
+ ctlr_size
, GFP_KERNEL
);
2395 device_initialize(&ctlr
->dev
);
2397 ctlr
->num_chipselect
= 1;
2398 ctlr
->slave
= slave
;
2399 if (IS_ENABLED(CONFIG_SPI_SLAVE
) && slave
)
2400 ctlr
->dev
.class = &spi_slave_class
;
2402 ctlr
->dev
.class = &spi_master_class
;
2403 ctlr
->dev
.parent
= dev
;
2404 pm_suspend_ignore_children(&ctlr
->dev
, true);
2405 spi_controller_set_devdata(ctlr
, (void *)ctlr
+ ctlr_size
);
2409 EXPORT_SYMBOL_GPL(__spi_alloc_controller
);
2412 static int of_spi_get_gpio_numbers(struct spi_controller
*ctlr
)
2415 struct device_node
*np
= ctlr
->dev
.of_node
;
2420 nb
= of_gpio_named_count(np
, "cs-gpios");
2421 ctlr
->num_chipselect
= max_t(int, nb
, ctlr
->num_chipselect
);
2423 /* Return error only for an incorrectly formed cs-gpios property */
2424 if (nb
== 0 || nb
== -ENOENT
)
2429 cs
= devm_kcalloc(&ctlr
->dev
, ctlr
->num_chipselect
, sizeof(int),
2431 ctlr
->cs_gpios
= cs
;
2433 if (!ctlr
->cs_gpios
)
2436 for (i
= 0; i
< ctlr
->num_chipselect
; i
++)
2439 for (i
= 0; i
< nb
; i
++)
2440 cs
[i
] = of_get_named_gpio(np
, "cs-gpios", i
);
2445 static int of_spi_get_gpio_numbers(struct spi_controller
*ctlr
)
2452 * spi_get_gpio_descs() - grab chip select GPIOs for the master
2453 * @ctlr: The SPI master to grab GPIO descriptors for
2455 static int spi_get_gpio_descs(struct spi_controller
*ctlr
)
2458 struct gpio_desc
**cs
;
2459 struct device
*dev
= &ctlr
->dev
;
2461 nb
= gpiod_count(dev
, "cs");
2462 ctlr
->num_chipselect
= max_t(int, nb
, ctlr
->num_chipselect
);
2464 /* No GPIOs at all is fine, else return the error */
2465 if (nb
== 0 || nb
== -ENOENT
)
2470 cs
= devm_kcalloc(dev
, ctlr
->num_chipselect
, sizeof(*cs
),
2474 ctlr
->cs_gpiods
= cs
;
2476 for (i
= 0; i
< nb
; i
++) {
2478 * Most chipselects are active low, the inverted
2479 * semantics are handled by special quirks in gpiolib,
2480 * so initializing them GPIOD_OUT_LOW here means
2481 * "unasserted", in most cases this will drive the physical
2484 cs
[i
] = devm_gpiod_get_index_optional(dev
, "cs", i
,
2487 return PTR_ERR(cs
[i
]);
2491 * If we find a CS GPIO, name it after the device and
2496 gpioname
= devm_kasprintf(dev
, GFP_KERNEL
, "%s CS%d",
2500 gpiod_set_consumer_name(cs
[i
], gpioname
);
2507 static int spi_controller_check_ops(struct spi_controller
*ctlr
)
2510 * The controller may implement only the high-level SPI-memory like
2511 * operations if it does not support regular SPI transfers, and this is
2513 * If ->mem_ops is NULL, we request that at least one of the
2514 * ->transfer_xxx() method be implemented.
2516 if (ctlr
->mem_ops
) {
2517 if (!ctlr
->mem_ops
->exec_op
)
2519 } else if (!ctlr
->transfer
&& !ctlr
->transfer_one
&&
2520 !ctlr
->transfer_one_message
) {
2528 * spi_register_controller - register SPI master or slave controller
2529 * @ctlr: initialized master, originally from spi_alloc_master() or
2531 * Context: can sleep
2533 * SPI controllers connect to their drivers using some non-SPI bus,
2534 * such as the platform bus. The final stage of probe() in that code
2535 * includes calling spi_register_controller() to hook up to this SPI bus glue.
2537 * SPI controllers use board specific (often SOC specific) bus numbers,
2538 * and board-specific addressing for SPI devices combines those numbers
2539 * with chip select numbers. Since SPI does not directly support dynamic
2540 * device identification, boards need configuration tables telling which
2541 * chip is at which address.
2543 * This must be called from context that can sleep. It returns zero on
2544 * success, else a negative error code (dropping the controller's refcount).
2545 * After a successful return, the caller is responsible for calling
2546 * spi_unregister_controller().
2548 * Return: zero on success, else a negative error code.
2550 int spi_register_controller(struct spi_controller
*ctlr
)
2552 struct device
*dev
= ctlr
->dev
.parent
;
2553 struct boardinfo
*bi
;
2555 int id
, first_dynamic
;
2561 * Make sure all necessary hooks are implemented before registering
2562 * the SPI controller.
2564 status
= spi_controller_check_ops(ctlr
);
2568 if (ctlr
->bus_num
>= 0) {
2569 /* devices with a fixed bus num must check-in with the num */
2570 mutex_lock(&board_lock
);
2571 id
= idr_alloc(&spi_master_idr
, ctlr
, ctlr
->bus_num
,
2572 ctlr
->bus_num
+ 1, GFP_KERNEL
);
2573 mutex_unlock(&board_lock
);
2574 if (WARN(id
< 0, "couldn't get idr"))
2575 return id
== -ENOSPC
? -EBUSY
: id
;
2577 } else if (ctlr
->dev
.of_node
) {
2578 /* allocate dynamic bus number using Linux idr */
2579 id
= of_alias_get_id(ctlr
->dev
.of_node
, "spi");
2582 mutex_lock(&board_lock
);
2583 id
= idr_alloc(&spi_master_idr
, ctlr
, ctlr
->bus_num
,
2584 ctlr
->bus_num
+ 1, GFP_KERNEL
);
2585 mutex_unlock(&board_lock
);
2586 if (WARN(id
< 0, "couldn't get idr"))
2587 return id
== -ENOSPC
? -EBUSY
: id
;
2590 if (ctlr
->bus_num
< 0) {
2591 first_dynamic
= of_alias_get_highest_id("spi");
2592 if (first_dynamic
< 0)
2597 mutex_lock(&board_lock
);
2598 id
= idr_alloc(&spi_master_idr
, ctlr
, first_dynamic
,
2600 mutex_unlock(&board_lock
);
2601 if (WARN(id
< 0, "couldn't get idr"))
2605 INIT_LIST_HEAD(&ctlr
->queue
);
2606 spin_lock_init(&ctlr
->queue_lock
);
2607 spin_lock_init(&ctlr
->bus_lock_spinlock
);
2608 mutex_init(&ctlr
->bus_lock_mutex
);
2609 mutex_init(&ctlr
->io_mutex
);
2610 ctlr
->bus_lock_flag
= 0;
2611 init_completion(&ctlr
->xfer_completion
);
2612 if (!ctlr
->max_dma_len
)
2613 ctlr
->max_dma_len
= INT_MAX
;
2615 /* register the device, then userspace will see it.
