1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * Procedures for maintaining information about logical memory blocks.
5 * Peter Bergner, IBM Corp. June 2001.
6 * Copyright (C) 2001 Peter Bergner.
9 #include <linux/kernel.h>
10 #include <linux/slab.h>
11 #include <linux/init.h>
12 #include <linux/bitops.h>
13 #include <linux/poison.h>
14 #include <linux/pfn.h>
15 #include <linux/debugfs.h>
16 #include <linux/kmemleak.h>
17 #include <linux/seq_file.h>
18 #include <linux/memblock.h>
20 #include <asm/sections.h>
25 #define INIT_MEMBLOCK_REGIONS 128
26 #define INIT_PHYSMEM_REGIONS 4
28 #ifndef INIT_MEMBLOCK_RESERVED_REGIONS
29 # define INIT_MEMBLOCK_RESERVED_REGIONS INIT_MEMBLOCK_REGIONS
33 * DOC: memblock overview
35 * Memblock is a method of managing memory regions during the early
36 * boot period when the usual kernel memory allocators are not up and
39 * Memblock views the system memory as collections of contiguous
40 * regions. There are several types of these collections:
42 * * ``memory`` - describes the physical memory available to the
43 * kernel; this may differ from the actual physical memory installed
44 * in the system, for instance when the memory is restricted with
45 * ``mem=`` command line parameter
46 * * ``reserved`` - describes the regions that were allocated
47 * * ``physmem`` - describes the actual physical memory available during
48 * boot regardless of the possible restrictions and memory hot(un)plug;
49 * the ``physmem`` type is only available on some architectures.
51 * Each region is represented by :c:type:`struct memblock_region` that
52 * defines the region extents, its attributes and NUMA node id on NUMA
53 * systems. Every memory type is described by the :c:type:`struct
54 * memblock_type` which contains an array of memory regions along with
55 * the allocator metadata. The "memory" and "reserved" types are nicely
56 * wrapped with :c:type:`struct memblock`. This structure is statically
57 * initialized at build time. The region arrays are initially sized to
58 * %INIT_MEMBLOCK_REGIONS for "memory" and %INIT_MEMBLOCK_RESERVED_REGIONS
59 * for "reserved". The region array for "physmem" is initially sized to
60 * %INIT_PHYSMEM_REGIONS.
61 * The memblock_allow_resize() enables automatic resizing of the region
62 * arrays during addition of new regions. This feature should be used
63 * with care so that memory allocated for the region array will not
64 * overlap with areas that should be reserved, for example initrd.
66 * The early architecture setup should tell memblock what the physical
67 * memory layout is by using memblock_add() or memblock_add_node()
68 * functions. The first function does not assign the region to a NUMA
69 * node and it is appropriate for UMA systems. Yet, it is possible to
70 * use it on NUMA systems as well and assign the region to a NUMA node
71 * later in the setup process using memblock_set_node(). The
72 * memblock_add_node() performs such an assignment directly.
74 * Once memblock is setup the memory can be allocated using one of the
77 * * memblock_phys_alloc*() - these functions return the **physical**
78 * address of the allocated memory
79 * * memblock_alloc*() - these functions return the **virtual** address
80 * of the allocated memory.
82 * Note, that both API variants use implicit assumptions about allowed
83 * memory ranges and the fallback methods. Consult the documentation
84 * of memblock_alloc_internal() and memblock_alloc_range_nid()
85 * functions for more elaborate description.
87 * As the system boot progresses, the architecture specific mem_init()
88 * function frees all the memory to the buddy page allocator.
90 * Unless an architecture enables %CONFIG_ARCH_KEEP_MEMBLOCK, the
91 * memblock data structures (except "physmem") will be discarded after the
92 * system initialization completes.
