2 * core.c -- Voltage/Current Regulator framework.
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2 of the License, or (at your
12 * option) any later version.
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/debugfs.h>
19 #include <linux/device.h>
20 #include <linux/slab.h>
21 #include <linux/async.h>
22 #include <linux/err.h>
23 #include <linux/mutex.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26 #include <linux/gpio.h>
27 #include <linux/gpio/consumer.h>
29 #include <linux/regmap.h>
30 #include <linux/regulator/of_regulator.h>
31 #include <linux/regulator/consumer.h>
32 #include <linux/regulator/driver.h>
33 #include <linux/regulator/machine.h>
34 #include <linux/module.h>
36 #define CREATE_TRACE_POINTS
37 #include <trace/events/regulator.h>
42 #define rdev_crit(rdev, fmt, ...) \
43 pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_err(rdev, fmt, ...) \
45 pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46 #define rdev_warn(rdev, fmt, ...) \
47 pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
48 #define rdev_info(rdev, fmt, ...) \
49 pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
50 #define rdev_dbg(rdev, fmt, ...) \
51 pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
53 static DEFINE_MUTEX(regulator_list_mutex
);
54 static LIST_HEAD(regulator_map_list
);
55 static LIST_HEAD(regulator_ena_gpio_list
);
56 static LIST_HEAD(regulator_supply_alias_list
);
57 static bool has_full_constraints
;
59 static struct dentry
*debugfs_root
;
61 static struct class regulator_class
;
64 * struct regulator_map
66 * Used to provide symbolic supply names to devices.
68 struct regulator_map
{
69 struct list_head list
;
70 const char *dev_name
; /* The dev_name() for the consumer */
72 struct regulator_dev
*regulator
;
76 * struct regulator_enable_gpio
78 * Management for shared enable GPIO pin
80 struct regulator_enable_gpio
{
81 struct list_head list
;
82 struct gpio_desc
*gpiod
;
83 u32 enable_count
; /* a number of enabled shared GPIO */
84 u32 request_count
; /* a number of requested shared GPIO */
85 unsigned int ena_gpio_invert
:1;
89 * struct regulator_supply_alias
91 * Used to map lookups for a supply onto an alternative device.
93 struct regulator_supply_alias
{
94 struct list_head list
;
95 struct device
*src_dev
;
96 const char *src_supply
;
97 struct device
*alias_dev
;
98 const char *alias_supply
;
101 static int _regulator_is_enabled(struct regulator_dev
*rdev
);
102 static int _regulator_disable(struct regulator_dev
*rdev
);
103 static int _regulator_get_voltage(struct regulator_dev
*rdev
);
104 static int _regulator_get_current_limit(struct regulator_dev
*rdev
);
105 static unsigned int _regulator_get_mode(struct regulator_dev
*rdev
);
106 static int _notifier_call_chain(struct regulator_dev
*rdev
,
107 unsigned long event
, void *data
);
108 static int _regulator_do_set_voltage(struct regulator_dev
*rdev
,
109 int min_uV
, int max_uV
);
110 static struct regulator
*create_regulator(struct regulator_dev
*rdev
,
112 const char *supply_name
);
113 static void _regulator_put(struct regulator
*regulator
);
115 static struct regulator_dev
*dev_to_rdev(struct device
*dev
)
117 return container_of(dev
, struct regulator_dev
, dev
);
120 static const char *rdev_get_name(struct regulator_dev
*rdev
)
122 if (rdev
->constraints
&& rdev
->constraints
->name
)
123 return rdev
->constraints
->name
;
124 else if (rdev
->desc
->name
)
125 return rdev
->desc
->name
;
130 static bool have_full_constraints(void)
132 return has_full_constraints
|| of_have_populated_dt();
136 * regulator_lock_supply - lock a regulator and its supplies
137 * @rdev: regulator source
139 static void regulator_lock_supply(struct regulator_dev
*rdev
)
141 struct regulator
*supply
;
145 mutex_lock_nested(&rdev
->mutex
, i
++);
146 supply
= rdev
->supply
;
156 * regulator_unlock_supply - unlock a regulator and its supplies
157 * @rdev: regulator source
159 static void regulator_unlock_supply(struct regulator_dev
*rdev
)
161 struct regulator
*supply
;
164 mutex_unlock(&rdev
->mutex
);
165 supply
= rdev
->supply
;
175 * of_get_regulator - get a regulator device node based on supply name
176 * @dev: Device pointer for the consumer (of regulator) device
177 * @supply: regulator supply name
179 * Extract the regulator device node corresponding to the supply name.
180 * returns the device node corresponding to the regulator if found, else
183 static struct device_node
*of_get_regulator(struct device
*dev
, const char *supply
)
185 struct device_node
*regnode
= NULL
;
186 char prop_name
[32]; /* 32 is max size of property name */
188 dev_dbg(dev
, "Looking up %s-supply from device tree\n", supply
);
190 snprintf(prop_name
, 32, "%s-supply", supply
);
191 regnode
= of_parse_phandle(dev
->of_node
, prop_name
, 0);
194 dev_dbg(dev
, "Looking up %s property in node %s failed",
195 prop_name
, dev
->of_node
->full_name
);
201 static int _regulator_can_change_status(struct regulator_dev
*rdev
)
203 if (!rdev
->constraints
)
206 if (rdev
->constraints
->valid_ops_mask
& REGULATOR_CHANGE_STATUS
)
212 /* Platform voltage constraint check */
213 static int regulator_check_voltage(struct regulator_dev
*rdev
,
214 int *min_uV
, int *max_uV
)
216 BUG_ON(*min_uV
> *max_uV
);
218 if (!rdev
->constraints
) {
219 rdev_err(rdev
, "no constraints\n");
222 if (!(rdev
->constraints
->valid_ops_mask
& REGULATOR_CHANGE_VOLTAGE
)) {
223 rdev_err(rdev
, "voltage operation not allowed\n");
227 if (*max_uV
> rdev
->constraints
->max_uV
)
228 *max_uV
= rdev
->constraints
->max_uV
;
229 if (*min_uV
< rdev
->constraints
->min_uV
)
230 *min_uV
= rdev
->constraints
->min_uV
;
232 if (*min_uV
> *max_uV
) {
233 rdev_err(rdev
, "unsupportable voltage range: %d-%duV\n",
241 /* Make sure we select a voltage that suits the needs of all
242 * regulator consumers
244 static int regulator_check_consumers(struct regulator_dev
*rdev
,
245 int *min_uV
, int *max_uV
)
247 struct regulator
*regulator
;
249 list_for_each_entry(regulator
, &rdev
->consumer_list
, list
) {
251 * Assume consumers that didn't say anything are OK
252 * with anything in the constraint range.
254 if (!regulator
->min_uV
&& !regulator
->max_uV
)
257 if (*max_uV
> regulator
->max_uV
)
258 *max_uV
= regulator
->max_uV
;
259 if (*min_uV
< regulator
->min_uV
)
260 *min_uV
= regulator
->min_uV
;
263 if (*min_uV
> *max_uV
) {
264 rdev_err(rdev
, "Restricting voltage, %u-%uuV\n",
272 /* current constraint check */
273 static int regulator_check_current_limit(struct regulator_dev
*rdev
,
274 int *min_uA
, int *max_uA
)
276 BUG_ON(*min_uA
> *max_uA
);
278 if (!rdev
->constraints
) {
279 rdev_err(rdev
, "no constraints\n");
282 if (!(rdev
->constraints
->valid_ops_mask
& REGULATOR_CHANGE_CURRENT
)) {
283 rdev_err(rdev
, "current operation not allowed\n");
287 if (*max_uA
> rdev
->constraints
->max_uA
)
288 *max_uA
= rdev
->constraints
->max_uA
;
289 if (*min_uA
< rdev
->constraints
->min_uA
)
290 *min_uA
= rdev
->constraints
->min_uA
;
292 if (*min_uA
> *max_uA
) {
293 rdev_err(rdev
, "unsupportable current range: %d-%duA\n",
301 /* operating mode constraint check */
302 static int regulator_mode_constrain(struct regulator_dev
*rdev
, int *mode
)
305 case REGULATOR_MODE_FAST
:
306 case REGULATOR_MODE_NORMAL
:
307 case REGULATOR_MODE_IDLE
:
308 case REGULATOR_MODE_STANDBY
:
311 rdev_err(rdev
, "invalid mode %x specified\n", *mode
);
315 if (!rdev
->constraints
) {
316 rdev_err(rdev
, "no constraints\n");
319 if (!(rdev
->constraints
->valid_ops_mask
& REGULATOR_CHANGE_MODE
)) {
320 rdev_err(rdev
, "mode operation not allowed\n");
324 /* The modes are bitmasks, the most power hungry modes having
325 * the lowest values. If the requested mode isn't supported
326 * try higher modes. */
328 if (rdev
->constraints
->valid_modes_mask
& *mode
)
336 /* dynamic regulator mode switching constraint check */
337 static int regulator_check_drms(struct regulator_dev
*rdev
)
339 if (!rdev
->constraints
) {
340 rdev_err(rdev
, "no constraints\n");
343 if (!(rdev
->constraints
->valid_ops_mask
& REGULATOR_CHANGE_DRMS
)) {
344 rdev_dbg(rdev
, "drms operation not allowed\n");
350 static ssize_t
regulator_uV_show(struct device
*dev
,
351 struct device_attribute
*attr
, char *buf
)
353 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
356 mutex_lock(&rdev
->mutex
);
357 ret
= sprintf(buf
, "%d\n", _regulator_get_voltage(rdev
));
358 mutex_unlock(&rdev
->mutex
);
362 static DEVICE_ATTR(microvolts
, 0444, regulator_uV_show
, NULL
);
364 static ssize_t
regulator_uA_show(struct device
*dev
,
365 struct device_attribute
*attr
, char *buf
)
367 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
369 return sprintf(buf
, "%d\n", _regulator_get_current_limit(rdev
));
371 static DEVICE_ATTR(microamps
, 0444, regulator_uA_show
, NULL
);
373 static ssize_t
name_show(struct device
*dev
, struct device_attribute
*attr
,
376 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
378 return sprintf(buf
, "%s\n", rdev_get_name(rdev
));
380 static DEVICE_ATTR_RO(name
);
382 static ssize_t
regulator_print_opmode(char *buf
, int mode
)
385 case REGULATOR_MODE_FAST
:
386 return sprintf(buf
, "fast\n");
387 case REGULATOR_MODE_NORMAL
:
388 return sprintf(buf
, "normal\n");
389 case REGULATOR_MODE_IDLE
:
390 return sprintf(buf
, "idle\n");
391 case REGULATOR_MODE_STANDBY
:
392 return sprintf(buf
, "standby\n");
394 return sprintf(buf
, "unknown\n");
397 static ssize_t
regulator_opmode_show(struct device
*dev
,
398 struct device_attribute
*attr
, char *buf
)
400 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
402 return regulator_print_opmode(buf
, _regulator_get_mode(rdev
));
404 static DEVICE_ATTR(opmode
, 0444, regulator_opmode_show
, NULL
);
406 static ssize_t
regulator_print_state(char *buf
, int state
)
409 return sprintf(buf
, "enabled\n");
411 return sprintf(buf
, "disabled\n");
413 return sprintf(buf
, "unknown\n");
416 static ssize_t
regulator_state_show(struct device
*dev
,
417 struct device_attribute
*attr
, char *buf
)
419 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
422 mutex_lock(&rdev
->mutex
);
423 ret
= regulator_print_state(buf
, _regulator_is_enabled(rdev
));
424 mutex_unlock(&rdev
->mutex
);
428 static DEVICE_ATTR(state
, 0444, regulator_state_show
, NULL
);
430 static ssize_t
regulator_status_show(struct device
*dev
,
431 struct device_attribute
*attr
, char *buf
)
433 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
437 status
= rdev
->desc
->ops
->get_status(rdev
);
442 case REGULATOR_STATUS_OFF
:
445 case REGULATOR_STATUS_ON
:
448 case REGULATOR_STATUS_ERROR
:
451 case REGULATOR_STATUS_FAST
:
454 case REGULATOR_STATUS_NORMAL
:
457 case REGULATOR_STATUS_IDLE
:
460 case REGULATOR_STATUS_STANDBY
:
463 case REGULATOR_STATUS_BYPASS
:
466 case REGULATOR_STATUS_UNDEFINED
:
473 return sprintf(buf
, "%s\n", label
);
475 static DEVICE_ATTR(status
, 0444, regulator_status_show
, NULL
);
477 static ssize_t
regulator_min_uA_show(struct device
*dev
,
478 struct device_attribute
*attr
, char *buf
)
480 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
482 if (!rdev
->constraints
)
483 return sprintf(buf
, "constraint not defined\n");
485 return sprintf(buf
, "%d\n", rdev
->constraints
->min_uA
);
487 static DEVICE_ATTR(min_microamps
, 0444, regulator_min_uA_show
, NULL
);
489 static ssize_t
regulator_max_uA_show(struct device
*dev
,
490 struct device_attribute
*attr
, char *buf
)
492 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
494 if (!rdev
->constraints
)
495 return sprintf(buf
, "constraint not defined\n");
497 return sprintf(buf
, "%d\n", rdev
->constraints
->max_uA
);
499 static DEVICE_ATTR(max_microamps
, 0444, regulator_max_uA_show
, NULL
);
501 static ssize_t
regulator_min_uV_show(struct device
*dev
,
502 struct device_attribute
*attr
, char *buf
)
504 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
506 if (!rdev
->constraints
)
507 return sprintf(buf
, "constraint not defined\n");
509 return sprintf(buf
, "%d\n", rdev
->constraints
->min_uV
);
511 static DEVICE_ATTR(min_microvolts
, 0444, regulator_min_uV_show
, NULL
);
513 static ssize_t
regulator_max_uV_show(struct device
*dev
,
514 struct device_attribute
*attr
, char *buf
)
516 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
518 if (!rdev
->constraints
)
519 return sprintf(buf
, "constraint not defined\n");
521 return sprintf(buf
, "%d\n", rdev
->constraints
->max_uV
);
523 static DEVICE_ATTR(max_microvolts
, 0444, regulator_max_uV_show
, NULL
);
525 static ssize_t
regulator_total_uA_show(struct device
*dev
,
526 struct device_attribute
*attr
, char *buf
)
528 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
529 struct regulator
*regulator
;
532 mutex_lock(&rdev
->mutex
);
533 list_for_each_entry(regulator
, &rdev
->consumer_list
, list
)
534 uA
+= regulator
->uA_load
;
535 mutex_unlock(&rdev
->mutex
);
536 return sprintf(buf
, "%d\n", uA
);
538 static DEVICE_ATTR(requested_microamps
, 0444, regulator_total_uA_show
, NULL
);
540 static ssize_t
num_users_show(struct device
*dev
, struct device_attribute
*attr
,
543 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
544 return sprintf(buf
, "%d\n", rdev
->use_count
);
546 static DEVICE_ATTR_RO(num_users
);
548 static ssize_t
type_show(struct device
*dev
, struct device_attribute
*attr
,
551 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
553 switch (rdev
->desc
->type
) {
554 case REGULATOR_VOLTAGE
:
555 return sprintf(buf
, "voltage\n");
556 case REGULATOR_CURRENT
:
557 return sprintf(buf
, "current\n");
559 return sprintf(buf
, "unknown\n");
561 static DEVICE_ATTR_RO(type
);
563 static ssize_t
regulator_suspend_mem_uV_show(struct device
*dev
,
564 struct device_attribute
*attr
, char *buf
)
566 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
568 return sprintf(buf
, "%d\n", rdev
->constraints
->state_mem
.uV
);
570 static DEVICE_ATTR(suspend_mem_microvolts
, 0444,
571 regulator_suspend_mem_uV_show
, NULL
);
573 static ssize_t
regulator_suspend_disk_uV_show(struct device
*dev
,
574 struct device_attribute
*attr
, char *buf
)
576 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
578 return sprintf(buf
, "%d\n", rdev
->constraints
->state_disk
.uV
);
580 static DEVICE_ATTR(suspend_disk_microvolts
, 0444,
581 regulator_suspend_disk_uV_show
, NULL
);
583 static ssize_t
regulator_suspend_standby_uV_show(struct device
*dev
,
584 struct device_attribute
*attr
, char *buf
)
586 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
588 return sprintf(buf
, "%d\n", rdev
->constraints
->state_standby
.uV
);
590 static DEVICE_ATTR(suspend_standby_microvolts
, 0444,
591 regulator_suspend_standby_uV_show
, NULL
);
593 static ssize_t
regulator_suspend_mem_mode_show(struct device
*dev
,
594 struct device_attribute
*attr
, char *buf
)
596 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
598 return regulator_print_opmode(buf
,
599 rdev
->constraints
->state_mem
.mode
);
601 static DEVICE_ATTR(suspend_mem_mode
, 0444,
602 regulator_suspend_mem_mode_show
, NULL
);
604 static ssize_t
regulator_suspend_disk_mode_show(struct device
*dev
,
605 struct device_attribute
*attr
, char *buf
)
607 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
609 return regulator_print_opmode(buf
,
610 rdev
->constraints
->state_disk
.mode
);
612 static DEVICE_ATTR(suspend_disk_mode
, 0444,
613 regulator_suspend_disk_mode_show
, NULL
);
615 static ssize_t
regulator_suspend_standby_mode_show(struct device
*dev
,
616 struct device_attribute
*attr
, char *buf
)
618 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
620 return regulator_print_opmode(buf
,
621 rdev
->constraints
->state_standby
.mode
);
623 static DEVICE_ATTR(suspend_standby_mode
, 0444,
624 regulator_suspend_standby_mode_show
, NULL
);
626 static ssize_t
regulator_suspend_mem_state_show(struct device
*dev
,
627 struct device_attribute
*attr
, char *buf
)
629 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
631 return regulator_print_state(buf
,
632 rdev
->constraints
->state_mem
.enabled
);
634 static DEVICE_ATTR(suspend_mem_state
, 0444,
635 regulator_suspend_mem_state_show
, NULL
);
637 static ssize_t
regulator_suspend_disk_state_show(struct device
*dev
,
638 struct device_attribute
*attr
, char *buf
)
640 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
642 return regulator_print_state(buf
,
643 rdev
->constraints
->state_disk
.enabled
);
645 static DEVICE_ATTR(suspend_disk_state
, 0444,
646 regulator_suspend_disk_state_show
, NULL
);
648 static ssize_t
regulator_suspend_standby_state_show(struct device
*dev
,
649 struct device_attribute
*attr
, char *buf
)
651 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
653 return regulator_print_state(buf
,
654 rdev
->constraints
->state_standby
.enabled
);
656 static DEVICE_ATTR(suspend_standby_state
, 0444,
657 regulator_suspend_standby_state_show
, NULL
);
659 static ssize_t
regulator_bypass_show(struct device
*dev
,
660 struct device_attribute
*attr
, char *buf
)
662 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
667 ret
= rdev
->desc
->ops
->get_bypass(rdev
, &bypass
);
676 return sprintf(buf
, "%s\n", report
);
678 static DEVICE_ATTR(bypass
, 0444,
679 regulator_bypass_show
, NULL
);
681 /* Calculate the new optimum regulator operating mode based on the new total
682 * consumer load. All locks held by caller */
683 static int drms_uA_update(struct regulator_dev
*rdev
)
685 struct regulator
*sibling
;
686 int current_uA
= 0, output_uV
, input_uV
, err
;
689 lockdep_assert_held_once(&rdev
->mutex
);
692 * first check to see if we can set modes at all, otherwise just
693 * tell the consumer everything is OK.
