interconnect: qcom: Fix Kconfig indentation
[linux/fpc-iii.git] / drivers / spi / spi.c
blob5e4c4532f7f326f74dc7d816db7699ea6d03e09c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 // SPI init/core code
3 //
4 // Copyright (C) 2005 David Brownell
5 // Copyright (C) 2008 Secret Lab Technologies Ltd.
7 #include <linux/kernel.h>
8 #include <linux/device.h>
9 #include <linux/init.h>
10 #include <linux/cache.h>
11 #include <linux/dma-mapping.h>
12 #include <linux/dmaengine.h>
13 #include <linux/mutex.h>
14 #include <linux/of_device.h>
15 #include <linux/of_irq.h>
16 #include <linux/clk/clk-conf.h>
17 #include <linux/slab.h>
18 #include <linux/mod_devicetable.h>
19 #include <linux/spi/spi.h>
20 #include <linux/spi/spi-mem.h>
21 #include <linux/of_gpio.h>
22 #include <linux/gpio/consumer.h>
23 #include <linux/pm_runtime.h>
24 #include <linux/pm_domain.h>
25 #include <linux/property.h>
26 #include <linux/export.h>
27 #include <linux/sched/rt.h>
28 #include <uapi/linux/sched/types.h>
29 #include <linux/delay.h>
30 #include <linux/kthread.h>
31 #include <linux/ioport.h>
32 #include <linux/acpi.h>
33 #include <linux/highmem.h>
34 #include <linux/idr.h>
35 #include <linux/platform_data/x86/apple.h>
37 #define CREATE_TRACE_POINTS
38 #include <trace/events/spi.h>
39 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_start);
40 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_stop);
42 #include "internals.h"
44 static DEFINE_IDR(spi_master_idr);
46 static void spidev_release(struct device *dev)
48 struct spi_device *spi = to_spi_device(dev);
50 /* spi controllers may cleanup for released devices */
51 if (spi->controller->cleanup)
52 spi->controller->cleanup(spi);
54 spi_controller_put(spi->controller);
55 kfree(spi->driver_override);
56 kfree(spi);
59 static ssize_t
60 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
62 const struct spi_device *spi = to_spi_device(dev);
63 int len;
65 len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
66 if (len != -ENODEV)
67 return len;
69 return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
71 static DEVICE_ATTR_RO(modalias);
73 static ssize_t driver_override_store(struct device *dev,
74 struct device_attribute *a,
75 const char *buf, size_t count)
77 struct spi_device *spi = to_spi_device(dev);
78 const char *end = memchr(buf, '\n', count);
79 const size_t len = end ? end - buf : count;
80 const char *driver_override, *old;
82 /* We need to keep extra room for a newline when displaying value */
83 if (len >= (PAGE_SIZE - 1))
84 return -EINVAL;
86 driver_override = kstrndup(buf, len, GFP_KERNEL);
87 if (!driver_override)
88 return -ENOMEM;
90 device_lock(dev);
91 old = spi->driver_override;
92 if (len) {
93 spi->driver_override = driver_override;
94 } else {
95 /* Empty string, disable driver override */
96 spi->driver_override = NULL;
97 kfree(driver_override);
99 device_unlock(dev);
100 kfree(old);
102 return count;
105 static ssize_t driver_override_show(struct device *dev,
106 struct device_attribute *a, char *buf)
108 const struct spi_device *spi = to_spi_device(dev);
109 ssize_t len;
111 device_lock(dev);
112 len = snprintf(buf, PAGE_SIZE, "%s\n", spi->driver_override ? : "");
113 device_unlock(dev);
114 return len;
116 static DEVICE_ATTR_RW(driver_override);
118 #define SPI_STATISTICS_ATTRS(field, file) \
119 static ssize_t spi_controller_##field##_show(struct device *dev, \
120 struct device_attribute *attr, \
121 char *buf) \
123 struct spi_controller *ctlr = container_of(dev, \
124 struct spi_controller, dev); \
125 return spi_statistics_##field##_show(&ctlr->statistics, buf); \
127 static struct device_attribute dev_attr_spi_controller_##field = { \
128 .attr = { .name = file, .mode = 0444 }, \
129 .show = spi_controller_##field##_show, \
130 }; \
131 static ssize_t spi_device_##field##_show(struct device *dev, \
132 struct device_attribute *attr, \
133 char *buf) \
135 struct spi_device *spi = to_spi_device(dev); \
136 return spi_statistics_##field##_show(&spi->statistics, buf); \
138 static struct device_attribute dev_attr_spi_device_##field = { \
139 .attr = { .name = file, .mode = 0444 }, \
140 .show = spi_device_##field##_show, \
143 #define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string) \
144 static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \
145 char *buf) \
147 unsigned long flags; \
148 ssize_t len; \
149 spin_lock_irqsave(&stat->lock, flags); \
150 len = sprintf(buf, format_string, stat->field); \
151 spin_unlock_irqrestore(&stat->lock, flags); \
152 return len; \
154 SPI_STATISTICS_ATTRS(name, file)
156 #define SPI_STATISTICS_SHOW(field, format_string) \
157 SPI_STATISTICS_SHOW_NAME(field, __stringify(field), \
158 field, format_string)
160 SPI_STATISTICS_SHOW(messages, "%lu");
161 SPI_STATISTICS_SHOW(transfers, "%lu");
162 SPI_STATISTICS_SHOW(errors, "%lu");
163 SPI_STATISTICS_SHOW(timedout, "%lu");
165 SPI_STATISTICS_SHOW(spi_sync, "%lu");
166 SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu");
167 SPI_STATISTICS_SHOW(spi_async, "%lu");
169 SPI_STATISTICS_SHOW(bytes, "%llu");
170 SPI_STATISTICS_SHOW(bytes_rx, "%llu");
171 SPI_STATISTICS_SHOW(bytes_tx, "%llu");
173 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number) \
174 SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index, \
175 "transfer_bytes_histo_" number, \
176 transfer_bytes_histo[index], "%lu")
177 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0, "0-1");
178 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1, "2-3");
179 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2, "4-7");
180 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3, "8-15");
181 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4, "16-31");
182 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5, "32-63");
183 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6, "64-127");
184 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7, "128-255");
185 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8, "256-511");
186 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9, "512-1023");
187 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
188 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
189 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
190 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
191 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
192 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
193 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
195 SPI_STATISTICS_SHOW(transfers_split_maxsize, "%lu");
197 static struct attribute *spi_dev_attrs[] = {
198 &dev_attr_modalias.attr,
199 &dev_attr_driver_override.attr,
200 NULL,
203 static const struct attribute_group spi_dev_group = {
204 .attrs = spi_dev_attrs,
207 static struct attribute *spi_device_statistics_attrs[] = {
208 &dev_attr_spi_device_messages.attr,
209 &dev_attr_spi_device_transfers.attr,
210 &dev_attr_spi_device_errors.attr,
211 &dev_attr_spi_device_timedout.attr,
212 &dev_attr_spi_device_spi_sync.attr,
213 &dev_attr_spi_device_spi_sync_immediate.attr,
214 &dev_attr_spi_device_spi_async.attr,
215 &dev_attr_spi_device_bytes.attr,
216 &dev_attr_spi_device_bytes_rx.attr,
217 &dev_attr_spi_device_bytes_tx.attr,
218 &dev_attr_spi_device_transfer_bytes_histo0.attr,
219 &dev_attr_spi_device_transfer_bytes_histo1.attr,
220 &dev_attr_spi_device_transfer_bytes_histo2.attr,
221 &dev_attr_spi_device_transfer_bytes_histo3.attr,
222 &dev_attr_spi_device_transfer_bytes_histo4.attr,
223 &dev_attr_spi_device_transfer_bytes_histo5.attr,
224 &dev_attr_spi_device_transfer_bytes_histo6.attr,
225 &dev_attr_spi_device_transfer_bytes_histo7.attr,
226 &dev_attr_spi_device_transfer_bytes_histo8.attr,
227 &dev_attr_spi_device_transfer_bytes_histo9.attr,
228 &dev_attr_spi_device_transfer_bytes_histo10.attr,
229 &dev_attr_spi_device_transfer_bytes_histo11.attr,
230 &dev_attr_spi_device_transfer_bytes_histo12.attr,
231 &dev_attr_spi_device_transfer_bytes_histo13.attr,
232 &dev_attr_spi_device_transfer_bytes_histo14.attr,
233 &dev_attr_spi_device_transfer_bytes_histo15.attr,
234 &dev_attr_spi_device_transfer_bytes_histo16.attr,
235 &dev_attr_spi_device_transfers_split_maxsize.attr,
236 NULL,
239 static const struct attribute_group spi_device_statistics_group = {
240 .name = "statistics",
241 .attrs = spi_device_statistics_attrs,
244 static const struct attribute_group *spi_dev_groups[] = {
245 &spi_dev_group,
246 &spi_device_statistics_group,
247 NULL,
250 static struct attribute *spi_controller_statistics_attrs[] = {
251 &dev_attr_spi_controller_messages.attr,
252 &dev_attr_spi_controller_transfers.attr,
253 &dev_attr_spi_controller_errors.attr,
254 &dev_attr_spi_controller_timedout.attr,
255 &dev_attr_spi_controller_spi_sync.attr,
256 &dev_attr_spi_controller_spi_sync_immediate.attr,
257 &dev_attr_spi_controller_spi_async.attr,
258 &dev_attr_spi_controller_bytes.attr,
259 &dev_attr_spi_controller_bytes_rx.attr,
260 &dev_attr_spi_controller_bytes_tx.attr,
261 &dev_attr_spi_controller_transfer_bytes_histo0.attr,
262 &dev_attr_spi_controller_transfer_bytes_histo1.attr,
263 &dev_attr_spi_controller_transfer_bytes_histo2.attr,
264 &dev_attr_spi_controller_transfer_bytes_histo3.attr,
265 &dev_attr_spi_controller_transfer_bytes_histo4.attr,
266 &dev_attr_spi_controller_transfer_bytes_histo5.attr,
267 &dev_attr_spi_controller_transfer_bytes_histo6.attr,
268 &dev_attr_spi_controller_transfer_bytes_histo7.attr,
269 &dev_attr_spi_controller_transfer_bytes_histo8.attr,
270 &dev_attr_spi_controller_transfer_bytes_histo9.attr,
271 &dev_attr_spi_controller_transfer_bytes_histo10.attr,
272 &dev_attr_spi_controller_transfer_bytes_histo11.attr,
273 &dev_attr_spi_controller_transfer_bytes_histo12.attr,
274 &dev_attr_spi_controller_transfer_bytes_histo13.attr,
275 &dev_attr_spi_controller_transfer_bytes_histo14.attr,
276 &dev_attr_spi_controller_transfer_bytes_histo15.attr,
277 &dev_attr_spi_controller_transfer_bytes_histo16.attr,
278 &dev_attr_spi_controller_transfers_split_maxsize.attr,
279 NULL,
282 static const struct attribute_group spi_controller_statistics_group = {
283 .name = "statistics",
284 .attrs = spi_controller_statistics_attrs,
287 static const struct attribute_group *spi_master_groups[] = {
288 &spi_controller_statistics_group,
289 NULL,
292 void spi_statistics_add_transfer_stats(struct spi_statistics *stats,
293 struct spi_transfer *xfer,
294 struct spi_controller *ctlr)
296 unsigned long flags;
297 int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
299 if (l2len < 0)
300 l2len = 0;
302 spin_lock_irqsave(&stats->lock, flags);
304 stats->transfers++;
305 stats->transfer_bytes_histo[l2len]++;
307 stats->bytes += xfer->len;
308 if ((xfer->tx_buf) &&
309 (xfer->tx_buf != ctlr->dummy_tx))
310 stats->bytes_tx += xfer->len;
311 if ((xfer->rx_buf) &&
312 (xfer->rx_buf != ctlr->dummy_rx))
313 stats->bytes_rx += xfer->len;
315 spin_unlock_irqrestore(&stats->lock, flags);
317 EXPORT_SYMBOL_GPL(spi_statistics_add_transfer_stats);
319 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
320 * and the sysfs version makes coldplug work too.
323 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
324 const struct spi_device *sdev)
326 while (id->name[0]) {
327 if (!strcmp(sdev->modalias, id->name))
328 return id;
329 id++;
331 return NULL;
334 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
336 const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
338 return spi_match_id(sdrv->id_table, sdev);
340 EXPORT_SYMBOL_GPL(spi_get_device_id);
342 static int spi_match_device(struct device *dev, struct device_driver *drv)
344 const struct spi_device *spi = to_spi_device(dev);
345 const struct spi_driver *sdrv = to_spi_driver(drv);
347 /* Check override first, and if set, only use the named driver */
348 if (spi->driver_override)
349 return strcmp(spi->driver_override, drv->name) == 0;
351 /* Attempt an OF style match */
352 if (of_driver_match_device(dev, drv))
353 return 1;
355 /* Then try ACPI */
356 if (acpi_driver_match_device(dev, drv))
357 return 1;
359 if (sdrv->id_table)
360 return !!spi_match_id(sdrv->id_table, spi);
362 return strcmp(spi->modalias, drv->name) == 0;
365 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
367 const struct spi_device *spi = to_spi_device(dev);
368 int rc;
370 rc = acpi_device_uevent_modalias(dev, env);
371 if (rc != -ENODEV)
372 return rc;
374 return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
377 struct bus_type spi_bus_type = {
378 .name = "spi",
379 .dev_groups = spi_dev_groups,
380 .match = spi_match_device,
381 .uevent = spi_uevent,
383 EXPORT_SYMBOL_GPL(spi_bus_type);
386 static int spi_drv_probe(struct device *dev)
388 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
389 struct spi_device *spi = to_spi_device(dev);
390 int ret;
392 ret = of_clk_set_defaults(dev->of_node, false);
393 if (ret)
394 return ret;
396 if (dev->of_node) {
397 spi->irq = of_irq_get(dev->of_node, 0);
398 if (spi->irq == -EPROBE_DEFER)
399 return -EPROBE_DEFER;
400 if (spi->irq < 0)
401 spi->irq = 0;
404 ret = dev_pm_domain_attach(dev, true);
405 if (ret)
406 return ret;
408 ret = sdrv->probe(spi);
409 if (ret)
410 dev_pm_domain_detach(dev, true);
412 return ret;
415 static int spi_drv_remove(struct device *dev)
417 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
418 int ret;
420 ret = sdrv->remove(to_spi_device(dev));
421 dev_pm_domain_detach(dev, true);
423 return ret;
426 static void spi_drv_shutdown(struct device *dev)
428 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
430 sdrv->shutdown(to_spi_device(dev));
434 * __spi_register_driver - register a SPI driver
435 * @owner: owner module of the driver to register
436 * @sdrv: the driver to register
437 * Context: can sleep
439 * Return: zero on success, else a negative error code.
441 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
443 sdrv->driver.owner = owner;
444 sdrv->driver.bus = &spi_bus_type;
445 if (sdrv->probe)
446 sdrv->driver.probe = spi_drv_probe;
447 if (sdrv->remove)
448 sdrv->driver.remove = spi_drv_remove;
449 if (sdrv->shutdown)
450 sdrv->driver.shutdown = spi_drv_shutdown;
451 return driver_register(&sdrv->driver);
453 EXPORT_SYMBOL_GPL(__spi_register_driver);
455 /*-------------------------------------------------------------------------*/
457 /* SPI devices should normally not be created by SPI device drivers; that
458 * would make them board-specific. Similarly with SPI controller drivers.
459 * Device registration normally goes into like arch/.../mach.../board-YYY.c
460 * with other readonly (flashable) information about mainboard devices.
463 struct boardinfo {
464 struct list_head list;
465 struct spi_board_info board_info;
468 static LIST_HEAD(board_list);
469 static LIST_HEAD(spi_controller_list);
472 * Used to protect add/del operation for board_info list and
473 * spi_controller list, and their matching process
474 * also used to protect object of type struct idr
476 static DEFINE_MUTEX(board_lock);
479 * spi_alloc_device - Allocate a new SPI device
480 * @ctlr: Controller to which device is connected
481 * Context: can sleep
483 * Allows a driver to allocate and initialize a spi_device without
484 * registering it immediately. This allows a driver to directly
485 * fill the spi_device with device parameters before calling
486 * spi_add_device() on it.
