2 * linux/kernel/workqueue.c
4 * Generic mechanism for defining kernel helper threads for running
5 * arbitrary tasks in process context.
7 * Started by Ingo Molnar, Copyright (C) 2002
9 * Derived from the taskqueue/keventd code by:
11 * David Woodhouse <dwmw2@infradead.org>
12 * Andrew Morton <andrewm@uow.edu.au>
13 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
14 * Theodore Ts'o <tytso@mit.edu>
16 * Made to use alloc_percpu by Christoph Lameter <clameter@sgi.com>.
19 #include <linux/module.h>
20 #include <linux/kernel.h>
21 #include <linux/sched.h>
22 #include <linux/init.h>
23 #include <linux/signal.h>
24 #include <linux/completion.h>
25 #include <linux/workqueue.h>
26 #include <linux/slab.h>
27 #include <linux/cpu.h>
28 #include <linux/notifier.h>
29 #include <linux/kthread.h>
30 #include <linux/hardirq.h>
33 * The per-CPU workqueue (if single thread, we always use the first
36 * The sequence counters are for flush_scheduled_work(). It wants to wait
37 * until until all currently-scheduled works are completed, but it doesn't
38 * want to be livelocked by new, incoming ones. So it waits until
39 * remove_sequence is >= the insert_sequence which pertained when
40 * flush_scheduled_work() was called.
42 struct cpu_workqueue_struct
{
46 long remove_sequence
; /* Least-recently added (next to run) */
47 long insert_sequence
; /* Next to add */
49 struct list_head worklist
;
50 wait_queue_head_t more_work
;
51 wait_queue_head_t work_done
;
53 struct workqueue_struct
*wq
;
54 struct task_struct
*thread
;
56 int run_depth
; /* Detect run_workqueue() recursion depth */
57 } ____cacheline_aligned
;
60 * The externally visible workqueue abstraction is an array of
63 struct workqueue_struct
{
64 struct cpu_workqueue_struct
*cpu_wq
;
66 struct list_head list
; /* Empty if single thread */
69 /* All the per-cpu workqueues on the system, for hotplug cpu to add/remove
70 threads to each one as cpus come/go. */
71 static DEFINE_SPINLOCK(workqueue_lock
);
72 static LIST_HEAD(workqueues
);
74 static int singlethread_cpu
;
76 /* If it's single threaded, it isn't in the list of workqueues. */
77 static inline int is_single_threaded(struct workqueue_struct
*wq
)
79 return list_empty(&wq
->list
);
82 /* Preempt must be disabled. */
83 static void __queue_work(struct cpu_workqueue_struct
*cwq
,
84 struct work_struct
*work
)
88 spin_lock_irqsave(&cwq
->lock
, flags
);
90 list_add_tail(&work
->entry
, &cwq
->worklist
);
91 cwq
->insert_sequence
++;
92 wake_up(&cwq
->more_work
);
93 spin_unlock_irqrestore(&cwq
->lock
, flags
);
97 * Queue work on a workqueue. Return non-zero if it was successfully
100 * We queue the work to the CPU it was submitted, but there is no
101 * guarantee that it will be processed by that CPU.