695 err
= regulator_check_drms(rdev
);
699 if (!rdev
->desc
->ops
->get_optimum_mode
&&
700 !rdev
->desc
->ops
->set_load
)
703 if (!rdev
->desc
->ops
->set_mode
&&
704 !rdev
->desc
->ops
->set_load
)
707 /* get output voltage */
708 output_uV
= _regulator_get_voltage(rdev
);
709 if (output_uV
<= 0) {
710 rdev_err(rdev
, "invalid output voltage found\n");
714 /* get input voltage */
717 input_uV
= regulator_get_voltage(rdev
->supply
);
719 input_uV
= rdev
->constraints
->input_uV
;
721 rdev_err(rdev
, "invalid input voltage found\n");
725 /* calc total requested load */
726 list_for_each_entry(sibling
, &rdev
->consumer_list
, list
)
727 current_uA
+= sibling
->uA_load
;
729 current_uA
+= rdev
->constraints
->system_load
;
731 if (rdev
->desc
->ops
->set_load
) {
732 /* set the optimum mode for our new total regulator load */
733 err
= rdev
->desc
->ops
->set_load(rdev
, current_uA
);
735 rdev_err(rdev
, "failed to set load %d\n", current_uA
);
737 /* now get the optimum mode for our new total regulator load */
738 mode
= rdev
->desc
->ops
->get_optimum_mode(rdev
, input_uV
,
739 output_uV
, current_uA
);
741 /* check the new mode is allowed */
742 err
= regulator_mode_constrain(rdev
, &mode
);
744 rdev_err(rdev
, "failed to get optimum mode @ %d uA %d -> %d uV\n",
745 current_uA
, input_uV
, output_uV
);
749 err
= rdev
->desc
->ops
->set_mode(rdev
, mode
);
751 rdev_err(rdev
, "failed to set optimum mode %x\n", mode
);
757 static int suspend_set_state(struct regulator_dev
*rdev
,
758 struct regulator_state
*rstate
)
762 /* If we have no suspend mode configration don't set anything;
763 * only warn if the driver implements set_suspend_voltage or
764 * set_suspend_mode callback.
766 if (!rstate
->enabled
&& !rstate
->disabled
) {
767 if (rdev
->desc
->ops
->set_suspend_voltage
||
768 rdev
->desc
->ops
->set_suspend_mode
)
769 rdev_warn(rdev
, "No configuration\n");
773 if (rstate
->enabled
&& rstate
->disabled
) {
774 rdev_err(rdev
, "invalid configuration\n");
778 if (rstate
->enabled
&& rdev
->desc
->ops
->set_suspend_enable
)
779 ret
= rdev
->desc
->ops
->set_suspend_enable(rdev
);
780 else if (rstate
->disabled
&& rdev
->desc
->ops
->set_suspend_disable
)
781 ret
= rdev
->desc
->ops
->set_suspend_disable(rdev
);
782 else /* OK if set_suspend_enable or set_suspend_disable is NULL */
786 rdev_err(rdev
, "failed to enabled/disable\n");
790 if (rdev
->desc
->ops
->set_suspend_voltage
&& rstate
->uV
> 0) {
791 ret
= rdev
->desc
->ops
->set_suspend_voltage(rdev
, rstate
->uV
);
793 rdev_err(rdev
, "failed to set voltage\n");
798 if (rdev
->desc
->ops
->set_suspend_mode
&& rstate
->mode
> 0) {
799 ret
= rdev
->desc
->ops
->set_suspend_mode(rdev
, rstate
->mode
);
801 rdev_err(rdev
, "failed to set mode\n");
808 /* locks held by caller */
809 static int suspend_prepare(struct regulator_dev
*rdev
, suspend_state_t state
)
811 lockdep_assert_held_once(&rdev
->mutex
);
813 if (!rdev
->constraints
)
817 case PM_SUSPEND_STANDBY
:
818 return suspend_set_state(rdev
,
819 &rdev
->constraints
->state_standby
);
821 return suspend_set_state(rdev
,
822 &rdev
->constraints
->state_mem
);
824 return suspend_set_state(rdev
,
825 &rdev
->constraints
->state_disk
);
831 static void print_constraints(struct regulator_dev
*rdev
)
833 struct regulation_constraints
*constraints
= rdev
->constraints
;
835 size_t len
= sizeof(buf
) - 1;
839 if (constraints
->min_uV
&& constraints
->max_uV
) {
840 if (constraints
->min_uV
== constraints
->max_uV
)
841 count
+= scnprintf(buf
+ count
, len
- count
, "%d mV ",
842 constraints
->min_uV
/ 1000);
844 count
+= scnprintf(buf
+ count
, len
- count
,
846 constraints
->min_uV
/ 1000,
847 constraints
->max_uV
/ 1000);
850 if (!constraints
->min_uV
||
851 constraints
->min_uV
!= constraints
->max_uV
) {
852 ret
= _regulator_get_voltage(rdev
);
854 count
+= scnprintf(buf
+ count
, len
- count
,
855 "at %d mV ", ret
/ 1000);
858 if (constraints
->uV_offset
)
859 count
+= scnprintf(buf
+ count
, len
- count
, "%dmV offset ",
860 constraints
->uV_offset
/ 1000);
862 if (constraints
->min_uA
&& constraints
->max_uA
) {
863 if (constraints
->min_uA
== constraints
->max_uA
)
864 count
+= scnprintf(buf
+ count
, len
- count
, "%d mA ",
865 constraints
->min_uA
/ 1000);
867 count
+= scnprintf(buf
+ count
, len
- count
,
869 constraints
->min_uA
/ 1000,
870 constraints
->max_uA
/ 1000);
873 if (!constraints
->min_uA
||
874 constraints
->min_uA
!= constraints
->max_uA
) {
875 ret
= _regulator_get_current_limit(rdev
);
877 count
+= scnprintf(buf
+ count
, len
- count
,
878 "at %d mA ", ret
/ 1000);
881 if (constraints
->valid_modes_mask
& REGULATOR_MODE_FAST
)
882 count
+= scnprintf(buf
+ count
, len
- count
, "fast ");
883 if (constraints
->valid_modes_mask
& REGULATOR_MODE_NORMAL
)
884 count
+= scnprintf(buf
+ count
, len
- count
, "normal ");
885 if (constraints
->valid_modes_mask
& REGULATOR_MODE_IDLE
)
886 count
+= scnprintf(buf
+ count
, len
- count
, "idle ");
887 if (constraints
->valid_modes_mask
& REGULATOR_MODE_STANDBY
)
888 count
+= scnprintf(buf
+ count
, len
- count
, "standby");
891 scnprintf(buf
, len
, "no parameters");
893 rdev_dbg(rdev
, "%s\n", buf
);
895 if ((constraints
->min_uV
!= constraints
->max_uV
) &&
896 !(constraints
->valid_ops_mask
& REGULATOR_CHANGE_VOLTAGE
))
898 "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
901 static int machine_constraints_voltage(struct regulator_dev
*rdev
,
902 struct regulation_constraints
*constraints
)
904 const struct regulator_ops
*ops
= rdev
->desc
->ops
;
907 /* do we need to apply the constraint voltage */
908 if (rdev
->constraints
->apply_uV
&&
909 rdev
->constraints
->min_uV
== rdev
->constraints
->max_uV
) {
910 int current_uV
= _regulator_get_voltage(rdev
);
911 if (current_uV
< 0) {
913 "failed to get the current voltage(%d)\n",
917 if (current_uV
< rdev
->constraints
->min_uV
||
918 current_uV
> rdev
->constraints
->max_uV
) {
919 ret
= _regulator_do_set_voltage(
920 rdev
, rdev
->constraints
->min_uV
,
921 rdev
->constraints
->max_uV
);
924 "failed to apply %duV constraint(%d)\n",
925 rdev
->constraints
->min_uV
, ret
);
931 /* constrain machine-level voltage specs to fit
932 * the actual range supported by this regulator.
934 if (ops
->list_voltage
&& rdev
->desc
->n_voltages
) {
935 int count
= rdev
->desc
->n_voltages
;
937 int min_uV
= INT_MAX
;
938 int max_uV
= INT_MIN
;
939 int cmin
= constraints
->min_uV
;
940 int cmax
= constraints
->max_uV
;
942 /* it's safe to autoconfigure fixed-voltage supplies
943 and the constraints are used by list_voltage. */
944 if (count
== 1 && !cmin
) {
947 constraints
->min_uV
= cmin
;
948 constraints
->max_uV
= cmax
;
951 /* voltage constraints are optional */
952 if ((cmin
== 0) && (cmax
== 0))
955 /* else require explicit machine-level constraints */
956 if (cmin
<= 0 || cmax
<= 0 || cmax
< cmin
) {
957 rdev_err(rdev
, "invalid voltage constraints\n");
961 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
962 for (i
= 0; i
< count
; i
++) {
965 value
= ops
->list_voltage(rdev
, i
);
969 /* maybe adjust [min_uV..max_uV] */
970 if (value
>= cmin
&& value
< min_uV
)
972 if (value
<= cmax
&& value
> max_uV
)
976 /* final: [min_uV..max_uV] valid iff constraints valid */
977 if (max_uV
< min_uV
) {
979 "unsupportable voltage constraints %u-%uuV\n",
984 /* use regulator's subset of machine constraints */
985 if (constraints
->min_uV
< min_uV
) {
986 rdev_dbg(rdev
, "override min_uV, %d -> %d\n",
987 constraints
->min_uV
, min_uV
);
988 constraints
->min_uV
= min_uV
;
990 if (constraints
->max_uV
> max_uV
) {
991 rdev_dbg(rdev
, "override max_uV, %d -> %d\n",
992 constraints
->max_uV
, max_uV
);
993 constraints
->max_uV
= max_uV
;
1000 static int machine_constraints_current(struct regulator_dev
*rdev
,
1001 struct regulation_constraints
*constraints
)
1003 const struct regulator_ops
*ops
= rdev
->desc
->ops
;
1006 if (!constraints
->min_uA
&& !constraints
->max_uA
)
1009 if (constraints
->min_uA
> constraints
->max_uA
) {
1010 rdev_err(rdev
, "Invalid current constraints\n");
1014 if (!ops
->set_current_limit
|| !ops
->get_current_limit
) {
1015 rdev_warn(rdev
, "Operation of current configuration missing\n");
1019 /* Set regulator current in constraints range */
1020 ret
= ops
->set_current_limit(rdev
, constraints
->min_uA
,
1021 constraints
->max_uA
);
1023 rdev_err(rdev
, "Failed to set current constraint, %d\n", ret
);
1030 static int _regulator_do_enable(struct regulator_dev
*rdev
);
1033 * set_machine_constraints - sets regulator constraints
1034 * @rdev: regulator source
1035 * @constraints: constraints to apply
1037 * Allows platform initialisation code to define and constrain
1038 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE:
1039 * Constraints *must* be set by platform code in order for some
1040 * regulator operations to proceed i.e. set_voltage, set_current_limit,
1043 static int set_machine_constraints(struct regulator_dev
*rdev
,
1044 const struct regulation_constraints
*constraints
)
1047 const struct regulator_ops
*ops
= rdev
->desc
->ops
;
1050 rdev
->constraints
= kmemdup(constraints
, sizeof(*constraints
),
1053 rdev
->constraints
= kzalloc(sizeof(*constraints
),
1055 if (!rdev
->constraints
)
1058 ret
= machine_constraints_voltage(rdev
, rdev
->constraints
);
1062 ret
= machine_constraints_current(rdev
, rdev
->constraints
);
1066 if (rdev
->constraints
->ilim_uA
&& ops
->set_input_current_limit
) {
1067 ret
= ops
->set_input_current_limit(rdev
,
1068 rdev
->constraints
->ilim_uA
);
1070 rdev_err(rdev
, "failed to set input limit\n");
1075 /* do we need to setup our suspend state */
1076 if (rdev
->constraints
->initial_state
) {
1077 ret
= suspend_prepare(rdev
, rdev
->constraints
->initial_state
);
1079 rdev_err(rdev
, "failed to set suspend state\n");
1084 if (rdev
->constraints
->initial_mode
) {
1085 if (!ops
->set_mode
) {
1086 rdev_err(rdev
, "no set_mode operation\n");
1091 ret
= ops
->set_mode(rdev
, rdev
->constraints
->initial_mode
);
1093 rdev_err(rdev
, "failed to set initial mode: %d\n", ret
);
1098 /* If the constraints say the regulator should be on at this point
1099 * and we have control then make sure it is enabled.