2616 * registration fails if the bus ID is in use.
2618 dev_set_name(&ctlr
->dev
, "spi%u", ctlr
->bus_num
);
2620 if (!spi_controller_is_slave(ctlr
)) {
2621 if (ctlr
->use_gpio_descriptors
) {
2622 status
= spi_get_gpio_descs(ctlr
);
2626 * A controller using GPIO descriptors always
2627 * supports SPI_CS_HIGH if need be.
2629 ctlr
->mode_bits
|= SPI_CS_HIGH
;
2631 /* Legacy code path for GPIOs from DT */
2632 status
= of_spi_get_gpio_numbers(ctlr
);
2639 * Even if it's just one always-selected device, there must
2640 * be at least one chipselect.
2642 if (!ctlr
->num_chipselect
)
2645 status
= device_add(&ctlr
->dev
);
2648 mutex_lock(&board_lock
);
2649 idr_remove(&spi_master_idr
, ctlr
->bus_num
);
2650 mutex_unlock(&board_lock
);
2653 dev_dbg(dev
, "registered %s %s\n",
2654 spi_controller_is_slave(ctlr
) ? "slave" : "master",
2655 dev_name(&ctlr
->dev
));
2658 * If we're using a queued driver, start the queue. Note that we don't
2659 * need the queueing logic if the driver is only supporting high-level
2660 * memory operations.
2662 if (ctlr
->transfer
) {
2663 dev_info(dev
, "controller is unqueued, this is deprecated\n");
2664 } else if (ctlr
->transfer_one
|| ctlr
->transfer_one_message
) {
2665 status
= spi_controller_initialize_queue(ctlr
);
2667 device_del(&ctlr
->dev
);
2669 mutex_lock(&board_lock
);
2670 idr_remove(&spi_master_idr
, ctlr
->bus_num
);
2671 mutex_unlock(&board_lock
);
2675 /* add statistics */
2676 spin_lock_init(&ctlr
->statistics
.lock
);
2678 mutex_lock(&board_lock
);
2679 list_add_tail(&ctlr
->list
, &spi_controller_list
);
2680 list_for_each_entry(bi
, &board_list
, list
)
2681 spi_match_controller_to_boardinfo(ctlr
, &bi
->board_info
);
2682 mutex_unlock(&board_lock
);
2684 /* Register devices from the device tree and ACPI */
2685 of_register_spi_devices(ctlr
);
2686 acpi_register_spi_devices(ctlr
);
2690 EXPORT_SYMBOL_GPL(spi_register_controller
);
2692 static void devm_spi_unregister(struct device
*dev
, void *res
)
2694 spi_unregister_controller(*(struct spi_controller
**)res
);
2698 * devm_spi_register_controller - register managed SPI master or slave
2700 * @dev: device managing SPI controller
2701 * @ctlr: initialized controller, originally from spi_alloc_master() or
2703 * Context: can sleep
2705 * Register a SPI device as with spi_register_controller() which will
2706 * automatically be unregistered and freed.
2708 * Return: zero on success, else a negative error code.
2710 int devm_spi_register_controller(struct device
*dev
,
2711 struct spi_controller
*ctlr
)
2713 struct spi_controller
**ptr
;
2716 ptr
= devres_alloc(devm_spi_unregister
, sizeof(*ptr
), GFP_KERNEL
);
2720 ret
= spi_register_controller(ctlr
);
2723 devres_add(dev
, ptr
);
2730 EXPORT_SYMBOL_GPL(devm_spi_register_controller
);
2732 static int __unregister(struct device
*dev
, void *null
)
2734 spi_unregister_device(to_spi_device(dev
));
2739 * spi_unregister_controller - unregister SPI master or slave controller
2740 * @ctlr: the controller being unregistered
2741 * Context: can sleep
2743 * This call is used only by SPI controller drivers, which are the
2744 * only ones directly touching chip registers.
2746 * This must be called from context that can sleep.
2748 * Note that this function also drops a reference to the controller.
2750 void spi_unregister_controller(struct spi_controller
*ctlr
)
2752 struct spi_controller
*found
;
2753 int id
= ctlr
->bus_num
;
2755 /* First make sure that this controller was ever added */
2756 mutex_lock(&board_lock
);
2757 found
= idr_find(&spi_master_idr
, id
);
2758 mutex_unlock(&board_lock
);
2760 if (spi_destroy_queue(ctlr
))
2761 dev_err(&ctlr
->dev
, "queue remove failed\n");
2763 mutex_lock(&board_lock
);
2764 list_del(&ctlr
->list
);
2765 mutex_unlock(&board_lock
);
2767 device_for_each_child(&ctlr
->dev
, NULL
, __unregister
);
2768 device_unregister(&ctlr
->dev
);
2770 mutex_lock(&board_lock
);
2772 idr_remove(&spi_master_idr
, id
);
2773 mutex_unlock(&board_lock
);
2775 EXPORT_SYMBOL_GPL(spi_unregister_controller
);
2777 int spi_controller_suspend(struct spi_controller
*ctlr
)
2781 /* Basically no-ops for non-queued controllers */
2785 ret
= spi_stop_queue(ctlr
);
2787 dev_err(&ctlr
->dev
, "queue stop failed\n");
2791 EXPORT_SYMBOL_GPL(spi_controller_suspend
);
2793 int spi_controller_resume(struct spi_controller
*ctlr
)
2800 ret
= spi_start_queue(ctlr
);
2802 dev_err(&ctlr
->dev
, "queue restart failed\n");
2806 EXPORT_SYMBOL_GPL(spi_controller_resume
);
2808 static int __spi_controller_match(struct device
*dev
, const void *data
)
2810 struct spi_controller
*ctlr
;
2811 const u16
*bus_num
= data
;
2813 ctlr
= container_of(dev
, struct spi_controller
, dev
);
2814 return ctlr
->bus_num
== *bus_num
;
2818 * spi_busnum_to_master - look up master associated with bus_num
2819 * @bus_num: the master's bus number
2820 * Context: can sleep
2822 * This call may be used with devices that are registered after
2823 * arch init time. It returns a refcounted pointer to the relevant
2824 * spi_controller (which the caller must release), or NULL if there is
2825 * no such master registered.
2827 * Return: the SPI master structure on success, else NULL.
2829 struct spi_controller
*spi_busnum_to_master(u16 bus_num
)
2832 struct spi_controller
*ctlr
= NULL
;
2834 dev
= class_find_device(&spi_master_class
, NULL
, &bus_num
,
2835 __spi_controller_match
);
2837 ctlr
= container_of(dev
, struct spi_controller
, dev
);
2838 /* reference got in class_find_device */
2841 EXPORT_SYMBOL_GPL(spi_busnum_to_master
);
2843 /*-------------------------------------------------------------------------*/
2845 /* Core methods for SPI resource management */
2848 * spi_res_alloc - allocate a spi resource that is life-cycle managed
2849 * during the processing of a spi_message while using
2851 * @spi: the spi device for which we allocate memory
2852 * @release: the release code to execute for this resource
2853 * @size: size to alloc and return
2854 * @gfp: GFP allocation flags
2856 * Return: the pointer to the allocated data
2858 * This may get enhanced in the future to allocate from a memory pool
2859 * of the @spi_device or @spi_controller to avoid repeated allocations.