95 #ifndef CONFIG_NEED_MULTIPLE_NODES
96 struct pglist_data __refdata contig_page_data
;
97 EXPORT_SYMBOL(contig_page_data
);
100 unsigned long max_low_pfn
;
101 unsigned long min_low_pfn
;
102 unsigned long max_pfn
;
103 unsigned long long max_possible_pfn
;
105 static struct memblock_region memblock_memory_init_regions
[INIT_MEMBLOCK_REGIONS
] __initdata_memblock
;
106 static struct memblock_region memblock_reserved_init_regions
[INIT_MEMBLOCK_RESERVED_REGIONS
] __initdata_memblock
;
107 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
108 static struct memblock_region memblock_physmem_init_regions
[INIT_PHYSMEM_REGIONS
];
111 struct memblock memblock __initdata_memblock
= {
112 .memory
.regions
= memblock_memory_init_regions
,
113 .memory
.cnt
= 1, /* empty dummy entry */
114 .memory
.max
= INIT_MEMBLOCK_REGIONS
,
115 .memory
.name
= "memory",
117 .reserved
.regions
= memblock_reserved_init_regions
,
118 .reserved
.cnt
= 1, /* empty dummy entry */
119 .reserved
.max
= INIT_MEMBLOCK_RESERVED_REGIONS
,
120 .reserved
.name
= "reserved",
123 .current_limit
= MEMBLOCK_ALLOC_ANYWHERE
,
126 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
127 struct memblock_type physmem
= {
128 .regions
= memblock_physmem_init_regions
,
129 .cnt
= 1, /* empty dummy entry */
130 .max
= INIT_PHYSMEM_REGIONS
,
135 int memblock_debug __initdata_memblock
;
136 static bool system_has_some_mirror __initdata_memblock
= false;
137 static int memblock_can_resize __initdata_memblock
;
138 static int memblock_memory_in_slab __initdata_memblock
= 0;
139 static int memblock_reserved_in_slab __initdata_memblock
= 0;
141 static enum memblock_flags __init_memblock
choose_memblock_flags(void)
143 return system_has_some_mirror
? MEMBLOCK_MIRROR
: MEMBLOCK_NONE
;
146 /* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
147 static inline phys_addr_t
memblock_cap_size(phys_addr_t base
, phys_addr_t
*size
)
149 return *size
= min(*size
, PHYS_ADDR_MAX
- base
);
153 * Address comparison utilities
155 static unsigned long __init_memblock
memblock_addrs_overlap(phys_addr_t base1
, phys_addr_t size1
,
156 phys_addr_t base2
, phys_addr_t size2
)
158 return ((base1
< (base2
+ size2
)) && (base2
< (base1
+ size1
)));
161 bool __init_memblock
memblock_overlaps_region(struct memblock_type
*type
,
162 phys_addr_t base
, phys_addr_t size
)
166 for (i
= 0; i
< type
->cnt
; i
++)
167 if (memblock_addrs_overlap(base
, size
, type
->regions
[i
].base
,
168 type
->regions
[i
].size
))
170 return i
< type
->cnt
;
174 * __memblock_find_range_bottom_up - find free area utility in bottom-up
175 * @start: start of candidate range
176 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
177 * %MEMBLOCK_ALLOC_ACCESSIBLE
178 * @size: size of free area to find
179 * @align: alignment of free area to find
180 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
181 * @flags: pick from blocks based on memory attributes
183 * Utility called from memblock_find_in_range_node(), find free area bottom-up.
186 * Found address on success, 0 on failure.
188 static phys_addr_t __init_memblock
189 __memblock_find_range_bottom_up(phys_addr_t start
, phys_addr_t end
,
190 phys_addr_t size
, phys_addr_t align
, int nid
,
191 enum memblock_flags flags
)
193 phys_addr_t this_start
, this_end
, cand
;
196 for_each_free_mem_range(i
, nid
, flags
, &this_start
, &this_end
, NULL
) {
197 this_start
= clamp(this_start
, start
, end
);
198 this_end
= clamp(this_end
, start
, end
);
200 cand
= round_up(this_start
, align
);
201 if (cand
< this_end
&& this_end
- cand
>= size
)
209 * __memblock_find_range_top_down - find free area utility, in top-down
210 * @start: start of candidate range
211 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
212 * %MEMBLOCK_ALLOC_ACCESSIBLE
213 * @size: size of free area to find
214 * @align: alignment of free area to find
215 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
216 * @flags: pick from blocks based on memory attributes
218 * Utility called from memblock_find_in_range_node(), find free area top-down.
221 * Found address on success, 0 on failure.