1101 if (rdev
->constraints
->always_on
|| rdev
->constraints
->boot_on
) {
1102 ret
= _regulator_do_enable(rdev
);
1103 if (ret
< 0 && ret
!= -EINVAL
) {
1104 rdev_err(rdev
, "failed to enable\n");
1109 if ((rdev
->constraints
->ramp_delay
|| rdev
->constraints
->ramp_disable
)
1110 && ops
->set_ramp_delay
) {
1111 ret
= ops
->set_ramp_delay(rdev
, rdev
->constraints
->ramp_delay
);
1113 rdev_err(rdev
, "failed to set ramp_delay\n");
1118 if (rdev
->constraints
->pull_down
&& ops
->set_pull_down
) {
1119 ret
= ops
->set_pull_down(rdev
);
1121 rdev_err(rdev
, "failed to set pull down\n");
1126 if (rdev
->constraints
->soft_start
&& ops
->set_soft_start
) {
1127 ret
= ops
->set_soft_start(rdev
);
1129 rdev_err(rdev
, "failed to set soft start\n");
1134 if (rdev
->constraints
->over_current_protection
1135 && ops
->set_over_current_protection
) {
1136 ret
= ops
->set_over_current_protection(rdev
);
1138 rdev_err(rdev
, "failed to set over current protection\n");
1143 print_constraints(rdev
);
1146 kfree(rdev
->constraints
);
1147 rdev
->constraints
= NULL
;
1152 * set_supply - set regulator supply regulator
1153 * @rdev: regulator name
1154 * @supply_rdev: supply regulator name
1156 * Called by platform initialisation code to set the supply regulator for this
1157 * regulator. This ensures that a regulators supply will also be enabled by the
1158 * core if it's child is enabled.
1160 static int set_supply(struct regulator_dev
*rdev
,
1161 struct regulator_dev
*supply_rdev
)
1165 rdev_info(rdev
, "supplied by %s\n", rdev_get_name(supply_rdev
));
1167 if (!try_module_get(supply_rdev
->owner
))
1170 rdev
->supply
= create_regulator(supply_rdev
, &rdev
->dev
, "SUPPLY");
1171 if (rdev
->supply
== NULL
) {
1175 supply_rdev
->open_count
++;
1181 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1182 * @rdev: regulator source
1183 * @consumer_dev_name: dev_name() string for device supply applies to
1184 * @supply: symbolic name for supply
1186 * Allows platform initialisation code to map physical regulator
1187 * sources to symbolic names for supplies for use by devices. Devices
1188 * should use these symbolic names to request regulators, avoiding the
1189 * need to provide board-specific regulator names as platform data.
1191 static int set_consumer_device_supply(struct regulator_dev
*rdev
,
1192 const char *consumer_dev_name
,
1195 struct regulator_map
*node
;
1201 if (consumer_dev_name
!= NULL
)
1206 list_for_each_entry(node
, ®ulator_map_list
, list
) {
1207 if (node
->dev_name
&& consumer_dev_name
) {
1208 if (strcmp(node
->dev_name
, consumer_dev_name
) != 0)
1210 } else if (node
->dev_name
|| consumer_dev_name
) {
1214 if (strcmp(node
->supply
, supply
) != 0)
1217 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1219 dev_name(&node
->regulator
->dev
),
1220 node
->regulator
->desc
->name
,
1222 dev_name(&rdev
->dev
), rdev_get_name(rdev
));
1226 node
= kzalloc(sizeof(struct regulator_map
), GFP_KERNEL
);
1230 node
->regulator
= rdev
;
1231 node
->supply
= supply
;
1234 node
->dev_name
= kstrdup(consumer_dev_name
, GFP_KERNEL
);
1235 if (node
->dev_name
== NULL
) {
1241 list_add(&node
->list
, ®ulator_map_list
);
1245 static void unset_regulator_supplies(struct regulator_dev
*rdev
)
1247 struct regulator_map
*node
, *n
;
1249 list_for_each_entry_safe(node
, n
, ®ulator_map_list
, list
) {
1250 if (rdev
== node
->regulator
) {
1251 list_del(&node
->list
);
1252 kfree(node
->dev_name
);
1258 #define REG_STR_SIZE 64
1260 static struct regulator
*create_regulator(struct regulator_dev
*rdev
,
1262 const char *supply_name
)
1264 struct regulator
*regulator
;
1265 char buf
[REG_STR_SIZE
];
1268 regulator
= kzalloc(sizeof(*regulator
), GFP_KERNEL
);
1269 if (regulator
== NULL
)
1272 mutex_lock(&rdev
->mutex
);
1273 regulator
->rdev
= rdev
;
1274 list_add(®ulator
->list
, &rdev
->consumer_list
);
1277 regulator
->dev
= dev
;
1279 /* Add a link to the device sysfs entry */
1280 size
= scnprintf(buf
, REG_STR_SIZE
, "%s-%s",
1281 dev
->kobj
.name
, supply_name
);
1282 if (size
>= REG_STR_SIZE
)
1285 regulator
->supply_name
= kstrdup(buf
, GFP_KERNEL
);
1286 if (regulator
->supply_name
== NULL
)
1289 err
= sysfs_create_link_nowarn(&rdev
->dev
.kobj
, &dev
->kobj
,
1292 rdev_dbg(rdev
, "could not add device link %s err %d\n",
1293 dev
->kobj
.name
, err
);
1297 regulator
->supply_name
= kstrdup(supply_name
, GFP_KERNEL
);
1298 if (regulator
->supply_name
== NULL
)
1302 regulator
->debugfs
= debugfs_create_dir(regulator
->supply_name
,
1304 if (!regulator
->debugfs
) {
1305 rdev_dbg(rdev
, "Failed to create debugfs directory\n");
1307 debugfs_create_u32("uA_load", 0444, regulator
->debugfs
,
1308 ®ulator
->uA_load
);
1309 debugfs_create_u32("min_uV", 0444, regulator
->debugfs
,
1310 ®ulator
->min_uV
);
1311 debugfs_create_u32("max_uV", 0444, regulator
->debugfs
,
1312 ®ulator
->max_uV
);
1316 * Check now if the regulator is an always on regulator - if
1317 * it is then we don't need to do nearly so much work for
1318 * enable/disable calls.
1320 if (!_regulator_can_change_status(rdev
) &&
1321 _regulator_is_enabled(rdev
))
1322 regulator
->always_on
= true;
1324 mutex_unlock(&rdev
->mutex
);
1327 list_del(®ulator
->list
);
1329 mutex_unlock(&rdev
->mutex
);
1333 static int _regulator_get_enable_time(struct regulator_dev
*rdev
)
1335 if (rdev
->constraints
&& rdev
->constraints
->enable_time
)
1336 return rdev
->constraints
->enable_time
;
1337 if (!rdev
->desc
->ops
->enable_time
)
1338 return rdev
->desc
->enable_time
;
1339 return rdev
->desc
->ops
->enable_time(rdev
);
1342 static struct regulator_supply_alias
*regulator_find_supply_alias(
1343 struct device
*dev
, const char *supply
)
1345 struct regulator_supply_alias
*map
;
1347 list_for_each_entry(map
, ®ulator_supply_alias_list
, list
)
1348 if (map
->src_dev
== dev
&& strcmp(map
->src_supply
, supply
) == 0)
1354 static void regulator_supply_alias(struct device
**dev
, const char **supply
)
1356 struct regulator_supply_alias
*map
;
1358 map
= regulator_find_supply_alias(*dev
, *supply
);
1360 dev_dbg(*dev
, "Mapping supply %s to %s,%s\n",
1361 *supply
, map
->alias_supply
,
1362 dev_name(map
->alias_dev
));
1363 *dev
= map
->alias_dev
;
1364 *supply
= map
->alias_supply
;
1368 static int of_node_match(struct device
*dev
, const void *data
)
1370 return dev
->of_node
== data
;
1373 static struct regulator_dev
*of_find_regulator_by_node(struct device_node
*np
)
1377 dev
= class_find_device(®ulator_class
, NULL
, np
, of_node_match
);
1379 return dev
? dev_to_rdev(dev
) : NULL
;
1382 static int regulator_match(struct device
*dev
, const void *data
)
1384 struct regulator_dev
*r
= dev_to_rdev(dev
);
1386 return strcmp(rdev_get_name(r
), data
) == 0;
1389 static struct regulator_dev
*regulator_lookup_by_name(const char *name
)
1393 dev
= class_find_device(®ulator_class
, NULL
, name
, regulator_match
);
1395 return dev
? dev_to_rdev(dev
) : NULL
;
1399 * regulator_dev_lookup - lookup a regulator device.
1400 * @dev: device for regulator "consumer".
1401 * @supply: Supply name or regulator ID.
1402 * @ret: 0 on success, -ENODEV if lookup fails permanently, -EPROBE_DEFER if
1403 * lookup could succeed in the future.
1405 * If successful, returns a struct regulator_dev that corresponds to the name
1406 * @supply and with the embedded struct device refcount incremented by one,
1407 * or NULL on failure. The refcount must be dropped by calling put_device().
1409 static struct regulator_dev
*regulator_dev_lookup(struct device
*dev
,
1413 struct regulator_dev
*r
;
1414 struct device_node
*node
;
1415 struct regulator_map
*map
;
1416 const char *devname
= NULL
;
1418 regulator_supply_alias(&dev
, &supply
);
1420 /* first do a dt based lookup */
1421 if (dev
&& dev
->of_node
) {
1422 node
= of_get_regulator(dev
, supply
);
1424 r
= of_find_regulator_by_node(node
);
1427 *ret
= -EPROBE_DEFER
;
1431 * If we couldn't even get the node then it's
1432 * not just that the device didn't register
1433 * yet, there's no node and we'll never
1440 /* if not found, try doing it non-dt way */
1442 devname
= dev_name(dev
);
1444 r
= regulator_lookup_by_name(supply
);
1448 mutex_lock(®ulator_list_mutex
);
1449 list_for_each_entry(map
, ®ulator_map_list
, list
) {
1450 /* If the mapping has a device set up it must match */
1451 if (map
->dev_name
&&
1452 (!devname
|| strcmp(map
->dev_name
, devname
)))
1455 if (strcmp(map
->supply
, supply
) == 0 &&
1456 get_device(&map
->regulator
->dev
)) {
1457 mutex_unlock(®ulator_list_mutex
);
1458 return map
->regulator
;
1461 mutex_unlock(®ulator_list_mutex
);
1466 static int regulator_resolve_supply(struct regulator_dev
*rdev
)
1468 struct regulator_dev
*r
;
1469 struct device
*dev
= rdev
->dev
.parent
;
1472 /* No supply to resovle? */
1473 if (!rdev
->supply_name
)
1476 /* Supply already resolved? */
1480 r
= regulator_dev_lookup(dev
, rdev
->supply_name
, &ret
);
1482 if (ret
== -ENODEV
) {
1484 * No supply was specified for this regulator and
1485 * there will never be one.
1490 /* Did the lookup explicitly defer for us? */
1491 if (ret
== -EPROBE_DEFER
)
1494 if (have_full_constraints()) {
1495 r
= dummy_regulator_rdev
;
1496 get_device(&r
->dev
);
1498 dev_err(dev
, "Failed to resolve %s-supply for %s\n",
1499 rdev
->supply_name
, rdev
->desc
->name
);
1500 return -EPROBE_DEFER
;
1504 /* Recursively resolve the supply of the supply */
1505 ret
= regulator_resolve_supply(r
);
1507 put_device(&r
->dev
);
1511 ret
= set_supply(rdev
, r
);
1513 put_device(&r
->dev
);
1517 /* Cascade always-on state to supply */
1518 if (_regulator_is_enabled(rdev
) && rdev
->supply
) {
1519 ret
= regulator_enable(rdev
->supply
);
1521 _regulator_put(rdev
->supply
);
1529 /* Internal regulator request function */
1530 static struct regulator
*_regulator_get(struct device
*dev
, const char *id
,
1531 bool exclusive
, bool allow_dummy
)
1533 struct regulator_dev
*rdev
;
1534 struct regulator
*regulator
= ERR_PTR(-EPROBE_DEFER
);
1535 const char *devname
= NULL
;
1539 pr_err("get() with no identifier\n");
1540 return ERR_PTR(-EINVAL
);
1544 devname
= dev_name(dev
);
1546 if (have_full_constraints())
1549 ret
= -EPROBE_DEFER
;
1551 rdev
= regulator_dev_lookup(dev
, id
, &ret
);
1555 regulator
= ERR_PTR(ret
);
1558 * If we have return value from dev_lookup fail, we do not expect to
1559 * succeed, so, quit with appropriate error value
1561 if (ret
&& ret
!= -ENODEV
)
1565 devname
= "deviceless";
1568 * Assume that a regulator is physically present and enabled
1569 * even if it isn't hooked up and just provide a dummy.
1571 if (have_full_constraints() && allow_dummy
) {
1572 pr_warn("%s supply %s not found, using dummy regulator\n",
1575 rdev
= dummy_regulator_rdev
;
1576 get_device(&rdev
->dev
);
1578 /* Don't log an error when called from regulator_get_optional() */
1579 } else if (!have_full_constraints() || exclusive
) {
1580 dev_warn(dev
, "dummy supplies not allowed\n");
1586 if (rdev
->exclusive
) {
1587 regulator
= ERR_PTR(-EPERM
);
1588 put_device(&rdev
->dev
);
1592 if (exclusive
&& rdev
->open_count
) {
1593 regulator
= ERR_PTR(-EBUSY
);
1594 put_device(&rdev
->dev
);
1598 ret
= regulator_resolve_supply(rdev
);
1600 regulator
= ERR_PTR(ret
);
1601 put_device(&rdev
->dev
);
1605 if (!try_module_get(rdev
->owner
)) {
1606 put_device(&rdev
->dev
);
1610 regulator
= create_regulator(rdev
, dev
, id
);
1611 if (regulator
== NULL
) {
1612 regulator
= ERR_PTR(-ENOMEM
);
1613 put_device(&rdev
->dev
);
1614 module_put(rdev
->owner
);
1620 rdev
->exclusive
= 1;
1622 ret
= _regulator_is_enabled(rdev
);
1624 rdev
->use_count
= 1;
1626 rdev
->use_count
= 0;
1633 * regulator_get - lookup and obtain a reference to a regulator.
1634 * @dev: device for regulator "consumer"
1635 * @id: Supply name or regulator ID.
1637 * Returns a struct regulator corresponding to the regulator producer,
1638 * or IS_ERR() condition containing errno.
1640 * Use of supply names configured via regulator_set_device_supply() is
1641 * strongly encouraged. It is recommended that the supply name used
1642 * should match the name used for the supply and/or the relevant
1643 * device pins in the datasheet.
1645 struct regulator
*regulator_get(struct device
*dev
, const char *id
)
1647 return _regulator_get(dev
, id
, false, true);
1649 EXPORT_SYMBOL_GPL(regulator_get
);
1652 * regulator_get_exclusive - obtain exclusive access to a regulator.
1653 * @dev: device for regulator "consumer"
1654 * @id: Supply name or regulator ID.
1656 * Returns a struct regulator corresponding to the regulator producer,
1657 * or IS_ERR() condition containing errno. Other consumers will be
1658 * unable to obtain this regulator while this reference is held and the
1659 * use count for the regulator will be initialised to reflect the current
1660 * state of the regulator.
1662 * This is intended for use by consumers which cannot tolerate shared
1663 * use of the regulator such as those which need to force the
1664 * regulator off for correct operation of the hardware they are
1667 * Use of supply names configured via regulator_set_device_supply() is
1668 * strongly encouraged. It is recommended that the supply name used
1669 * should match the name used for the supply and/or the relevant
1670 * device pins in the datasheet.
1672 struct regulator
*regulator_get_exclusive(struct device
*dev
, const char *id
)
1674 return _regulator_get(dev
, id
, true, false);
1676 EXPORT_SYMBOL_GPL(regulator_get_exclusive
);
1679 * regulator_get_optional - obtain optional access to a regulator.
1680 * @dev: device for regulator "consumer"
1681 * @id: Supply name or regulator ID.
1683 * Returns a struct regulator corresponding to the regulator producer,
1684 * or IS_ERR() condition containing errno.
1686 * This is intended for use by consumers for devices which can have
1687 * some supplies unconnected in normal use, such as some MMC devices.
1688 * It can allow the regulator core to provide stub supplies for other
1689 * supplies requested using normal regulator_get() calls without
1690 * disrupting the operation of drivers that can handle absent
1693 * Use of supply names configured via regulator_set_device_supply() is
1694 * strongly encouraged. It is recommended that the supply name used
1695 * should match the name used for the supply and/or the relevant
1696 * device pins in the datasheet.