2861 void *spi_res_alloc(struct spi_device
*spi
,
2862 spi_res_release_t release
,
2863 size_t size
, gfp_t gfp
)
2865 struct spi_res
*sres
;
2867 sres
= kzalloc(sizeof(*sres
) + size
, gfp
);
2871 INIT_LIST_HEAD(&sres
->entry
);
2872 sres
->release
= release
;
2876 EXPORT_SYMBOL_GPL(spi_res_alloc
);
2879 * spi_res_free - free an spi resource
2880 * @res: pointer to the custom data of a resource
2883 void spi_res_free(void *res
)
2885 struct spi_res
*sres
= container_of(res
, struct spi_res
, data
);
2890 WARN_ON(!list_empty(&sres
->entry
));
2893 EXPORT_SYMBOL_GPL(spi_res_free
);
2896 * spi_res_add - add a spi_res to the spi_message
2897 * @message: the spi message
2898 * @res: the spi_resource
2900 void spi_res_add(struct spi_message
*message
, void *res
)
2902 struct spi_res
*sres
= container_of(res
, struct spi_res
, data
);
2904 WARN_ON(!list_empty(&sres
->entry
));
2905 list_add_tail(&sres
->entry
, &message
->resources
);
2907 EXPORT_SYMBOL_GPL(spi_res_add
);
2910 * spi_res_release - release all spi resources for this message
2911 * @ctlr: the @spi_controller
2912 * @message: the @spi_message
2914 void spi_res_release(struct spi_controller
*ctlr
, struct spi_message
*message
)
2916 struct spi_res
*res
, *tmp
;
2918 list_for_each_entry_safe_reverse(res
, tmp
, &message
->resources
, entry
) {
2920 res
->release(ctlr
, message
, res
->data
);
2922 list_del(&res
->entry
);
2927 EXPORT_SYMBOL_GPL(spi_res_release
);
2929 /*-------------------------------------------------------------------------*/
2931 /* Core methods for spi_message alterations */
2933 static void __spi_replace_transfers_release(struct spi_controller
*ctlr
,
2934 struct spi_message
*msg
,
2937 struct spi_replaced_transfers
*rxfer
= res
;
2940 /* call extra callback if requested */
2942 rxfer
->release(ctlr
, msg
, res
);
2944 /* insert replaced transfers back into the message */
2945 list_splice(&rxfer
->replaced_transfers
, rxfer
->replaced_after
);
2947 /* remove the formerly inserted entries */
2948 for (i
= 0; i
< rxfer
->inserted
; i
++)
2949 list_del(&rxfer
->inserted_transfers
[i
].transfer_list
);
2953 * spi_replace_transfers - replace transfers with several transfers
2954 * and register change with spi_message.resources
2955 * @msg: the spi_message we work upon
2956 * @xfer_first: the first spi_transfer we want to replace
2957 * @remove: number of transfers to remove
2958 * @insert: the number of transfers we want to insert instead
2959 * @release: extra release code necessary in some circumstances
2960 * @extradatasize: extra data to allocate (with alignment guarantees
2961 * of struct @spi_transfer)
2964 * Returns: pointer to @spi_replaced_transfers,
2965 * PTR_ERR(...) in case of errors.
2967 struct spi_replaced_transfers
*spi_replace_transfers(
2968 struct spi_message
*msg
,
2969 struct spi_transfer
*xfer_first
,
2972 spi_replaced_release_t release
,
2973 size_t extradatasize
,
2976 struct spi_replaced_transfers
*rxfer
;
2977 struct spi_transfer
*xfer
;
2980 /* allocate the structure using spi_res */
2981 rxfer
= spi_res_alloc(msg
->spi
, __spi_replace_transfers_release
,
2982 struct_size(rxfer
, inserted_transfers
, insert
)
2986 return ERR_PTR(-ENOMEM
);
2988 /* the release code to invoke before running the generic release */
2989 rxfer
->release
= release
;
2991 /* assign extradata */
2994 &rxfer
->inserted_transfers
[insert
];
2996 /* init the replaced_transfers list */
2997 INIT_LIST_HEAD(&rxfer
->replaced_transfers
);
2999 /* assign the list_entry after which we should reinsert
3000 * the @replaced_transfers - it may be spi_message.messages!
3002 rxfer
->replaced_after
= xfer_first
->transfer_list
.prev
;
3004 /* remove the requested number of transfers */
3005 for (i
= 0; i
< remove
; i
++) {
3006 /* if the entry after replaced_after it is msg->transfers
3007 * then we have been requested to remove more transfers
3008 * than are in the list
3010 if (rxfer
->replaced_after
->next
== &msg
->transfers
) {
3011 dev_err(&msg
->spi
->dev
,
3012 "requested to remove more spi_transfers than are available\n");
3013 /* insert replaced transfers back into the message */
3014 list_splice(&rxfer
->replaced_transfers
,
3015 rxfer
->replaced_after
);
3017 /* free the spi_replace_transfer structure */
3018 spi_res_free(rxfer
);
3020 /* and return with an error */
3021 return ERR_PTR(-EINVAL
);
3024 /* remove the entry after replaced_after from list of
3025 * transfers and add it to list of replaced_transfers
3027 list_move_tail(rxfer
->replaced_after
->next
,
3028 &rxfer
->replaced_transfers
);
3031 /* create copy of the given xfer with identical settings
3032 * based on the first transfer to get removed
3034 for (i
= 0; i
< insert
; i
++) {
3035 /* we need to run in reverse order */
3036 xfer
= &rxfer
->inserted_transfers
[insert
- 1 - i
];
3038 /* copy all spi_transfer data */
3039 memcpy(xfer
, xfer_first
, sizeof(*xfer
));
3042 list_add(&xfer
->transfer_list
, rxfer
->replaced_after
);
3044 /* clear cs_change and delay for all but the last */
3046 xfer
->cs_change
= false;
3047 xfer
->delay_usecs
= 0;
3048 xfer
->delay
.value
= 0;
3052 /* set up inserted */
3053 rxfer
->inserted
= insert
;
3055 /* and register it with spi_res/spi_message */
3056 spi_res_add(msg
, rxfer
);
3060 EXPORT_SYMBOL_GPL(spi_replace_transfers
);
3062 static int __spi_split_transfer_maxsize(struct spi_controller
*ctlr
,
3063 struct spi_message
*msg
,
3064 struct spi_transfer
**xferp
,
3068 struct spi_transfer
*xfer
= *xferp
, *xfers
;
3069 struct spi_replaced_transfers
*srt
;
3073 /* calculate how many we have to replace */
3074 count
= DIV_ROUND_UP(xfer
->len
, maxsize
);
3076 /* create replacement */
3077 srt
= spi_replace_transfers(msg
, xfer
, 1, count
, NULL
, 0, gfp
);
3079 return PTR_ERR(srt
);
3080 xfers
= srt
->inserted_transfers
;
3082 /* now handle each of those newly inserted spi_transfers
3083 * note that the replacements spi_transfers all are preset
3084 * to the same values as *xferp, so tx_buf, rx_buf and len
3085 * are all identical (as well as most others)
3086 * so we just have to fix up len and the pointers.