223 static phys_addr_t __init_memblock
224 __memblock_find_range_top_down(phys_addr_t start
, phys_addr_t end
,
225 phys_addr_t size
, phys_addr_t align
, int nid
,
226 enum memblock_flags flags
)
228 phys_addr_t this_start
, this_end
, cand
;
231 for_each_free_mem_range_reverse(i
, nid
, flags
, &this_start
, &this_end
,
233 this_start
= clamp(this_start
, start
, end
);
234 this_end
= clamp(this_end
, start
, end
);
239 cand
= round_down(this_end
- size
, align
);
240 if (cand
>= this_start
)
248 * memblock_find_in_range_node - find free area in given range and node
249 * @size: size of free area to find
250 * @align: alignment of free area to find
251 * @start: start of candidate range
252 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
253 * %MEMBLOCK_ALLOC_ACCESSIBLE
254 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
255 * @flags: pick from blocks based on memory attributes
257 * Find @size free area aligned to @align in the specified range and node.
259 * When allocation direction is bottom-up, the @start should be greater
260 * than the end of the kernel image. Otherwise, it will be trimmed. The
261 * reason is that we want the bottom-up allocation just near the kernel
262 * image so it is highly likely that the allocated memory and the kernel
263 * will reside in the same node.
265 * If bottom-up allocation failed, will try to allocate memory top-down.
268 * Found address on success, 0 on failure.
270 static phys_addr_t __init_memblock
memblock_find_in_range_node(phys_addr_t size
,
271 phys_addr_t align
, phys_addr_t start
,
272 phys_addr_t end
, int nid
,
273 enum memblock_flags flags
)
275 phys_addr_t kernel_end
, ret
;
278 if (end
== MEMBLOCK_ALLOC_ACCESSIBLE
||
279 end
== MEMBLOCK_ALLOC_KASAN
)
280 end
= memblock
.current_limit
;
282 /* avoid allocating the first page */
283 start
= max_t(phys_addr_t
, start
, PAGE_SIZE
);
284 end
= max(start
, end
);
285 kernel_end
= __pa_symbol(_end
);
288 * try bottom-up allocation only when bottom-up mode
289 * is set and @end is above the kernel image.
291 if (memblock_bottom_up() && end
> kernel_end
) {
292 phys_addr_t bottom_up_start
;
294 /* make sure we will allocate above the kernel */
295 bottom_up_start
= max(start
, kernel_end
);
297 /* ok, try bottom-up allocation first */
298 ret
= __memblock_find_range_bottom_up(bottom_up_start
, end
,
299 size
, align
, nid
, flags
);
304 * we always limit bottom-up allocation above the kernel,
305 * but top-down allocation doesn't have the limit, so
306 * retrying top-down allocation may succeed when bottom-up
309 * bottom-up allocation is expected to be fail very rarely,
310 * so we use WARN_ONCE() here to see the stack trace if
313 WARN_ONCE(IS_ENABLED(CONFIG_MEMORY_HOTREMOVE
),
314 "memblock: bottom-up allocation failed, memory hotremove may be affected\n");
317 return __memblock_find_range_top_down(start
, end
, size
, align
, nid
,
322 * memblock_find_in_range - find free area in given range
323 * @start: start of candidate range
324 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
325 * %MEMBLOCK_ALLOC_ACCESSIBLE
326 * @size: size of free area to find
327 * @align: alignment of free area to find
329 * Find @size free area aligned to @align in the specified range.
332 * Found address on success, 0 on failure.