103 int fastcall
queue_work(struct workqueue_struct
*wq
, struct work_struct
*work
)
105 int ret
= 0, cpu
= get_cpu();
107 if (!test_and_set_bit(0, &work
->pending
)) {
108 if (unlikely(is_single_threaded(wq
)))
109 cpu
= singlethread_cpu
;
110 BUG_ON(!list_empty(&work
->entry
));
111 __queue_work(per_cpu_ptr(wq
->cpu_wq
, cpu
), work
);
117 EXPORT_SYMBOL_GPL(queue_work
);
119 static void delayed_work_timer_fn(unsigned long __data
)
121 struct work_struct
*work
= (struct work_struct
*)__data
;
122 struct workqueue_struct
*wq
= work
->wq_data
;
123 int cpu
= smp_processor_id();
125 if (unlikely(is_single_threaded(wq
)))
126 cpu
= singlethread_cpu
;
128 __queue_work(per_cpu_ptr(wq
->cpu_wq
, cpu
), work
);
131 int fastcall
queue_delayed_work(struct workqueue_struct
*wq
,
132 struct work_struct
*work
, unsigned long delay
)
135 struct timer_list
*timer
= &work
->timer
;
137 if (!test_and_set_bit(0, &work
->pending
)) {
138 BUG_ON(timer_pending(timer
));
139 BUG_ON(!list_empty(&work
->entry
));
141 /* This stores wq for the moment, for the timer_fn */
143 timer
->expires
= jiffies
+ delay
;
144 timer
->data
= (unsigned long)work
;
145 timer
->function
= delayed_work_timer_fn
;
151 EXPORT_SYMBOL_GPL(queue_delayed_work
);
153 int queue_delayed_work_on(int cpu
, struct workqueue_struct
*wq
,
154 struct work_struct
*work
, unsigned long delay
)
157 struct timer_list
*timer
= &work
->timer
;
159 if (!test_and_set_bit(0, &work
->pending
)) {
160 BUG_ON(timer_pending(timer
));
161 BUG_ON(!list_empty(&work
->entry
));
163 /* This stores wq for the moment, for the timer_fn */
165 timer
->expires
= jiffies
+ delay
;
166 timer
->data
= (unsigned long)work
;
167 timer
->function
= delayed_work_timer_fn
;
168 add_timer_on(timer
, cpu
);
173 EXPORT_SYMBOL_GPL(queue_delayed_work_on
);
175 static void run_workqueue(struct cpu_workqueue_struct
*cwq
)
180 * Keep taking off work from the queue until
183 spin_lock_irqsave(&cwq
->lock
, flags
);
185 if (cwq
->run_depth
> 3) {
186 /* morton gets to eat his hat */
187 printk("%s: recursion depth exceeded: %d\n",
188 __FUNCTION__
, cwq
->run_depth
);
191 while (!list_empty(&cwq
->worklist
)) {
192 struct work_struct
*work
= list_entry(cwq
->worklist
.next
,
193 struct work_struct
, entry
);
194 void (*f
) (void *) = work
->func
;
195 void *data
= work
->data
;
197 list_del_init(cwq
->worklist
.next
);
198 spin_unlock_irqrestore(&cwq
->lock
, flags
);
200 BUG_ON(work
->wq_data
!= cwq
);
201 clear_bit(0, &work
->pending
);
204 spin_lock_irqsave(&cwq
->lock
, flags
);
205 cwq
->remove_sequence
++;
206 wake_up(&cwq
->work_done
);
209 spin_unlock_irqrestore(&cwq
->lock
, flags
);
212 static int worker_thread(void *__cwq
)
214 struct cpu_workqueue_struct
*cwq
= __cwq
;
215 DECLARE_WAITQUEUE(wait
, current
);
216 struct k_sigaction sa
;
219 current
->flags
|= PF_NOFREEZE
;
221 set_user_nice(current
, -5);
223 /* Block and flush all signals */
224 sigfillset(&blocked
);
225 sigprocmask(SIG_BLOCK
, &blocked
, NULL
);
226 flush_signals(current
);
228 /* SIG_IGN makes children autoreap: see do_notify_parent(). */
229 sa
.sa
.sa_handler
= SIG_IGN
;
231 siginitset(&sa
.sa
.sa_mask
, sigmask(SIGCHLD
));
232 do_sigaction(SIGCHLD
, &sa
, (struct k_sigaction
*)0);
234 set_current_state(TASK_INTERRUPTIBLE
);
235 while (!kthread_should_stop()) {
236 add_wait_queue(&cwq
->more_work
, &wait
);
237 if (list_empty(&cwq
->worklist
))
240 __set_current_state(TASK_RUNNING
);
241 remove_wait_queue(&cwq
->more_work
, &wait
);
243 if (!list_empty(&cwq
->worklist
))
245 set_current_state(TASK_INTERRUPTIBLE
);
247 __set_current_state(TASK_RUNNING
);
251 static void flush_cpu_workqueue(struct cpu_workqueue_struct
*cwq
)
253 if (cwq
->thread
== current
) {
255 * Probably keventd trying to flush its own queue. So simply run
256 * it by hand rather than deadlocking.