3088 * this also includes support for the depreciated
3089 * spi_message.is_dma_mapped interface
3092 /* the first transfer just needs the length modified, so we
3093 * run it outside the loop
3095 xfers
[0].len
= min_t(size_t, maxsize
, xfer
[0].len
);
3097 /* all the others need rx_buf/tx_buf also set */
3098 for (i
= 1, offset
= maxsize
; i
< count
; offset
+= maxsize
, i
++) {
3099 /* update rx_buf, tx_buf and dma */
3100 if (xfers
[i
].rx_buf
)
3101 xfers
[i
].rx_buf
+= offset
;
3102 if (xfers
[i
].rx_dma
)
3103 xfers
[i
].rx_dma
+= offset
;
3104 if (xfers
[i
].tx_buf
)
3105 xfers
[i
].tx_buf
+= offset
;
3106 if (xfers
[i
].tx_dma
)
3107 xfers
[i
].tx_dma
+= offset
;
3110 xfers
[i
].len
= min(maxsize
, xfers
[i
].len
- offset
);
3113 /* we set up xferp to the last entry we have inserted,
3114 * so that we skip those already split transfers
3116 *xferp
= &xfers
[count
- 1];
3118 /* increment statistics counters */
3119 SPI_STATISTICS_INCREMENT_FIELD(&ctlr
->statistics
,
3120 transfers_split_maxsize
);
3121 SPI_STATISTICS_INCREMENT_FIELD(&msg
->spi
->statistics
,
3122 transfers_split_maxsize
);
3128 * spi_split_tranfers_maxsize - split spi transfers into multiple transfers
3129 * when an individual transfer exceeds a
3131 * @ctlr: the @spi_controller for this transfer
3132 * @msg: the @spi_message to transform
3133 * @maxsize: the maximum when to apply this
3134 * @gfp: GFP allocation flags
3136 * Return: status of transformation
3138 int spi_split_transfers_maxsize(struct spi_controller
*ctlr
,
3139 struct spi_message
*msg
,
3143 struct spi_transfer
*xfer
;
3146 /* iterate over the transfer_list,
3147 * but note that xfer is advanced to the last transfer inserted
3148 * to avoid checking sizes again unnecessarily (also xfer does
3149 * potentiall belong to a different list by the time the
3150 * replacement has happened
3152 list_for_each_entry(xfer
, &msg
->transfers
, transfer_list
) {
3153 if (xfer
->len
> maxsize
) {
3154 ret
= __spi_split_transfer_maxsize(ctlr
, msg
, &xfer
,
3163 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize
);
3165 /*-------------------------------------------------------------------------*/
3167 /* Core methods for SPI controller protocol drivers. Some of the
3168 * other core methods are currently defined as inline functions.
3171 static int __spi_validate_bits_per_word(struct spi_controller
*ctlr
,
3174 if (ctlr
->bits_per_word_mask
) {
3175 /* Only 32 bits fit in the mask */
3176 if (bits_per_word
> 32)
3178 if (!(ctlr
->bits_per_word_mask
& SPI_BPW_MASK(bits_per_word
)))
3186 * spi_setup - setup SPI mode and clock rate
3187 * @spi: the device whose settings are being modified
3188 * Context: can sleep, and no requests are queued to the device
3190 * SPI protocol drivers may need to update the transfer mode if the
3191 * device doesn't work with its default. They may likewise need
3192 * to update clock rates or word sizes from initial values. This function
3193 * changes those settings, and must be called from a context that can sleep.
3194 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
3195 * effect the next time the device is selected and data is transferred to
3196 * or from it. When this function returns, the spi device is deselected.
3198 * Note that this call will fail if the protocol driver specifies an option
3199 * that the underlying controller or its driver does not support. For
3200 * example, not all hardware supports wire transfers using nine bit words,
3201 * LSB-first wire encoding, or active-high chipselects.
3203 * Return: zero on success, else a negative error code.
3205 int spi_setup(struct spi_device
*spi
)
3207 unsigned bad_bits
, ugly_bits
;
3210 /* check mode to prevent that DUAL and QUAD set at the same time
3212 if (((spi
->mode
& SPI_TX_DUAL
) && (spi
->mode
& SPI_TX_QUAD
)) ||
3213 ((spi
->mode
& SPI_RX_DUAL
) && (spi
->mode
& SPI_RX_QUAD
))) {
3215 "setup: can not select dual and quad at the same time\n");
3218 /* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
3220 if ((spi
->mode
& SPI_3WIRE
) && (spi
->mode
&
3221 (SPI_TX_DUAL
| SPI_TX_QUAD
| SPI_TX_OCTAL
|
3222 SPI_RX_DUAL
| SPI_RX_QUAD
| SPI_RX_OCTAL
)))
3224 /* help drivers fail *cleanly* when they need options
3225 * that aren't supported with their current controller
3226 * SPI_CS_WORD has a fallback software implementation,
3227 * so it is ignored here.
3229 bad_bits
= spi
->mode
& ~(spi
->controller
->mode_bits
| SPI_CS_WORD
);
3230 /* nothing prevents from working with active-high CS in case if it
3231 * is driven by GPIO.