488 * Caller is responsible to call spi_add_device() on the returned
489 * spi_device structure to add it to the SPI controller. If the caller
490 * needs to discard the spi_device without adding it, then it should
491 * call spi_dev_put() on it.
493 * Return: a pointer to the new device, or NULL.
495 struct spi_device *spi_alloc_device(struct spi_controller *ctlr)
497 struct spi_device *spi;
499 if (!spi_controller_get(ctlr))
500 return NULL;
502 spi = kzalloc(sizeof(*spi), GFP_KERNEL);
503 if (!spi) {
504 spi_controller_put(ctlr);
505 return NULL;
508 spi->master = spi->controller = ctlr;
509 spi->dev.parent = &ctlr->dev;
510 spi->dev.bus = &spi_bus_type;
511 spi->dev.release = spidev_release;
512 spi->cs_gpio = -ENOENT;
514 spin_lock_init(&spi->statistics.lock);
516 device_initialize(&spi->dev);
517 return spi;
519 EXPORT_SYMBOL_GPL(spi_alloc_device);
521 static void spi_dev_set_name(struct spi_device *spi)
523 struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
525 if (adev) {
526 dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
527 return;
530 dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev),
531 spi->chip_select);
534 static int spi_dev_check(struct device *dev, void *data)
536 struct spi_device *spi = to_spi_device(dev);
537 struct spi_device *new_spi = data;
539 if (spi->controller == new_spi->controller &&
540 spi->chip_select == new_spi->chip_select)
541 return -EBUSY;
542 return 0;
546 * spi_add_device - Add spi_device allocated with spi_alloc_device
547 * @spi: spi_device to register
549 * Companion function to spi_alloc_device. Devices allocated with
550 * spi_alloc_device can be added onto the spi bus with this function.
552 * Return: 0 on success; negative errno on failure
554 int spi_add_device(struct spi_device *spi)
556 static DEFINE_MUTEX(spi_add_lock);
557 struct spi_controller *ctlr = spi->controller;
558 struct device *dev = ctlr->dev.parent;
559 int status;
561 /* Chipselects are numbered 0..max; validate. */
562 if (spi->chip_select >= ctlr->num_chipselect) {
563 dev_err(dev, "cs%d >= max %d\n", spi->chip_select,
564 ctlr->num_chipselect);
565 return -EINVAL;
568 /* Set the bus ID string */
569 spi_dev_set_name(spi);
571 /* We need to make sure there's no other device with this
572 * chipselect **BEFORE** we call setup(), else we'll trash
573 * its configuration. Lock against concurrent add() calls.
575 mutex_lock(&spi_add_lock);
577 status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
578 if (status) {
579 dev_err(dev, "chipselect %d already in use\n",
580 spi->chip_select);
581 goto done;
584 /* Descriptors take precedence */
585 if (ctlr->cs_gpiods)
586 spi->cs_gpiod = ctlr->cs_gpiods[spi->chip_select];
587 else if (ctlr->cs_gpios)
588 spi->cs_gpio = ctlr->cs_gpios[spi->chip_select];
590 /* Drivers may modify this initial i/o setup, but will
591 * normally rely on the device being setup. Devices
592 * using SPI_CS_HIGH can't coexist well otherwise...
594 status = spi_setup(spi);
595 if (status < 0) {
596 dev_err(dev, "can't setup %s, status %d\n",
597 dev_name(&spi->dev), status);
598 goto done;
601 /* Device may be bound to an active driver when this returns */
602 status = device_add(&spi->dev);
603 if (status < 0)
604 dev_err(dev, "can't add %s, status %d\n",
605 dev_name(&spi->dev), status);
606 else
607 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
609 done:
610 mutex_unlock(&spi_add_lock);
611 return status;
613 EXPORT_SYMBOL_GPL(spi_add_device);
616 * spi_new_device - instantiate one new SPI device
617 * @ctlr: Controller to which device is connected
618 * @chip: Describes the SPI device
619 * Context: can sleep
621 * On typical mainboards, this is purely internal; and it's not needed
622 * after board init creates the hard-wired devices. Some development
623 * platforms may not be able to use spi_register_board_info though, and
624 * this is exported so that for example a USB or parport based adapter
625 * driver could add devices (which it would learn about out-of-band).
627 * Return: the new device, or NULL.
629 struct spi_device *spi_new_device(struct spi_controller *ctlr,
630 struct spi_board_info *chip)
632 struct spi_device *proxy;
633 int status;
635 /* NOTE: caller did any chip->bus_num checks necessary.
637 * Also, unless we change the return value convention to use
638 * error-or-pointer (not NULL-or-pointer), troubleshootability
639 * suggests syslogged diagnostics are best here (ugh).
642 proxy = spi_alloc_device(ctlr);
643 if (!proxy)
644 return NULL;
646 WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
648 proxy->chip_select = chip->chip_select;
649 proxy->max_speed_hz = chip->max_speed_hz;
650 proxy->mode = chip->mode;
651 proxy->irq = chip->irq;
652 strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
653 proxy->dev.platform_data = (void *) chip->platform_data;
654 proxy->controller_data = chip->controller_data;
655 proxy->controller_state = NULL;
657 if (chip->properties) {
658 status = device_add_properties(&proxy->dev, chip->properties);
659 if (status) {
660 dev_err(&ctlr->dev,
661 "failed to add properties to '%s': %d\n",
662 chip->modalias, status);
663 goto err_dev_put;
667 status = spi_add_device(proxy);
668 if (status < 0)
669 goto err_remove_props;
671 return proxy;
673 err_remove_props:
674 if (chip->properties)
675 device_remove_properties(&proxy->dev);
676 err_dev_put:
677 spi_dev_put(proxy);
678 return NULL;
680 EXPORT_SYMBOL_GPL(spi_new_device);
683 * spi_unregister_device - unregister a single SPI device
684 * @spi: spi_device to unregister
686 * Start making the passed SPI device vanish. Normally this would be handled
687 * by spi_unregister_controller().
689 void spi_unregister_device(struct spi_device *spi)
691 if (!spi)
692 return;
694 if (spi->dev.of_node) {
695 of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
696 of_node_put(spi->dev.of_node);
698 if (ACPI_COMPANION(&spi->dev))
699 acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev));
700 device_unregister(&spi->dev);
702 EXPORT_SYMBOL_GPL(spi_unregister_device);
704 static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr,
705 struct spi_board_info *bi)
707 struct spi_device *dev;
709 if (ctlr->bus_num != bi->bus_num)
710 return;
712 dev = spi_new_device(ctlr, bi);
713 if (!dev)
714 dev_err(ctlr->dev.parent, "can't create new device for %s\n",
715 bi->modalias);
719 * spi_register_board_info - register SPI devices for a given board
720 * @info: array of chip descriptors
721 * @n: how many descriptors are provided
722 * Context: can sleep
724 * Board-specific early init code calls this (probably during arch_initcall)
725 * with segments of the SPI device table. Any device nodes are created later,
726 * after the relevant parent SPI controller (bus_num) is defined. We keep
727 * this table of devices forever, so that reloading a controller driver will
728 * not make Linux forget about these hard-wired devices.
730 * Other code can also call this, e.g. a particular add-on board might provide
731 * SPI devices through its expansion connector, so code initializing that board
732 * would naturally declare its SPI devices.
734 * The board info passed can safely be __initdata ... but be careful of
735 * any embedded pointers (platform_data, etc), they're copied as-is.
736 * Device properties are deep-copied though.
738 * Return: zero on success, else a negative error code.
740 int spi_register_board_info(struct spi_board_info const *info, unsigned n)
742 struct boardinfo *bi;
743 int i;
745 if (!n)
746 return 0;
748 bi = kcalloc(n, sizeof(*bi), GFP_KERNEL);
749 if (!bi)
750 return -ENOMEM;
752 for (i = 0; i < n; i++, bi++, info++) {
753 struct spi_controller *ctlr;
755 memcpy(&bi->board_info, info, sizeof(*info));
756 if (info->properties) {
757 bi->board_info.properties =
758 property_entries_dup(info->properties);
759 if (IS_ERR(bi->board_info.properties))
760 return PTR_ERR(bi->board_info.properties);
763 mutex_lock(&board_lock);
764 list_add_tail(&bi->list, &board_list);
765 list_for_each_entry(ctlr, &spi_controller_list, list)
766 spi_match_controller_to_boardinfo(ctlr,
767 &bi->board_info);
768 mutex_unlock(&board_lock);
771 return 0;
774 /*-------------------------------------------------------------------------*/
776 static void spi_set_cs(struct spi_device *spi, bool enable)
778 bool enable1 = enable;
780 if (!spi->controller->set_cs_timing) {
781 if (enable1)
782 spi_delay_exec(&spi->controller->cs_setup, NULL);
783 else
784 spi_delay_exec(&spi->controller->cs_hold, NULL);
787 if (spi->mode & SPI_CS_HIGH)
788 enable = !enable;
790 if (spi->cs_gpiod || gpio_is_valid(spi->cs_gpio)) {
792 * Honour the SPI_NO_CS flag and invert the enable line, as
793 * active low is default for SPI. Execution paths that handle
794 * polarity inversion in gpiolib (such as device tree) will
795 * enforce active high using the SPI_CS_HIGH resulting in a
796 * double inversion through the code above.
798 if (!(spi->mode & SPI_NO_CS)) {
799 if (spi->cs_gpiod)
800 gpiod_set_value_cansleep(spi->cs_gpiod,
801 !enable);
802 else
803 gpio_set_value_cansleep(spi->cs_gpio, !enable);
805 /* Some SPI masters need both GPIO CS & slave_select */
806 if ((spi->controller->flags & SPI_MASTER_GPIO_SS) &&
807 spi->controller->set_cs)
808 spi->controller->set_cs(spi, !enable);
809 } else if (spi->controller->set_cs) {
810 spi->controller->set_cs(spi, !enable);
813 if (!spi->controller->set_cs_timing) {
814 if (!enable1)
815 spi_delay_exec(&spi->controller->cs_inactive, NULL);
819 #ifdef CONFIG_HAS_DMA
820 int spi_map_buf(struct spi_controller *ctlr, struct device *dev,
821 struct sg_table *sgt, void *buf, size_t len,
822 enum dma_data_direction dir)
824 const bool vmalloced_buf = is_vmalloc_addr(buf);
825 unsigned int max_seg_size = dma_get_max_seg_size(dev);
826 #ifdef CONFIG_HIGHMEM
827 const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE &&
828 (unsigned long)buf < (PKMAP_BASE +
829 (LAST_PKMAP * PAGE_SIZE)));
830 #else
831 const bool kmap_buf = false;
832 #endif
833 int desc_len;
834 int sgs;
835 struct page *vm_page;
836 struct scatterlist *sg;
837 void *sg_buf;
838 size_t min;
839 int i, ret;
841 if (vmalloced_buf || kmap_buf) {
842 desc_len = min_t(int, max_seg_size, PAGE_SIZE);
843 sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
844 } else if (virt_addr_valid(buf)) {
845 desc_len = min_t(int, max_seg_size, ctlr->max_dma_len);
846 sgs = DIV_ROUND_UP(len, desc_len);
847 } else {
848 return -EINVAL;
851 ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
852 if (ret != 0)
853 return ret;
855 sg = &sgt->sgl[0];
856 for (i = 0; i < sgs; i++) {
858 if (vmalloced_buf || kmap_buf) {
860 * Next scatterlist entry size is the minimum between
861 * the desc_len and the remaining buffer length that
862 * fits in a page.
864 min = min_t(size_t, desc_len,
865 min_t(size_t, len,
866 PAGE_SIZE - offset_in_page(buf)));
867 if (vmalloced_buf)
868 vm_page = vmalloc_to_page(buf);
869 else
870 vm_page = kmap_to_page(buf);
871 if (!vm_page) {
872 sg_free_table(sgt);
873 return -ENOMEM;
875 sg_set_page(sg, vm_page,
876 min, offset_in_page(buf));
877 } else {
878 min = min_t(size_t, len, desc_len);
879 sg_buf = buf;
880 sg_set_buf(sg, sg_buf, min);
883 buf += min;
884 len -= min;
885 sg = sg_next(sg);
888 ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir);
889 if (!ret)
890 ret = -ENOMEM;
891 if (ret < 0) {
892 sg_free_table(sgt);
893 return ret;
896 sgt->nents = ret;
898 return 0;
901 void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev,
902 struct sg_table *sgt, enum dma_data_direction dir)
904 if (sgt->orig_nents) {
905 dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
906 sg_free_table(sgt);
910 static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
912 struct device *tx_dev, *rx_dev;
913 struct spi_transfer *xfer;
914 int ret;
916 if (!ctlr->can_dma)
917 return 0;
919 if (ctlr->dma_tx)
920 tx_dev = ctlr->dma_tx->device->dev;
921 else
922 tx_dev = ctlr->dev.parent;
924 if (ctlr->dma_rx)
925 rx_dev = ctlr->dma_rx->device->dev;
926 else
927 rx_dev = ctlr->dev.parent;
929 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
930 if (!ctlr->can_dma(ctlr, msg->spi, xfer))
931 continue;
933 if (xfer->tx_buf != NULL) {
934 ret = spi_map_buf(ctlr, tx_dev, &xfer->tx_sg,
935 (void *)xfer->tx_buf, xfer->len,
936 DMA_TO_DEVICE);
937 if (ret != 0)
938 return ret;
941 if (xfer->rx_buf != NULL) {
942 ret = spi_map_buf(ctlr, rx_dev, &xfer->rx_sg,
943 xfer->rx_buf, xfer->len,
944 DMA_FROM_DEVICE);
945 if (ret != 0) {
946 spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg,
947 DMA_TO_DEVICE);
948 return ret;
953 ctlr->cur_msg_mapped = true;
955 return 0;
958 static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg)
960 struct spi_transfer *xfer;
961 struct device *tx_dev, *rx_dev;
963 if (!ctlr->cur_msg_mapped || !ctlr->can_dma)
964 return 0;
966 if (ctlr->dma_tx)
967 tx_dev = ctlr->dma_tx->device->dev;
968 else
969 tx_dev = ctlr->dev.parent;
971 if (ctlr->dma_rx)
972 rx_dev = ctlr->dma_rx->device->dev;
973 else
974 rx_dev = ctlr->dev.parent;
976 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
977 if (!ctlr->can_dma(ctlr, msg->spi, xfer))
978 continue;
980 spi_unmap_buf(ctlr, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
981 spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
984 return 0;
986 #else /* !CONFIG_HAS_DMA */
987 static inline int __spi_map_msg(struct spi_controller *ctlr,
988 struct spi_message *msg)
990 return 0;
993 static inline int __spi_unmap_msg(struct spi_controller *ctlr,
994 struct spi_message *msg)
996 return 0;
998 #endif /* !CONFIG_HAS_DMA */
1000 static inline int spi_unmap_msg(struct spi_controller *ctlr,
1001 struct spi_message *msg)
1003 struct spi_transfer *xfer;
1005 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1007 * Restore the original value of tx_buf or rx_buf if they are
1008 * NULL.