334 phys_addr_t __init_memblock
memblock_find_in_range(phys_addr_t start
,
335 phys_addr_t end
, phys_addr_t size
,
339 enum memblock_flags flags
= choose_memblock_flags();
342 ret
= memblock_find_in_range_node(size
, align
, start
, end
,
343 NUMA_NO_NODE
, flags
);
345 if (!ret
&& (flags
& MEMBLOCK_MIRROR
)) {
346 pr_warn("Could not allocate %pap bytes of mirrored memory\n",
348 flags
&= ~MEMBLOCK_MIRROR
;
355 static void __init_memblock
memblock_remove_region(struct memblock_type
*type
, unsigned long r
)
357 type
->total_size
-= type
->regions
[r
].size
;
358 memmove(&type
->regions
[r
], &type
->regions
[r
+ 1],
359 (type
->cnt
- (r
+ 1)) * sizeof(type
->regions
[r
]));
362 /* Special case for empty arrays */
363 if (type
->cnt
== 0) {
364 WARN_ON(type
->total_size
!= 0);
366 type
->regions
[0].base
= 0;
367 type
->regions
[0].size
= 0;
368 type
->regions
[0].flags
= 0;
369 memblock_set_region_node(&type
->regions
[0], MAX_NUMNODES
);
373 #ifndef CONFIG_ARCH_KEEP_MEMBLOCK
375 * memblock_discard - discard memory and reserved arrays if they were allocated
377 void __init
memblock_discard(void)
379 phys_addr_t addr
, size
;
381 if (memblock
.reserved
.regions
!= memblock_reserved_init_regions
) {
382 addr
= __pa(memblock
.reserved
.regions
);
383 size
= PAGE_ALIGN(sizeof(struct memblock_region
) *
384 memblock
.reserved
.max
);
385 __memblock_free_late(addr
, size
);
388 if (memblock
.memory
.regions
!= memblock_memory_init_regions
) {
389 addr
= __pa(memblock
.memory
.regions
);
390 size
= PAGE_ALIGN(sizeof(struct memblock_region
) *
391 memblock
.memory
.max
);
392 __memblock_free_late(addr
, size
);
398 * memblock_double_array - double the size of the memblock regions array
399 * @type: memblock type of the regions array being doubled
400 * @new_area_start: starting address of memory range to avoid overlap with
401 * @new_area_size: size of memory range to avoid overlap with
403 * Double the size of the @type regions array. If memblock is being used to
404 * allocate memory for a new reserved regions array and there is a previously
405 * allocated memory range [@new_area_start, @new_area_start + @new_area_size]
406 * waiting to be reserved, ensure the memory used by the new array does
410 * 0 on success, -1 on failure.
412 static int __init_memblock
memblock_double_array(struct memblock_type
*type
,
413 phys_addr_t new_area_start
,
414 phys_addr_t new_area_size
)
416 struct memblock_region
*new_array
, *old_array
;
417 phys_addr_t old_alloc_size
, new_alloc_size
;
418 phys_addr_t old_size
, new_size
, addr
, new_end
;
419 int use_slab
= slab_is_available();
422 /* We don't allow resizing until we know about the reserved regions
423 * of memory that aren't suitable for allocation
425 if (!memblock_can_resize
)
428 /* Calculate new doubled size */
429 old_size
= type
->max
* sizeof(struct memblock_region
);
430 new_size
= old_size
<< 1;
432 * We need to allocated new one align to PAGE_SIZE,
433 * so we can free them completely later.
435 old_alloc_size
= PAGE_ALIGN(old_size
);
436 new_alloc_size
= PAGE_ALIGN(new_size
);
438 /* Retrieve the slab flag */
439 if (type
== &memblock
.memory
)
440 in_slab
= &memblock_memory_in_slab
;
442 in_slab
= &memblock_reserved_in_slab
;
444 /* Try to find some space for it */
446 new_array
= kmalloc(new_size
, GFP_KERNEL
);
447 addr
= new_array
? __pa(new_array
) : 0;
449 /* only exclude range when trying to double reserved.regions */
450 if (type
!= &memblock
.reserved
)
451 new_area_start
= new_area_size
= 0;
453 addr
= memblock_find_in_range(new_area_start
+ new_area_size
,
454 memblock
.current_limit
,
455 new_alloc_size
, PAGE_SIZE
);
456 if (!addr
&& new_area_size
)
457 addr
= memblock_find_in_range(0,
458 min(new_area_start
, memblock
.current_limit
),
459 new_alloc_size
, PAGE_SIZE
);
461 new_array
= addr
? __va(addr
) : NULL
;
464 pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
465 type
->name
, type
->max
, type
->max
* 2);
469 new_end
= addr
+ new_size
- 1;
470 memblock_dbg("memblock: %s is doubled to %ld at [%pa-%pa]",
471 type
->name
, type
->max
* 2, &addr
, &new_end
);
474 * Found space, we now need to move the array over before we add the
475 * reserved region since it may be our reserved array itself that is
478 memcpy(new_array
, type
->regions
, old_size
);
479 memset(new_array
+ type
->max
, 0, old_size
);
480 old_array
= type
->regions
;
481 type
->regions
= new_array
;
484 /* Free old array. We needn't free it if the array is the static one */
487 else if (old_array
!= memblock_memory_init_regions
&&
488 old_array
!= memblock_reserved_init_regions
)
489 memblock_free(__pa(old_array
), old_alloc_size
);
492 * Reserve the new array if that comes from the memblock. Otherwise, we
496 BUG_ON(memblock_reserve(addr
, new_alloc_size
));
498 /* Update slab flag */
505 * memblock_merge_regions - merge neighboring compatible regions
506 * @type: memblock type to scan
508 * Scan @type and merge neighboring compatible regions.