3233 if (gpio_is_valid(spi
->cs_gpio
))
3234 bad_bits
&= ~SPI_CS_HIGH
;
3235 ugly_bits
= bad_bits
&
3236 (SPI_TX_DUAL
| SPI_TX_QUAD
| SPI_TX_OCTAL
|
3237 SPI_RX_DUAL
| SPI_RX_QUAD
| SPI_RX_OCTAL
);
3240 "setup: ignoring unsupported mode bits %x\n",
3242 spi
->mode
&= ~ugly_bits
;
3243 bad_bits
&= ~ugly_bits
;
3246 dev_err(&spi
->dev
, "setup: unsupported mode bits %x\n",
3251 if (!spi
->bits_per_word
)
3252 spi
->bits_per_word
= 8;
3254 status
= __spi_validate_bits_per_word(spi
->controller
,
3255 spi
->bits_per_word
);
3259 if (!spi
->max_speed_hz
)
3260 spi
->max_speed_hz
= spi
->controller
->max_speed_hz
;
3262 if (spi
->controller
->setup
)
3263 status
= spi
->controller
->setup(spi
);
3265 if (spi
->controller
->auto_runtime_pm
&& spi
->controller
->set_cs
) {
3266 status
= pm_runtime_get_sync(spi
->controller
->dev
.parent
);
3268 pm_runtime_put_noidle(spi
->controller
->dev
.parent
);
3269 dev_err(&spi
->controller
->dev
, "Failed to power device: %d\n",
3275 * We do not want to return positive value from pm_runtime_get,
3276 * there are many instances of devices calling spi_setup() and
3277 * checking for a non-zero return value instead of a negative
3282 spi_set_cs(spi
, false);
3283 pm_runtime_mark_last_busy(spi
->controller
->dev
.parent
);
3284 pm_runtime_put_autosuspend(spi
->controller
->dev
.parent
);
3286 spi_set_cs(spi
, false);
3289 if (spi
->rt
&& !spi
->controller
->rt
) {
3290 spi
->controller
->rt
= true;
3291 spi_set_thread_rt(spi
->controller
);
3294 dev_dbg(&spi
->dev
, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
3295 (int) (spi
->mode
& (SPI_CPOL
| SPI_CPHA
)),
3296 (spi
->mode
& SPI_CS_HIGH
) ? "cs_high, " : "",
3297 (spi
->mode
& SPI_LSB_FIRST
) ? "lsb, " : "",
3298 (spi
->mode
& SPI_3WIRE
) ? "3wire, " : "",
3299 (spi
->mode
& SPI_LOOP
) ? "loopback, " : "",
3300 spi
->bits_per_word
, spi
->max_speed_hz
,
3305 EXPORT_SYMBOL_GPL(spi_setup
);
3308 * spi_set_cs_timing - configure CS setup, hold, and inactive delays
3309 * @spi: the device that requires specific CS timing configuration
3310 * @setup: CS setup time specified via @spi_delay
3311 * @hold: CS hold time specified via @spi_delay
3312 * @inactive: CS inactive delay between transfers specified via @spi_delay
3314 * Return: zero on success, else a negative error code.
3316 int spi_set_cs_timing(struct spi_device
*spi
, struct spi_delay
*setup
,
3317 struct spi_delay
*hold
, struct spi_delay
*inactive
)
3321 if (spi
->controller
->set_cs_timing
)
3322 return spi
->controller
->set_cs_timing(spi
, setup
, hold
,
3325 if ((setup
&& setup
->unit
== SPI_DELAY_UNIT_SCK
) ||
3326 (hold
&& hold
->unit
== SPI_DELAY_UNIT_SCK
) ||
3327 (inactive
&& inactive
->unit
== SPI_DELAY_UNIT_SCK
)) {
3329 "Clock-cycle delays for CS not supported in SW mode\n");
3333 len
= sizeof(struct spi_delay
);
3335 /* copy delays to controller */
3337 memcpy(&spi
->controller
->cs_setup
, setup
, len
);
3339 memset(&spi
->controller
->cs_setup
, 0, len
);
3342 memcpy(&spi
->controller
->cs_hold
, hold
, len
);
3344 memset(&spi
->controller
->cs_hold
, 0, len
);
3347 memcpy(&spi
->controller
->cs_inactive
, inactive
, len
);
3349 memset(&spi
->controller
->cs_inactive
, 0, len
);
3353 EXPORT_SYMBOL_GPL(spi_set_cs_timing
);
3355 static int _spi_xfer_word_delay_update(struct spi_transfer
*xfer
,
3356 struct spi_device
*spi
)
3360 delay1
= spi_delay_to_ns(&xfer
->word_delay
, xfer
);
3364 delay2
= spi_delay_to_ns(&spi
->word_delay
, xfer
);
3368 if (delay1
< delay2
)
3369 memcpy(&xfer
->word_delay
, &spi
->word_delay
,
3370 sizeof(xfer
->word_delay
));
3375 static int __spi_validate(struct spi_device
*spi
, struct spi_message
*message
)
3377 struct spi_controller
*ctlr
= spi
->controller
;
3378 struct spi_transfer
*xfer
;
3381 if (list_empty(&message
->transfers
))
3384 /* If an SPI controller does not support toggling the CS line on each
3385 * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO
3386 * for the CS line, we can emulate the CS-per-word hardware function by
3387 * splitting transfers into one-word transfers and ensuring that
3388 * cs_change is set for each transfer.
3390 if ((spi
->mode
& SPI_CS_WORD
) && (!(ctlr
->mode_bits
& SPI_CS_WORD
) ||
3392 gpio_is_valid(spi
->cs_gpio
))) {
3396 maxsize
= (spi
->bits_per_word
+ 7) / 8;
3398 /* spi_split_transfers_maxsize() requires message->spi */
3401 ret
= spi_split_transfers_maxsize(ctlr
, message
, maxsize
,
3406 list_for_each_entry(xfer
, &message
->transfers
, transfer_list
) {
3407 /* don't change cs_change on the last entry in the list */
3408 if (list_is_last(&xfer
->transfer_list
, &message
->transfers
))
3410 xfer
->cs_change
= 1;
3414 /* Half-duplex links include original MicroWire, and ones with
3415 * only one data pin like SPI_3WIRE (switches direction) or where
3416 * either MOSI or MISO is missing. They can also be caused by
3417 * software limitations.
3419 if ((ctlr
->flags
& SPI_CONTROLLER_HALF_DUPLEX
) ||
3420 (spi
->mode
& SPI_3WIRE
)) {
3421 unsigned flags
= ctlr
->flags
;
3423 list_for_each_entry(xfer
, &message
->transfers
, transfer_list
) {
3424 if (xfer
->rx_buf
&& xfer
->tx_buf
)
3426 if ((flags
& SPI_CONTROLLER_NO_TX
) && xfer
->tx_buf
)
3428 if ((flags
& SPI_CONTROLLER_NO_RX
) && xfer
->rx_buf
)
3434 * Set transfer bits_per_word and max speed as spi device default if
3435 * it is not set for this transfer.