1010 if (xfer->tx_buf == ctlr->dummy_tx)
1011 xfer->tx_buf = NULL;
1012 if (xfer->rx_buf == ctlr->dummy_rx)
1013 xfer->rx_buf = NULL;
1016 return __spi_unmap_msg(ctlr, msg);
1019 static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1021 struct spi_transfer *xfer;
1022 void *tmp;
1023 unsigned int max_tx, max_rx;
1025 if (ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX)) {
1026 max_tx = 0;
1027 max_rx = 0;
1029 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1030 if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) &&
1031 !xfer->tx_buf)
1032 max_tx = max(xfer->len, max_tx);
1033 if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) &&
1034 !xfer->rx_buf)
1035 max_rx = max(xfer->len, max_rx);
1038 if (max_tx) {
1039 tmp = krealloc(ctlr->dummy_tx, max_tx,
1040 GFP_KERNEL | GFP_DMA);
1041 if (!tmp)
1042 return -ENOMEM;
1043 ctlr->dummy_tx = tmp;
1044 memset(tmp, 0, max_tx);
1047 if (max_rx) {
1048 tmp = krealloc(ctlr->dummy_rx, max_rx,
1049 GFP_KERNEL | GFP_DMA);
1050 if (!tmp)
1051 return -ENOMEM;
1052 ctlr->dummy_rx = tmp;
1055 if (max_tx || max_rx) {
1056 list_for_each_entry(xfer, &msg->transfers,
1057 transfer_list) {
1058 if (!xfer->len)
1059 continue;
1060 if (!xfer->tx_buf)
1061 xfer->tx_buf = ctlr->dummy_tx;
1062 if (!xfer->rx_buf)
1063 xfer->rx_buf = ctlr->dummy_rx;
1068 return __spi_map_msg(ctlr, msg);
1071 static int spi_transfer_wait(struct spi_controller *ctlr,
1072 struct spi_message *msg,
1073 struct spi_transfer *xfer)
1075 struct spi_statistics *statm = &ctlr->statistics;
1076 struct spi_statistics *stats = &msg->spi->statistics;
1077 unsigned long long ms = 1;
1079 if (spi_controller_is_slave(ctlr)) {
1080 if (wait_for_completion_interruptible(&ctlr->xfer_completion)) {
1081 dev_dbg(&msg->spi->dev, "SPI transfer interrupted\n");
1082 return -EINTR;
1084 } else {
1085 ms = 8LL * 1000LL * xfer->len;
1086 do_div(ms, xfer->speed_hz);
1087 ms += ms + 200; /* some tolerance */
1089 if (ms > UINT_MAX)
1090 ms = UINT_MAX;
1092 ms = wait_for_completion_timeout(&ctlr->xfer_completion,
1093 msecs_to_jiffies(ms));
1095 if (ms == 0) {
1096 SPI_STATISTICS_INCREMENT_FIELD(statm, timedout);
1097 SPI_STATISTICS_INCREMENT_FIELD(stats, timedout);
1098 dev_err(&msg->spi->dev,
1099 "SPI transfer timed out\n");
1100 return -ETIMEDOUT;
1104 return 0;
1107 static void _spi_transfer_delay_ns(u32 ns)
1109 if (!ns)
1110 return;
1111 if (ns <= 1000) {
1112 ndelay(ns);
1113 } else {
1114 u32 us = DIV_ROUND_UP(ns, 1000);
1116 if (us <= 10)
1117 udelay(us);
1118 else
1119 usleep_range(us, us + DIV_ROUND_UP(us, 10));
1123 int spi_delay_to_ns(struct spi_delay *_delay, struct spi_transfer *xfer)
1125 u32 delay = _delay->value;
1126 u32 unit = _delay->unit;
1127 u32 hz;
1129 if (!delay)
1130 return 0;
1132 switch (unit) {
1133 case SPI_DELAY_UNIT_USECS:
1134 delay *= 1000;
1135 break;
1136 case SPI_DELAY_UNIT_NSECS: /* nothing to do here */
1137 break;
1138 case SPI_DELAY_UNIT_SCK:
1139 /* clock cycles need to be obtained from spi_transfer */
1140 if (!xfer)
1141 return -EINVAL;
1142 /* if there is no effective speed know, then approximate
1143 * by underestimating with half the requested hz
1145 hz = xfer->effective_speed_hz ?: xfer->speed_hz / 2;
1146 if (!hz)
1147 return -EINVAL;
1148 delay *= DIV_ROUND_UP(1000000000, hz);
1149 break;
1150 default:
1151 return -EINVAL;
1154 return delay;
1156 EXPORT_SYMBOL_GPL(spi_delay_to_ns);
1158 int spi_delay_exec(struct spi_delay *_delay, struct spi_transfer *xfer)
1160 int delay;
1162 if (!_delay)
1163 return -EINVAL;
1165 delay = spi_delay_to_ns(_delay, xfer);
1166 if (delay < 0)
1167 return delay;
1169 _spi_transfer_delay_ns(delay);
1171 return 0;
1173 EXPORT_SYMBOL_GPL(spi_delay_exec);
1175 static void _spi_transfer_cs_change_delay(struct spi_message *msg,
1176 struct spi_transfer *xfer)
1178 u32 delay = xfer->cs_change_delay.value;
1179 u32 unit = xfer->cs_change_delay.unit;
1180 int ret;
1182 /* return early on "fast" mode - for everything but USECS */
1183 if (!delay) {
1184 if (unit == SPI_DELAY_UNIT_USECS)
1185 _spi_transfer_delay_ns(10000);
1186 return;
1189 ret = spi_delay_exec(&xfer->cs_change_delay, xfer);
1190 if (ret) {
1191 dev_err_once(&msg->spi->dev,
1192 "Use of unsupported delay unit %i, using default of 10us\n",
1193 unit);
1194 _spi_transfer_delay_ns(10000);
1199 * spi_transfer_one_message - Default implementation of transfer_one_message()
1201 * This is a standard implementation of transfer_one_message() for
1202 * drivers which implement a transfer_one() operation. It provides
1203 * standard handling of delays and chip select management.
1205 static int spi_transfer_one_message(struct spi_controller *ctlr,
1206 struct spi_message *msg)
1208 struct spi_transfer *xfer;
1209 bool keep_cs = false;
1210 int ret = 0;
1211 struct spi_statistics *statm = &ctlr->statistics;
1212 struct spi_statistics *stats = &msg->spi->statistics;
1214 spi_set_cs(msg->spi, true);
1216 SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
1217 SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
1219 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1220 trace_spi_transfer_start(msg, xfer);
1222 spi_statistics_add_transfer_stats(statm, xfer, ctlr);
1223 spi_statistics_add_transfer_stats(stats, xfer, ctlr);
1225 if (!ctlr->ptp_sts_supported) {
1226 xfer->ptp_sts_word_pre = 0;
1227 ptp_read_system_prets(xfer->ptp_sts);
1230 if (xfer->tx_buf || xfer->rx_buf) {
1231 reinit_completion(&ctlr->xfer_completion);
1233 ret = ctlr->transfer_one(ctlr, msg->spi, xfer);
1234 if (ret < 0) {
1235 SPI_STATISTICS_INCREMENT_FIELD(statm,
1236 errors);
1237 SPI_STATISTICS_INCREMENT_FIELD(stats,
1238 errors);
1239 dev_err(&msg->spi->dev,
1240 "SPI transfer failed: %d\n", ret);
1241 goto out;
1244 if (ret > 0) {
1245 ret = spi_transfer_wait(ctlr, msg, xfer);
1246 if (ret < 0)
1247 msg->status = ret;
1249 } else {
1250 if (xfer->len)
1251 dev_err(&msg->spi->dev,
1252 "Bufferless transfer has length %u\n",
1253 xfer->len);
1256 if (!ctlr->ptp_sts_supported) {
1257 ptp_read_system_postts(xfer->ptp_sts);
1258 xfer->ptp_sts_word_post = xfer->len;
1261 trace_spi_transfer_stop(msg, xfer);
1263 if (msg->status != -EINPROGRESS)
1264 goto out;
1266 spi_transfer_delay_exec(xfer);
1268 if (xfer->cs_change) {
1269 if (list_is_last(&xfer->transfer_list,
1270 &msg->transfers)) {
1271 keep_cs = true;
1272 } else {
1273 spi_set_cs(msg->spi, false);
1274 _spi_transfer_cs_change_delay(msg, xfer);
1275 spi_set_cs(msg->spi, true);
1279 msg->actual_length += xfer->len;
1282 out:
1283 if (ret != 0 || !keep_cs)
1284 spi_set_cs(msg->spi, false);
1286 if (msg->status == -EINPROGRESS)
1287 msg->status = ret;
1289 if (msg->status && ctlr->handle_err)
1290 ctlr->handle_err(ctlr, msg);
1292 spi_res_release(ctlr, msg);
1294 spi_finalize_current_message(ctlr);
1296 return ret;
1300 * spi_finalize_current_transfer - report completion of a transfer
1301 * @ctlr: the controller reporting completion
1303 * Called by SPI drivers using the core transfer_one_message()
1304 * implementation to notify it that the current interrupt driven
1305 * transfer has finished and the next one may be scheduled.
1307 void spi_finalize_current_transfer(struct spi_controller *ctlr)
1309 complete(&ctlr->xfer_completion);
1311 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1314 * __spi_pump_messages - function which processes spi message queue
1315 * @ctlr: controller to process queue for
1316 * @in_kthread: true if we are in the context of the message pump thread
1318 * This function checks if there is any spi message in the queue that
1319 * needs processing and if so call out to the driver to initialize hardware
1320 * and transfer each message.
1322 * Note that it is called both from the kthread itself and also from
1323 * inside spi_sync(); the queue extraction handling at the top of the
1324 * function should deal with this safely.
1326 static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread)
1328 struct spi_transfer *xfer;
1329 struct spi_message *msg;
1330 bool was_busy = false;
1331 unsigned long flags;
1332 int ret;
1334 /* Lock queue */
1335 spin_lock_irqsave(&ctlr->queue_lock, flags);
1337 /* Make sure we are not already running a message */
1338 if (ctlr->cur_msg) {
1339 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1340 return;
1343 /* If another context is idling the device then defer */
1344 if (ctlr->idling) {
1345 kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1346 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1347 return;
1350 /* Check if the queue is idle */
1351 if (list_empty(&ctlr->queue) || !ctlr->running) {
1352 if (!ctlr->busy) {
1353 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1354 return;
1357 /* Only do teardown in the thread */
1358 if (!in_kthread) {
1359 kthread_queue_work(&ctlr->kworker,
1360 &ctlr->pump_messages);
1361 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1362 return;
1365 ctlr->busy = false;
1366 ctlr->idling = true;
1367 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1369 kfree(ctlr->dummy_rx);
1370 ctlr->dummy_rx = NULL;
1371 kfree(ctlr->dummy_tx);
1372 ctlr->dummy_tx = NULL;
1373 if (ctlr->unprepare_transfer_hardware &&
1374 ctlr->unprepare_transfer_hardware(ctlr))
1375 dev_err(&ctlr->dev,
1376 "failed to unprepare transfer hardware\n");
1377 if (ctlr->auto_runtime_pm) {
1378 pm_runtime_mark_last_busy(ctlr->dev.parent);
1379 pm_runtime_put_autosuspend(ctlr->dev.parent);
1381 trace_spi_controller_idle(ctlr);
1383 spin_lock_irqsave(&ctlr->queue_lock, flags);
1384 ctlr->idling = false;
1385 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1386 return;
1389 /* Extract head of queue */
1390 msg = list_first_entry(&ctlr->queue, struct spi_message, queue);
1391 ctlr->cur_msg = msg;
1393 list_del_init(&msg->queue);
1394 if (ctlr->busy)
1395 was_busy = true;
1396 else
1397 ctlr->busy = true;
1398 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1400 mutex_lock(&ctlr->io_mutex);
1402 if (!was_busy && ctlr->auto_runtime_pm) {
1403 ret = pm_runtime_get_sync(ctlr->dev.parent);
1404 if (ret < 0) {
1405 pm_runtime_put_noidle(ctlr->dev.parent);
1406 dev_err(&ctlr->dev, "Failed to power device: %d\n",
1407 ret);
1408 mutex_unlock(&ctlr->io_mutex);
1409 return;
1413 if (!was_busy)
1414 trace_spi_controller_busy(ctlr);
1416 if (!was_busy && ctlr->prepare_transfer_hardware) {
1417 ret = ctlr->prepare_transfer_hardware(ctlr);
1418 if (ret) {
1419 dev_err(&ctlr->dev,
1420 "failed to prepare transfer hardware: %d\n",
1421 ret);
1423 if (ctlr->auto_runtime_pm)
1424 pm_runtime_put(ctlr->dev.parent);
1426 msg->status = ret;
1427 spi_finalize_current_message(ctlr);
1429 mutex_unlock(&ctlr->io_mutex);
1430 return;
1434 trace_spi_message_start(msg);
1436 if (ctlr->prepare_message) {
1437 ret = ctlr->prepare_message(ctlr, msg);
1438 if (ret) {
1439 dev_err(&ctlr->dev, "failed to prepare message: %d\n",
1440 ret);
1441 msg->status = ret;
1442 spi_finalize_current_message(ctlr);
1443 goto out;
1445 ctlr->cur_msg_prepared = true;
1448 ret = spi_map_msg(ctlr, msg);
1449 if (ret) {
1450 msg->status = ret;
1451 spi_finalize_current_message(ctlr);
1452 goto out;
1455 if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
1456 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1457 xfer->ptp_sts_word_pre = 0;
1458 ptp_read_system_prets(xfer->ptp_sts);
1462 ret = ctlr->transfer_one_message(ctlr, msg);
1463 if (ret) {
1464 dev_err(&ctlr->dev,
1465 "failed to transfer one message from queue\n");
1466 goto out;
1469 out:
1470 mutex_unlock(&ctlr->io_mutex);
1472 /* Prod the scheduler in case transfer_one() was busy waiting */
1473 if (!ret)
1474 cond_resched();
1478 * spi_pump_messages - kthread work function which processes spi message queue
1479 * @work: pointer to kthread work struct contained in the controller struct
1481 static void spi_pump_messages(struct kthread_work *work)
1483 struct spi_controller *ctlr =
1484 container_of(work, struct spi_controller, pump_messages);
1486 __spi_pump_messages(ctlr, true);
1490 * spi_take_timestamp_pre - helper for drivers to collect the beginning of the
1491 * TX timestamp for the requested byte from the SPI
1492 * transfer. The frequency with which this function
1493 * must be called (once per word, once for the whole
1494 * transfer, once per batch of words etc) is arbitrary
1495 * as long as the @tx buffer offset is greater than or
1496 * equal to the requested byte at the time of the
1497 * call. The timestamp is only taken once, at the
1498 * first such call. It is assumed that the driver
1499 * advances its @tx buffer pointer monotonically.
1500 * @ctlr: Pointer to the spi_controller structure of the driver
1501 * @xfer: Pointer to the transfer being timestamped
1502 * @tx: Pointer to the current word within the xfer->tx_buf that the driver is
1503 * preparing to transmit right now.
1504 * @irqs_off: If true, will disable IRQs and preemption for the duration of the
1505 * transfer, for less jitter in time measurement. Only compatible
1506 * with PIO drivers. If true, must follow up with
1507 * spi_take_timestamp_post or otherwise system will crash.
1508 * WARNING: for fully predictable results, the CPU frequency must
1509 * also be under control (governor).
1511 void spi_take_timestamp_pre(struct spi_controller *ctlr,
1512 struct spi_transfer *xfer,
1513 const void *tx, bool irqs_off)
1515 u8 bytes_per_word = DIV_ROUND_UP(xfer->bits_per_word, 8);
1517 if (!xfer->ptp_sts)
1518 return;
1520 if (xfer->timestamped_pre)
1521 return;
1523 if (tx < (xfer->tx_buf + xfer->ptp_sts_word_pre * bytes_per_word))
1524 return;
1526 /* Capture the resolution of the timestamp */
1527 xfer->ptp_sts_word_pre = (tx - xfer->tx_buf) / bytes_per_word;
1529 xfer->timestamped_pre = true;
1531 if (irqs_off) {
1532 local_irq_save(ctlr->irq_flags);
1533 preempt_disable();
1536 ptp_read_system_prets(xfer->ptp_sts);
1538 EXPORT_SYMBOL_GPL(spi_take_timestamp_pre);
1541 * spi_take_timestamp_post - helper for drivers to collect the end of the
1542 * TX timestamp for the requested byte from the SPI
1543 * transfer. Can be called with an arbitrary
1544 * frequency: only the first call where @tx exceeds
1545 * or is equal to the requested word will be
1546 * timestamped.