1698 struct regulator
*regulator_get_optional(struct device
*dev
, const char *id
)
1700 return _regulator_get(dev
, id
, false, false);
1702 EXPORT_SYMBOL_GPL(regulator_get_optional
);
1704 /* regulator_list_mutex lock held by regulator_put() */
1705 static void _regulator_put(struct regulator
*regulator
)
1707 struct regulator_dev
*rdev
;
1709 if (IS_ERR_OR_NULL(regulator
))
1712 lockdep_assert_held_once(®ulator_list_mutex
);
1714 rdev
= regulator
->rdev
;
1716 debugfs_remove_recursive(regulator
->debugfs
);
1718 /* remove any sysfs entries */
1720 sysfs_remove_link(&rdev
->dev
.kobj
, regulator
->supply_name
);
1721 mutex_lock(&rdev
->mutex
);
1722 list_del(®ulator
->list
);
1725 rdev
->exclusive
= 0;
1726 put_device(&rdev
->dev
);
1727 mutex_unlock(&rdev
->mutex
);
1729 kfree(regulator
->supply_name
);
1732 module_put(rdev
->owner
);
1736 * regulator_put - "free" the regulator source
1737 * @regulator: regulator source
1739 * Note: drivers must ensure that all regulator_enable calls made on this
1740 * regulator source are balanced by regulator_disable calls prior to calling
1743 void regulator_put(struct regulator
*regulator
)
1745 mutex_lock(®ulator_list_mutex
);
1746 _regulator_put(regulator
);
1747 mutex_unlock(®ulator_list_mutex
);
1749 EXPORT_SYMBOL_GPL(regulator_put
);
1752 * regulator_register_supply_alias - Provide device alias for supply lookup
1754 * @dev: device that will be given as the regulator "consumer"
1755 * @id: Supply name or regulator ID
1756 * @alias_dev: device that should be used to lookup the supply
1757 * @alias_id: Supply name or regulator ID that should be used to lookup the
1760 * All lookups for id on dev will instead be conducted for alias_id on
1763 int regulator_register_supply_alias(struct device
*dev
, const char *id
,
1764 struct device
*alias_dev
,
1765 const char *alias_id
)
1767 struct regulator_supply_alias
*map
;
1769 map
= regulator_find_supply_alias(dev
, id
);
1773 map
= kzalloc(sizeof(struct regulator_supply_alias
), GFP_KERNEL
);
1778 map
->src_supply
= id
;
1779 map
->alias_dev
= alias_dev
;
1780 map
->alias_supply
= alias_id
;
1782 list_add(&map
->list
, ®ulator_supply_alias_list
);
1784 pr_info("Adding alias for supply %s,%s -> %s,%s\n",
1785 id
, dev_name(dev
), alias_id
, dev_name(alias_dev
));
1789 EXPORT_SYMBOL_GPL(regulator_register_supply_alias
);
1792 * regulator_unregister_supply_alias - Remove device alias
1794 * @dev: device that will be given as the regulator "consumer"
1795 * @id: Supply name or regulator ID
1797 * Remove a lookup alias if one exists for id on dev.
1799 void regulator_unregister_supply_alias(struct device
*dev
, const char *id
)
1801 struct regulator_supply_alias
*map
;
1803 map
= regulator_find_supply_alias(dev
, id
);
1805 list_del(&map
->list
);
1809 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias
);
1812 * regulator_bulk_register_supply_alias - register multiple aliases
1814 * @dev: device that will be given as the regulator "consumer"
1815 * @id: List of supply names or regulator IDs
1816 * @alias_dev: device that should be used to lookup the supply
1817 * @alias_id: List of supply names or regulator IDs that should be used to
1819 * @num_id: Number of aliases to register
1821 * @return 0 on success, an errno on failure.
1823 * This helper function allows drivers to register several supply
1824 * aliases in one operation. If any of the aliases cannot be
1825 * registered any aliases that were registered will be removed
1826 * before returning to the caller.
1828 int regulator_bulk_register_supply_alias(struct device
*dev
,
1829 const char *const *id
,
1830 struct device
*alias_dev
,
1831 const char *const *alias_id
,
1837 for (i
= 0; i
< num_id
; ++i
) {
1838 ret
= regulator_register_supply_alias(dev
, id
[i
], alias_dev
,
1848 "Failed to create supply alias %s,%s -> %s,%s\n",
1849 id
[i
], dev_name(dev
), alias_id
[i
], dev_name(alias_dev
));
1852 regulator_unregister_supply_alias(dev
, id
[i
]);
1856 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias
);
1859 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
1861 * @dev: device that will be given as the regulator "consumer"
1862 * @id: List of supply names or regulator IDs
1863 * @num_id: Number of aliases to unregister
1865 * This helper function allows drivers to unregister several supply
1866 * aliases in one operation.
1868 void regulator_bulk_unregister_supply_alias(struct device
*dev
,
1869 const char *const *id
,
1874 for (i
= 0; i
< num_id
; ++i
)
1875 regulator_unregister_supply_alias(dev
, id
[i
]);
1877 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias
);
1880 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
1881 static int regulator_ena_gpio_request(struct regulator_dev
*rdev
,
1882 const struct regulator_config
*config
)
1884 struct regulator_enable_gpio
*pin
;
1885 struct gpio_desc
*gpiod
;
1888 gpiod
= gpio_to_desc(config
->ena_gpio
);
1890 list_for_each_entry(pin
, ®ulator_ena_gpio_list
, list
) {
1891 if (pin
->gpiod
== gpiod
) {
1892 rdev_dbg(rdev
, "GPIO %d is already used\n",
1894 goto update_ena_gpio_to_rdev
;
1898 ret
= gpio_request_one(config
->ena_gpio
,
1899 GPIOF_DIR_OUT
| config
->ena_gpio_flags
,
1900 rdev_get_name(rdev
));
1904 pin
= kzalloc(sizeof(struct regulator_enable_gpio
), GFP_KERNEL
);
1906 gpio_free(config
->ena_gpio
);
1911 pin
->ena_gpio_invert
= config
->ena_gpio_invert
;
1912 list_add(&pin
->list
, ®ulator_ena_gpio_list
);
1914 update_ena_gpio_to_rdev
:
1915 pin
->request_count
++;
1916 rdev
->ena_pin
= pin
;
1920 static void regulator_ena_gpio_free(struct regulator_dev
*rdev
)
1922 struct regulator_enable_gpio
*pin
, *n
;
1927 /* Free the GPIO only in case of no use */
1928 list_for_each_entry_safe(pin
, n
, ®ulator_ena_gpio_list
, list
) {
1929 if (pin
->gpiod
== rdev
->ena_pin
->gpiod
) {
1930 if (pin
->request_count
<= 1) {
1931 pin
->request_count
= 0;
1932 gpiod_put(pin
->gpiod
);
1933 list_del(&pin
->list
);
1935 rdev
->ena_pin
= NULL
;
1938 pin
->request_count
--;
1945 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
1946 * @rdev: regulator_dev structure
1947 * @enable: enable GPIO at initial use?
1949 * GPIO is enabled in case of initial use. (enable_count is 0)
1950 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
1952 static int regulator_ena_gpio_ctrl(struct regulator_dev
*rdev
, bool enable
)
1954 struct regulator_enable_gpio
*pin
= rdev
->ena_pin
;
1960 /* Enable GPIO at initial use */
1961 if (pin
->enable_count
== 0)
1962 gpiod_set_value_cansleep(pin
->gpiod
,
1963 !pin
->ena_gpio_invert
);
1965 pin
->enable_count
++;
1967 if (pin
->enable_count
> 1) {
1968 pin
->enable_count
--;
1972 /* Disable GPIO if not used */
1973 if (pin
->enable_count
<= 1) {
1974 gpiod_set_value_cansleep(pin
->gpiod
,
1975 pin
->ena_gpio_invert
);
1976 pin
->enable_count
= 0;
1984 * _regulator_enable_delay - a delay helper function
1985 * @delay: time to delay in microseconds
1987 * Delay for the requested amount of time as per the guidelines in:
1989 * Documentation/timers/timers-howto.txt
1991 * The assumption here is that regulators will never be enabled in
1992 * atomic context and therefore sleeping functions can be used.
1994 static void _regulator_enable_delay(unsigned int delay
)
1996 unsigned int ms
= delay
/ 1000;
1997 unsigned int us
= delay
% 1000;
2001 * For small enough values, handle super-millisecond
2002 * delays in the usleep_range() call below.
2011 * Give the scheduler some room to coalesce with any other
2012 * wakeup sources. For delays shorter than 10 us, don't even
2013 * bother setting up high-resolution timers and just busy-
2017 usleep_range(us
, us
+ 100);
2022 static int _regulator_do_enable(struct regulator_dev
*rdev
)
2026 /* Query before enabling in case configuration dependent. */
2027 ret
= _regulator_get_enable_time(rdev
);
2031 rdev_warn(rdev
, "enable_time() failed: %d\n", ret
);
2035 trace_regulator_enable(rdev_get_name(rdev
));
2037 if (rdev
->desc
->off_on_delay
) {
2038 /* if needed, keep a distance of off_on_delay from last time
2039 * this regulator was disabled.
2041 unsigned long start_jiffy
= jiffies
;
2042 unsigned long intended
, max_delay
, remaining
;
2044 max_delay
= usecs_to_jiffies(rdev
->desc
->off_on_delay
);
2045 intended
= rdev
->last_off_jiffy
+ max_delay
;
2047 if (time_before(start_jiffy
, intended
)) {
2048 /* calc remaining jiffies to deal with one-time
2050 * in case of multiple timer wrapping, either it can be
2051 * detected by out-of-range remaining, or it cannot be
2052 * detected and we gets a panelty of
2053 * _regulator_enable_delay().
2055 remaining
= intended
- start_jiffy
;
2056 if (remaining
<= max_delay
)
2057 _regulator_enable_delay(
2058 jiffies_to_usecs(remaining
));
2062 if (rdev
->ena_pin
) {
2063 if (!rdev
->ena_gpio_state
) {
2064 ret
= regulator_ena_gpio_ctrl(rdev
, true);
2067 rdev
->ena_gpio_state
= 1;
2069 } else if (rdev
->desc
->ops
->enable
) {
2070 ret
= rdev
->desc
->ops
->enable(rdev
);
2077 /* Allow the regulator to ramp; it would be useful to extend
2078 * this for bulk operations so that the regulators can ramp
2080 trace_regulator_enable_delay(rdev_get_name(rdev
));
2082 _regulator_enable_delay(delay
);
2084 trace_regulator_enable_complete(rdev_get_name(rdev
));
2089 /* locks held by regulator_enable() */
2090 static int _regulator_enable(struct regulator_dev
*rdev
)
2094 lockdep_assert_held_once(&rdev
->mutex
);
2096 /* check voltage and requested load before enabling */
2097 if (rdev
->constraints
&&
2098 (rdev
->constraints
->valid_ops_mask
& REGULATOR_CHANGE_DRMS
))
2099 drms_uA_update(rdev
);
2101 if (rdev
->use_count
== 0) {
2102 /* The regulator may on if it's not switchable or left on */
2103 ret
= _regulator_is_enabled(rdev
);
2104 if (ret
== -EINVAL
|| ret
== 0) {
2105 if (!_regulator_can_change_status(rdev
))
2108 ret
= _regulator_do_enable(rdev
);
2112 } else if (ret
< 0) {
2113 rdev_err(rdev
, "is_enabled() failed: %d\n", ret
);
2116 /* Fallthrough on positive return values - already enabled */
2125 * regulator_enable - enable regulator output
2126 * @regulator: regulator source
2128 * Request that the regulator be enabled with the regulator output at
2129 * the predefined voltage or current value. Calls to regulator_enable()
2130 * must be balanced with calls to regulator_disable().
2132 * NOTE: the output value can be set by other drivers, boot loader or may be
2133 * hardwired in the regulator.
2135 int regulator_enable(struct regulator
*regulator
)
2137 struct regulator_dev
*rdev
= regulator
->rdev
;
2140 if (regulator
->always_on
)
2144 ret
= regulator_enable(rdev
->supply
);
2149 mutex_lock(&rdev
->mutex
);
2150 ret
= _regulator_enable(rdev
);
2151 mutex_unlock(&rdev
->mutex
);
2153 if (ret
!= 0 && rdev
->supply
)
2154 regulator_disable(rdev
->supply
);
2158 EXPORT_SYMBOL_GPL(regulator_enable
);
2160 static int _regulator_do_disable(struct regulator_dev
*rdev
)
2164 trace_regulator_disable(rdev_get_name(rdev
));
2166 if (rdev
->ena_pin
) {
2167 if (rdev
->ena_gpio_state
) {
2168 ret
= regulator_ena_gpio_ctrl(rdev
, false);
2171 rdev
->ena_gpio_state
= 0;
2174 } else if (rdev
->desc
->ops
->disable
) {
2175 ret
= rdev
->desc
->ops
->disable(rdev
);
2180 /* cares about last_off_jiffy only if off_on_delay is required by
2183 if (rdev
->desc
->off_on_delay
)
2184 rdev
->last_off_jiffy
= jiffies
;
2186 trace_regulator_disable_complete(rdev_get_name(rdev
));
2191 /* locks held by regulator_disable() */
2192 static int _regulator_disable(struct regulator_dev
*rdev
)
2196 lockdep_assert_held_once(&rdev
->mutex
);
2198 if (WARN(rdev
->use_count
<= 0,
2199 "unbalanced disables for %s\n", rdev_get_name(rdev
)))
2202 /* are we the last user and permitted to disable ? */
2203 if (rdev
->use_count
== 1 &&
2204 (rdev
->constraints
&& !rdev
->constraints
->always_on
)) {
2206 /* we are last user */
2207 if (_regulator_can_change_status(rdev
)) {
2208 ret
= _notifier_call_chain(rdev
,
2209 REGULATOR_EVENT_PRE_DISABLE
,
2211 if (ret
& NOTIFY_STOP_MASK
)
2214 ret
= _regulator_do_disable(rdev
);
2216 rdev_err(rdev
, "failed to disable\n");
2217 _notifier_call_chain(rdev
,
2218 REGULATOR_EVENT_ABORT_DISABLE
,
2222 _notifier_call_chain(rdev
, REGULATOR_EVENT_DISABLE
,
2226 rdev
->use_count
= 0;
2227 } else if (rdev
->use_count
> 1) {
2229 if (rdev
->constraints
&&
2230 (rdev
->constraints
->valid_ops_mask
&
2231 REGULATOR_CHANGE_DRMS
))
2232 drms_uA_update(rdev
);
2241 * regulator_disable - disable regulator output
2242 * @regulator: regulator source
2244 * Disable the regulator output voltage or current. Calls to
2245 * regulator_enable() must be balanced with calls to
2246 * regulator_disable().
2248 * NOTE: this will only disable the regulator output if no other consumer
2249 * devices have it enabled, the regulator device supports disabling and
2250 * machine constraints permit this operation.
2252 int regulator_disable(struct regulator
*regulator
)
2254 struct regulator_dev
*rdev
= regulator
->rdev
;
2257 if (regulator
->always_on
)
2260 mutex_lock(&rdev
->mutex
);
2261 ret
= _regulator_disable(rdev
);
2262 mutex_unlock(&rdev
->mutex
);
2264 if (ret
== 0 && rdev
->supply
)
2265 regulator_disable(rdev
->supply
);
2269 EXPORT_SYMBOL_GPL(regulator_disable
);
2271 /* locks held by regulator_force_disable() */
2272 static int _regulator_force_disable(struct regulator_dev
*rdev
)
2276 lockdep_assert_held_once(&rdev
->mutex
);
2278 ret
= _notifier_call_chain(rdev
, REGULATOR_EVENT_FORCE_DISABLE
|
2279 REGULATOR_EVENT_PRE_DISABLE
, NULL
);
2280 if (ret
& NOTIFY_STOP_MASK
)
2283 ret
= _regulator_do_disable(rdev
);
2285 rdev_err(rdev
, "failed to force disable\n");
2286 _notifier_call_chain(rdev
, REGULATOR_EVENT_FORCE_DISABLE
|
2287 REGULATOR_EVENT_ABORT_DISABLE
, NULL
);
2291 _notifier_call_chain(rdev
, REGULATOR_EVENT_FORCE_DISABLE
|
2292 REGULATOR_EVENT_DISABLE
, NULL
);
2298 * regulator_force_disable - force disable regulator output
2299 * @regulator: regulator source
2301 * Forcibly disable the regulator output voltage or current.