3436 * Set transfer tx_nbits and rx_nbits as single transfer default
3437 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
3438 * Ensure transfer word_delay is at least as long as that required by
3441 message
->frame_length
= 0;
3442 list_for_each_entry(xfer
, &message
->transfers
, transfer_list
) {
3443 xfer
->effective_speed_hz
= 0;
3444 message
->frame_length
+= xfer
->len
;
3445 if (!xfer
->bits_per_word
)
3446 xfer
->bits_per_word
= spi
->bits_per_word
;
3448 if (!xfer
->speed_hz
)
3449 xfer
->speed_hz
= spi
->max_speed_hz
;
3451 if (ctlr
->max_speed_hz
&& xfer
->speed_hz
> ctlr
->max_speed_hz
)
3452 xfer
->speed_hz
= ctlr
->max_speed_hz
;
3454 if (__spi_validate_bits_per_word(ctlr
, xfer
->bits_per_word
))
3458 * SPI transfer length should be multiple of SPI word size
3459 * where SPI word size should be power-of-two multiple
3461 if (xfer
->bits_per_word
<= 8)
3463 else if (xfer
->bits_per_word
<= 16)
3468 /* No partial transfers accepted */
3469 if (xfer
->len
% w_size
)
3472 if (xfer
->speed_hz
&& ctlr
->min_speed_hz
&&
3473 xfer
->speed_hz
< ctlr
->min_speed_hz
)
3476 if (xfer
->tx_buf
&& !xfer
->tx_nbits
)
3477 xfer
->tx_nbits
= SPI_NBITS_SINGLE
;
3478 if (xfer
->rx_buf
&& !xfer
->rx_nbits
)
3479 xfer
->rx_nbits
= SPI_NBITS_SINGLE
;
3480 /* check transfer tx/rx_nbits:
3481 * 1. check the value matches one of single, dual and quad
3482 * 2. check tx/rx_nbits match the mode in spi_device
3485 if (xfer
->tx_nbits
!= SPI_NBITS_SINGLE
&&
3486 xfer
->tx_nbits
!= SPI_NBITS_DUAL
&&
3487 xfer
->tx_nbits
!= SPI_NBITS_QUAD
)
3489 if ((xfer
->tx_nbits
== SPI_NBITS_DUAL
) &&
3490 !(spi
->mode
& (SPI_TX_DUAL
| SPI_TX_QUAD
)))
3492 if ((xfer
->tx_nbits
== SPI_NBITS_QUAD
) &&
3493 !(spi
->mode
& SPI_TX_QUAD
))
3496 /* check transfer rx_nbits */
3498 if (xfer
->rx_nbits
!= SPI_NBITS_SINGLE
&&
3499 xfer
->rx_nbits
!= SPI_NBITS_DUAL
&&
3500 xfer
->rx_nbits
!= SPI_NBITS_QUAD
)
3502 if ((xfer
->rx_nbits
== SPI_NBITS_DUAL
) &&
3503 !(spi
->mode
& (SPI_RX_DUAL
| SPI_RX_QUAD
)))
3505 if ((xfer
->rx_nbits
== SPI_NBITS_QUAD
) &&
3506 !(spi
->mode
& SPI_RX_QUAD
))
3510 if (_spi_xfer_word_delay_update(xfer
, spi
))
3514 message
->status
= -EINPROGRESS
;
3519 static int __spi_async(struct spi_device
*spi
, struct spi_message
*message
)
3521 struct spi_controller
*ctlr
= spi
->controller
;
3522 struct spi_transfer
*xfer
;
3525 * Some controllers do not support doing regular SPI transfers. Return
3526 * ENOTSUPP when this is the case.
3528 if (!ctlr
->transfer
)
3533 SPI_STATISTICS_INCREMENT_FIELD(&ctlr
->statistics
, spi_async
);
3534 SPI_STATISTICS_INCREMENT_FIELD(&spi
->statistics
, spi_async
);
3536 trace_spi_message_submit(message
);
3538 if (!ctlr
->ptp_sts_supported
) {
3539 list_for_each_entry(xfer
, &message
->transfers
, transfer_list
) {
3540 xfer
->ptp_sts_word_pre
= 0;
3541 ptp_read_system_prets(xfer
->ptp_sts
);
3545 return ctlr
->transfer(spi
, message
);
3549 * spi_async - asynchronous SPI transfer
3550 * @spi: device with which data will be exchanged
3551 * @message: describes the data transfers, including completion callback
3552 * Context: any (irqs may be blocked, etc)
3554 * This call may be used in_irq and other contexts which can't sleep,
3555 * as well as from task contexts which can sleep.
3557 * The completion callback is invoked in a context which can't sleep.
3558 * Before that invocation, the value of message->status is undefined.
3559 * When the callback is issued, message->status holds either zero (to
3560 * indicate complete success) or a negative error code. After that
3561 * callback returns, the driver which issued the transfer request may
3562 * deallocate the associated memory; it's no longer in use by any SPI
3563 * core or controller driver code.
3565 * Note that although all messages to a spi_device are handled in
3566 * FIFO order, messages may go to different devices in other orders.
3567 * Some device might be higher priority, or have various "hard" access
3568 * time requirements, for example.
3570 * On detection of any fault during the transfer, processing of
3571 * the entire message is aborted, and the device is deselected.
3572 * Until returning from the associated message completion callback,
3573 * no other spi_message queued to that device will be processed.
3574 * (This rule applies equally to all the synchronous transfer calls,
3575 * which are wrappers around this core asynchronous primitive.)
3577 * Return: zero on success, else a negative error code.
3579 int spi_async(struct spi_device
*spi
, struct spi_message
*message
)
3581 struct spi_controller
*ctlr
= spi
->controller
;
3583 unsigned long flags
;
3585 ret
= __spi_validate(spi
, message
);
3589 spin_lock_irqsave(&ctlr
->bus_lock_spinlock
, flags
);
3591 if (ctlr
->bus_lock_flag
)
3594 ret
= __spi_async(spi
, message
);
3596 spin_unlock_irqrestore(&ctlr
->bus_lock_spinlock
, flags
);
3600 EXPORT_SYMBOL_GPL(spi_async
);
3603 * spi_async_locked - version of spi_async with exclusive bus usage
3604 * @spi: device with which data will be exchanged
3605 * @message: describes the data transfers, including completion callback
3606 * Context: any (irqs may be blocked, etc)
3608 * This call may be used in_irq and other contexts which can't sleep,
3609 * as well as from task contexts which can sleep.
3611 * The completion callback is invoked in a context which can't sleep.
3612 * Before that invocation, the value of message->status is undefined.
3613 * When the callback is issued, message->status holds either zero (to
3614 * indicate complete success) or a negative error code. After that
3615 * callback returns, the driver which issued the transfer request may
3616 * deallocate the associated memory; it's no longer in use by any SPI
3617 * core or controller driver code.
3619 * Note that although all messages to a spi_device are handled in
3620 * FIFO order, messages may go to different devices in other orders.
3621 * Some device might be higher priority, or have various "hard" access
3622 * time requirements, for example.
3624 * On detection of any fault during the transfer, processing of
3625 * the entire message is aborted, and the device is deselected.
3626 * Until returning from the associated message completion callback,
3627 * no other spi_message queued to that device will be processed.
3628 * (This rule applies equally to all the synchronous transfer calls,
3629 * which are wrappers around this core asynchronous primitive.)
3631 * Return: zero on success, else a negative error code.