1547 * @ctlr: Pointer to the spi_controller structure of the driver
1548 * @xfer: Pointer to the transfer being timestamped
1549 * @tx: Pointer to the current word within the xfer->tx_buf that the driver has
1550 * just transmitted.
1551 * @irqs_off: If true, will re-enable IRQs and preemption for the local CPU.
1553 void spi_take_timestamp_post(struct spi_controller *ctlr,
1554 struct spi_transfer *xfer,
1555 const void *tx, bool irqs_off)
1557 u8 bytes_per_word = DIV_ROUND_UP(xfer->bits_per_word, 8);
1559 if (!xfer->ptp_sts)
1560 return;
1562 if (xfer->timestamped_post)
1563 return;
1565 if (tx < (xfer->tx_buf + xfer->ptp_sts_word_post * bytes_per_word))
1566 return;
1568 ptp_read_system_postts(xfer->ptp_sts);
1570 if (irqs_off) {
1571 local_irq_restore(ctlr->irq_flags);
1572 preempt_enable();
1575 /* Capture the resolution of the timestamp */
1576 xfer->ptp_sts_word_post = (tx - xfer->tx_buf) / bytes_per_word;
1578 xfer->timestamped_post = true;
1580 EXPORT_SYMBOL_GPL(spi_take_timestamp_post);
1583 * spi_set_thread_rt - set the controller to pump at realtime priority
1584 * @ctlr: controller to boost priority of
1586 * This can be called because the controller requested realtime priority
1587 * (by setting the ->rt value before calling spi_register_controller()) or
1588 * because a device on the bus said that its transfers needed realtime
1589 * priority.
1591 * NOTE: at the moment if any device on a bus says it needs realtime then
1592 * the thread will be at realtime priority for all transfers on that
1593 * controller. If this eventually becomes a problem we may see if we can
1594 * find a way to boost the priority only temporarily during relevant
1595 * transfers.
1597 static void spi_set_thread_rt(struct spi_controller *ctlr)
1599 struct sched_param param = { .sched_priority = MAX_RT_PRIO / 2 };
1601 dev_info(&ctlr->dev,
1602 "will run message pump with realtime priority\n");
1603 sched_setscheduler(ctlr->kworker_task, SCHED_FIFO, &param);
1606 static int spi_init_queue(struct spi_controller *ctlr)
1608 ctlr->running = false;
1609 ctlr->busy = false;
1611 kthread_init_worker(&ctlr->kworker);
1612 ctlr->kworker_task = kthread_run(kthread_worker_fn, &ctlr->kworker,
1613 "%s", dev_name(&ctlr->dev));
1614 if (IS_ERR(ctlr->kworker_task)) {
1615 dev_err(&ctlr->dev, "failed to create message pump task\n");
1616 return PTR_ERR(ctlr->kworker_task);
1618 kthread_init_work(&ctlr->pump_messages, spi_pump_messages);
1621 * Controller config will indicate if this controller should run the
1622 * message pump with high (realtime) priority to reduce the transfer
1623 * latency on the bus by minimising the delay between a transfer
1624 * request and the scheduling of the message pump thread. Without this
1625 * setting the message pump thread will remain at default priority.
1627 if (ctlr->rt)
1628 spi_set_thread_rt(ctlr);
1630 return 0;
1634 * spi_get_next_queued_message() - called by driver to check for queued
1635 * messages
1636 * @ctlr: the controller to check for queued messages
1638 * If there are more messages in the queue, the next message is returned from
1639 * this call.
1641 * Return: the next message in the queue, else NULL if the queue is empty.
1643 struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr)
1645 struct spi_message *next;
1646 unsigned long flags;
1648 /* get a pointer to the next message, if any */
1649 spin_lock_irqsave(&ctlr->queue_lock, flags);
1650 next = list_first_entry_or_null(&ctlr->queue, struct spi_message,
1651 queue);
1652 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1654 return next;
1656 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
1659 * spi_finalize_current_message() - the current message is complete
1660 * @ctlr: the controller to return the message to
1662 * Called by the driver to notify the core that the message in the front of the
1663 * queue is complete and can be removed from the queue.
1665 void spi_finalize_current_message(struct spi_controller *ctlr)
1667 struct spi_transfer *xfer;
1668 struct spi_message *mesg;
1669 unsigned long flags;
1670 int ret;
1672 spin_lock_irqsave(&ctlr->queue_lock, flags);
1673 mesg = ctlr->cur_msg;
1674 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1676 if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
1677 list_for_each_entry(xfer, &mesg->transfers, transfer_list) {
1678 ptp_read_system_postts(xfer->ptp_sts);
1679 xfer->ptp_sts_word_post = xfer->len;
1683 spi_unmap_msg(ctlr, mesg);
1685 if (ctlr->cur_msg_prepared && ctlr->unprepare_message) {
1686 ret = ctlr->unprepare_message(ctlr, mesg);
1687 if (ret) {
1688 dev_err(&ctlr->dev, "failed to unprepare message: %d\n",
1689 ret);
1693 spin_lock_irqsave(&ctlr->queue_lock, flags);
1694 ctlr->cur_msg = NULL;
1695 ctlr->cur_msg_prepared = false;
1696 kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1697 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1699 trace_spi_message_done(mesg);
1701 mesg->state = NULL;
1702 if (mesg->complete)
1703 mesg->complete(mesg->context);
1705 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
1707 static int spi_start_queue(struct spi_controller *ctlr)
1709 unsigned long flags;
1711 spin_lock_irqsave(&ctlr->queue_lock, flags);
1713 if (ctlr->running || ctlr->busy) {
1714 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1715 return -EBUSY;
1718 ctlr->running = true;
1719 ctlr->cur_msg = NULL;
1720 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1722 kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1724 return 0;
1727 static int spi_stop_queue(struct spi_controller *ctlr)
1729 unsigned long flags;
1730 unsigned limit = 500;
1731 int ret = 0;
1733 spin_lock_irqsave(&ctlr->queue_lock, flags);
1736 * This is a bit lame, but is optimized for the common execution path.
1737 * A wait_queue on the ctlr->busy could be used, but then the common
1738 * execution path (pump_messages) would be required to call wake_up or
1739 * friends on every SPI message. Do this instead.
1741 while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) {
1742 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1743 usleep_range(10000, 11000);
1744 spin_lock_irqsave(&ctlr->queue_lock, flags);
1747 if (!list_empty(&ctlr->queue) || ctlr->busy)
1748 ret = -EBUSY;
1749 else
1750 ctlr->running = false;
1752 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1754 if (ret) {
1755 dev_warn(&ctlr->dev, "could not stop message queue\n");
1756 return ret;
1758 return ret;
1761 static int spi_destroy_queue(struct spi_controller *ctlr)
1763 int ret;
1765 ret = spi_stop_queue(ctlr);
1768 * kthread_flush_worker will block until all work is done.
1769 * If the reason that stop_queue timed out is that the work will never
1770 * finish, then it does no good to call flush/stop thread, so
1771 * return anyway.
1773 if (ret) {
1774 dev_err(&ctlr->dev, "problem destroying queue\n");
1775 return ret;
1778 kthread_flush_worker(&ctlr->kworker);
1779 kthread_stop(ctlr->kworker_task);
1781 return 0;
1784 static int __spi_queued_transfer(struct spi_device *spi,
1785 struct spi_message *msg,
1786 bool need_pump)
1788 struct spi_controller *ctlr = spi->controller;
1789 unsigned long flags;
1791 spin_lock_irqsave(&ctlr->queue_lock, flags);
1793 if (!ctlr->running) {
1794 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1795 return -ESHUTDOWN;
1797 msg->actual_length = 0;
1798 msg->status = -EINPROGRESS;
1800 list_add_tail(&msg->queue, &ctlr->queue);
1801 if (!ctlr->busy && need_pump)
1802 kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1804 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1805 return 0;
1809 * spi_queued_transfer - transfer function for queued transfers
1810 * @spi: spi device which is requesting transfer
1811 * @msg: spi message which is to handled is queued to driver queue
1813 * Return: zero on success, else a negative error code.
1815 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
1817 return __spi_queued_transfer(spi, msg, true);
1820 static int spi_controller_initialize_queue(struct spi_controller *ctlr)
1822 int ret;
1824 ctlr->transfer = spi_queued_transfer;
1825 if (!ctlr->transfer_one_message)
1826 ctlr->transfer_one_message = spi_transfer_one_message;
1828 /* Initialize and start queue */
1829 ret = spi_init_queue(ctlr);
1830 if (ret) {
1831 dev_err(&ctlr->dev, "problem initializing queue\n");
1832 goto err_init_queue;
1834 ctlr->queued = true;
1835 ret = spi_start_queue(ctlr);
1836 if (ret) {
1837 dev_err(&ctlr->dev, "problem starting queue\n");
1838 goto err_start_queue;
1841 return 0;
1843 err_start_queue:
1844 spi_destroy_queue(ctlr);
1845 err_init_queue:
1846 return ret;
1850 * spi_flush_queue - Send all pending messages in the queue from the callers'
1851 * context
1852 * @ctlr: controller to process queue for
1854 * This should be used when one wants to ensure all pending messages have been
1855 * sent before doing something. Is used by the spi-mem code to make sure SPI
1856 * memory operations do not preempt regular SPI transfers that have been queued
1857 * before the spi-mem operation.
1859 void spi_flush_queue(struct spi_controller *ctlr)
1861 if (ctlr->transfer == spi_queued_transfer)
1862 __spi_pump_messages(ctlr, false);
1865 /*-------------------------------------------------------------------------*/
1867 #if defined(CONFIG_OF)
1868 static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi,
1869 struct device_node *nc)
1871 u32 value;
1872 int rc;
1874 /* Mode (clock phase/polarity/etc.) */
1875 if (of_property_read_bool(nc, "spi-cpha"))
1876 spi->mode |= SPI_CPHA;
1877 if (of_property_read_bool(nc, "spi-cpol"))
1878 spi->mode |= SPI_CPOL;
1879 if (of_property_read_bool(nc, "spi-3wire"))
1880 spi->mode |= SPI_3WIRE;
1881 if (of_property_read_bool(nc, "spi-lsb-first"))
1882 spi->mode |= SPI_LSB_FIRST;
1883 if (of_property_read_bool(nc, "spi-cs-high"))
1884 spi->mode |= SPI_CS_HIGH;
1886 /* Device DUAL/QUAD mode */
1887 if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
1888 switch (value) {
1889 case 1:
1890 break;
1891 case 2:
1892 spi->mode |= SPI_TX_DUAL;
1893 break;
1894 case 4:
1895 spi->mode |= SPI_TX_QUAD;
1896 break;
1897 case 8:
1898 spi->mode |= SPI_TX_OCTAL;
1899 break;
1900 default:
1901 dev_warn(&ctlr->dev,
1902 "spi-tx-bus-width %d not supported\n",
1903 value);
1904 break;
1908 if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
1909 switch (value) {
1910 case 1:
1911 break;
1912 case 2:
1913 spi->mode |= SPI_RX_DUAL;
1914 break;
1915 case 4:
1916 spi->mode |= SPI_RX_QUAD;
1917 break;
1918 case 8:
1919 spi->mode |= SPI_RX_OCTAL;
1920 break;
1921 default:
1922 dev_warn(&ctlr->dev,
1923 "spi-rx-bus-width %d not supported\n",
1924 value);
1925 break;
1929 if (spi_controller_is_slave(ctlr)) {
1930 if (!of_node_name_eq(nc, "slave")) {
1931 dev_err(&ctlr->dev, "%pOF is not called 'slave'\n",
1932 nc);
1933 return -EINVAL;
1935 return 0;
1938 /* Device address */
1939 rc = of_property_read_u32(nc, "reg", &value);
1940 if (rc) {
1941 dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n",
1942 nc, rc);
1943 return rc;
1945 spi->chip_select = value;
1948 * For descriptors associated with the device, polarity inversion is
1949 * handled in the gpiolib, so all gpio chip selects are "active high"
1950 * in the logical sense, the gpiolib will invert the line if need be.
1952 if ((ctlr->use_gpio_descriptors) && ctlr->cs_gpiods &&
1953 ctlr->cs_gpiods[spi->chip_select])
1954 spi->mode |= SPI_CS_HIGH;
1956 /* Device speed */
1957 rc = of_property_read_u32(nc, "spi-max-frequency", &value);
1958 if (rc) {
1959 dev_err(&ctlr->dev,
1960 "%pOF has no valid 'spi-max-frequency' property (%d)\n", nc, rc);
1961 return rc;
1963 spi->max_speed_hz = value;
1965 return 0;
1968 static struct spi_device *
1969 of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc)
1971 struct spi_device *spi;
1972 int rc;
1974 /* Alloc an spi_device */
1975 spi = spi_alloc_device(ctlr);
1976 if (!spi) {
1977 dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc);
1978 rc = -ENOMEM;
1979 goto err_out;
1982 /* Select device driver */
1983 rc = of_modalias_node(nc, spi->modalias,
1984 sizeof(spi->modalias));
1985 if (rc < 0) {
1986 dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc);
1987 goto err_out;
1990 rc = of_spi_parse_dt(ctlr, spi, nc);
1991 if (rc)
1992 goto err_out;
1994 /* Store a pointer to the node in the device structure */
1995 of_node_get(nc);
1996 spi->dev.of_node = nc;
1998 /* Register the new device */
1999 rc = spi_add_device(spi);
2000 if (rc) {
2001 dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc);
2002 goto err_of_node_put;
2005 return spi;
2007 err_of_node_put:
2008 of_node_put(nc);
2009 err_out:
2010 spi_dev_put(spi);
2011 return ERR_PTR(rc);
2015 * of_register_spi_devices() - Register child devices onto the SPI bus
2016 * @ctlr: Pointer to spi_controller device
2018 * Registers an spi_device for each child node of controller node which
2019 * represents a valid SPI slave.
2021 static void of_register_spi_devices(struct spi_controller *ctlr)
2023 struct spi_device *spi;
2024 struct device_node *nc;
2026 if (!ctlr->dev.of_node)
2027 return;
2029 for_each_available_child_of_node(ctlr->dev.of_node, nc) {
2030 if (of_node_test_and_set_flag(nc, OF_POPULATED))
2031 continue;
2032 spi = of_register_spi_device(ctlr, nc);
2033 if (IS_ERR(spi)) {
2034 dev_warn(&ctlr->dev,
2035 "Failed to create SPI device for %pOF\n", nc);
2036 of_node_clear_flag(nc, OF_POPULATED);
2040 #else
2041 static void of_register_spi_devices(struct spi_controller *ctlr) { }
2042 #endif
2044 #ifdef CONFIG_ACPI
2045 struct acpi_spi_lookup {
2046 struct spi_controller *ctlr;
2047 u32 max_speed_hz;
2048 u32 mode;
2049 int irq;
2050 u8 bits_per_word;
2051 u8 chip_select;
2054 static void acpi_spi_parse_apple_properties(struct acpi_device *dev,
2055 struct acpi_spi_lookup *lookup)
2057 const union acpi_object *obj;
2059 if (!x86_apple_machine)
2060 return;
2062 if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj)
2063 && obj->buffer.length >= 4)
2064 lookup->max_speed_hz = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer;
2066 if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj)
2067 && obj->buffer.length == 8)
2068 lookup->bits_per_word = *(u64 *)obj->buffer.pointer;
2070 if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj)
2071 && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer)
2072 lookup->mode |= SPI_LSB_FIRST;
2074 if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj)
2075 && obj->buffer.length == 8 && *(u64 *)obj->buffer.pointer)
2076 lookup->mode |= SPI_CPOL;
2078 if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj)
2079 && obj->buffer.length == 8 && *(u64 *)obj->buffer.pointer)
2080 lookup->mode |= SPI_CPHA;
2083 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
2085 struct acpi_spi_lookup *lookup = data;
2086 struct spi_controller *ctlr = lookup->ctlr;
2088 if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
2089 struct acpi_resource_spi_serialbus *sb;
2090 acpi_handle parent_handle;
2091 acpi_status status;
2093 sb = &ares->data.spi_serial_bus;
2094 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
2096 status = acpi_get_handle(NULL,
2097 sb->resource_source.string_ptr,
2098 &parent_handle);
2100 if (ACPI_FAILURE(status) ||
2101 ACPI_HANDLE(ctlr->dev.parent) != parent_handle)
2102 return -ENODEV;
2105 * ACPI DeviceSelection numbering is handled by the
2106 * host controller driver in Windows and can vary
2107 * from driver to driver. In Linux we always expect
2108 * 0 .. max - 1 so we need to ask the driver to
2109 * translate between the two schemes.