2302 * NOTE: this *will* disable the regulator output even if other consumer
2303 * devices have it enabled. This should be used for situations when device
2304 * damage will likely occur if the regulator is not disabled (e.g. over temp).
2306 int regulator_force_disable(struct regulator
*regulator
)
2308 struct regulator_dev
*rdev
= regulator
->rdev
;
2311 mutex_lock(&rdev
->mutex
);
2312 regulator
->uA_load
= 0;
2313 ret
= _regulator_force_disable(regulator
->rdev
);
2314 mutex_unlock(&rdev
->mutex
);
2317 while (rdev
->open_count
--)
2318 regulator_disable(rdev
->supply
);
2322 EXPORT_SYMBOL_GPL(regulator_force_disable
);
2324 static void regulator_disable_work(struct work_struct
*work
)
2326 struct regulator_dev
*rdev
= container_of(work
, struct regulator_dev
,
2330 mutex_lock(&rdev
->mutex
);
2332 BUG_ON(!rdev
->deferred_disables
);
2334 count
= rdev
->deferred_disables
;
2335 rdev
->deferred_disables
= 0;
2337 for (i
= 0; i
< count
; i
++) {
2338 ret
= _regulator_disable(rdev
);
2340 rdev_err(rdev
, "Deferred disable failed: %d\n", ret
);
2343 mutex_unlock(&rdev
->mutex
);
2346 for (i
= 0; i
< count
; i
++) {
2347 ret
= regulator_disable(rdev
->supply
);
2350 "Supply disable failed: %d\n", ret
);
2357 * regulator_disable_deferred - disable regulator output with delay
2358 * @regulator: regulator source
2359 * @ms: miliseconds until the regulator is disabled
2361 * Execute regulator_disable() on the regulator after a delay. This
2362 * is intended for use with devices that require some time to quiesce.
2364 * NOTE: this will only disable the regulator output if no other consumer
2365 * devices have it enabled, the regulator device supports disabling and
2366 * machine constraints permit this operation.
2368 int regulator_disable_deferred(struct regulator
*regulator
, int ms
)
2370 struct regulator_dev
*rdev
= regulator
->rdev
;
2373 if (regulator
->always_on
)
2377 return regulator_disable(regulator
);
2379 mutex_lock(&rdev
->mutex
);
2380 rdev
->deferred_disables
++;
2381 mutex_unlock(&rdev
->mutex
);
2383 ret
= queue_delayed_work(system_power_efficient_wq
,
2384 &rdev
->disable_work
,
2385 msecs_to_jiffies(ms
));
2391 EXPORT_SYMBOL_GPL(regulator_disable_deferred
);
2393 static int _regulator_is_enabled(struct regulator_dev
*rdev
)
2395 /* A GPIO control always takes precedence */
2397 return rdev
->ena_gpio_state
;
2399 /* If we don't know then assume that the regulator is always on */
2400 if (!rdev
->desc
->ops
->is_enabled
)
2403 return rdev
->desc
->ops
->is_enabled(rdev
);
2406 static int _regulator_list_voltage(struct regulator
*regulator
,
2407 unsigned selector
, int lock
)
2409 struct regulator_dev
*rdev
= regulator
->rdev
;
2410 const struct regulator_ops
*ops
= rdev
->desc
->ops
;
2413 if (rdev
->desc
->fixed_uV
&& rdev
->desc
->n_voltages
== 1 && !selector
)
2414 return rdev
->desc
->fixed_uV
;
2416 if (ops
->list_voltage
) {
2417 if (selector
>= rdev
->desc
->n_voltages
)
2420 mutex_lock(&rdev
->mutex
);
2421 ret
= ops
->list_voltage(rdev
, selector
);
2423 mutex_unlock(&rdev
->mutex
);
2424 } else if (rdev
->supply
) {
2425 ret
= _regulator_list_voltage(rdev
->supply
, selector
, lock
);
2431 if (ret
< rdev
->constraints
->min_uV
)
2433 else if (ret
> rdev
->constraints
->max_uV
)
2441 * regulator_is_enabled - is the regulator output enabled
2442 * @regulator: regulator source
2444 * Returns positive if the regulator driver backing the source/client
2445 * has requested that the device be enabled, zero if it hasn't, else a
2446 * negative errno code.
2448 * Note that the device backing this regulator handle can have multiple
2449 * users, so it might be enabled even if regulator_enable() was never
2450 * called for this particular source.
2452 int regulator_is_enabled(struct regulator
*regulator
)
2456 if (regulator
->always_on
)
2459 mutex_lock(®ulator
->rdev
->mutex
);
2460 ret
= _regulator_is_enabled(regulator
->rdev
);
2461 mutex_unlock(®ulator
->rdev
->mutex
);
2465 EXPORT_SYMBOL_GPL(regulator_is_enabled
);
2468 * regulator_can_change_voltage - check if regulator can change voltage
2469 * @regulator: regulator source
2471 * Returns positive if the regulator driver backing the source/client
2472 * can change its voltage, false otherwise. Useful for detecting fixed
2473 * or dummy regulators and disabling voltage change logic in the client
2476 int regulator_can_change_voltage(struct regulator
*regulator
)
2478 struct regulator_dev
*rdev
= regulator
->rdev
;
2480 if (rdev
->constraints
&&
2481 (rdev
->constraints
->valid_ops_mask
& REGULATOR_CHANGE_VOLTAGE
)) {
2482 if (rdev
->desc
->n_voltages
- rdev
->desc
->linear_min_sel
> 1)
2485 if (rdev
->desc
->continuous_voltage_range
&&
2486 rdev
->constraints
->min_uV
&& rdev
->constraints
->max_uV
&&
2487 rdev
->constraints
->min_uV
!= rdev
->constraints
->max_uV
)
2493 EXPORT_SYMBOL_GPL(regulator_can_change_voltage
);
2496 * regulator_count_voltages - count regulator_list_voltage() selectors
2497 * @regulator: regulator source
2499 * Returns number of selectors, or negative errno. Selectors are
2500 * numbered starting at zero, and typically correspond to bitfields
2501 * in hardware registers.
2503 int regulator_count_voltages(struct regulator
*regulator
)
2505 struct regulator_dev
*rdev
= regulator
->rdev
;
2507 if (rdev
->desc
->n_voltages
)
2508 return rdev
->desc
->n_voltages
;
2513 return regulator_count_voltages(rdev
->supply
);
2515 EXPORT_SYMBOL_GPL(regulator_count_voltages
);
2518 * regulator_list_voltage - enumerate supported voltages
2519 * @regulator: regulator source
2520 * @selector: identify voltage to list
2521 * Context: can sleep
2523 * Returns a voltage that can be passed to @regulator_set_voltage(),
2524 * zero if this selector code can't be used on this system, or a
2527 int regulator_list_voltage(struct regulator
*regulator
, unsigned selector
)
2529 return _regulator_list_voltage(regulator
, selector
, 1);
2531 EXPORT_SYMBOL_GPL(regulator_list_voltage
);
2534 * regulator_get_regmap - get the regulator's register map
2535 * @regulator: regulator source
2537 * Returns the register map for the given regulator, or an ERR_PTR value
2538 * if the regulator doesn't use regmap.
2540 struct regmap
*regulator_get_regmap(struct regulator
*regulator
)
2542 struct regmap
*map
= regulator
->rdev
->regmap
;
2544 return map
? map
: ERR_PTR(-EOPNOTSUPP
);
2548 * regulator_get_hardware_vsel_register - get the HW voltage selector register
2549 * @regulator: regulator source
2550 * @vsel_reg: voltage selector register, output parameter
2551 * @vsel_mask: mask for voltage selector bitfield, output parameter
2553 * Returns the hardware register offset and bitmask used for setting the
2554 * regulator voltage. This might be useful when configuring voltage-scaling
2555 * hardware or firmware that can make I2C requests behind the kernel's back,
2558 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
2559 * and 0 is returned, otherwise a negative errno is returned.
2561 int regulator_get_hardware_vsel_register(struct regulator
*regulator
,
2563 unsigned *vsel_mask
)
2565 struct regulator_dev
*rdev
= regulator
->rdev
;
2566 const struct regulator_ops
*ops
= rdev
->desc
->ops
;
2568 if (ops
->set_voltage_sel
!= regulator_set_voltage_sel_regmap
)
2571 *vsel_reg
= rdev
->desc
->vsel_reg
;
2572 *vsel_mask
= rdev
->desc
->vsel_mask
;
2576 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register
);
2579 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
2580 * @regulator: regulator source
2581 * @selector: identify voltage to list
2583 * Converts the selector to a hardware-specific voltage selector that can be
2584 * directly written to the regulator registers. The address of the voltage
2585 * register can be determined by calling @regulator_get_hardware_vsel_register.
2587 * On error a negative errno is returned.
2589 int regulator_list_hardware_vsel(struct regulator
*regulator
,
2592 struct regulator_dev
*rdev
= regulator
->rdev
;
2593 const struct regulator_ops
*ops
= rdev
->desc
->ops
;
2595 if (selector
>= rdev
->desc
->n_voltages
)
2597 if (ops
->set_voltage_sel
!= regulator_set_voltage_sel_regmap
)
2602 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel
);
2605 * regulator_get_linear_step - return the voltage step size between VSEL values
2606 * @regulator: regulator source
2608 * Returns the voltage step size between VSEL values for linear
2609 * regulators, or return 0 if the regulator isn't a linear regulator.
2611 unsigned int regulator_get_linear_step(struct regulator
*regulator
)
2613 struct regulator_dev
*rdev
= regulator
->rdev
;
2615 return rdev
->desc
->uV_step
;
2617 EXPORT_SYMBOL_GPL(regulator_get_linear_step
);
2620 * regulator_is_supported_voltage - check if a voltage range can be supported
2622 * @regulator: Regulator to check.
2623 * @min_uV: Minimum required voltage in uV.
2624 * @max_uV: Maximum required voltage in uV.
2626 * Returns a boolean or a negative error code.
2628 int regulator_is_supported_voltage(struct regulator
*regulator
,
2629 int min_uV
, int max_uV
)
2631 struct regulator_dev
*rdev
= regulator
->rdev
;
2632 int i
, voltages
, ret
;
2634 /* If we can't change voltage check the current voltage */
2635 if (!(rdev
->constraints
->valid_ops_mask
& REGULATOR_CHANGE_VOLTAGE
)) {
2636 ret
= regulator_get_voltage(regulator
);
2638 return min_uV
<= ret
&& ret
<= max_uV
;
2643 /* Any voltage within constrains range is fine? */
2644 if (rdev
->desc
->continuous_voltage_range
)
2645 return min_uV
>= rdev
->constraints
->min_uV
&&
2646 max_uV
<= rdev
->constraints
->max_uV
;
2648 ret
= regulator_count_voltages(regulator
);
2653 for (i
= 0; i
< voltages
; i
++) {
2654 ret
= regulator_list_voltage(regulator
, i
);
2656 if (ret
>= min_uV
&& ret
<= max_uV
)
2662 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage
);
2664 static int regulator_map_voltage(struct regulator_dev
*rdev
, int min_uV
,
2667 const struct regulator_desc
*desc
= rdev
->desc
;
2669 if (desc
->ops
->map_voltage
)
2670 return desc
->ops
->map_voltage(rdev
, min_uV
, max_uV
);
2672 if (desc
->ops
->list_voltage
== regulator_list_voltage_linear
)
2673 return regulator_map_voltage_linear(rdev
, min_uV
, max_uV
);
2675 if (desc
->ops
->list_voltage
== regulator_list_voltage_linear_range
)
2676 return regulator_map_voltage_linear_range(rdev
, min_uV
, max_uV
);
2678 return regulator_map_voltage_iterate(rdev
, min_uV
, max_uV
);
2681 static int _regulator_call_set_voltage(struct regulator_dev
*rdev
,
2682 int min_uV
, int max_uV
,
2685 struct pre_voltage_change_data data
;
2688 data
.old_uV
= _regulator_get_voltage(rdev
);
2689 data
.min_uV
= min_uV
;
2690 data
.max_uV
= max_uV
;
2691 ret
= _notifier_call_chain(rdev
, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE
,
2693 if (ret
& NOTIFY_STOP_MASK
)
2696 ret
= rdev
->desc
->ops
->set_voltage(rdev
, min_uV
, max_uV
, selector
);
2700 _notifier_call_chain(rdev
, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE
,
2701 (void *)data
.old_uV
);
2706 static int _regulator_call_set_voltage_sel(struct regulator_dev
*rdev
,
2707 int uV
, unsigned selector
)
2709 struct pre_voltage_change_data data
;
2712 data
.old_uV
= _regulator_get_voltage(rdev
);
2715 ret
= _notifier_call_chain(rdev
, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE
,
2717 if (ret
& NOTIFY_STOP_MASK
)
2720 ret
= rdev
->desc
->ops
->set_voltage_sel(rdev
, selector
);
2724 _notifier_call_chain(rdev
, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE
,
2725 (void *)data
.old_uV
);
2730 static int _regulator_do_set_voltage(struct regulator_dev
*rdev
,
2731 int min_uV
, int max_uV
)
2736 unsigned int selector
;
2737 int old_selector
= -1;
2739 trace_regulator_set_voltage(rdev_get_name(rdev
), min_uV
, max_uV
);
2741 min_uV
+= rdev
->constraints
->uV_offset
;
2742 max_uV
+= rdev
->constraints
->uV_offset
;
2745 * If we can't obtain the old selector there is not enough
2746 * info to call set_voltage_time_sel().
2748 if (_regulator_is_enabled(rdev
) &&
2749 rdev
->desc
->ops
->set_voltage_time_sel
&&
2750 rdev
->desc
->ops
->get_voltage_sel
) {
2751 old_selector
= rdev
->desc
->ops
->get_voltage_sel(rdev
);
2752 if (old_selector
< 0)
2753 return old_selector
;
2756 if (rdev
->desc
->ops
->set_voltage
) {
2757 ret
= _regulator_call_set_voltage(rdev
, min_uV
, max_uV
,
2761 if (rdev
->desc
->ops
->list_voltage
)
2762 best_val
= rdev
->desc
->ops
->list_voltage(rdev
,
2765 best_val
= _regulator_get_voltage(rdev
);
2768 } else if (rdev
->desc
->ops
->set_voltage_sel
) {
2769 ret
= regulator_map_voltage(rdev
, min_uV
, max_uV
);
2771 best_val
= rdev
->desc
->ops
->list_voltage(rdev
, ret
);
2772 if (min_uV
<= best_val
&& max_uV
>= best_val
) {
2774 if (old_selector
== selector
)
2777 ret
= _regulator_call_set_voltage_sel(
2778 rdev
, best_val
, selector
);
2787 /* Call set_voltage_time_sel if successfully obtained old_selector */
2788 if (ret
== 0 && !rdev
->constraints
->ramp_disable
&& old_selector
>= 0
2789 && old_selector
!= selector
) {
2791 delay
= rdev
->desc
->ops
->set_voltage_time_sel(rdev
,
2792 old_selector
, selector
);
2794 rdev_warn(rdev
, "set_voltage_time_sel() failed: %d\n",
2799 /* Insert any necessary delays */
2800 if (delay
>= 1000) {
2801 mdelay(delay
/ 1000);
2802 udelay(delay
% 1000);
2808 if (ret
== 0 && best_val
>= 0) {
2809 unsigned long data
= best_val
;
2811 _notifier_call_chain(rdev
, REGULATOR_EVENT_VOLTAGE_CHANGE
,
2815 trace_regulator_set_voltage_complete(rdev_get_name(rdev
), best_val
);
2820 static int regulator_set_voltage_unlocked(struct regulator
*regulator
,
2821 int min_uV
, int max_uV
)
2823 struct regulator_dev
*rdev
= regulator
->rdev
;
2825 int old_min_uV
, old_max_uV
;
2827 int best_supply_uV
= 0;
2828 int supply_change_uV
= 0;
2830 /* If we're setting the same range as last time the change
2831 * should be a noop (some cpufreq implementations use the same
2832 * voltage for multiple frequencies, for example).
2834 if (regulator
->min_uV
== min_uV
&& regulator
->max_uV
== max_uV
)
2837 /* If we're trying to set a range that overlaps the current voltage,
2838 * return successfully even though the regulator does not support
2839 * changing the voltage.