510 static void __init_memblock
memblock_merge_regions(struct memblock_type
*type
)
514 /* cnt never goes below 1 */
515 while (i
< type
->cnt
- 1) {
516 struct memblock_region
*this = &type
->regions
[i
];
517 struct memblock_region
*next
= &type
->regions
[i
+ 1];
519 if (this->base
+ this->size
!= next
->base
||
520 memblock_get_region_node(this) !=
521 memblock_get_region_node(next
) ||
522 this->flags
!= next
->flags
) {
523 BUG_ON(this->base
+ this->size
> next
->base
);
528 this->size
+= next
->size
;
529 /* move forward from next + 1, index of which is i + 2 */
530 memmove(next
, next
+ 1, (type
->cnt
- (i
+ 2)) * sizeof(*next
));
536 * memblock_insert_region - insert new memblock region
537 * @type: memblock type to insert into
538 * @idx: index for the insertion point
539 * @base: base address of the new region
540 * @size: size of the new region
541 * @nid: node id of the new region
542 * @flags: flags of the new region
544 * Insert new memblock region [@base, @base + @size) into @type at @idx.
545 * @type must already have extra room to accommodate the new region.
547 static void __init_memblock
memblock_insert_region(struct memblock_type
*type
,
548 int idx
, phys_addr_t base
,
551 enum memblock_flags flags
)
553 struct memblock_region
*rgn
= &type
->regions
[idx
];
555 BUG_ON(type
->cnt
>= type
->max
);
556 memmove(rgn
+ 1, rgn
, (type
->cnt
- idx
) * sizeof(*rgn
));
560 memblock_set_region_node(rgn
, nid
);
562 type
->total_size
+= size
;
566 * memblock_add_range - add new memblock region
567 * @type: memblock type to add new region into
568 * @base: base address of the new region
569 * @size: size of the new region
570 * @nid: nid of the new region
571 * @flags: flags of the new region
573 * Add new memblock region [@base, @base + @size) into @type. The new region
574 * is allowed to overlap with existing ones - overlaps don't affect already
575 * existing regions. @type is guaranteed to be minimal (all neighbouring
576 * compatible regions are merged) after the addition.
579 * 0 on success, -errno on failure.
581 static int __init_memblock
memblock_add_range(struct memblock_type
*type
,
582 phys_addr_t base
, phys_addr_t size
,
583 int nid
, enum memblock_flags flags
)
586 phys_addr_t obase
= base
;
587 phys_addr_t end
= base
+ memblock_cap_size(base
, &size
);
589 struct memblock_region
*rgn
;
594 /* special case for empty array */
595 if (type
->regions
[0].size
== 0) {
596 WARN_ON(type
->cnt
!= 1 || type
->total_size
);
597 type
->regions
[0].base
= base
;
598 type
->regions
[0].size
= size
;
599 type
->regions
[0].flags
= flags
;
600 memblock_set_region_node(&type
->regions
[0], nid
);
601 type
->total_size
= size
;
606 * The following is executed twice. Once with %false @insert and
607 * then with %true. The first counts the number of regions needed
608 * to accommodate the new area. The second actually inserts them.
613 for_each_memblock_type(idx
, type
, rgn
) {
614 phys_addr_t rbase
= rgn
->base
;
615 phys_addr_t rend
= rbase
+ rgn
->size
;
622 * @rgn overlaps. If it separates the lower part of new
623 * area, insert that portion.
626 #ifdef CONFIG_NEED_MULTIPLE_NODES
627 WARN_ON(nid
!= memblock_get_region_node(rgn
));
629 WARN_ON(flags
!= rgn
->flags
);
632 memblock_insert_region(type
, idx
++, base
,
636 /* area below @rend is dealt with, forget about it */
637 base
= min(rend
, end
);
640 /* insert the remaining portion */
644 memblock_insert_region(type
, idx
, base
, end
- base
,
652 * If this was the first round, resize array and repeat for actual
653 * insertions; otherwise, merge and return.