2111 if (ctlr->fw_translate_cs) {
2112 int cs = ctlr->fw_translate_cs(ctlr,
2113 sb->device_selection);
2114 if (cs < 0)
2115 return cs;
2116 lookup->chip_select = cs;
2117 } else {
2118 lookup->chip_select = sb->device_selection;
2121 lookup->max_speed_hz = sb->connection_speed;
2123 if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
2124 lookup->mode |= SPI_CPHA;
2125 if (sb->clock_polarity == ACPI_SPI_START_HIGH)
2126 lookup->mode |= SPI_CPOL;
2127 if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
2128 lookup->mode |= SPI_CS_HIGH;
2130 } else if (lookup->irq < 0) {
2131 struct resource r;
2133 if (acpi_dev_resource_interrupt(ares, 0, &r))
2134 lookup->irq = r.start;
2137 /* Always tell the ACPI core to skip this resource */
2138 return 1;
2141 static acpi_status acpi_register_spi_device(struct spi_controller *ctlr,
2142 struct acpi_device *adev)
2144 acpi_handle parent_handle = NULL;
2145 struct list_head resource_list;
2146 struct acpi_spi_lookup lookup = {};
2147 struct spi_device *spi;
2148 int ret;
2150 if (acpi_bus_get_status(adev) || !adev->status.present ||
2151 acpi_device_enumerated(adev))
2152 return AE_OK;
2154 lookup.ctlr = ctlr;
2155 lookup.irq = -1;
2157 INIT_LIST_HEAD(&resource_list);
2158 ret = acpi_dev_get_resources(adev, &resource_list,
2159 acpi_spi_add_resource, &lookup);
2160 acpi_dev_free_resource_list(&resource_list);
2162 if (ret < 0)
2163 /* found SPI in _CRS but it points to another controller */
2164 return AE_OK;
2166 if (!lookup.max_speed_hz &&
2167 !ACPI_FAILURE(acpi_get_parent(adev->handle, &parent_handle)) &&
2168 ACPI_HANDLE(ctlr->dev.parent) == parent_handle) {
2169 /* Apple does not use _CRS but nested devices for SPI slaves */
2170 acpi_spi_parse_apple_properties(adev, &lookup);
2173 if (!lookup.max_speed_hz)
2174 return AE_OK;
2176 spi = spi_alloc_device(ctlr);
2177 if (!spi) {
2178 dev_err(&ctlr->dev, "failed to allocate SPI device for %s\n",
2179 dev_name(&adev->dev));
2180 return AE_NO_MEMORY;
2183 ACPI_COMPANION_SET(&spi->dev, adev);
2184 spi->max_speed_hz = lookup.max_speed_hz;
2185 spi->mode = lookup.mode;
2186 spi->irq = lookup.irq;
2187 spi->bits_per_word = lookup.bits_per_word;
2188 spi->chip_select = lookup.chip_select;
2190 acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias,
2191 sizeof(spi->modalias));
2193 if (spi->irq < 0)
2194 spi->irq = acpi_dev_gpio_irq_get(adev, 0);
2196 acpi_device_set_enumerated(adev);
2198 adev->power.flags.ignore_parent = true;
2199 if (spi_add_device(spi)) {
2200 adev->power.flags.ignore_parent = false;
2201 dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n",
2202 dev_name(&adev->dev));
2203 spi_dev_put(spi);
2206 return AE_OK;
2209 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
2210 void *data, void **return_value)
2212 struct spi_controller *ctlr = data;
2213 struct acpi_device *adev;
2215 if (acpi_bus_get_device(handle, &adev))
2216 return AE_OK;
2218 return acpi_register_spi_device(ctlr, adev);
2221 #define SPI_ACPI_ENUMERATE_MAX_DEPTH 32
2223 static void acpi_register_spi_devices(struct spi_controller *ctlr)
2225 acpi_status status;
2226 acpi_handle handle;
2228 handle = ACPI_HANDLE(ctlr->dev.parent);
2229 if (!handle)
2230 return;
2232 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, ACPI_ROOT_OBJECT,
2233 SPI_ACPI_ENUMERATE_MAX_DEPTH,
2234 acpi_spi_add_device, NULL, ctlr, NULL);
2235 if (ACPI_FAILURE(status))
2236 dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n");
2238 #else
2239 static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {}
2240 #endif /* CONFIG_ACPI */
2242 static void spi_controller_release(struct device *dev)
2244 struct spi_controller *ctlr;
2246 ctlr = container_of(dev, struct spi_controller, dev);
2247 kfree(ctlr);
2250 static struct class spi_master_class = {
2251 .name = "spi_master",
2252 .owner = THIS_MODULE,
2253 .dev_release = spi_controller_release,
2254 .dev_groups = spi_master_groups,
2257 #ifdef CONFIG_SPI_SLAVE
2259 * spi_slave_abort - abort the ongoing transfer request on an SPI slave
2260 * controller
2261 * @spi: device used for the current transfer
2263 int spi_slave_abort(struct spi_device *spi)
2265 struct spi_controller *ctlr = spi->controller;
2267 if (spi_controller_is_slave(ctlr) && ctlr->slave_abort)
2268 return ctlr->slave_abort(ctlr);
2270 return -ENOTSUPP;
2272 EXPORT_SYMBOL_GPL(spi_slave_abort);
2274 static int match_true(struct device *dev, void *data)
2276 return 1;
2279 static ssize_t slave_show(struct device *dev, struct device_attribute *attr,
2280 char *buf)
2282 struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2283 dev);
2284 struct device *child;
2286 child = device_find_child(&ctlr->dev, NULL, match_true);
2287 return sprintf(buf, "%s\n",
2288 child ? to_spi_device(child)->modalias : NULL);
2291 static ssize_t slave_store(struct device *dev, struct device_attribute *attr,
2292 const char *buf, size_t count)
2294 struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2295 dev);
2296 struct spi_device *spi;
2297 struct device *child;
2298 char name[32];
2299 int rc;
2301 rc = sscanf(buf, "%31s", name);
2302 if (rc != 1 || !name[0])
2303 return -EINVAL;
2305 child = device_find_child(&ctlr->dev, NULL, match_true);
2306 if (child) {
2307 /* Remove registered slave */
2308 device_unregister(child);
2309 put_device(child);
2312 if (strcmp(name, "(null)")) {
2313 /* Register new slave */
2314 spi = spi_alloc_device(ctlr);
2315 if (!spi)
2316 return -ENOMEM;
2318 strlcpy(spi->modalias, name, sizeof(spi->modalias));
2320 rc = spi_add_device(spi);
2321 if (rc) {
2322 spi_dev_put(spi);
2323 return rc;
2327 return count;
2330 static DEVICE_ATTR_RW(slave);
2332 static struct attribute *spi_slave_attrs[] = {
2333 &dev_attr_slave.attr,
2334 NULL,
2337 static const struct attribute_group spi_slave_group = {
2338 .attrs = spi_slave_attrs,
2341 static const struct attribute_group *spi_slave_groups[] = {
2342 &spi_controller_statistics_group,
2343 &spi_slave_group,
2344 NULL,
2347 static struct class spi_slave_class = {
2348 .name = "spi_slave",
2349 .owner = THIS_MODULE,
2350 .dev_release = spi_controller_release,
2351 .dev_groups = spi_slave_groups,
2353 #else
2354 extern struct class spi_slave_class; /* dummy */
2355 #endif
2358 * __spi_alloc_controller - allocate an SPI master or slave controller
2359 * @dev: the controller, possibly using the platform_bus
2360 * @size: how much zeroed driver-private data to allocate; the pointer to this
2361 * memory is in the driver_data field of the returned device, accessible
2362 * with spi_controller_get_devdata(); the memory is cacheline aligned;
2363 * drivers granting DMA access to portions of their private data need to
2364 * round up @size using ALIGN(size, dma_get_cache_alignment()).
2365 * @slave: flag indicating whether to allocate an SPI master (false) or SPI
2366 * slave (true) controller
2367 * Context: can sleep
2369 * This call is used only by SPI controller drivers, which are the
2370 * only ones directly touching chip registers. It's how they allocate
2371 * an spi_controller structure, prior to calling spi_register_controller().
2373 * This must be called from context that can sleep.
2375 * The caller is responsible for assigning the bus number and initializing the
2376 * controller's methods before calling spi_register_controller(); and (after
2377 * errors adding the device) calling spi_controller_put() to prevent a memory
2378 * leak.
2380 * Return: the SPI controller structure on success, else NULL.
2382 struct spi_controller *__spi_alloc_controller(struct device *dev,
2383 unsigned int size, bool slave)
2385 struct spi_controller *ctlr;
2386 size_t ctlr_size = ALIGN(sizeof(*ctlr), dma_get_cache_alignment());
2388 if (!dev)
2389 return NULL;
2391 ctlr = kzalloc(size + ctlr_size, GFP_KERNEL);
2392 if (!ctlr)
2393 return NULL;
2395 device_initialize(&ctlr->dev);
2396 ctlr->bus_num = -1;
2397 ctlr->num_chipselect = 1;
2398 ctlr->slave = slave;
2399 if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave)
2400 ctlr->dev.class = &spi_slave_class;
2401 else
2402 ctlr->dev.class = &spi_master_class;
2403 ctlr->dev.parent = dev;
2404 pm_suspend_ignore_children(&ctlr->dev, true);
2405 spi_controller_set_devdata(ctlr, (void *)ctlr + ctlr_size);
2407 return ctlr;
2409 EXPORT_SYMBOL_GPL(__spi_alloc_controller);
2411 #ifdef CONFIG_OF
2412 static int of_spi_get_gpio_numbers(struct spi_controller *ctlr)
2414 int nb, i, *cs;
2415 struct device_node *np = ctlr->dev.of_node;
2417 if (!np)
2418 return 0;
2420 nb = of_gpio_named_count(np, "cs-gpios");
2421 ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
2423 /* Return error only for an incorrectly formed cs-gpios property */
2424 if (nb == 0 || nb == -ENOENT)
2425 return 0;
2426 else if (nb < 0)
2427 return nb;
2429 cs = devm_kcalloc(&ctlr->dev, ctlr->num_chipselect, sizeof(int),
2430 GFP_KERNEL);
2431 ctlr->cs_gpios = cs;
2433 if (!ctlr->cs_gpios)
2434 return -ENOMEM;
2436 for (i = 0; i < ctlr->num_chipselect; i++)
2437 cs[i] = -ENOENT;
2439 for (i = 0; i < nb; i++)
2440 cs[i] = of_get_named_gpio(np, "cs-gpios", i);
2442 return 0;
2444 #else
2445 static int of_spi_get_gpio_numbers(struct spi_controller *ctlr)
2447 return 0;
2449 #endif
2452 * spi_get_gpio_descs() - grab chip select GPIOs for the master
2453 * @ctlr: The SPI master to grab GPIO descriptors for
2455 static int spi_get_gpio_descs(struct spi_controller *ctlr)
2457 int nb, i;
2458 struct gpio_desc **cs;
2459 struct device *dev = &ctlr->dev;
2461 nb = gpiod_count(dev, "cs");
2462 ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
2464 /* No GPIOs at all is fine, else return the error */
2465 if (nb == 0 || nb == -ENOENT)
2466 return 0;
2467 else if (nb < 0)
2468 return nb;
2470 cs = devm_kcalloc(dev, ctlr->num_chipselect, sizeof(*cs),
2471 GFP_KERNEL);
2472 if (!cs)
2473 return -ENOMEM;
2474 ctlr->cs_gpiods = cs;
2476 for (i = 0; i < nb; i++) {
2478 * Most chipselects are active low, the inverted
2479 * semantics are handled by special quirks in gpiolib,
2480 * so initializing them GPIOD_OUT_LOW here means
2481 * "unasserted", in most cases this will drive the physical
2482 * line high.
2484 cs[i] = devm_gpiod_get_index_optional(dev, "cs", i,
2485 GPIOD_OUT_LOW);
2486 if (IS_ERR(cs[i]))
2487 return PTR_ERR(cs[i]);
2489 if (cs[i]) {
2491 * If we find a CS GPIO, name it after the device and
2492 * chip select line.
2494 char *gpioname;
2496 gpioname = devm_kasprintf(dev, GFP_KERNEL, "%s CS%d",
2497 dev_name(dev), i);
2498 if (!gpioname)
2499 return -ENOMEM;
2500 gpiod_set_consumer_name(cs[i], gpioname);
2504 return 0;
2507 static int spi_controller_check_ops(struct spi_controller *ctlr)
2510 * The controller may implement only the high-level SPI-memory like
2511 * operations if it does not support regular SPI transfers, and this is
2512 * valid use case.
2513 * If ->mem_ops is NULL, we request that at least one of the
2514 * ->transfer_xxx() method be implemented.
2516 if (ctlr->mem_ops) {
2517 if (!ctlr->mem_ops->exec_op)
2518 return -EINVAL;
2519 } else if (!ctlr->transfer && !ctlr->transfer_one &&
2520 !ctlr->transfer_one_message) {
2521 return -EINVAL;
2524 return 0;
2528 * spi_register_controller - register SPI master or slave controller
2529 * @ctlr: initialized master, originally from spi_alloc_master() or
2530 * spi_alloc_slave()
2531 * Context: can sleep
2533 * SPI controllers connect to their drivers using some non-SPI bus,
2534 * such as the platform bus. The final stage of probe() in that code
2535 * includes calling spi_register_controller() to hook up to this SPI bus glue.
2537 * SPI controllers use board specific (often SOC specific) bus numbers,
2538 * and board-specific addressing for SPI devices combines those numbers
2539 * with chip select numbers. Since SPI does not directly support dynamic
2540 * device identification, boards need configuration tables telling which
2541 * chip is at which address.
2543 * This must be called from context that can sleep. It returns zero on
2544 * success, else a negative error code (dropping the controller's refcount).
2545 * After a successful return, the caller is responsible for calling
2546 * spi_unregister_controller().
2548 * Return: zero on success, else a negative error code.
2550 int spi_register_controller(struct spi_controller *ctlr)
2552 struct device *dev = ctlr->dev.parent;
2553 struct boardinfo *bi;
2554 int status;
2555 int id, first_dynamic;
2557 if (!dev)
2558 return -ENODEV;
2561 * Make sure all necessary hooks are implemented before registering
2562 * the SPI controller.