2841 if (!(rdev
->constraints
->valid_ops_mask
& REGULATOR_CHANGE_VOLTAGE
)) {
2842 current_uV
= _regulator_get_voltage(rdev
);
2843 if (min_uV
<= current_uV
&& current_uV
<= max_uV
) {
2844 regulator
->min_uV
= min_uV
;
2845 regulator
->max_uV
= max_uV
;
2851 if (!rdev
->desc
->ops
->set_voltage
&&
2852 !rdev
->desc
->ops
->set_voltage_sel
) {
2857 /* constraints check */
2858 ret
= regulator_check_voltage(rdev
, &min_uV
, &max_uV
);
2862 /* restore original values in case of error */
2863 old_min_uV
= regulator
->min_uV
;
2864 old_max_uV
= regulator
->max_uV
;
2865 regulator
->min_uV
= min_uV
;
2866 regulator
->max_uV
= max_uV
;
2868 ret
= regulator_check_consumers(rdev
, &min_uV
, &max_uV
);
2872 if (rdev
->supply
&& (rdev
->desc
->min_dropout_uV
||
2873 !rdev
->desc
->ops
->get_voltage
)) {
2874 int current_supply_uV
;
2877 selector
= regulator_map_voltage(rdev
, min_uV
, max_uV
);
2883 best_supply_uV
= _regulator_list_voltage(regulator
, selector
, 0);
2884 if (best_supply_uV
< 0) {
2885 ret
= best_supply_uV
;
2889 best_supply_uV
+= rdev
->desc
->min_dropout_uV
;
2891 current_supply_uV
= _regulator_get_voltage(rdev
->supply
->rdev
);
2892 if (current_supply_uV
< 0) {
2893 ret
= current_supply_uV
;
2897 supply_change_uV
= best_supply_uV
- current_supply_uV
;
2900 if (supply_change_uV
> 0) {
2901 ret
= regulator_set_voltage_unlocked(rdev
->supply
,
2902 best_supply_uV
, INT_MAX
);
2904 dev_err(&rdev
->dev
, "Failed to increase supply voltage: %d\n",
2910 ret
= _regulator_do_set_voltage(rdev
, min_uV
, max_uV
);
2914 if (supply_change_uV
< 0) {
2915 ret
= regulator_set_voltage_unlocked(rdev
->supply
,
2916 best_supply_uV
, INT_MAX
);
2918 dev_warn(&rdev
->dev
, "Failed to decrease supply voltage: %d\n",
2920 /* No need to fail here */
2927 regulator
->min_uV
= old_min_uV
;
2928 regulator
->max_uV
= old_max_uV
;
2934 * regulator_set_voltage - set regulator output voltage
2935 * @regulator: regulator source
2936 * @min_uV: Minimum required voltage in uV
2937 * @max_uV: Maximum acceptable voltage in uV
2939 * Sets a voltage regulator to the desired output voltage. This can be set
2940 * during any regulator state. IOW, regulator can be disabled or enabled.
2942 * If the regulator is enabled then the voltage will change to the new value
2943 * immediately otherwise if the regulator is disabled the regulator will
2944 * output at the new voltage when enabled.
2946 * NOTE: If the regulator is shared between several devices then the lowest
2947 * request voltage that meets the system constraints will be used.
2948 * Regulator system constraints must be set for this regulator before
2949 * calling this function otherwise this call will fail.
2951 int regulator_set_voltage(struct regulator
*regulator
, int min_uV
, int max_uV
)
2955 regulator_lock_supply(regulator
->rdev
);
2957 ret
= regulator_set_voltage_unlocked(regulator
, min_uV
, max_uV
);
2959 regulator_unlock_supply(regulator
->rdev
);
2963 EXPORT_SYMBOL_GPL(regulator_set_voltage
);
2966 * regulator_set_voltage_time - get raise/fall time
2967 * @regulator: regulator source
2968 * @old_uV: starting voltage in microvolts
2969 * @new_uV: target voltage in microvolts
2971 * Provided with the starting and ending voltage, this function attempts to
2972 * calculate the time in microseconds required to rise or fall to this new
2975 int regulator_set_voltage_time(struct regulator
*regulator
,
2976 int old_uV
, int new_uV
)
2978 struct regulator_dev
*rdev
= regulator
->rdev
;
2979 const struct regulator_ops
*ops
= rdev
->desc
->ops
;
2985 /* Currently requires operations to do this */
2986 if (!ops
->list_voltage
|| !ops
->set_voltage_time_sel
2987 || !rdev
->desc
->n_voltages
)
2990 for (i
= 0; i
< rdev
->desc
->n_voltages
; i
++) {
2991 /* We only look for exact voltage matches here */
2992 voltage
= regulator_list_voltage(regulator
, i
);
2997 if (voltage
== old_uV
)
2999 if (voltage
== new_uV
)
3003 if (old_sel
< 0 || new_sel
< 0)
3006 return ops
->set_voltage_time_sel(rdev
, old_sel
, new_sel
);
3008 EXPORT_SYMBOL_GPL(regulator_set_voltage_time
);
3011 * regulator_set_voltage_time_sel - get raise/fall time
3012 * @rdev: regulator source device
3013 * @old_selector: selector for starting voltage
3014 * @new_selector: selector for target voltage
3016 * Provided with the starting and target voltage selectors, this function
3017 * returns time in microseconds required to rise or fall to this new voltage
3019 * Drivers providing ramp_delay in regulation_constraints can use this as their
3020 * set_voltage_time_sel() operation.
3022 int regulator_set_voltage_time_sel(struct regulator_dev
*rdev
,
3023 unsigned int old_selector
,
3024 unsigned int new_selector
)
3026 unsigned int ramp_delay
= 0;
3027 int old_volt
, new_volt
;
3029 if (rdev
->constraints
->ramp_delay
)
3030 ramp_delay
= rdev
->constraints
->ramp_delay
;
3031 else if (rdev
->desc
->ramp_delay
)
3032 ramp_delay
= rdev
->desc
->ramp_delay
;
3034 if (ramp_delay
== 0) {
3035 rdev_warn(rdev
, "ramp_delay not set\n");
3040 if (!rdev
->desc
->ops
->list_voltage
)
3043 old_volt
= rdev
->desc
->ops
->list_voltage(rdev
, old_selector
);
3044 new_volt
= rdev
->desc
->ops
->list_voltage(rdev
, new_selector
);
3046 return DIV_ROUND_UP(abs(new_volt
- old_volt
), ramp_delay
);
3048 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel
);
3051 * regulator_sync_voltage - re-apply last regulator output voltage
3052 * @regulator: regulator source
3054 * Re-apply the last configured voltage. This is intended to be used
3055 * where some external control source the consumer is cooperating with
3056 * has caused the configured voltage to change.
3058 int regulator_sync_voltage(struct regulator
*regulator
)
3060 struct regulator_dev
*rdev
= regulator
->rdev
;
3061 int ret
, min_uV
, max_uV
;
3063 mutex_lock(&rdev
->mutex
);
3065 if (!rdev
->desc
->ops
->set_voltage
&&
3066 !rdev
->desc
->ops
->set_voltage_sel
) {
3071 /* This is only going to work if we've had a voltage configured. */
3072 if (!regulator
->min_uV
&& !regulator
->max_uV
) {
3077 min_uV
= regulator
->min_uV
;
3078 max_uV
= regulator
->max_uV
;
3080 /* This should be a paranoia check... */
3081 ret
= regulator_check_voltage(rdev
, &min_uV
, &max_uV
);
3085 ret
= regulator_check_consumers(rdev
, &min_uV
, &max_uV
);
3089 ret
= _regulator_do_set_voltage(rdev
, min_uV
, max_uV
);
3092 mutex_unlock(&rdev
->mutex
);
3095 EXPORT_SYMBOL_GPL(regulator_sync_voltage
);
3097 static int _regulator_get_voltage(struct regulator_dev
*rdev
)
3101 if (rdev
->desc
->ops
->get_voltage_sel
) {
3102 sel
= rdev
->desc
->ops
->get_voltage_sel(rdev
);
3105 ret
= rdev
->desc
->ops
->list_voltage(rdev
, sel
);
3106 } else if (rdev
->desc
->ops
->get_voltage
) {
3107 ret
= rdev
->desc
->ops
->get_voltage(rdev
);
3108 } else if (rdev
->desc
->ops
->list_voltage
) {
3109 ret
= rdev
->desc
->ops
->list_voltage(rdev
, 0);
3110 } else if (rdev
->desc
->fixed_uV
&& (rdev
->desc
->n_voltages
== 1)) {
3111 ret
= rdev
->desc
->fixed_uV
;
3112 } else if (rdev
->supply
) {
3113 ret
= _regulator_get_voltage(rdev
->supply
->rdev
);
3120 return ret
- rdev
->constraints
->uV_offset
;
3124 * regulator_get_voltage - get regulator output voltage
3125 * @regulator: regulator source
3127 * This returns the current regulator voltage in uV.
3129 * NOTE: If the regulator is disabled it will return the voltage value. This
3130 * function should not be used to determine regulator state.
3132 int regulator_get_voltage(struct regulator
*regulator
)
3136 regulator_lock_supply(regulator
->rdev
);
3138 ret
= _regulator_get_voltage(regulator
->rdev
);
3140 regulator_unlock_supply(regulator
->rdev
);
3144 EXPORT_SYMBOL_GPL(regulator_get_voltage
);
3147 * regulator_set_current_limit - set regulator output current limit
3148 * @regulator: regulator source
3149 * @min_uA: Minimum supported current in uA
3150 * @max_uA: Maximum supported current in uA
3152 * Sets current sink to the desired output current. This can be set during
3153 * any regulator state. IOW, regulator can be disabled or enabled.
3155 * If the regulator is enabled then the current will change to the new value
3156 * immediately otherwise if the regulator is disabled the regulator will
3157 * output at the new current when enabled.
3159 * NOTE: Regulator system constraints must be set for this regulator before
3160 * calling this function otherwise this call will fail.
3162 int regulator_set_current_limit(struct regulator
*regulator
,
3163 int min_uA
, int max_uA
)
3165 struct regulator_dev
*rdev
= regulator
->rdev
;
3168 mutex_lock(&rdev
->mutex
);
3171 if (!rdev
->desc
->ops
->set_current_limit
) {
3176 /* constraints check */
3177 ret
= regulator_check_current_limit(rdev
, &min_uA
, &max_uA
);
3181 ret
= rdev
->desc
->ops
->set_current_limit(rdev
, min_uA
, max_uA
);
3183 mutex_unlock(&rdev
->mutex
);
3186 EXPORT_SYMBOL_GPL(regulator_set_current_limit
);
3188 static int _regulator_get_current_limit(struct regulator_dev
*rdev
)
3192 mutex_lock(&rdev
->mutex
);
3195 if (!rdev
->desc
->ops
->get_current_limit
) {
3200 ret
= rdev
->desc
->ops
->get_current_limit(rdev
);
3202 mutex_unlock(&rdev
->mutex
);
3207 * regulator_get_current_limit - get regulator output current
3208 * @regulator: regulator source
3210 * This returns the current supplied by the specified current sink in uA.
3212 * NOTE: If the regulator is disabled it will return the current value. This
3213 * function should not be used to determine regulator state.
3215 int regulator_get_current_limit(struct regulator
*regulator
)
3217 return _regulator_get_current_limit(regulator
->rdev
);
3219 EXPORT_SYMBOL_GPL(regulator_get_current_limit
);
3222 * regulator_set_mode - set regulator operating mode
3223 * @regulator: regulator source
3224 * @mode: operating mode - one of the REGULATOR_MODE constants
3226 * Set regulator operating mode to increase regulator efficiency or improve
3227 * regulation performance.
3229 * NOTE: Regulator system constraints must be set for this regulator before
3230 * calling this function otherwise this call will fail.
3232 int regulator_set_mode(struct regulator
*regulator
, unsigned int mode
)
3234 struct regulator_dev
*rdev
= regulator
->rdev
;
3236 int regulator_curr_mode
;
3238 mutex_lock(&rdev
->mutex
);
3241 if (!rdev
->desc
->ops
->set_mode
) {
3246 /* return if the same mode is requested */
3247 if (rdev
->desc
->ops
->get_mode
) {
3248 regulator_curr_mode
= rdev
->desc
->ops
->get_mode(rdev
);
3249 if (regulator_curr_mode
== mode
) {
3255 /* constraints check */
3256 ret
= regulator_mode_constrain(rdev
, &mode
);
3260 ret
= rdev
->desc
->ops
->set_mode(rdev
, mode
);
3262 mutex_unlock(&rdev
->mutex
);
3265 EXPORT_SYMBOL_GPL(regulator_set_mode
);
3267 static unsigned int _regulator_get_mode(struct regulator_dev
*rdev
)
3271 mutex_lock(&rdev
->mutex
);
3274 if (!rdev
->desc
->ops
->get_mode
) {
3279 ret
= rdev
->desc
->ops
->get_mode(rdev
);
3281 mutex_unlock(&rdev
->mutex
);
3286 * regulator_get_mode - get regulator operating mode
3287 * @regulator: regulator source
3289 * Get the current regulator operating mode.
3291 unsigned int regulator_get_mode(struct regulator
*regulator
)
3293 return _regulator_get_mode(regulator
->rdev
);
3295 EXPORT_SYMBOL_GPL(regulator_get_mode
);
3298 * regulator_set_load - set regulator load
3299 * @regulator: regulator source
3300 * @uA_load: load current
3302 * Notifies the regulator core of a new device load. This is then used by
3303 * DRMS (if enabled by constraints) to set the most efficient regulator
3304 * operating mode for the new regulator loading.
3306 * Consumer devices notify their supply regulator of the maximum power
3307 * they will require (can be taken from device datasheet in the power
3308 * consumption tables) when they change operational status and hence power
3309 * state. Examples of operational state changes that can affect power
3310 * consumption are :-
3312 * o Device is opened / closed.
3313 * o Device I/O is about to begin or has just finished.
3314 * o Device is idling in between work.
3316 * This information is also exported via sysfs to userspace.
3318 * DRMS will sum the total requested load on the regulator and change
3319 * to the most efficient operating mode if platform constraints allow.
3321 * On error a negative errno is returned.
3323 int regulator_set_load(struct regulator
*regulator
, int uA_load
)
3325 struct regulator_dev
*rdev
= regulator
->rdev
;
3328 mutex_lock(&rdev
->mutex
);
3329 regulator
->uA_load
= uA_load
;
3330 ret
= drms_uA_update(rdev
);
3331 mutex_unlock(&rdev
->mutex
);
3335 EXPORT_SYMBOL_GPL(regulator_set_load
);
3338 * regulator_allow_bypass - allow the regulator to go into bypass mode
3340 * @regulator: Regulator to configure
3341 * @enable: enable or disable bypass mode
3343 * Allow the regulator to go into bypass mode if all other consumers
3344 * for the regulator also enable bypass mode and the machine
3345 * constraints allow this. Bypass mode means that the regulator is
3346 * simply passing the input directly to the output with no regulation.
3348 int regulator_allow_bypass(struct regulator
*regulator
, bool enable
)
3350 struct regulator_dev
*rdev
= regulator
->rdev
;
3353 if (!rdev
->desc
->ops
->set_bypass
)
3356 if (rdev
->constraints
&&
3357 !(rdev
->constraints
->valid_ops_mask
& REGULATOR_CHANGE_BYPASS
))
3360 mutex_lock(&rdev
->mutex
);
3362 if (enable
&& !regulator
->bypass
) {
3363 rdev
->bypass_count
++;
3365 if (rdev
->bypass_count
== rdev
->open_count
) {
3366 ret
= rdev
->desc
->ops
->set_bypass(rdev
, enable
);
3368 rdev
->bypass_count
--;
3371 } else if (!enable
&& regulator
->bypass
) {
3372 rdev
->bypass_count
--;
3374 if (rdev
->bypass_count
!= rdev
->open_count
) {
3375 ret
= rdev
->desc
->ops
->set_bypass(rdev
, enable
);
3377 rdev
->bypass_count
++;
3382 regulator
->bypass
= enable
;
3384 mutex_unlock(&rdev
->mutex
);
3388 EXPORT_SYMBOL_GPL(regulator_allow_bypass
);
3391 * regulator_register_notifier - register regulator event notifier
3392 * @regulator: regulator source
3393 * @nb: notifier block
3395 * Register notifier block to receive regulator events.