656 while (type
->cnt
+ nr_new
> type
->max
)
657 if (memblock_double_array(type
, obase
, size
) < 0)
662 memblock_merge_regions(type
);
668 * memblock_add_node - add new memblock region within a NUMA node
669 * @base: base address of the new region
670 * @size: size of the new region
671 * @nid: nid of the new region
673 * Add new memblock region [@base, @base + @size) to the "memory"
674 * type. See memblock_add_range() description for mode details
677 * 0 on success, -errno on failure.
679 int __init_memblock
memblock_add_node(phys_addr_t base
, phys_addr_t size
,
682 return memblock_add_range(&memblock
.memory
, base
, size
, nid
, 0);
686 * memblock_add - add new memblock region
687 * @base: base address of the new region
688 * @size: size of the new region
690 * Add new memblock region [@base, @base + @size) to the "memory"
691 * type. See memblock_add_range() description for mode details
694 * 0 on success, -errno on failure.
696 int __init_memblock
memblock_add(phys_addr_t base
, phys_addr_t size
)
698 phys_addr_t end
= base
+ size
- 1;
700 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__
,
701 &base
, &end
, (void *)_RET_IP_
);
703 return memblock_add_range(&memblock
.memory
, base
, size
, MAX_NUMNODES
, 0);
707 * memblock_isolate_range - isolate given range into disjoint memblocks
708 * @type: memblock type to isolate range for
709 * @base: base of range to isolate
710 * @size: size of range to isolate
711 * @start_rgn: out parameter for the start of isolated region
712 * @end_rgn: out parameter for the end of isolated region
714 * Walk @type and ensure that regions don't cross the boundaries defined by
715 * [@base, @base + @size). Crossing regions are split at the boundaries,
716 * which may create at most two more regions. The index of the first
717 * region inside the range is returned in *@start_rgn and end in *@end_rgn.
720 * 0 on success, -errno on failure.
722 static int __init_memblock
memblock_isolate_range(struct memblock_type
*type
,
723 phys_addr_t base
, phys_addr_t size
,
724 int *start_rgn
, int *end_rgn
)
726 phys_addr_t end
= base
+ memblock_cap_size(base
, &size
);
728 struct memblock_region
*rgn
;
730 *start_rgn
= *end_rgn
= 0;
735 /* we'll create at most two more regions */
736 while (type
->cnt
+ 2 > type
->max
)
737 if (memblock_double_array(type
, base
, size
) < 0)
740 for_each_memblock_type(idx
, type
, rgn
) {
741 phys_addr_t rbase
= rgn
->base
;
742 phys_addr_t rend
= rbase
+ rgn
->size
;
751 * @rgn intersects from below. Split and continue
752 * to process the next region - the new top half.
755 rgn
->size
-= base
- rbase
;
756 type
->total_size
-= base
- rbase
;
757 memblock_insert_region(type
, idx
, rbase
, base
- rbase
,
758 memblock_get_region_node(rgn
),
760 } else if (rend
> end
) {
762 * @rgn intersects from above. Split and redo the
763 * current region - the new bottom half.
766 rgn
->size
-= end
- rbase
;
767 type
->total_size
-= end
- rbase
;
768 memblock_insert_region(type
, idx
--, rbase
, end
- rbase
,
769 memblock_get_region_node(rgn
),
772 /* @rgn is fully contained, record it */
782 static int __init_memblock
memblock_remove_range(struct memblock_type
*type
,
783 phys_addr_t base
, phys_addr_t size
)
785 int start_rgn
, end_rgn
;
788 ret
= memblock_isolate_range(type
, base
, size
, &start_rgn
, &end_rgn
);
792 for (i
= end_rgn
- 1; i
>= start_rgn
; i
--)
793 memblock_remove_region(type
, i
);
797 int __init_memblock
memblock_remove(phys_addr_t base
, phys_addr_t size
)
799 phys_addr_t end
= base
+ size
- 1;
801 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__
,
802 &base
, &end
, (void *)_RET_IP_
);
804 return memblock_remove_range(&memblock
.memory
, base
, size
);
808 * memblock_free - free boot memory block
809 * @base: phys starting address of the boot memory block
810 * @size: size of the boot memory block in bytes
812 * Free boot memory block previously allocated by memblock_alloc_xx() API.