2564 status = spi_controller_check_ops(ctlr);
2565 if (status)
2566 return status;
2568 if (ctlr->bus_num >= 0) {
2569 /* devices with a fixed bus num must check-in with the num */
2570 mutex_lock(&board_lock);
2571 id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
2572 ctlr->bus_num + 1, GFP_KERNEL);
2573 mutex_unlock(&board_lock);
2574 if (WARN(id < 0, "couldn't get idr"))
2575 return id == -ENOSPC ? -EBUSY : id;
2576 ctlr->bus_num = id;
2577 } else if (ctlr->dev.of_node) {
2578 /* allocate dynamic bus number using Linux idr */
2579 id = of_alias_get_id(ctlr->dev.of_node, "spi");
2580 if (id >= 0) {
2581 ctlr->bus_num = id;
2582 mutex_lock(&board_lock);
2583 id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
2584 ctlr->bus_num + 1, GFP_KERNEL);
2585 mutex_unlock(&board_lock);
2586 if (WARN(id < 0, "couldn't get idr"))
2587 return id == -ENOSPC ? -EBUSY : id;
2590 if (ctlr->bus_num < 0) {
2591 first_dynamic = of_alias_get_highest_id("spi");
2592 if (first_dynamic < 0)
2593 first_dynamic = 0;
2594 else
2595 first_dynamic++;
2597 mutex_lock(&board_lock);
2598 id = idr_alloc(&spi_master_idr, ctlr, first_dynamic,
2599 0, GFP_KERNEL);
2600 mutex_unlock(&board_lock);
2601 if (WARN(id < 0, "couldn't get idr"))
2602 return id;
2603 ctlr->bus_num = id;
2605 INIT_LIST_HEAD(&ctlr->queue);
2606 spin_lock_init(&ctlr->queue_lock);
2607 spin_lock_init(&ctlr->bus_lock_spinlock);
2608 mutex_init(&ctlr->bus_lock_mutex);
2609 mutex_init(&ctlr->io_mutex);
2610 ctlr->bus_lock_flag = 0;
2611 init_completion(&ctlr->xfer_completion);
2612 if (!ctlr->max_dma_len)
2613 ctlr->max_dma_len = INT_MAX;
2615 /* register the device, then userspace will see it.
2616 * registration fails if the bus ID is in use.
2618 dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num);
2620 if (!spi_controller_is_slave(ctlr)) {
2621 if (ctlr->use_gpio_descriptors) {
2622 status = spi_get_gpio_descs(ctlr);
2623 if (status)
2624 return status;
2626 * A controller using GPIO descriptors always
2627 * supports SPI_CS_HIGH if need be.
2629 ctlr->mode_bits |= SPI_CS_HIGH;
2630 } else {
2631 /* Legacy code path for GPIOs from DT */
2632 status = of_spi_get_gpio_numbers(ctlr);
2633 if (status)
2634 return status;
2639 * Even if it's just one always-selected device, there must
2640 * be at least one chipselect.
2642 if (!ctlr->num_chipselect)
2643 return -EINVAL;
2645 status = device_add(&ctlr->dev);
2646 if (status < 0) {
2647 /* free bus id */
2648 mutex_lock(&board_lock);
2649 idr_remove(&spi_master_idr, ctlr->bus_num);
2650 mutex_unlock(&board_lock);
2651 goto done;
2653 dev_dbg(dev, "registered %s %s\n",
2654 spi_controller_is_slave(ctlr) ? "slave" : "master",
2655 dev_name(&ctlr->dev));
2658 * If we're using a queued driver, start the queue. Note that we don't
2659 * need the queueing logic if the driver is only supporting high-level
2660 * memory operations.
2662 if (ctlr->transfer) {
2663 dev_info(dev, "controller is unqueued, this is deprecated\n");
2664 } else if (ctlr->transfer_one || ctlr->transfer_one_message) {
2665 status = spi_controller_initialize_queue(ctlr);
2666 if (status) {
2667 device_del(&ctlr->dev);
2668 /* free bus id */
2669 mutex_lock(&board_lock);
2670 idr_remove(&spi_master_idr, ctlr->bus_num);
2671 mutex_unlock(&board_lock);
2672 goto done;
2675 /* add statistics */
2676 spin_lock_init(&ctlr->statistics.lock);
2678 mutex_lock(&board_lock);
2679 list_add_tail(&ctlr->list, &spi_controller_list);
2680 list_for_each_entry(bi, &board_list, list)
2681 spi_match_controller_to_boardinfo(ctlr, &bi->board_info);
2682 mutex_unlock(&board_lock);
2684 /* Register devices from the device tree and ACPI */
2685 of_register_spi_devices(ctlr);
2686 acpi_register_spi_devices(ctlr);
2687 done:
2688 return status;
2690 EXPORT_SYMBOL_GPL(spi_register_controller);
2692 static void devm_spi_unregister(struct device *dev, void *res)
2694 spi_unregister_controller(*(struct spi_controller **)res);
2698 * devm_spi_register_controller - register managed SPI master or slave
2699 * controller
2700 * @dev: device managing SPI controller
2701 * @ctlr: initialized controller, originally from spi_alloc_master() or
2702 * spi_alloc_slave()
2703 * Context: can sleep
2705 * Register a SPI device as with spi_register_controller() which will
2706 * automatically be unregistered and freed.
2708 * Return: zero on success, else a negative error code.
2710 int devm_spi_register_controller(struct device *dev,
2711 struct spi_controller *ctlr)
2713 struct spi_controller **ptr;
2714 int ret;
2716 ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
2717 if (!ptr)
2718 return -ENOMEM;
2720 ret = spi_register_controller(ctlr);
2721 if (!ret) {
2722 *ptr = ctlr;
2723 devres_add(dev, ptr);
2724 } else {
2725 devres_free(ptr);
2728 return ret;
2730 EXPORT_SYMBOL_GPL(devm_spi_register_controller);
2732 static int __unregister(struct device *dev, void *null)
2734 spi_unregister_device(to_spi_device(dev));
2735 return 0;
2739 * spi_unregister_controller - unregister SPI master or slave controller
2740 * @ctlr: the controller being unregistered
2741 * Context: can sleep
2743 * This call is used only by SPI controller drivers, which are the
2744 * only ones directly touching chip registers.
2746 * This must be called from context that can sleep.
2748 * Note that this function also drops a reference to the controller.
2750 void spi_unregister_controller(struct spi_controller *ctlr)
2752 struct spi_controller *found;
2753 int id = ctlr->bus_num;
2755 /* First make sure that this controller was ever added */
2756 mutex_lock(&board_lock);
2757 found = idr_find(&spi_master_idr, id);
2758 mutex_unlock(&board_lock);
2759 if (ctlr->queued) {
2760 if (spi_destroy_queue(ctlr))
2761 dev_err(&ctlr->dev, "queue remove failed\n");
2763 mutex_lock(&board_lock);
2764 list_del(&ctlr->list);
2765 mutex_unlock(&board_lock);
2767 device_for_each_child(&ctlr->dev, NULL, __unregister);
2768 device_unregister(&ctlr->dev);
2769 /* free bus id */
2770 mutex_lock(&board_lock);
2771 if (found == ctlr)
2772 idr_remove(&spi_master_idr, id);
2773 mutex_unlock(&board_lock);
2775 EXPORT_SYMBOL_GPL(spi_unregister_controller);
2777 int spi_controller_suspend(struct spi_controller *ctlr)
2779 int ret;
2781 /* Basically no-ops for non-queued controllers */
2782 if (!ctlr->queued)
2783 return 0;
2785 ret = spi_stop_queue(ctlr);
2786 if (ret)
2787 dev_err(&ctlr->dev, "queue stop failed\n");
2789 return ret;
2791 EXPORT_SYMBOL_GPL(spi_controller_suspend);
2793 int spi_controller_resume(struct spi_controller *ctlr)
2795 int ret;
2797 if (!ctlr->queued)
2798 return 0;
2800 ret = spi_start_queue(ctlr);
2801 if (ret)
2802 dev_err(&ctlr->dev, "queue restart failed\n");
2804 return ret;
2806 EXPORT_SYMBOL_GPL(spi_controller_resume);
2808 static int __spi_controller_match(struct device *dev, const void *data)
2810 struct spi_controller *ctlr;
2811 const u16 *bus_num = data;
2813 ctlr = container_of(dev, struct spi_controller, dev);
2814 return ctlr->bus_num == *bus_num;
2818 * spi_busnum_to_master - look up master associated with bus_num
2819 * @bus_num: the master's bus number
2820 * Context: can sleep
2822 * This call may be used with devices that are registered after
2823 * arch init time. It returns a refcounted pointer to the relevant
2824 * spi_controller (which the caller must release), or NULL if there is
2825 * no such master registered.
2827 * Return: the SPI master structure on success, else NULL.
2829 struct spi_controller *spi_busnum_to_master(u16 bus_num)
2831 struct device *dev;
2832 struct spi_controller *ctlr = NULL;
2834 dev = class_find_device(&spi_master_class, NULL, &bus_num,
2835 __spi_controller_match);
2836 if (dev)
2837 ctlr = container_of(dev, struct spi_controller, dev);
2838 /* reference got in class_find_device */
2839 return ctlr;
2841 EXPORT_SYMBOL_GPL(spi_busnum_to_master);
2843 /*-------------------------------------------------------------------------*/
2845 /* Core methods for SPI resource management */
2848 * spi_res_alloc - allocate a spi resource that is life-cycle managed
2849 * during the processing of a spi_message while using
2850 * spi_transfer_one
2851 * @spi: the spi device for which we allocate memory
2852 * @release: the release code to execute for this resource
2853 * @size: size to alloc and return
2854 * @gfp: GFP allocation flags
2856 * Return: the pointer to the allocated data
2858 * This may get enhanced in the future to allocate from a memory pool
2859 * of the @spi_device or @spi_controller to avoid repeated allocations.
2861 void *spi_res_alloc(struct spi_device *spi,
2862 spi_res_release_t release,
2863 size_t size, gfp_t gfp)
2865 struct spi_res *sres;
2867 sres = kzalloc(sizeof(*sres) + size, gfp);
2868 if (!sres)
2869 return NULL;
2871 INIT_LIST_HEAD(&sres->entry);
2872 sres->release = release;
2874 return sres->data;
2876 EXPORT_SYMBOL_GPL(spi_res_alloc);
2879 * spi_res_free - free an spi resource
2880 * @res: pointer to the custom data of a resource
2883 void spi_res_free(void *res)
2885 struct spi_res *sres = container_of(res, struct spi_res, data);
2887 if (!res)
2888 return;
2890 WARN_ON(!list_empty(&sres->entry));
2891 kfree(sres);
2893 EXPORT_SYMBOL_GPL(spi_res_free);
2896 * spi_res_add - add a spi_res to the spi_message
2897 * @message: the spi message
2898 * @res: the spi_resource
2900 void spi_res_add(struct spi_message *message, void *res)
2902 struct spi_res *sres = container_of(res, struct spi_res, data);
2904 WARN_ON(!list_empty(&sres->entry));
2905 list_add_tail(&sres->entry, &message->resources);
2907 EXPORT_SYMBOL_GPL(spi_res_add);
2910 * spi_res_release - release all spi resources for this message
2911 * @ctlr: the @spi_controller
2912 * @message: the @spi_message
2914 void spi_res_release(struct spi_controller *ctlr, struct spi_message *message)
2916 struct spi_res *res, *tmp;
2918 list_for_each_entry_safe_reverse(res, tmp, &message->resources, entry) {
2919 if (res->release)
2920 res->release(ctlr, message, res->data);
2922 list_del(&res->entry);
2924 kfree(res);
2927 EXPORT_SYMBOL_GPL(spi_res_release);
2929 /*-------------------------------------------------------------------------*/
2931 /* Core methods for spi_message alterations */
2933 static void __spi_replace_transfers_release(struct spi_controller *ctlr,
2934 struct spi_message *msg,
2935 void *res)
2937 struct spi_replaced_transfers *rxfer = res;
2938 size_t i;
2940 /* call extra callback if requested */
2941 if (rxfer->release)
2942 rxfer->release(ctlr, msg, res);
2944 /* insert replaced transfers back into the message */
2945 list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);
2947 /* remove the formerly inserted entries */
2948 for (i = 0; i < rxfer->inserted; i++)
2949 list_del(&rxfer->inserted_transfers[i].transfer_list);
2953 * spi_replace_transfers - replace transfers with several transfers
2954 * and register change with spi_message.resources
2955 * @msg: the spi_message we work upon
2956 * @xfer_first: the first spi_transfer we want to replace
2957 * @remove: number of transfers to remove
2958 * @insert: the number of transfers we want to insert instead
2959 * @release: extra release code necessary in some circumstances
2960 * @extradatasize: extra data to allocate (with alignment guarantees
2961 * of struct @spi_transfer)
2962 * @gfp: gfp flags
2964 * Returns: pointer to @spi_replaced_transfers,
2965 * PTR_ERR(...) in case of errors.
2967 struct spi_replaced_transfers *spi_replace_transfers(
2968 struct spi_message *msg,
2969 struct spi_transfer *xfer_first,
2970 size_t remove,
2971 size_t insert,
2972 spi_replaced_release_t release,
2973 size_t extradatasize,
2974 gfp_t gfp)
2976 struct spi_replaced_transfers *rxfer;
2977 struct spi_transfer *xfer;
2978 size_t i;
2980 /* allocate the structure using spi_res */
2981 rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
2982 struct_size(rxfer, inserted_transfers, insert)
2983 + extradatasize,
2984 gfp);
2985 if (!rxfer)
2986 return ERR_PTR(-ENOMEM);
2988 /* the release code to invoke before running the generic release */
2989 rxfer->release = release;
2991 /* assign extradata */
2992 if (extradatasize)
2993 rxfer->extradata =
2994 &rxfer->inserted_transfers[insert];
2996 /* init the replaced_transfers list */
2997 INIT_LIST_HEAD(&rxfer->replaced_transfers);
2999 /* assign the list_entry after which we should reinsert
3000 * the @replaced_transfers - it may be spi_message.messages!
3002 rxfer->replaced_after = xfer_first->transfer_list.prev;
3004 /* remove the requested number of transfers */
3005 for (i = 0; i < remove; i++) {
3006 /* if the entry after replaced_after it is msg->transfers
3007 * then we have been requested to remove more transfers
3008 * than are in the list
3010 if (rxfer->replaced_after->next == &msg->transfers) {
3011 dev_err(&msg->spi->dev,
3012 "requested to remove more spi_transfers than are available\n");
3013 /* insert replaced transfers back into the message */
3014 list_splice(&rxfer->replaced_transfers,
3015 rxfer->replaced_after);
3017 /* free the spi_replace_transfer structure */
3018 spi_res_free(rxfer);
3020 /* and return with an error */
3021 return ERR_PTR(-EINVAL);
3024 /* remove the entry after replaced_after from list of
3025 * transfers and add it to list of replaced_transfers
3027 list_move_tail(rxfer->replaced_after->next,
3028 &rxfer->replaced_transfers);
3031 /* create copy of the given xfer with identical settings
3032 * based on the first transfer to get removed
3034 for (i = 0; i < insert; i++) {
3035 /* we need to run in reverse order */
3036 xfer = &rxfer->inserted_transfers[insert - 1 - i];
3038 /* copy all spi_transfer data */
3039 memcpy(xfer, xfer_first, sizeof(*xfer));
3041 /* add to list */
3042 list_add(&xfer->transfer_list, rxfer->replaced_after);
3044 /* clear cs_change and delay for all but the last */
3045 if (i) {
3046 xfer->cs_change = false;
3047 xfer->delay_usecs = 0;
3048 xfer->delay.value = 0;
3052 /* set up inserted */
3053 rxfer->inserted = insert;
3055 /* and register it with spi_res/spi_message */
3056 spi_res_add(msg, rxfer);
3058 return rxfer;
3060 EXPORT_SYMBOL_GPL(spi_replace_transfers);
3062 static int __spi_split_transfer_maxsize(struct spi_controller *ctlr,
3063 struct spi_message *msg,
3064 struct spi_transfer **xferp,
3065 size_t maxsize,
3066 gfp_t gfp)
3068 struct spi_transfer *xfer = *xferp, *xfers;
3069 struct spi_replaced_transfers *srt;
3070 size_t offset;
3071 size_t count, i;
3073 /* calculate how many we have to replace */
3074 count = DIV_ROUND_UP(xfer->len, maxsize);
3076 /* create replacement */
3077 srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp);
3078 if (IS_ERR(srt))
3079 return PTR_ERR(srt);
3080 xfers = srt->inserted_transfers;
3082 /* now handle each of those newly inserted spi_transfers
3083 * note that the replacements spi_transfers all are preset
3084 * to the same values as *xferp, so tx_buf, rx_buf and len
3085 * are all identical (as well as most others)
3086 * so we just have to fix up len and the pointers.