3633 int spi_async_locked(struct spi_device
*spi
, struct spi_message
*message
)
3635 struct spi_controller
*ctlr
= spi
->controller
;
3637 unsigned long flags
;
3639 ret
= __spi_validate(spi
, message
);
3643 spin_lock_irqsave(&ctlr
->bus_lock_spinlock
, flags
);
3645 ret
= __spi_async(spi
, message
);
3647 spin_unlock_irqrestore(&ctlr
->bus_lock_spinlock
, flags
);
3652 EXPORT_SYMBOL_GPL(spi_async_locked
);
3654 /*-------------------------------------------------------------------------*/
3656 /* Utility methods for SPI protocol drivers, layered on
3657 * top of the core. Some other utility methods are defined as
3661 static void spi_complete(void *arg
)
3666 static int __spi_sync(struct spi_device
*spi
, struct spi_message
*message
)
3668 DECLARE_COMPLETION_ONSTACK(done
);
3670 struct spi_controller
*ctlr
= spi
->controller
;
3671 unsigned long flags
;
3673 status
= __spi_validate(spi
, message
);
3677 message
->complete
= spi_complete
;
3678 message
->context
= &done
;
3681 SPI_STATISTICS_INCREMENT_FIELD(&ctlr
->statistics
, spi_sync
);
3682 SPI_STATISTICS_INCREMENT_FIELD(&spi
->statistics
, spi_sync
);
3684 /* If we're not using the legacy transfer method then we will
3685 * try to transfer in the calling context so special case.
3686 * This code would be less tricky if we could remove the
3687 * support for driver implemented message queues.
3689 if (ctlr
->transfer
== spi_queued_transfer
) {
3690 spin_lock_irqsave(&ctlr
->bus_lock_spinlock
, flags
);
3692 trace_spi_message_submit(message
);
3694 status
= __spi_queued_transfer(spi
, message
, false);
3696 spin_unlock_irqrestore(&ctlr
->bus_lock_spinlock
, flags
);
3698 status
= spi_async_locked(spi
, message
);
3702 /* Push out the messages in the calling context if we
3705 if (ctlr
->transfer
== spi_queued_transfer
) {
3706 SPI_STATISTICS_INCREMENT_FIELD(&ctlr
->statistics
,
3707 spi_sync_immediate
);
3708 SPI_STATISTICS_INCREMENT_FIELD(&spi
->statistics
,
3709 spi_sync_immediate
);
3710 __spi_pump_messages(ctlr
, false);
3713 wait_for_completion(&done
);
3714 status
= message
->status
;
3716 message
->context
= NULL
;
3721 * spi_sync - blocking/synchronous SPI data transfers
3722 * @spi: device with which data will be exchanged
3723 * @message: describes the data transfers
3724 * Context: can sleep
3726 * This call may only be used from a context that may sleep. The sleep
3727 * is non-interruptible, and has no timeout. Low-overhead controller
3728 * drivers may DMA directly into and out of the message buffers.
3730 * Note that the SPI device's chip select is active during the message,
3731 * and then is normally disabled between messages. Drivers for some
3732 * frequently-used devices may want to minimize costs of selecting a chip,
3733 * by leaving it selected in anticipation that the next message will go
3734 * to the same chip. (That may increase power usage.)
3736 * Also, the caller is guaranteeing that the memory associated with the
3737 * message will not be freed before this call returns.
3739 * Return: zero on success, else a negative error code.
3741 int spi_sync(struct spi_device
*spi
, struct spi_message
*message
)
3745 mutex_lock(&spi
->controller
->bus_lock_mutex
);
3746 ret
= __spi_sync(spi
, message
);
3747 mutex_unlock(&spi
->controller
->bus_lock_mutex
);
3751 EXPORT_SYMBOL_GPL(spi_sync
);
3754 * spi_sync_locked - version of spi_sync with exclusive bus usage
3755 * @spi: device with which data will be exchanged
3756 * @message: describes the data transfers
3757 * Context: can sleep
3759 * This call may only be used from a context that may sleep. The sleep
3760 * is non-interruptible, and has no timeout. Low-overhead controller
3761 * drivers may DMA directly into and out of the message buffers.
3763 * This call should be used by drivers that require exclusive access to the
3764 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
3765 * be released by a spi_bus_unlock call when the exclusive access is over.
3767 * Return: zero on success, else a negative error code.
3769 int spi_sync_locked(struct spi_device
*spi
, struct spi_message
*message
)
3771 return __spi_sync(spi
, message
);
3773 EXPORT_SYMBOL_GPL(spi_sync_locked
);
3776 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
3777 * @ctlr: SPI bus master that should be locked for exclusive bus access
3778 * Context: can sleep
3780 * This call may only be used from a context that may sleep. The sleep
3781 * is non-interruptible, and has no timeout.
3783 * This call should be used by drivers that require exclusive access to the
3784 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
3785 * exclusive access is over. Data transfer must be done by spi_sync_locked
3786 * and spi_async_locked calls when the SPI bus lock is held.
3788 * Return: always zero.
3790 int spi_bus_lock(struct spi_controller
*ctlr
)
3792 unsigned long flags
;
3794 mutex_lock(&ctlr
->bus_lock_mutex
);
3796 spin_lock_irqsave(&ctlr
->bus_lock_spinlock
, flags
);
3797 ctlr
->bus_lock_flag
= 1;
3798 spin_unlock_irqrestore(&ctlr
->bus_lock_spinlock
, flags
);
3800 /* mutex remains locked until spi_bus_unlock is called */
3804 EXPORT_SYMBOL_GPL(spi_bus_lock
);
3807 * spi_bus_unlock - release the lock for exclusive SPI bus usage
3808 * @ctlr: SPI bus master that was locked for exclusive bus access
3809 * Context: can sleep
3811 * This call may only be used from a context that may sleep. The sleep
3812 * is non-interruptible, and has no timeout.
3814 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
3817 * Return: always zero.
3819 int spi_bus_unlock(struct spi_controller
*ctlr
)
3821 ctlr
->bus_lock_flag
= 0;
3823 mutex_unlock(&ctlr
->bus_lock_mutex
);
3827 EXPORT_SYMBOL_GPL(spi_bus_unlock
);
3829 /* portable code must never pass more than 32 bytes */
3830 #define SPI_BUFSIZ max(32, SMP_CACHE_BYTES)
3835 * spi_write_then_read - SPI synchronous write followed by read
3836 * @spi: device with which data will be exchanged
3837 * @txbuf: data to be written (need not be dma-safe)
3838 * @n_tx: size of txbuf, in bytes
3839 * @rxbuf: buffer into which data will be read (need not be dma-safe)
3840 * @n_rx: size of rxbuf, in bytes
3841 * Context: can sleep
3843 * This performs a half duplex MicroWire style transaction with the
3844 * device, sending txbuf and then reading rxbuf. The return value
3845 * is zero for success, else a negative errno status code.
3846 * This call may only be used from a context that may sleep.
3848 * Parameters to this routine are always copied using a small buffer;
3849 * portable code should never use this for more than 32 bytes.
3850 * Performance-sensitive or bulk transfer code should instead use
3851 * spi_{async,sync}() calls with dma-safe buffers.
3853 * Return: zero on success, else a negative error code.
3855 int spi_write_then_read(struct spi_device
*spi
,
3856 const void *txbuf
, unsigned n_tx
,
3857 void *rxbuf
, unsigned n_rx
)
3859 static DEFINE_MUTEX(lock
);
3862 struct spi_message message
;
3863 struct spi_transfer x
[2];
3866 /* Use preallocated DMA-safe buffer if we can. We can't avoid
3867 * copying here, (as a pure convenience thing), but we can
3868 * keep heap costs out of the hot path unless someone else is
3869 * using the pre-allocated buffer or the transfer is too large.