3397 int regulator_register_notifier(struct regulator
*regulator
,
3398 struct notifier_block
*nb
)
3400 return blocking_notifier_chain_register(®ulator
->rdev
->notifier
,
3403 EXPORT_SYMBOL_GPL(regulator_register_notifier
);
3406 * regulator_unregister_notifier - unregister regulator event notifier
3407 * @regulator: regulator source
3408 * @nb: notifier block
3410 * Unregister regulator event notifier block.
3412 int regulator_unregister_notifier(struct regulator
*regulator
,
3413 struct notifier_block
*nb
)
3415 return blocking_notifier_chain_unregister(®ulator
->rdev
->notifier
,
3418 EXPORT_SYMBOL_GPL(regulator_unregister_notifier
);
3420 /* notify regulator consumers and downstream regulator consumers.
3421 * Note mutex must be held by caller.
3423 static int _notifier_call_chain(struct regulator_dev
*rdev
,
3424 unsigned long event
, void *data
)
3426 /* call rdev chain first */
3427 return blocking_notifier_call_chain(&rdev
->notifier
, event
, data
);
3431 * regulator_bulk_get - get multiple regulator consumers
3433 * @dev: Device to supply
3434 * @num_consumers: Number of consumers to register
3435 * @consumers: Configuration of consumers; clients are stored here.
3437 * @return 0 on success, an errno on failure.
3439 * This helper function allows drivers to get several regulator
3440 * consumers in one operation. If any of the regulators cannot be
3441 * acquired then any regulators that were allocated will be freed
3442 * before returning to the caller.
3444 int regulator_bulk_get(struct device
*dev
, int num_consumers
,
3445 struct regulator_bulk_data
*consumers
)
3450 for (i
= 0; i
< num_consumers
; i
++)
3451 consumers
[i
].consumer
= NULL
;
3453 for (i
= 0; i
< num_consumers
; i
++) {
3454 consumers
[i
].consumer
= regulator_get(dev
,
3455 consumers
[i
].supply
);
3456 if (IS_ERR(consumers
[i
].consumer
)) {
3457 ret
= PTR_ERR(consumers
[i
].consumer
);
3458 dev_err(dev
, "Failed to get supply '%s': %d\n",
3459 consumers
[i
].supply
, ret
);
3460 consumers
[i
].consumer
= NULL
;
3469 regulator_put(consumers
[i
].consumer
);
3473 EXPORT_SYMBOL_GPL(regulator_bulk_get
);
3475 static void regulator_bulk_enable_async(void *data
, async_cookie_t cookie
)
3477 struct regulator_bulk_data
*bulk
= data
;
3479 bulk
->ret
= regulator_enable(bulk
->consumer
);
3483 * regulator_bulk_enable - enable multiple regulator consumers
3485 * @num_consumers: Number of consumers
3486 * @consumers: Consumer data; clients are stored here.
3487 * @return 0 on success, an errno on failure
3489 * This convenience API allows consumers to enable multiple regulator
3490 * clients in a single API call. If any consumers cannot be enabled
3491 * then any others that were enabled will be disabled again prior to
3494 int regulator_bulk_enable(int num_consumers
,
3495 struct regulator_bulk_data
*consumers
)
3497 ASYNC_DOMAIN_EXCLUSIVE(async_domain
);
3501 for (i
= 0; i
< num_consumers
; i
++) {
3502 if (consumers
[i
].consumer
->always_on
)
3503 consumers
[i
].ret
= 0;
3505 async_schedule_domain(regulator_bulk_enable_async
,
3506 &consumers
[i
], &async_domain
);
3509 async_synchronize_full_domain(&async_domain
);
3511 /* If any consumer failed we need to unwind any that succeeded */
3512 for (i
= 0; i
< num_consumers
; i
++) {
3513 if (consumers
[i
].ret
!= 0) {
3514 ret
= consumers
[i
].ret
;
3522 for (i
= 0; i
< num_consumers
; i
++) {
3523 if (consumers
[i
].ret
< 0)
3524 pr_err("Failed to enable %s: %d\n", consumers
[i
].supply
,
3527 regulator_disable(consumers
[i
].consumer
);
3532 EXPORT_SYMBOL_GPL(regulator_bulk_enable
);
3535 * regulator_bulk_disable - disable multiple regulator consumers
3537 * @num_consumers: Number of consumers
3538 * @consumers: Consumer data; clients are stored here.
3539 * @return 0 on success, an errno on failure
3541 * This convenience API allows consumers to disable multiple regulator
3542 * clients in a single API call. If any consumers cannot be disabled
3543 * then any others that were disabled will be enabled again prior to
3546 int regulator_bulk_disable(int num_consumers
,
3547 struct regulator_bulk_data
*consumers
)
3552 for (i
= num_consumers
- 1; i
>= 0; --i
) {
3553 ret
= regulator_disable(consumers
[i
].consumer
);
3561 pr_err("Failed to disable %s: %d\n", consumers
[i
].supply
, ret
);
3562 for (++i
; i
< num_consumers
; ++i
) {
3563 r
= regulator_enable(consumers
[i
].consumer
);
3565 pr_err("Failed to reename %s: %d\n",
3566 consumers
[i
].supply
, r
);
3571 EXPORT_SYMBOL_GPL(regulator_bulk_disable
);
3574 * regulator_bulk_force_disable - force disable multiple regulator consumers
3576 * @num_consumers: Number of consumers
3577 * @consumers: Consumer data; clients are stored here.
3578 * @return 0 on success, an errno on failure
3580 * This convenience API allows consumers to forcibly disable multiple regulator
3581 * clients in a single API call.
3582 * NOTE: This should be used for situations when device damage will
3583 * likely occur if the regulators are not disabled (e.g. over temp).
3584 * Although regulator_force_disable function call for some consumers can
3585 * return error numbers, the function is called for all consumers.
3587 int regulator_bulk_force_disable(int num_consumers
,
3588 struct regulator_bulk_data
*consumers
)
3593 for (i
= 0; i
< num_consumers
; i
++)
3595 regulator_force_disable(consumers
[i
].consumer
);
3597 for (i
= 0; i
< num_consumers
; i
++) {
3598 if (consumers
[i
].ret
!= 0) {
3599 ret
= consumers
[i
].ret
;
3608 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable
);
3611 * regulator_bulk_free - free multiple regulator consumers
3613 * @num_consumers: Number of consumers
3614 * @consumers: Consumer data; clients are stored here.
3616 * This convenience API allows consumers to free multiple regulator
3617 * clients in a single API call.
3619 void regulator_bulk_free(int num_consumers
,
3620 struct regulator_bulk_data
*consumers
)
3624 for (i
= 0; i
< num_consumers
; i
++) {
3625 regulator_put(consumers
[i
].consumer
);
3626 consumers
[i
].consumer
= NULL
;
3629 EXPORT_SYMBOL_GPL(regulator_bulk_free
);
3632 * regulator_notifier_call_chain - call regulator event notifier
3633 * @rdev: regulator source
3634 * @event: notifier block
3635 * @data: callback-specific data.
3637 * Called by regulator drivers to notify clients a regulator event has
3638 * occurred. We also notify regulator clients downstream.
3639 * Note lock must be held by caller.
3641 int regulator_notifier_call_chain(struct regulator_dev
*rdev
,
3642 unsigned long event
, void *data
)
3644 lockdep_assert_held_once(&rdev
->mutex
);
3646 _notifier_call_chain(rdev
, event
, data
);
3650 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain
);
3653 * regulator_mode_to_status - convert a regulator mode into a status
3655 * @mode: Mode to convert
3657 * Convert a regulator mode into a status.
3659 int regulator_mode_to_status(unsigned int mode
)
3662 case REGULATOR_MODE_FAST
:
3663 return REGULATOR_STATUS_FAST
;
3664 case REGULATOR_MODE_NORMAL
:
3665 return REGULATOR_STATUS_NORMAL
;
3666 case REGULATOR_MODE_IDLE
:
3667 return REGULATOR_STATUS_IDLE
;
3668 case REGULATOR_MODE_STANDBY
:
3669 return REGULATOR_STATUS_STANDBY
;
3671 return REGULATOR_STATUS_UNDEFINED
;
3674 EXPORT_SYMBOL_GPL(regulator_mode_to_status
);
3676 static struct attribute
*regulator_dev_attrs
[] = {
3677 &dev_attr_name
.attr
,
3678 &dev_attr_num_users
.attr
,
3679 &dev_attr_type
.attr
,
3680 &dev_attr_microvolts
.attr
,
3681 &dev_attr_microamps
.attr
,
3682 &dev_attr_opmode
.attr
,
3683 &dev_attr_state
.attr
,
3684 &dev_attr_status
.attr
,
3685 &dev_attr_bypass
.attr
,
3686 &dev_attr_requested_microamps
.attr
,
3687 &dev_attr_min_microvolts
.attr
,
3688 &dev_attr_max_microvolts
.attr
,
3689 &dev_attr_min_microamps
.attr
,
3690 &dev_attr_max_microamps
.attr
,
3691 &dev_attr_suspend_standby_state
.attr
,
3692 &dev_attr_suspend_mem_state
.attr
,
3693 &dev_attr_suspend_disk_state
.attr
,
3694 &dev_attr_suspend_standby_microvolts
.attr
,
3695 &dev_attr_suspend_mem_microvolts
.attr
,
3696 &dev_attr_suspend_disk_microvolts
.attr
,
3697 &dev_attr_suspend_standby_mode
.attr
,
3698 &dev_attr_suspend_mem_mode
.attr
,
3699 &dev_attr_suspend_disk_mode
.attr
,
3704 * To avoid cluttering sysfs (and memory) with useless state, only
3705 * create attributes that can be meaningfully displayed.
3707 static umode_t
regulator_attr_is_visible(struct kobject
*kobj
,
3708 struct attribute
*attr
, int idx
)
3710 struct device
*dev
= kobj_to_dev(kobj
);
3711 struct regulator_dev
*rdev
= container_of(dev
, struct regulator_dev
, dev
);
3712 const struct regulator_ops
*ops
= rdev
->desc
->ops
;
3713 umode_t mode
= attr
->mode
;
3715 /* these three are always present */
3716 if (attr
== &dev_attr_name
.attr
||
3717 attr
== &dev_attr_num_users
.attr
||
3718 attr
== &dev_attr_type
.attr
)
3721 /* some attributes need specific methods to be displayed */
3722 if (attr
== &dev_attr_microvolts
.attr
) {
3723 if ((ops
->get_voltage
&& ops
->get_voltage(rdev
) >= 0) ||
3724 (ops
->get_voltage_sel
&& ops
->get_voltage_sel(rdev
) >= 0) ||
3725 (ops
->list_voltage
&& ops
->list_voltage(rdev
, 0) >= 0) ||
3726 (rdev
->desc
->fixed_uV
&& rdev
->desc
->n_voltages
== 1))
3731 if (attr
== &dev_attr_microamps
.attr
)
3732 return ops
->get_current_limit
? mode
: 0;
3734 if (attr
== &dev_attr_opmode
.attr
)
3735 return ops
->get_mode
? mode
: 0;
3737 if (attr
== &dev_attr_state
.attr
)
3738 return (rdev
->ena_pin
|| ops
->is_enabled
) ? mode
: 0;
3740 if (attr
== &dev_attr_status
.attr
)
3741 return ops
->get_status
? mode
: 0;
3743 if (attr
== &dev_attr_bypass
.attr
)
3744 return ops
->get_bypass
? mode
: 0;
3746 /* some attributes are type-specific */
3747 if (attr
== &dev_attr_requested_microamps
.attr
)
3748 return rdev
->desc
->type
== REGULATOR_CURRENT
? mode
: 0;
3750 /* constraints need specific supporting methods */
3751 if (attr
== &dev_attr_min_microvolts
.attr
||
3752 attr
== &dev_attr_max_microvolts
.attr
)
3753 return (ops
->set_voltage
|| ops
->set_voltage_sel
) ? mode
: 0;
3755 if (attr
== &dev_attr_min_microamps
.attr
||
3756 attr
== &dev_attr_max_microamps
.attr
)
3757 return ops
->set_current_limit
? mode
: 0;
3759 if (attr
== &dev_attr_suspend_standby_state
.attr
||
3760 attr
== &dev_attr_suspend_mem_state
.attr
||
3761 attr
== &dev_attr_suspend_disk_state
.attr
)
3764 if (attr
== &dev_attr_suspend_standby_microvolts
.attr
||
3765 attr
== &dev_attr_suspend_mem_microvolts
.attr
||
3766 attr
== &dev_attr_suspend_disk_microvolts
.attr
)
3767 return ops
->set_suspend_voltage
? mode
: 0;
3769 if (attr
== &dev_attr_suspend_standby_mode
.attr
||
3770 attr
== &dev_attr_suspend_mem_mode
.attr
||
3771 attr
== &dev_attr_suspend_disk_mode
.attr
)
3772 return ops
->set_suspend_mode
? mode
: 0;
3777 static const struct attribute_group regulator_dev_group
= {
3778 .attrs
= regulator_dev_attrs
,
3779 .is_visible
= regulator_attr_is_visible
,
3782 static const struct attribute_group
*regulator_dev_groups
[] = {
3783 ®ulator_dev_group
,
3787 static void regulator_dev_release(struct device
*dev
)
3789 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
3791 kfree(rdev
->constraints
);
3792 of_node_put(rdev
->dev
.of_node
);
3796 static struct class regulator_class
= {
3797 .name
= "regulator",
3798 .dev_release
= regulator_dev_release
,
3799 .dev_groups
= regulator_dev_groups
,
3802 static void rdev_init_debugfs(struct regulator_dev
*rdev
)
3804 struct device
*parent
= rdev
->dev
.parent
;
3805 const char *rname
= rdev_get_name(rdev
);
3806 char name
[NAME_MAX
];
3808 /* Avoid duplicate debugfs directory names */
3809 if (parent
&& rname
== rdev
->desc
->name
) {
3810 snprintf(name
, sizeof(name
), "%s-%s", dev_name(parent
),
3815 rdev
->debugfs
= debugfs_create_dir(rname
, debugfs_root
);
3816 if (!rdev
->debugfs
) {
3817 rdev_warn(rdev
, "Failed to create debugfs directory\n");
3821 debugfs_create_u32("use_count", 0444, rdev
->debugfs
,
3823 debugfs_create_u32("open_count", 0444, rdev
->debugfs
,
3825 debugfs_create_u32("bypass_count", 0444, rdev
->debugfs
,
3826 &rdev
->bypass_count
);
3830 * regulator_register - register regulator
3831 * @regulator_desc: regulator to register
3832 * @cfg: runtime configuration for regulator
3834 * Called by regulator drivers to register a regulator.
3835 * Returns a valid pointer to struct regulator_dev on success
3836 * or an ERR_PTR() on error.
3838 struct regulator_dev
*
3839 regulator_register(const struct regulator_desc
*regulator_desc
,
3840 const struct regulator_config
*cfg
)
3842 const struct regulation_constraints
*constraints
= NULL
;
3843 const struct regulator_init_data
*init_data
;
3844 struct regulator_config
*config
= NULL
;
3845 static atomic_t regulator_no
= ATOMIC_INIT(-1);
3846 struct regulator_dev
*rdev
;
3850 if (regulator_desc
== NULL
|| cfg
== NULL
)
3851 return ERR_PTR(-EINVAL
);
3856 if (regulator_desc
->name
== NULL
|| regulator_desc
->ops
== NULL
)
3857 return ERR_PTR(-EINVAL
);
3859 if (regulator_desc
->type
!= REGULATOR_VOLTAGE
&&
3860 regulator_desc
->type
!= REGULATOR_CURRENT
)
3861 return ERR_PTR(-EINVAL
);
3863 /* Only one of each should be implemented */
3864 WARN_ON(regulator_desc
->ops
->get_voltage
&&
3865 regulator_desc
->ops
->get_voltage_sel
);
3866 WARN_ON(regulator_desc
->ops
->set_voltage
&&
3867 regulator_desc
->ops
->set_voltage_sel
);
3869 /* If we're using selectors we must implement list_voltage. */
3870 if (regulator_desc
->ops
->get_voltage_sel
&&
3871 !regulator_desc
->ops
->list_voltage
) {
3872 return ERR_PTR(-EINVAL
);
3874 if (regulator_desc
->ops
->set_voltage_sel
&&
3875 !regulator_desc
->ops
->list_voltage
) {
3876 return ERR_PTR(-EINVAL
);
3879 rdev
= kzalloc(sizeof(struct regulator_dev
), GFP_KERNEL
);
3881 return ERR_PTR(-ENOMEM
);
3884 * Duplicate the config so the driver could override it after
3885 * parsing init data.