3088 * this also includes support for the depreciated
3089 * spi_message.is_dma_mapped interface
3092 /* the first transfer just needs the length modified, so we
3093 * run it outside the loop
3095 xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
3097 /* all the others need rx_buf/tx_buf also set */
3098 for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
3099 /* update rx_buf, tx_buf and dma */
3100 if (xfers[i].rx_buf)
3101 xfers[i].rx_buf += offset;
3102 if (xfers[i].rx_dma)
3103 xfers[i].rx_dma += offset;
3104 if (xfers[i].tx_buf)
3105 xfers[i].tx_buf += offset;
3106 if (xfers[i].tx_dma)
3107 xfers[i].tx_dma += offset;
3109 /* update length */
3110 xfers[i].len = min(maxsize, xfers[i].len - offset);
3113 /* we set up xferp to the last entry we have inserted,
3114 * so that we skip those already split transfers
3116 *xferp = &xfers[count - 1];
3118 /* increment statistics counters */
3119 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
3120 transfers_split_maxsize);
3121 SPI_STATISTICS_INCREMENT_FIELD(&msg->spi->statistics,
3122 transfers_split_maxsize);
3124 return 0;
3128 * spi_split_tranfers_maxsize - split spi transfers into multiple transfers
3129 * when an individual transfer exceeds a
3130 * certain size
3131 * @ctlr: the @spi_controller for this transfer
3132 * @msg: the @spi_message to transform
3133 * @maxsize: the maximum when to apply this
3134 * @gfp: GFP allocation flags
3136 * Return: status of transformation
3138 int spi_split_transfers_maxsize(struct spi_controller *ctlr,
3139 struct spi_message *msg,
3140 size_t maxsize,
3141 gfp_t gfp)
3143 struct spi_transfer *xfer;
3144 int ret;
3146 /* iterate over the transfer_list,
3147 * but note that xfer is advanced to the last transfer inserted
3148 * to avoid checking sizes again unnecessarily (also xfer does
3149 * potentiall belong to a different list by the time the
3150 * replacement has happened
3152 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
3153 if (xfer->len > maxsize) {
3154 ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
3155 maxsize, gfp);
3156 if (ret)
3157 return ret;
3161 return 0;
3163 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
3165 /*-------------------------------------------------------------------------*/
3167 /* Core methods for SPI controller protocol drivers. Some of the
3168 * other core methods are currently defined as inline functions.
3171 static int __spi_validate_bits_per_word(struct spi_controller *ctlr,
3172 u8 bits_per_word)
3174 if (ctlr->bits_per_word_mask) {
3175 /* Only 32 bits fit in the mask */
3176 if (bits_per_word > 32)
3177 return -EINVAL;
3178 if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word)))
3179 return -EINVAL;
3182 return 0;
3186 * spi_setup - setup SPI mode and clock rate
3187 * @spi: the device whose settings are being modified
3188 * Context: can sleep, and no requests are queued to the device
3190 * SPI protocol drivers may need to update the transfer mode if the
3191 * device doesn't work with its default. They may likewise need
3192 * to update clock rates or word sizes from initial values. This function
3193 * changes those settings, and must be called from a context that can sleep.
3194 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
3195 * effect the next time the device is selected and data is transferred to
3196 * or from it. When this function returns, the spi device is deselected.
3198 * Note that this call will fail if the protocol driver specifies an option
3199 * that the underlying controller or its driver does not support. For
3200 * example, not all hardware supports wire transfers using nine bit words,
3201 * LSB-first wire encoding, or active-high chipselects.
3203 * Return: zero on success, else a negative error code.
3205 int spi_setup(struct spi_device *spi)
3207 unsigned bad_bits, ugly_bits;
3208 int status;
3210 /* check mode to prevent that DUAL and QUAD set at the same time
3212 if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) ||
3213 ((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) {
3214 dev_err(&spi->dev,
3215 "setup: can not select dual and quad at the same time\n");
3216 return -EINVAL;
3218 /* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
3220 if ((spi->mode & SPI_3WIRE) && (spi->mode &
3221 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3222 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL)))
3223 return -EINVAL;
3224 /* help drivers fail *cleanly* when they need options
3225 * that aren't supported with their current controller
3226 * SPI_CS_WORD has a fallback software implementation,
3227 * so it is ignored here.
3229 bad_bits = spi->mode & ~(spi->controller->mode_bits | SPI_CS_WORD);
3230 /* nothing prevents from working with active-high CS in case if it
3231 * is driven by GPIO.
3233 if (gpio_is_valid(spi->cs_gpio))
3234 bad_bits &= ~SPI_CS_HIGH;
3235 ugly_bits = bad_bits &
3236 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3237 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL);
3238 if (ugly_bits) {
3239 dev_warn(&spi->dev,
3240 "setup: ignoring unsupported mode bits %x\n",
3241 ugly_bits);
3242 spi->mode &= ~ugly_bits;
3243 bad_bits &= ~ugly_bits;
3245 if (bad_bits) {
3246 dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
3247 bad_bits);
3248 return -EINVAL;
3251 if (!spi->bits_per_word)
3252 spi->bits_per_word = 8;
3254 status = __spi_validate_bits_per_word(spi->controller,
3255 spi->bits_per_word);
3256 if (status)
3257 return status;
3259 if (!spi->max_speed_hz)
3260 spi->max_speed_hz = spi->controller->max_speed_hz;
3262 if (spi->controller->setup)
3263 status = spi->controller->setup(spi);
3265 if (spi->controller->auto_runtime_pm && spi->controller->set_cs) {
3266 status = pm_runtime_get_sync(spi->controller->dev.parent);
3267 if (status < 0) {
3268 pm_runtime_put_noidle(spi->controller->dev.parent);
3269 dev_err(&spi->controller->dev, "Failed to power device: %d\n",
3270 status);
3271 return status;
3275 * We do not want to return positive value from pm_runtime_get,
3276 * there are many instances of devices calling spi_setup() and
3277 * checking for a non-zero return value instead of a negative
3278 * return value.
3280 status = 0;
3282 spi_set_cs(spi, false);
3283 pm_runtime_mark_last_busy(spi->controller->dev.parent);
3284 pm_runtime_put_autosuspend(spi->controller->dev.parent);
3285 } else {
3286 spi_set_cs(spi, false);
3289 if (spi->rt && !spi->controller->rt) {
3290 spi->controller->rt = true;
3291 spi_set_thread_rt(spi->controller);
3294 dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
3295 (int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
3296 (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
3297 (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
3298 (spi->mode & SPI_3WIRE) ? "3wire, " : "",
3299 (spi->mode & SPI_LOOP) ? "loopback, " : "",
3300 spi->bits_per_word, spi->max_speed_hz,
3301 status);
3303 return status;
3305 EXPORT_SYMBOL_GPL(spi_setup);
3308 * spi_set_cs_timing - configure CS setup, hold, and inactive delays
3309 * @spi: the device that requires specific CS timing configuration
3310 * @setup: CS setup time specified via @spi_delay
3311 * @hold: CS hold time specified via @spi_delay
3312 * @inactive: CS inactive delay between transfers specified via @spi_delay
3314 * Return: zero on success, else a negative error code.
3316 int spi_set_cs_timing(struct spi_device *spi, struct spi_delay *setup,
3317 struct spi_delay *hold, struct spi_delay *inactive)
3319 size_t len;
3321 if (spi->controller->set_cs_timing)
3322 return spi->controller->set_cs_timing(spi, setup, hold,
3323 inactive);
3325 if ((setup && setup->unit == SPI_DELAY_UNIT_SCK) ||
3326 (hold && hold->unit == SPI_DELAY_UNIT_SCK) ||
3327 (inactive && inactive->unit == SPI_DELAY_UNIT_SCK)) {
3328 dev_err(&spi->dev,
3329 "Clock-cycle delays for CS not supported in SW mode\n");
3330 return -ENOTSUPP;
3333 len = sizeof(struct spi_delay);
3335 /* copy delays to controller */
3336 if (setup)
3337 memcpy(&spi->controller->cs_setup, setup, len);
3338 else
3339 memset(&spi->controller->cs_setup, 0, len);
3341 if (hold)
3342 memcpy(&spi->controller->cs_hold, hold, len);
3343 else
3344 memset(&spi->controller->cs_hold, 0, len);
3346 if (inactive)
3347 memcpy(&spi->controller->cs_inactive, inactive, len);
3348 else
3349 memset(&spi->controller->cs_inactive, 0, len);
3351 return 0;
3353 EXPORT_SYMBOL_GPL(spi_set_cs_timing);
3355 static int _spi_xfer_word_delay_update(struct spi_transfer *xfer,
3356 struct spi_device *spi)
3358 int delay1, delay2;
3360 delay1 = spi_delay_to_ns(&xfer->word_delay, xfer);
3361 if (delay1 < 0)
3362 return delay1;
3364 delay2 = spi_delay_to_ns(&spi->word_delay, xfer);
3365 if (delay2 < 0)
3366 return delay2;
3368 if (delay1 < delay2)
3369 memcpy(&xfer->word_delay, &spi->word_delay,
3370 sizeof(xfer->word_delay));
3372 return 0;
3375 static int __spi_validate(struct spi_device *spi, struct spi_message *message)
3377 struct spi_controller *ctlr = spi->controller;
3378 struct spi_transfer *xfer;
3379 int w_size;
3381 if (list_empty(&message->transfers))
3382 return -EINVAL;
3384 /* If an SPI controller does not support toggling the CS line on each
3385 * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO
3386 * for the CS line, we can emulate the CS-per-word hardware function by
3387 * splitting transfers into one-word transfers and ensuring that
3388 * cs_change is set for each transfer.
3390 if ((spi->mode & SPI_CS_WORD) && (!(ctlr->mode_bits & SPI_CS_WORD) ||
3391 spi->cs_gpiod ||
3392 gpio_is_valid(spi->cs_gpio))) {
3393 size_t maxsize;
3394 int ret;
3396 maxsize = (spi->bits_per_word + 7) / 8;
3398 /* spi_split_transfers_maxsize() requires message->spi */
3399 message->spi = spi;
3401 ret = spi_split_transfers_maxsize(ctlr, message, maxsize,
3402 GFP_KERNEL);
3403 if (ret)
3404 return ret;
3406 list_for_each_entry(xfer, &message->transfers, transfer_list) {
3407 /* don't change cs_change on the last entry in the list */
3408 if (list_is_last(&xfer->transfer_list, &message->transfers))
3409 break;
3410 xfer->cs_change = 1;
3414 /* Half-duplex links include original MicroWire, and ones with
3415 * only one data pin like SPI_3WIRE (switches direction) or where
3416 * either MOSI or MISO is missing. They can also be caused by
3417 * software limitations.
3419 if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) ||
3420 (spi->mode & SPI_3WIRE)) {
3421 unsigned flags = ctlr->flags;
3423 list_for_each_entry(xfer, &message->transfers, transfer_list) {
3424 if (xfer->rx_buf && xfer->tx_buf)
3425 return -EINVAL;
3426 if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf)
3427 return -EINVAL;
3428 if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf)
3429 return -EINVAL;
3434 * Set transfer bits_per_word and max speed as spi device default if
3435 * it is not set for this transfer.
3436 * Set transfer tx_nbits and rx_nbits as single transfer default
3437 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
3438 * Ensure transfer word_delay is at least as long as that required by
3439 * device itself.
3441 message->frame_length = 0;
3442 list_for_each_entry(xfer, &message->transfers, transfer_list) {
3443 xfer->effective_speed_hz = 0;
3444 message->frame_length += xfer->len;
3445 if (!xfer->bits_per_word)
3446 xfer->bits_per_word = spi->bits_per_word;
3448 if (!xfer->speed_hz)
3449 xfer->speed_hz = spi->max_speed_hz;
3451 if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz)
3452 xfer->speed_hz = ctlr->max_speed_hz;
3454 if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word))
3455 return -EINVAL;
3458 * SPI transfer length should be multiple of SPI word size
3459 * where SPI word size should be power-of-two multiple
3461 if (xfer->bits_per_word <= 8)
3462 w_size = 1;
3463 else if (xfer->bits_per_word <= 16)
3464 w_size = 2;
3465 else
3466 w_size = 4;
3468 /* No partial transfers accepted */
3469 if (xfer->len % w_size)
3470 return -EINVAL;
3472 if (xfer->speed_hz && ctlr->min_speed_hz &&
3473 xfer->speed_hz < ctlr->min_speed_hz)
3474 return -EINVAL;
3476 if (xfer->tx_buf && !xfer->tx_nbits)
3477 xfer->tx_nbits = SPI_NBITS_SINGLE;
3478 if (xfer->rx_buf && !xfer->rx_nbits)
3479 xfer->rx_nbits = SPI_NBITS_SINGLE;
3480 /* check transfer tx/rx_nbits:
3481 * 1. check the value matches one of single, dual and quad
3482 * 2. check tx/rx_nbits match the mode in spi_device
3484 if (xfer->tx_buf) {
3485 if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
3486 xfer->tx_nbits != SPI_NBITS_DUAL &&
3487 xfer->tx_nbits != SPI_NBITS_QUAD)
3488 return -EINVAL;
3489 if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
3490 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
3491 return -EINVAL;
3492 if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
3493 !(spi->mode & SPI_TX_QUAD))
3494 return -EINVAL;
3496 /* check transfer rx_nbits */
3497 if (xfer->rx_buf) {
3498 if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
3499 xfer->rx_nbits != SPI_NBITS_DUAL &&
3500 xfer->rx_nbits != SPI_NBITS_QUAD)
3501 return -EINVAL;
3502 if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
3503 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
3504 return -EINVAL;
3505 if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
3506 !(spi->mode & SPI_RX_QUAD))
3507 return -EINVAL;
3510 if (_spi_xfer_word_delay_update(xfer, spi))
3511 return -EINVAL;
3514 message->status = -EINPROGRESS;
3516 return 0;
3519 static int __spi_async(struct spi_device *spi, struct spi_message *message)
3521 struct spi_controller *ctlr = spi->controller;
3522 struct spi_transfer *xfer;
3525 * Some controllers do not support doing regular SPI transfers. Return
3526 * ENOTSUPP when this is the case.
3528 if (!ctlr->transfer)
3529 return -ENOTSUPP;
3531 message->spi = spi;
3533 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_async);
3534 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async);
3536 trace_spi_message_submit(message);
3538 if (!ctlr->ptp_sts_supported) {
3539 list_for_each_entry(xfer, &message->transfers, transfer_list) {
3540 xfer->ptp_sts_word_pre = 0;
3541 ptp_read_system_prets(xfer->ptp_sts);
3545 return ctlr->transfer(spi, message);
3549 * spi_async - asynchronous SPI transfer
3550 * @spi: device with which data will be exchanged
3551 * @message: describes the data transfers, including completion callback
3552 * Context: any (irqs may be blocked, etc)
3554 * This call may be used in_irq and other contexts which can't sleep,
3555 * as well as from task contexts which can sleep.
3557 * The completion callback is invoked in a context which can't sleep.
3558 * Before that invocation, the value of message->status is undefined.
3559 * When the callback is issued, message->status holds either zero (to
3560 * indicate complete success) or a negative error code. After that
3561 * callback returns, the driver which issued the transfer request may
3562 * deallocate the associated memory; it's no longer in use by any SPI
3563 * core or controller driver code.
3565 * Note that although all messages to a spi_device are handled in
3566 * FIFO order, messages may go to different devices in other orders.
3567 * Some device might be higher priority, or have various "hard" access
3568 * time requirements, for example.
3570 * On detection of any fault during the transfer, processing of
3571 * the entire message is aborted, and the device is deselected.
3572 * Until returning from the associated message completion callback,
3573 * no other spi_message queued to that device will be processed.
3574 * (This rule applies equally to all the synchronous transfer calls,
3575 * which are wrappers around this core asynchronous primitive.)