3871 if ((n_tx
+ n_rx
) > SPI_BUFSIZ
|| !mutex_trylock(&lock
)) {
3872 local_buf
= kmalloc(max((unsigned)SPI_BUFSIZ
, n_tx
+ n_rx
),
3873 GFP_KERNEL
| GFP_DMA
);
3880 spi_message_init(&message
);
3881 memset(x
, 0, sizeof(x
));
3884 spi_message_add_tail(&x
[0], &message
);
3888 spi_message_add_tail(&x
[1], &message
);
3891 memcpy(local_buf
, txbuf
, n_tx
);
3892 x
[0].tx_buf
= local_buf
;
3893 x
[1].rx_buf
= local_buf
+ n_tx
;
3896 status
= spi_sync(spi
, &message
);
3898 memcpy(rxbuf
, x
[1].rx_buf
, n_rx
);
3900 if (x
[0].tx_buf
== buf
)
3901 mutex_unlock(&lock
);
3907 EXPORT_SYMBOL_GPL(spi_write_then_read
);
3909 /*-------------------------------------------------------------------------*/
3911 #if IS_ENABLED(CONFIG_OF)
3912 /* must call put_device() when done with returned spi_device device */
3913 struct spi_device
*of_find_spi_device_by_node(struct device_node
*node
)
3915 struct device
*dev
= bus_find_device_by_of_node(&spi_bus_type
, node
);
3917 return dev
? to_spi_device(dev
) : NULL
;
3919 EXPORT_SYMBOL_GPL(of_find_spi_device_by_node
);
3920 #endif /* IS_ENABLED(CONFIG_OF) */
3922 #if IS_ENABLED(CONFIG_OF_DYNAMIC)
3923 /* the spi controllers are not using spi_bus, so we find it with another way */
3924 static struct spi_controller
*of_find_spi_controller_by_node(struct device_node
*node
)
3928 dev
= class_find_device_by_of_node(&spi_master_class
, node
);
3929 if (!dev
&& IS_ENABLED(CONFIG_SPI_SLAVE
))
3930 dev
= class_find_device_by_of_node(&spi_slave_class
, node
);
3934 /* reference got in class_find_device */
3935 return container_of(dev
, struct spi_controller
, dev
);
3938 static int of_spi_notify(struct notifier_block
*nb
, unsigned long action
,
3941 struct of_reconfig_data
*rd
= arg
;
3942 struct spi_controller
*ctlr
;
3943 struct spi_device
*spi
;
3945 switch (of_reconfig_get_state_change(action
, arg
)) {
3946 case OF_RECONFIG_CHANGE_ADD
:
3947 ctlr
= of_find_spi_controller_by_node(rd
->dn
->parent
);
3949 return NOTIFY_OK
; /* not for us */
3951 if (of_node_test_and_set_flag(rd
->dn
, OF_POPULATED
)) {
3952 put_device(&ctlr
->dev
);
3956 spi
= of_register_spi_device(ctlr
, rd
->dn
);
3957 put_device(&ctlr
->dev
);
3960 pr_err("%s: failed to create for '%pOF'\n",
3962 of_node_clear_flag(rd
->dn
, OF_POPULATED
);
3963 return notifier_from_errno(PTR_ERR(spi
));
3967 case OF_RECONFIG_CHANGE_REMOVE
:
3968 /* already depopulated? */
3969 if (!of_node_check_flag(rd
->dn
, OF_POPULATED
))
3972 /* find our device by node */
3973 spi
= of_find_spi_device_by_node(rd
->dn
);
3975 return NOTIFY_OK
; /* no? not meant for us */
3977 /* unregister takes one ref away */
3978 spi_unregister_device(spi
);
3980 /* and put the reference of the find */
3981 put_device(&spi
->dev
);
3988 static struct notifier_block spi_of_notifier
= {
3989 .notifier_call
= of_spi_notify
,
3991 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
3992 extern struct notifier_block spi_of_notifier
;
3993 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
3995 #if IS_ENABLED(CONFIG_ACPI)
3996 static int spi_acpi_controller_match(struct device
*dev
, const void *data
)
3998 return ACPI_COMPANION(dev
->parent
) == data
;
4001 static struct spi_controller
*acpi_spi_find_controller_by_adev(struct acpi_device
*adev
)
4005 dev
= class_find_device(&spi_master_class
, NULL
, adev
,
4006 spi_acpi_controller_match
);
4007 if (!dev
&& IS_ENABLED(CONFIG_SPI_SLAVE
))
4008 dev
= class_find_device(&spi_slave_class
, NULL
, adev
,
4009 spi_acpi_controller_match
);
4013 return container_of(dev
, struct spi_controller
, dev
);
4016 static struct spi_device
*acpi_spi_find_device_by_adev(struct acpi_device
*adev
)
4020 dev
= bus_find_device_by_acpi_dev(&spi_bus_type
, adev
);
4021 return dev
? to_spi_device(dev
) : NULL
;
4024 static int acpi_spi_notify(struct notifier_block
*nb
, unsigned long value
,
4027 struct acpi_device
*adev
= arg
;
4028 struct spi_controller
*ctlr
;
4029 struct spi_device
*spi
;
4032 case ACPI_RECONFIG_DEVICE_ADD
:
4033 ctlr
= acpi_spi_find_controller_by_adev(adev
->parent
);
4037 acpi_register_spi_device(ctlr
, adev
);
4038 put_device(&ctlr
->dev
);
4040 case ACPI_RECONFIG_DEVICE_REMOVE
:
4041 if (!acpi_device_enumerated(adev
))
4044 spi
= acpi_spi_find_device_by_adev(adev
);
4048 spi_unregister_device(spi
);
4049 put_device(&spi
->dev
);
4056 static struct notifier_block spi_acpi_notifier
= {
4057 .notifier_call
= acpi_spi_notify
,
4060 extern struct notifier_block spi_acpi_notifier
;
4063 static int __init
spi_init(void)
4067 buf
= kmalloc(SPI_BUFSIZ
, GFP_KERNEL
);
4073 status
= bus_register(&spi_bus_type
);
4077 status
= class_register(&spi_master_class
);
4081 if (IS_ENABLED(CONFIG_SPI_SLAVE
)) {
4082 status
= class_register(&spi_slave_class
);
4087 if (IS_ENABLED(CONFIG_OF_DYNAMIC
))
4088 WARN_ON(of_reconfig_notifier_register(&spi_of_notifier
));
4089 if (IS_ENABLED(CONFIG_ACPI
))
4090 WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier
));
4095 class_unregister(&spi_master_class
);
4097 bus_unregister(&spi_bus_type
);
4105 /* board_info is normally registered in arch_initcall(),
4106 * but even essential drivers wait till later
4108 * REVISIT only boardinfo really needs static linking. the rest (device and
4109 * driver registration) _could_ be dynamically linked (modular) ... costs
4110 * include needing to have boardinfo data structures be much more public.
4112 postcore_initcall(spi_init
);