3887 config
= kmemdup(cfg
, sizeof(*cfg
), GFP_KERNEL
);
3888 if (config
== NULL
) {
3890 return ERR_PTR(-ENOMEM
);
3893 init_data
= regulator_of_get_init_data(dev
, regulator_desc
, config
,
3894 &rdev
->dev
.of_node
);
3896 init_data
= config
->init_data
;
3897 rdev
->dev
.of_node
= of_node_get(config
->of_node
);
3900 mutex_lock(®ulator_list_mutex
);
3902 mutex_init(&rdev
->mutex
);
3903 rdev
->reg_data
= config
->driver_data
;
3904 rdev
->owner
= regulator_desc
->owner
;
3905 rdev
->desc
= regulator_desc
;
3907 rdev
->regmap
= config
->regmap
;
3908 else if (dev_get_regmap(dev
, NULL
))
3909 rdev
->regmap
= dev_get_regmap(dev
, NULL
);
3910 else if (dev
->parent
)
3911 rdev
->regmap
= dev_get_regmap(dev
->parent
, NULL
);
3912 INIT_LIST_HEAD(&rdev
->consumer_list
);
3913 INIT_LIST_HEAD(&rdev
->list
);
3914 BLOCKING_INIT_NOTIFIER_HEAD(&rdev
->notifier
);
3915 INIT_DELAYED_WORK(&rdev
->disable_work
, regulator_disable_work
);
3917 /* preform any regulator specific init */
3918 if (init_data
&& init_data
->regulator_init
) {
3919 ret
= init_data
->regulator_init(rdev
->reg_data
);
3924 /* register with sysfs */
3925 rdev
->dev
.class = ®ulator_class
;
3926 rdev
->dev
.parent
= dev
;
3927 dev_set_name(&rdev
->dev
, "regulator.%lu",
3928 (unsigned long) atomic_inc_return(®ulator_no
));
3929 ret
= device_register(&rdev
->dev
);
3931 put_device(&rdev
->dev
);
3935 dev_set_drvdata(&rdev
->dev
, rdev
);
3937 if ((config
->ena_gpio
|| config
->ena_gpio_initialized
) &&
3938 gpio_is_valid(config
->ena_gpio
)) {
3939 ret
= regulator_ena_gpio_request(rdev
, config
);
3941 rdev_err(rdev
, "Failed to request enable GPIO%d: %d\n",
3942 config
->ena_gpio
, ret
);
3947 /* set regulator constraints */
3949 constraints
= &init_data
->constraints
;
3951 ret
= set_machine_constraints(rdev
, constraints
);
3955 if (init_data
&& init_data
->supply_regulator
)
3956 rdev
->supply_name
= init_data
->supply_regulator
;
3957 else if (regulator_desc
->supply_name
)
3958 rdev
->supply_name
= regulator_desc
->supply_name
;
3960 /* add consumers devices */
3962 for (i
= 0; i
< init_data
->num_consumer_supplies
; i
++) {
3963 ret
= set_consumer_device_supply(rdev
,
3964 init_data
->consumer_supplies
[i
].dev_name
,
3965 init_data
->consumer_supplies
[i
].supply
);
3967 dev_err(dev
, "Failed to set supply %s\n",
3968 init_data
->consumer_supplies
[i
].supply
);
3969 goto unset_supplies
;
3974 rdev_init_debugfs(rdev
);
3976 mutex_unlock(®ulator_list_mutex
);
3981 unset_regulator_supplies(rdev
);
3984 regulator_ena_gpio_free(rdev
);
3985 kfree(rdev
->constraints
);
3987 device_unregister(&rdev
->dev
);
3988 /* device core frees rdev */
3989 rdev
= ERR_PTR(ret
);
3994 rdev
= ERR_PTR(ret
);
3997 EXPORT_SYMBOL_GPL(regulator_register
);
4000 * regulator_unregister - unregister regulator
4001 * @rdev: regulator to unregister
4003 * Called by regulator drivers to unregister a regulator.
4005 void regulator_unregister(struct regulator_dev
*rdev
)
4011 while (rdev
->use_count
--)
4012 regulator_disable(rdev
->supply
);
4013 regulator_put(rdev
->supply
);
4015 mutex_lock(®ulator_list_mutex
);
4016 debugfs_remove_recursive(rdev
->debugfs
);
4017 flush_work(&rdev
->disable_work
.work
);
4018 WARN_ON(rdev
->open_count
);
4019 unset_regulator_supplies(rdev
);
4020 list_del(&rdev
->list
);
4021 mutex_unlock(®ulator_list_mutex
);
4022 regulator_ena_gpio_free(rdev
);
4023 device_unregister(&rdev
->dev
);
4025 EXPORT_SYMBOL_GPL(regulator_unregister
);
4027 static int _regulator_suspend_prepare(struct device
*dev
, void *data
)
4029 struct regulator_dev
*rdev
= dev_to_rdev(dev
);
4030 const suspend_state_t
*state
= data
;
4033 mutex_lock(&rdev
->mutex
);
4034 ret
= suspend_prepare(rdev
, *state
);
4035 mutex_unlock(&rdev
->mutex
);
4041 * regulator_suspend_prepare - prepare regulators for system wide suspend
4042 * @state: system suspend state
4044 * Configure each regulator with it's suspend operating parameters for state.
4045 * This will usually be called by machine suspend code prior to supending.
4047 int regulator_suspend_prepare(suspend_state_t state
)
4049 /* ON is handled by regulator active state */
4050 if (state
== PM_SUSPEND_ON
)
4053 return class_for_each_device(®ulator_class
, NULL
, &state
,
4054 _regulator_suspend_prepare
);
4056 EXPORT_SYMBOL_GPL(regulator_suspend_prepare
);
4058 static int _regulator_suspend_finish(struct device
*dev
, void *data
)
4060 struct regulator_dev
*rdev
= dev_to_rdev(dev
);
4063 mutex_lock(&rdev
->mutex
);
4064 if (rdev
->use_count
> 0 || rdev
->constraints
->always_on
) {
4065 if (!_regulator_is_enabled(rdev
)) {
4066 ret
= _regulator_do_enable(rdev
);
4069 "Failed to resume regulator %d\n",
4073 if (!have_full_constraints())
4075 if (!_regulator_is_enabled(rdev
))
4078 ret
= _regulator_do_disable(rdev
);
4080 dev_err(dev
, "Failed to suspend regulator %d\n", ret
);
4083 mutex_unlock(&rdev
->mutex
);
4085 /* Keep processing regulators in spite of any errors */
4090 * regulator_suspend_finish - resume regulators from system wide suspend
4092 * Turn on regulators that might be turned off by regulator_suspend_prepare
4093 * and that should be turned on according to the regulators properties.
4095 int regulator_suspend_finish(void)
4097 return class_for_each_device(®ulator_class
, NULL
, NULL
,
4098 _regulator_suspend_finish
);
4100 EXPORT_SYMBOL_GPL(regulator_suspend_finish
);
4103 * regulator_has_full_constraints - the system has fully specified constraints
4105 * Calling this function will cause the regulator API to disable all
4106 * regulators which have a zero use count and don't have an always_on
4107 * constraint in a late_initcall.
4109 * The intention is that this will become the default behaviour in a
4110 * future kernel release so users are encouraged to use this facility
4113 void regulator_has_full_constraints(void)
4115 has_full_constraints
= 1;
4117 EXPORT_SYMBOL_GPL(regulator_has_full_constraints
);
4120 * rdev_get_drvdata - get rdev regulator driver data
4123 * Get rdev regulator driver private data. This call can be used in the
4124 * regulator driver context.
4126 void *rdev_get_drvdata(struct regulator_dev
*rdev
)
4128 return rdev
->reg_data
;
4130 EXPORT_SYMBOL_GPL(rdev_get_drvdata
);
4133 * regulator_get_drvdata - get regulator driver data
4134 * @regulator: regulator
4136 * Get regulator driver private data. This call can be used in the consumer
4137 * driver context when non API regulator specific functions need to be called.
4139 void *regulator_get_drvdata(struct regulator
*regulator
)
4141 return regulator
->rdev
->reg_data
;
4143 EXPORT_SYMBOL_GPL(regulator_get_drvdata
);
4146 * regulator_set_drvdata - set regulator driver data
4147 * @regulator: regulator
4150 void regulator_set_drvdata(struct regulator
*regulator
, void *data
)
4152 regulator
->rdev
->reg_data
= data
;
4154 EXPORT_SYMBOL_GPL(regulator_set_drvdata
);
4157 * regulator_get_id - get regulator ID
4160 int rdev_get_id(struct regulator_dev
*rdev
)
4162 return rdev
->desc
->id
;
4164 EXPORT_SYMBOL_GPL(rdev_get_id
);
4166 struct device
*rdev_get_dev(struct regulator_dev
*rdev
)
4170 EXPORT_SYMBOL_GPL(rdev_get_dev
);
4172 void *regulator_get_init_drvdata(struct regulator_init_data
*reg_init_data
)
4174 return reg_init_data
->driver_data
;
4176 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata
);
4178 #ifdef CONFIG_DEBUG_FS
4179 static ssize_t
supply_map_read_file(struct file
*file
, char __user
*user_buf
,
4180 size_t count
, loff_t
*ppos
)
4182 char *buf
= kmalloc(PAGE_SIZE
, GFP_KERNEL
);
4183 ssize_t len
, ret
= 0;
4184 struct regulator_map
*map
;
4189 list_for_each_entry(map
, ®ulator_map_list
, list
) {
4190 len
= snprintf(buf
+ ret
, PAGE_SIZE
- ret
,
4192 rdev_get_name(map
->regulator
), map
->dev_name
,
4196 if (ret
> PAGE_SIZE
) {
4202 ret
= simple_read_from_buffer(user_buf
, count
, ppos
, buf
, ret
);
4210 static const struct file_operations supply_map_fops
= {
4211 #ifdef CONFIG_DEBUG_FS
4212 .read
= supply_map_read_file
,
4213 .llseek
= default_llseek
,
4217 #ifdef CONFIG_DEBUG_FS
4218 struct summary_data
{
4220 struct regulator_dev
*parent
;
4224 static void regulator_summary_show_subtree(struct seq_file
*s
,
4225 struct regulator_dev
*rdev
,
4228 static int regulator_summary_show_children(struct device
*dev
, void *data
)
4230 struct regulator_dev
*rdev
= dev_to_rdev(dev
);
4231 struct summary_data
*summary_data
= data
;
4233 if (rdev
->supply
&& rdev
->supply
->rdev
== summary_data
->parent
)
4234 regulator_summary_show_subtree(summary_data
->s
, rdev
,
4235 summary_data
->level
+ 1);
4240 static void regulator_summary_show_subtree(struct seq_file
*s
,
4241 struct regulator_dev
*rdev
,
4244 struct regulation_constraints
*c
;
4245 struct regulator
*consumer
;
4246 struct summary_data summary_data
;
4251 seq_printf(s
, "%*s%-*s %3d %4d %6d ",
4253 30 - level
* 3, rdev_get_name(rdev
),
4254 rdev
->use_count
, rdev
->open_count
, rdev
->bypass_count
);
4256 seq_printf(s
, "%5dmV ", _regulator_get_voltage(rdev
) / 1000);
4257 seq_printf(s
, "%5dmA ", _regulator_get_current_limit(rdev
) / 1000);
4259 c
= rdev
->constraints
;
4261 switch (rdev
->desc
->type
) {
4262 case REGULATOR_VOLTAGE
:
4263 seq_printf(s
, "%5dmV %5dmV ",
4264 c
->min_uV
/ 1000, c
->max_uV
/ 1000);
4266 case REGULATOR_CURRENT
:
4267 seq_printf(s
, "%5dmA %5dmA ",
4268 c
->min_uA
/ 1000, c
->max_uA
/ 1000);
4275 list_for_each_entry(consumer
, &rdev
->consumer_list
, list
) {
4276 if (consumer
->dev
->class == ®ulator_class
)
4279 seq_printf(s
, "%*s%-*s ",
4280 (level
+ 1) * 3 + 1, "",
4281 30 - (level
+ 1) * 3, dev_name(consumer
->dev
));
4283 switch (rdev
->desc
->type
) {
4284 case REGULATOR_VOLTAGE
:
4285 seq_printf(s
, "%37dmV %5dmV",
4286 consumer
->min_uV
/ 1000,
4287 consumer
->max_uV
/ 1000);
4289 case REGULATOR_CURRENT
:
4297 summary_data
.level
= level
;
4298 summary_data
.parent
= rdev
;
4300 class_for_each_device(®ulator_class
, NULL
, &summary_data
,
4301 regulator_summary_show_children
);
4304 static int regulator_summary_show_roots(struct device
*dev
, void *data
)
4306 struct regulator_dev
*rdev
= dev_to_rdev(dev
);
4307 struct seq_file
*s
= data
;
4310 regulator_summary_show_subtree(s
, rdev
, 0);
4315 static int regulator_summary_show(struct seq_file
*s
, void *data
)
4317 seq_puts(s
, " regulator use open bypass voltage current min max\n");
4318 seq_puts(s
, "-------------------------------------------------------------------------------\n");
4320 class_for_each_device(®ulator_class
, NULL
, s
,
4321 regulator_summary_show_roots
);
4326 static int regulator_summary_open(struct inode
*inode
, struct file
*file
)
4328 return single_open(file
, regulator_summary_show
, inode
->i_private
);
4332 static const struct file_operations regulator_summary_fops
= {
4333 #ifdef CONFIG_DEBUG_FS
4334 .open
= regulator_summary_open
,
4336 .llseek
= seq_lseek
,
4337 .release
= single_release
,
4341 static int __init
regulator_init(void)
4345 ret
= class_register(®ulator_class
);
4347 debugfs_root
= debugfs_create_dir("regulator", NULL
);
4349 pr_warn("regulator: Failed to create debugfs directory\n");
4351 debugfs_create_file("supply_map", 0444, debugfs_root
, NULL
,
4354 debugfs_create_file("regulator_summary", 0444, debugfs_root
,
4355 NULL
, ®ulator_summary_fops
);
4357 regulator_dummy_init();
4362 /* init early to allow our consumers to complete system booting */
4363 core_initcall(regulator_init
);
4365 static int __init
regulator_late_cleanup(struct device
*dev
, void *data
)
4367 struct regulator_dev
*rdev
= dev_to_rdev(dev
);
4368 const struct regulator_ops
*ops
= rdev
->desc
->ops
;
4369 struct regulation_constraints
*c
= rdev
->constraints
;
4372 if (c
&& c
->always_on
)
4375 if (c
&& !(c
->valid_ops_mask
& REGULATOR_CHANGE_STATUS
))
4378 mutex_lock(&rdev
->mutex
);
4380 if (rdev
->use_count
)
4383 /* If we can't read the status assume it's on. */
4384 if (ops
->is_enabled
)
4385 enabled
= ops
->is_enabled(rdev
);
4392 if (have_full_constraints()) {
4393 /* We log since this may kill the system if it goes
4395 rdev_info(rdev
, "disabling\n");
4396 ret
= _regulator_do_disable(rdev
);
4398 rdev_err(rdev
, "couldn't disable: %d\n", ret
);
4400 /* The intention is that in future we will
4401 * assume that full constraints are provided
4402 * so warn even if we aren't going to do
4405 rdev_warn(rdev
, "incomplete constraints, leaving on\n");
4409 mutex_unlock(&rdev
->mutex
);
4414 static int __init
regulator_init_complete(void)
4417 * Since DT doesn't provide an idiomatic mechanism for
4418 * enabling full constraints and since it's much more natural
4419 * with DT to provide them just assume that a DT enabled
4420 * system has full constraints.
4422 if (of_have_populated_dt())
4423 has_full_constraints
= true;
4425 /* If we have a full configuration then disable any regulators
4426 * we have permission to change the status for and which are
4427 * not in use or always_on. This is effectively the default
4428 * for DT and ACPI as they have full constraints.
4430 class_for_each_device(®ulator_class
, NULL
, NULL
,
4431 regulator_late_cleanup
);
4435 late_initcall_sync(regulator_init_complete
);