3577 * Return: zero on success, else a negative error code.
3579 int spi_async(struct spi_device *spi, struct spi_message *message)
3581 struct spi_controller *ctlr = spi->controller;
3582 int ret;
3583 unsigned long flags;
3585 ret = __spi_validate(spi, message);
3586 if (ret != 0)
3587 return ret;
3589 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3591 if (ctlr->bus_lock_flag)
3592 ret = -EBUSY;
3593 else
3594 ret = __spi_async(spi, message);
3596 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3598 return ret;
3600 EXPORT_SYMBOL_GPL(spi_async);
3603 * spi_async_locked - version of spi_async with exclusive bus usage
3604 * @spi: device with which data will be exchanged
3605 * @message: describes the data transfers, including completion callback
3606 * Context: any (irqs may be blocked, etc)
3608 * This call may be used in_irq and other contexts which can't sleep,
3609 * as well as from task contexts which can sleep.
3611 * The completion callback is invoked in a context which can't sleep.
3612 * Before that invocation, the value of message->status is undefined.
3613 * When the callback is issued, message->status holds either zero (to
3614 * indicate complete success) or a negative error code. After that
3615 * callback returns, the driver which issued the transfer request may
3616 * deallocate the associated memory; it's no longer in use by any SPI
3617 * core or controller driver code.
3619 * Note that although all messages to a spi_device are handled in
3620 * FIFO order, messages may go to different devices in other orders.
3621 * Some device might be higher priority, or have various "hard" access
3622 * time requirements, for example.
3624 * On detection of any fault during the transfer, processing of
3625 * the entire message is aborted, and the device is deselected.
3626 * Until returning from the associated message completion callback,
3627 * no other spi_message queued to that device will be processed.
3628 * (This rule applies equally to all the synchronous transfer calls,
3629 * which are wrappers around this core asynchronous primitive.)
3631 * Return: zero on success, else a negative error code.
3633 int spi_async_locked(struct spi_device *spi, struct spi_message *message)
3635 struct spi_controller *ctlr = spi->controller;
3636 int ret;
3637 unsigned long flags;
3639 ret = __spi_validate(spi, message);
3640 if (ret != 0)
3641 return ret;
3643 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3645 ret = __spi_async(spi, message);
3647 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3649 return ret;
3652 EXPORT_SYMBOL_GPL(spi_async_locked);
3654 /*-------------------------------------------------------------------------*/
3656 /* Utility methods for SPI protocol drivers, layered on
3657 * top of the core. Some other utility methods are defined as
3658 * inline functions.
3661 static void spi_complete(void *arg)
3663 complete(arg);
3666 static int __spi_sync(struct spi_device *spi, struct spi_message *message)
3668 DECLARE_COMPLETION_ONSTACK(done);
3669 int status;
3670 struct spi_controller *ctlr = spi->controller;
3671 unsigned long flags;
3673 status = __spi_validate(spi, message);
3674 if (status != 0)
3675 return status;
3677 message->complete = spi_complete;
3678 message->context = &done;
3679 message->spi = spi;
3681 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_sync);
3682 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync);
3684 /* If we're not using the legacy transfer method then we will
3685 * try to transfer in the calling context so special case.
3686 * This code would be less tricky if we could remove the
3687 * support for driver implemented message queues.
3689 if (ctlr->transfer == spi_queued_transfer) {
3690 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3692 trace_spi_message_submit(message);
3694 status = __spi_queued_transfer(spi, message, false);
3696 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3697 } else {
3698 status = spi_async_locked(spi, message);
3701 if (status == 0) {
3702 /* Push out the messages in the calling context if we
3703 * can.
3705 if (ctlr->transfer == spi_queued_transfer) {
3706 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
3707 spi_sync_immediate);
3708 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics,
3709 spi_sync_immediate);
3710 __spi_pump_messages(ctlr, false);
3713 wait_for_completion(&done);
3714 status = message->status;
3716 message->context = NULL;
3717 return status;
3721 * spi_sync - blocking/synchronous SPI data transfers
3722 * @spi: device with which data will be exchanged
3723 * @message: describes the data transfers
3724 * Context: can sleep
3726 * This call may only be used from a context that may sleep. The sleep
3727 * is non-interruptible, and has no timeout. Low-overhead controller
3728 * drivers may DMA directly into and out of the message buffers.
3730 * Note that the SPI device's chip select is active during the message,
3731 * and then is normally disabled between messages. Drivers for some
3732 * frequently-used devices may want to minimize costs of selecting a chip,
3733 * by leaving it selected in anticipation that the next message will go
3734 * to the same chip. (That may increase power usage.)
3736 * Also, the caller is guaranteeing that the memory associated with the
3737 * message will not be freed before this call returns.
3739 * Return: zero on success, else a negative error code.
3741 int spi_sync(struct spi_device *spi, struct spi_message *message)
3743 int ret;
3745 mutex_lock(&spi->controller->bus_lock_mutex);
3746 ret = __spi_sync(spi, message);
3747 mutex_unlock(&spi->controller->bus_lock_mutex);
3749 return ret;
3751 EXPORT_SYMBOL_GPL(spi_sync);
3754 * spi_sync_locked - version of spi_sync with exclusive bus usage
3755 * @spi: device with which data will be exchanged
3756 * @message: describes the data transfers
3757 * Context: can sleep
3759 * This call may only be used from a context that may sleep. The sleep
3760 * is non-interruptible, and has no timeout. Low-overhead controller
3761 * drivers may DMA directly into and out of the message buffers.
3763 * This call should be used by drivers that require exclusive access to the
3764 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
3765 * be released by a spi_bus_unlock call when the exclusive access is over.
3767 * Return: zero on success, else a negative error code.
3769 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
3771 return __spi_sync(spi, message);
3773 EXPORT_SYMBOL_GPL(spi_sync_locked);
3776 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
3777 * @ctlr: SPI bus master that should be locked for exclusive bus access
3778 * Context: can sleep
3780 * This call may only be used from a context that may sleep. The sleep
3781 * is non-interruptible, and has no timeout.
3783 * This call should be used by drivers that require exclusive access to the
3784 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
3785 * exclusive access is over. Data transfer must be done by spi_sync_locked
3786 * and spi_async_locked calls when the SPI bus lock is held.
3788 * Return: always zero.
3790 int spi_bus_lock(struct spi_controller *ctlr)
3792 unsigned long flags;
3794 mutex_lock(&ctlr->bus_lock_mutex);
3796 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3797 ctlr->bus_lock_flag = 1;
3798 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3800 /* mutex remains locked until spi_bus_unlock is called */
3802 return 0;
3804 EXPORT_SYMBOL_GPL(spi_bus_lock);
3807 * spi_bus_unlock - release the lock for exclusive SPI bus usage
3808 * @ctlr: SPI bus master that was locked for exclusive bus access
3809 * Context: can sleep
3811 * This call may only be used from a context that may sleep. The sleep
3812 * is non-interruptible, and has no timeout.
3814 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
3815 * call.
3817 * Return: always zero.
3819 int spi_bus_unlock(struct spi_controller *ctlr)
3821 ctlr->bus_lock_flag = 0;
3823 mutex_unlock(&ctlr->bus_lock_mutex);
3825 return 0;
3827 EXPORT_SYMBOL_GPL(spi_bus_unlock);
3829 /* portable code must never pass more than 32 bytes */
3830 #define SPI_BUFSIZ max(32, SMP_CACHE_BYTES)
3832 static u8 *buf;
3835 * spi_write_then_read - SPI synchronous write followed by read
3836 * @spi: device with which data will be exchanged
3837 * @txbuf: data to be written (need not be dma-safe)
3838 * @n_tx: size of txbuf, in bytes
3839 * @rxbuf: buffer into which data will be read (need not be dma-safe)
3840 * @n_rx: size of rxbuf, in bytes
3841 * Context: can sleep
3843 * This performs a half duplex MicroWire style transaction with the
3844 * device, sending txbuf and then reading rxbuf. The return value
3845 * is zero for success, else a negative errno status code.
3846 * This call may only be used from a context that may sleep.
3848 * Parameters to this routine are always copied using a small buffer;
3849 * portable code should never use this for more than 32 bytes.
3850 * Performance-sensitive or bulk transfer code should instead use
3851 * spi_{async,sync}() calls with dma-safe buffers.
3853 * Return: zero on success, else a negative error code.
3855 int spi_write_then_read(struct spi_device *spi,
3856 const void *txbuf, unsigned n_tx,
3857 void *rxbuf, unsigned n_rx)
3859 static DEFINE_MUTEX(lock);
3861 int status;
3862 struct spi_message message;
3863 struct spi_transfer x[2];
3864 u8 *local_buf;
3866 /* Use preallocated DMA-safe buffer if we can. We can't avoid
3867 * copying here, (as a pure convenience thing), but we can
3868 * keep heap costs out of the hot path unless someone else is
3869 * using the pre-allocated buffer or the transfer is too large.
3871 if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
3872 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
3873 GFP_KERNEL | GFP_DMA);
3874 if (!local_buf)
3875 return -ENOMEM;
3876 } else {
3877 local_buf = buf;
3880 spi_message_init(&message);
3881 memset(x, 0, sizeof(x));
3882 if (n_tx) {
3883 x[0].len = n_tx;
3884 spi_message_add_tail(&x[0], &message);
3886 if (n_rx) {
3887 x[1].len = n_rx;
3888 spi_message_add_tail(&x[1], &message);
3891 memcpy(local_buf, txbuf, n_tx);
3892 x[0].tx_buf = local_buf;
3893 x[1].rx_buf = local_buf + n_tx;
3895 /* do the i/o */
3896 status = spi_sync(spi, &message);
3897 if (status == 0)
3898 memcpy(rxbuf, x[1].rx_buf, n_rx);
3900 if (x[0].tx_buf == buf)
3901 mutex_unlock(&lock);
3902 else
3903 kfree(local_buf);
3905 return status;
3907 EXPORT_SYMBOL_GPL(spi_write_then_read);
3909 /*-------------------------------------------------------------------------*/
3911 #if IS_ENABLED(CONFIG_OF)
3912 /* must call put_device() when done with returned spi_device device */
3913 struct spi_device *of_find_spi_device_by_node(struct device_node *node)
3915 struct device *dev = bus_find_device_by_of_node(&spi_bus_type, node);
3917 return dev ? to_spi_device(dev) : NULL;
3919 EXPORT_SYMBOL_GPL(of_find_spi_device_by_node);
3920 #endif /* IS_ENABLED(CONFIG_OF) */
3922 #if IS_ENABLED(CONFIG_OF_DYNAMIC)
3923 /* the spi controllers are not using spi_bus, so we find it with another way */
3924 static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node)
3926 struct device *dev;
3928 dev = class_find_device_by_of_node(&spi_master_class, node);
3929 if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
3930 dev = class_find_device_by_of_node(&spi_slave_class, node);
3931 if (!dev)
3932 return NULL;
3934 /* reference got in class_find_device */
3935 return container_of(dev, struct spi_controller, dev);
3938 static int of_spi_notify(struct notifier_block *nb, unsigned long action,
3939 void *arg)
3941 struct of_reconfig_data *rd = arg;
3942 struct spi_controller *ctlr;
3943 struct spi_device *spi;
3945 switch (of_reconfig_get_state_change(action, arg)) {
3946 case OF_RECONFIG_CHANGE_ADD:
3947 ctlr = of_find_spi_controller_by_node(rd->dn->parent);
3948 if (ctlr == NULL)
3949 return NOTIFY_OK; /* not for us */
3951 if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
3952 put_device(&ctlr->dev);
3953 return NOTIFY_OK;
3956 spi = of_register_spi_device(ctlr, rd->dn);
3957 put_device(&ctlr->dev);
3959 if (IS_ERR(spi)) {
3960 pr_err("%s: failed to create for '%pOF'\n",
3961 __func__, rd->dn);
3962 of_node_clear_flag(rd->dn, OF_POPULATED);
3963 return notifier_from_errno(PTR_ERR(spi));
3965 break;
3967 case OF_RECONFIG_CHANGE_REMOVE:
3968 /* already depopulated? */
3969 if (!of_node_check_flag(rd->dn, OF_POPULATED))
3970 return NOTIFY_OK;
3972 /* find our device by node */
3973 spi = of_find_spi_device_by_node(rd->dn);
3974 if (spi == NULL)
3975 return NOTIFY_OK; /* no? not meant for us */
3977 /* unregister takes one ref away */
3978 spi_unregister_device(spi);
3980 /* and put the reference of the find */
3981 put_device(&spi->dev);
3982 break;
3985 return NOTIFY_OK;
3988 static struct notifier_block spi_of_notifier = {
3989 .notifier_call = of_spi_notify,
3991 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
3992 extern struct notifier_block spi_of_notifier;
3993 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
3995 #if IS_ENABLED(CONFIG_ACPI)
3996 static int spi_acpi_controller_match(struct device *dev, const void *data)
3998 return ACPI_COMPANION(dev->parent) == data;
4001 static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev)
4003 struct device *dev;
4005 dev = class_find_device(&spi_master_class, NULL, adev,
4006 spi_acpi_controller_match);
4007 if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4008 dev = class_find_device(&spi_slave_class, NULL, adev,
4009 spi_acpi_controller_match);
4010 if (!dev)
4011 return NULL;
4013 return container_of(dev, struct spi_controller, dev);
4016 static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev)
4018 struct device *dev;
4020 dev = bus_find_device_by_acpi_dev(&spi_bus_type, adev);
4021 return dev ? to_spi_device(dev) : NULL;
4024 static int acpi_spi_notify(struct notifier_block *nb, unsigned long value,
4025 void *arg)
4027 struct acpi_device *adev = arg;
4028 struct spi_controller *ctlr;
4029 struct spi_device *spi;
4031 switch (value) {
4032 case ACPI_RECONFIG_DEVICE_ADD:
4033 ctlr = acpi_spi_find_controller_by_adev(adev->parent);
4034 if (!ctlr)
4035 break;
4037 acpi_register_spi_device(ctlr, adev);
4038 put_device(&ctlr->dev);
4039 break;
4040 case ACPI_RECONFIG_DEVICE_REMOVE:
4041 if (!acpi_device_enumerated(adev))
4042 break;
4044 spi = acpi_spi_find_device_by_adev(adev);
4045 if (!spi)
4046 break;
4048 spi_unregister_device(spi);
4049 put_device(&spi->dev);
4050 break;
4053 return NOTIFY_OK;
4056 static struct notifier_block spi_acpi_notifier = {
4057 .notifier_call = acpi_spi_notify,
4059 #else
4060 extern struct notifier_block spi_acpi_notifier;
4061 #endif
4063 static int __init spi_init(void)
4065 int status;
4067 buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
4068 if (!buf) {
4069 status = -ENOMEM;
4070 goto err0;
4073 status = bus_register(&spi_bus_type);
4074 if (status < 0)
4075 goto err1;
4077 status = class_register(&spi_master_class);
4078 if (status < 0)
4079 goto err2;
4081 if (IS_ENABLED(CONFIG_SPI_SLAVE)) {
4082 status = class_register(&spi_slave_class);
4083 if (status < 0)
4084 goto err3;
4087 if (IS_ENABLED(CONFIG_OF_DYNAMIC))
4088 WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
4089 if (IS_ENABLED(CONFIG_ACPI))
4090 WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier));
4092 return 0;
4094 err3:
4095 class_unregister(&spi_master_class);
4096 err2:
4097 bus_unregister(&spi_bus_type);
4098 err1:
4099 kfree(buf);
4100 buf = NULL;
4101 err0:
4102 return status;
4105 /* board_info is normally registered in arch_initcall(),
4106 * but even essential drivers wait till later
4108 * REVISIT only boardinfo really needs static linking. the rest (device and
4109 * driver registration) _could_ be dynamically linked (modular) ... costs
4110 * include needing to have boardinfo data structures be much more public.
4112 postcore_initcall(spi_init);