813 * The freeing memory will not be released to the buddy allocator.
815 int __init_memblock
memblock_free(phys_addr_t base
, phys_addr_t size
)
817 phys_addr_t end
= base
+ size
- 1;
819 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__
,
820 &base
, &end
, (void *)_RET_IP_
);
822 kmemleak_free_part_phys(base
, size
);
823 return memblock_remove_range(&memblock
.reserved
, base
, size
);
826 int __init_memblock
memblock_reserve(phys_addr_t base
, phys_addr_t size
)
828 phys_addr_t end
= base
+ size
- 1;
830 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__
,
831 &base
, &end
, (void *)_RET_IP_
);
833 return memblock_add_range(&memblock
.reserved
, base
, size
, MAX_NUMNODES
, 0);
836 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
837 int __init_memblock
memblock_physmem_add(phys_addr_t base
, phys_addr_t size
)
839 phys_addr_t end
= base
+ size
- 1;
841 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__
,
842 &base
, &end
, (void *)_RET_IP_
);
844 return memblock_add_range(&physmem
, base
, size
, MAX_NUMNODES
, 0);
849 * memblock_setclr_flag - set or clear flag for a memory region
850 * @base: base address of the region
851 * @size: size of the region
852 * @set: set or clear the flag
853 * @flag: the flag to udpate
855 * This function isolates region [@base, @base + @size), and sets/clears flag
857 * Return: 0 on success, -errno on failure.
859 static int __init_memblock
memblock_setclr_flag(phys_addr_t base
,
860 phys_addr_t size
, int set
, int flag
)
862 struct memblock_type
*type
= &memblock
.memory
;
863 int i
, ret
, start_rgn
, end_rgn
;
865 ret
= memblock_isolate_range(type
, base
, size
, &start_rgn
, &end_rgn
);
869 for (i
= start_rgn
; i
< end_rgn
; i
++) {
870 struct memblock_region
*r
= &type
->regions
[i
];
878 memblock_merge_regions(type
);
883 * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
884 * @base: the base phys addr of the region
885 * @size: the size of the region
887 * Return: 0 on success, -errno on failure.
889 int __init_memblock
memblock_mark_hotplug(phys_addr_t base
, phys_addr_t size
)
891 return memblock_setclr_flag(base
, size
, 1, MEMBLOCK_HOTPLUG
);
895 * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
896 * @base: the base phys addr of the region
897 * @size: the size of the region
899 * Return: 0 on success, -errno on failure.
901 int __init_memblock
memblock_clear_hotplug(phys_addr_t base
, phys_addr_t size
)
903 return memblock_setclr_flag(base
, size
, 0, MEMBLOCK_HOTPLUG
);
907 * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR.
908 * @base: the base phys addr of the region
909 * @size: the size of the region
911 * Return: 0 on success, -errno on failure.
913 int __init_memblock
memblock_mark_mirror(phys_addr_t base
, phys_addr_t size
)
915 system_has_some_mirror
= true;
917 return memblock_setclr_flag(base
, size
, 1, MEMBLOCK_MIRROR
);
921 * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP.
922 * @base: the base phys addr of the region
923 * @size: the size of the region
925 * Return: 0 on success, -errno on failure.
927 int __init_memblock
memblock_mark_nomap(phys_addr_t base
, phys_addr_t size
)
929 return memblock_setclr_flag(base
, size
, 1, MEMBLOCK_NOMAP
);
933 * memblock_clear_nomap - Clear flag MEMBLOCK_NOMAP for a specified region.
934 * @base: the base phys addr of the region
935 * @size: the size of the region
937 * Return: 0 on success, -errno on failure.
939 int __init_memblock
memblock_clear_nomap(phys_addr_t base
, phys_addr_t size
)
941 return memblock_setclr_flag(base
, size
, 0, MEMBLOCK_NOMAP
);
945 * __next_reserved_mem_region - next function for for_each_reserved_region()
946 * @idx: pointer to u64 loop variable
947 * @out_start: ptr to phys_addr_t for start address of the region, can be %NULL
948 * @out_end: ptr to phys_addr_t for end address of the region, can be %NULL
950 * Iterate over all reserved memory regions.