261 long sequence_needed
;
263 spin_lock_irq(&cwq
->lock
);
264 sequence_needed
= cwq
->insert_sequence
;
266 while (sequence_needed
- cwq
->remove_sequence
> 0) {
267 prepare_to_wait(&cwq
->work_done
, &wait
,
268 TASK_UNINTERRUPTIBLE
);
269 spin_unlock_irq(&cwq
->lock
);
271 spin_lock_irq(&cwq
->lock
);
273 finish_wait(&cwq
->work_done
, &wait
);
274 spin_unlock_irq(&cwq
->lock
);
279 * flush_workqueue - ensure that any scheduled work has run to completion.
281 * Forces execution of the workqueue and blocks until its completion.
282 * This is typically used in driver shutdown handlers.
284 * This function will sample each workqueue's current insert_sequence number and
285 * will sleep until the head sequence is greater than or equal to that. This
286 * means that we sleep until all works which were queued on entry have been
287 * handled, but we are not livelocked by new incoming ones.
289 * This function used to run the workqueues itself. Now we just wait for the
290 * helper threads to do it.
292 void fastcall
flush_workqueue(struct workqueue_struct
*wq
)
296 if (is_single_threaded(wq
)) {
297 /* Always use first cpu's area. */
298 flush_cpu_workqueue(per_cpu_ptr(wq
->cpu_wq
, singlethread_cpu
));
303 for_each_online_cpu(cpu
)
304 flush_cpu_workqueue(per_cpu_ptr(wq
->cpu_wq
, cpu
));
305 unlock_cpu_hotplug();
308 EXPORT_SYMBOL_GPL(flush_workqueue
);
310 static struct task_struct
*create_workqueue_thread(struct workqueue_struct
*wq
,
313 struct cpu_workqueue_struct
*cwq
= per_cpu_ptr(wq
->cpu_wq
, cpu
);
314 struct task_struct
*p
;
316 spin_lock_init(&cwq
->lock
);
319 cwq
->insert_sequence
= 0;
320 cwq
->remove_sequence
= 0;
321 INIT_LIST_HEAD(&cwq
->worklist
);
322 init_waitqueue_head(&cwq
->more_work
);
323 init_waitqueue_head(&cwq
->work_done
);
325 if (is_single_threaded(wq
))
326 p
= kthread_create(worker_thread
, cwq
, "%s", wq
->name
);
328 p
= kthread_create(worker_thread
, cwq
, "%s/%d", wq
->name
, cpu
);
335 struct workqueue_struct
*__create_workqueue(const char *name
,
338 int cpu
, destroy
= 0;
339 struct workqueue_struct
*wq
;
340 struct task_struct
*p
;
342 wq
= kzalloc(sizeof(*wq
), GFP_KERNEL
);
346 wq
->cpu_wq
= alloc_percpu(struct cpu_workqueue_struct
);
353 /* We don't need the distraction of CPUs appearing and vanishing. */
356 INIT_LIST_HEAD(&wq
->list
);
357 p
= create_workqueue_thread(wq
, singlethread_cpu
);
363 spin_lock(&workqueue_lock
);
364 list_add(&wq
->list
, &workqueues
);
365 spin_unlock(&workqueue_lock
);
366 for_each_online_cpu(cpu
) {
367 p
= create_workqueue_thread(wq
, cpu
);
369 kthread_bind(p
, cpu
);
375 unlock_cpu_hotplug();
378 * Was there any error during startup? If yes then clean up:
381 destroy_workqueue(wq
);
386 EXPORT_SYMBOL_GPL(__create_workqueue
);
388 static void cleanup_workqueue_thread(struct workqueue_struct
*wq
, int cpu
)
390 struct cpu_workqueue_struct
*cwq
;
392 struct task_struct
*p
;
394 cwq
= per_cpu_ptr(wq
->cpu_wq
, cpu
);
395 spin_lock_irqsave(&cwq
->lock
, flags
);
398 spin_unlock_irqrestore(&cwq
->lock
, flags
);
403 void destroy_workqueue(struct workqueue_struct
*wq
)
409 /* We don't need the distraction of CPUs appearing and vanishing. */
411 if (is_single_threaded(wq
))
412 cleanup_workqueue_thread(wq
, singlethread_cpu
);
414 for_each_online_cpu(cpu
)
415 cleanup_workqueue_thread(wq
, cpu
);
416 spin_lock(&workqueue_lock
);
418 spin_unlock(&workqueue_lock
);
420 unlock_cpu_hotplug();
421 free_percpu(wq
->cpu_wq
);
424 EXPORT_SYMBOL_GPL(destroy_workqueue
);
426 static struct workqueue_struct
*keventd_wq
;
428 int fastcall
schedule_work(struct work_struct
*work
)
430 return queue_work(keventd_wq
, work
);
432 EXPORT_SYMBOL(schedule_work
);
434 int fastcall
schedule_delayed_work(struct work_struct
*work
, unsigned long delay
)
436 return queue_delayed_work(keventd_wq
, work
, delay
);
438 EXPORT_SYMBOL(schedule_delayed_work
);
440 int schedule_delayed_work_on(int cpu
,
441 struct work_struct
*work
, unsigned long delay
)
443 return queue_delayed_work_on(cpu
, keventd_wq
, work
, delay
);
445 EXPORT_SYMBOL(schedule_delayed_work_on
);
448 * schedule_on_each_cpu - call a function on each online CPU from keventd
449 * @func: the function to call
450 * @info: a pointer to pass to func()
452 * Returns zero on success.
453 * Returns -ve errno on failure.
455 * Appears to be racy against CPU hotplug.
457 * schedule_on_each_cpu() is very slow.
459 int schedule_on_each_cpu(void (*func
)(void *info
), void *info
)
462 struct work_struct
*works
;
464 works
= alloc_percpu(struct work_struct
);
468 for_each_online_cpu(cpu
) {
469 INIT_WORK(per_cpu_ptr(works
, cpu
), func
, info
);
470 __queue_work(per_cpu_ptr(keventd_wq
->cpu_wq
, cpu
),
471 per_cpu_ptr(works
, cpu
));
473 flush_workqueue(keventd_wq
);
478 void flush_scheduled_work(void)
480 flush_workqueue(keventd_wq
);
482 EXPORT_SYMBOL(flush_scheduled_work
);
485 * cancel_rearming_delayed_workqueue - reliably kill off a delayed
486 * work whose handler rearms the delayed work.
487 * @wq: the controlling workqueue structure
488 * @work: the delayed work struct
490 void cancel_rearming_delayed_workqueue(struct workqueue_struct
*wq
,
491 struct work_struct
*work
)
493 while (!cancel_delayed_work(work
))
496 EXPORT_SYMBOL(cancel_rearming_delayed_workqueue
);
499 * cancel_rearming_delayed_work - reliably kill off a delayed keventd
500 * work whose handler rearms the delayed work.
501 * @work: the delayed work struct
503 void cancel_rearming_delayed_work(struct work_struct
*work
)
505 cancel_rearming_delayed_workqueue(keventd_wq
, work
);
507 EXPORT_SYMBOL(cancel_rearming_delayed_work
);
510 * execute_in_process_context - reliably execute the routine with user context
511 * @fn: the function to execute
512 * @data: data to pass to the function
513 * @ew: guaranteed storage for the execute work structure (must
514 * be available when the work executes)
516 * Executes the function immediately if process context is available,
517 * otherwise schedules the function for delayed execution.
519 * Returns: 0 - function was executed
520 * 1 - function was scheduled for execution
522 int execute_in_process_context(void (*fn
)(void *data
), void *data
,
523 struct execute_work
*ew
)
525 if (!in_interrupt()) {
530 INIT_WORK(&ew
->work
, fn
, data
);
531 schedule_work(&ew
->work
);
535 EXPORT_SYMBOL_GPL(execute_in_process_context
);
539 return keventd_wq
!= NULL
;
542 int current_is_keventd(void)
544 struct cpu_workqueue_struct
*cwq
;
545 int cpu
= smp_processor_id(); /* preempt-safe: keventd is per-cpu */
550 cwq
= per_cpu_ptr(keventd_wq
->cpu_wq
, cpu
);
551 if (current
== cwq
->thread
)
558 #ifdef CONFIG_HOTPLUG_CPU
559 /* Take the work from this (downed) CPU. */
560 static void take_over_work(struct workqueue_struct
*wq
, unsigned int cpu
)
562 struct cpu_workqueue_struct
*cwq
= per_cpu_ptr(wq
->cpu_wq
, cpu
);
563 struct list_head list
;
564 struct work_struct
*work
;
566 spin_lock_irq(&cwq
->lock
);
567 list_replace_init(&cwq
->worklist
, &list
);
569 while (!list_empty(&list
)) {
570 printk("Taking work for %s\n", wq
->name
);
571 work
= list_entry(list
.next
,struct work_struct
,entry
);
572 list_del(&work
->entry
);
573 __queue_work(per_cpu_ptr(wq
->cpu_wq
, smp_processor_id()), work
);
575 spin_unlock_irq(&cwq
->lock
);
578 /* We're holding the cpucontrol mutex here */
579 static int __devinit
workqueue_cpu_callback(struct notifier_block
*nfb
,
580 unsigned long action
,
583 unsigned int hotcpu
= (unsigned long)hcpu
;
584 struct workqueue_struct
*wq
;
588 /* Create a new workqueue thread for it. */
589 list_for_each_entry(wq
, &workqueues
, list
) {
590 if (!create_workqueue_thread(wq
, hotcpu
)) {
591 printk("workqueue for %i failed\n", hotcpu
);
598 /* Kick off worker threads. */
599 list_for_each_entry(wq
, &workqueues
, list
) {
600 struct cpu_workqueue_struct
*cwq
;
602 cwq
= per_cpu_ptr(wq
->cpu_wq
, hotcpu
);
603 kthread_bind(cwq
->thread
, hotcpu
);
604 wake_up_process(cwq
->thread
);
608 case CPU_UP_CANCELED
:
609 list_for_each_entry(wq
, &workqueues
, list
) {
610 if (!per_cpu_ptr(wq
->cpu_wq
, hotcpu
)->thread
)
612 /* Unbind so it can run. */
613 kthread_bind(per_cpu_ptr(wq
->cpu_wq
, hotcpu
)->thread
,
614 any_online_cpu(cpu_online_map
));
615 cleanup_workqueue_thread(wq
, hotcpu
);
620 list_for_each_entry(wq
, &workqueues
, list
)
621 cleanup_workqueue_thread(wq
, hotcpu
);
622 list_for_each_entry(wq
, &workqueues
, list
)
623 take_over_work(wq
, hotcpu
);
631 void init_workqueues(void)
633 singlethread_cpu
= first_cpu(cpu_possible_map
);
634 hotcpu_notifier(workqueue_cpu_callback
, 0);
635 keventd_wq
= create_workqueue("events");