952 void __init_memblock
__next_reserved_mem_region(u64
*idx
,
953 phys_addr_t
*out_start
,
954 phys_addr_t
*out_end
)
956 struct memblock_type
*type
= &memblock
.reserved
;
958 if (*idx
< type
->cnt
) {
959 struct memblock_region
*r
= &type
->regions
[*idx
];
960 phys_addr_t base
= r
->base
;
961 phys_addr_t size
= r
->size
;
966 *out_end
= base
+ size
- 1;
972 /* signal end of iteration */
976 static bool should_skip_region(struct memblock_region
*m
, int nid
, int flags
)
978 int m_nid
= memblock_get_region_node(m
);
980 /* only memory regions are associated with nodes, check it */
981 if (nid
!= NUMA_NO_NODE
&& nid
!= m_nid
)
984 /* skip hotpluggable memory regions if needed */
985 if (movable_node_is_enabled() && memblock_is_hotpluggable(m
))
988 /* if we want mirror memory skip non-mirror memory regions */
989 if ((flags
& MEMBLOCK_MIRROR
) && !memblock_is_mirror(m
))
992 /* skip nomap memory unless we were asked for it explicitly */
993 if (!(flags
& MEMBLOCK_NOMAP
) && memblock_is_nomap(m
))
1000 * __next_mem_range - next function for for_each_free_mem_range() etc.
1001 * @idx: pointer to u64 loop variable
1002 * @nid: node selector, %NUMA_NO_NODE for all nodes
1003 * @flags: pick from blocks based on memory attributes
1004 * @type_a: pointer to memblock_type from where the range is taken
1005 * @type_b: pointer to memblock_type which excludes memory from being taken
1006 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
1007 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
1008 * @out_nid: ptr to int for nid of the range, can be %NULL
1010 * Find the first area from *@idx which matches @nid, fill the out
1011 * parameters, and update *@idx for the next iteration. The lower 32bit of
1012 * *@idx contains index into type_a and the upper 32bit indexes the
1013 * areas before each region in type_b. For example, if type_b regions
1014 * look like the following,
1016 * 0:[0-16), 1:[32-48), 2:[128-130)
1018 * The upper 32bit indexes the following regions.
1020 * 0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
1022 * As both region arrays are sorted, the function advances the two indices
1023 * in lockstep and returns each intersection.
1025 void __next_mem_range(u64
*idx
, int nid
, enum memblock_flags flags
,
1026 struct memblock_type
*type_a
,
1027 struct memblock_type
*type_b
, phys_addr_t
*out_start
,
1028 phys_addr_t
*out_end
, int *out_nid
)
1030 int idx_a
= *idx
& 0xffffffff;
1031 int idx_b
= *idx
>> 32;
1033 if (WARN_ONCE(nid
== MAX_NUMNODES
,
1034 "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1037 for (; idx_a
< type_a
->cnt
; idx_a
++) {
1038 struct memblock_region
*m
= &type_a
->regions
[idx_a
];
1040 phys_addr_t m_start
= m
->base
;
1041 phys_addr_t m_end
= m
->base
+ m
->size
;
1042 int m_nid
= memblock_get_region_node(m
);
1044 if (should_skip_region(m
, nid
, flags
))
1049 *out_start
= m_start
;
1055 *idx
= (u32
)idx_a
| (u64
)idx_b
<< 32;
1059 /* scan areas before each reservation */
1060 for (; idx_b
< type_b
->cnt
+ 1; idx_b
++) {
1061 struct memblock_region
*r
;
1062 phys_addr_t r_start
;
1065 r
= &type_b
->regions
[idx_b
];
1066 r_start
= idx_b
? r
[-1].base
+ r
[-1].size
: 0;
1067 r_end
= idx_b
< type_b
->cnt
?
1068 r
->base
: PHYS_ADDR_MAX
;
1071 * if idx_b advanced past idx_a,
1072 * break out to advance idx_a
1074 if (r_start
>= m_end
)
1076 /* if the two regions intersect, we're done */
1077 if (m_start
< r_end
) {
1080 max(m_start
, r_start
);
1082 *out_end
= min(m_end
, r_end
);
1086 * The region which ends first is
1087 * advanced for the next iteration.
1093 *idx
= (u32
)idx_a
| (u64
)idx_b
<< 32;
1099 /* signal end of iteration */
1104 * __next_mem_range_rev - generic next function for for_each_*_range_rev()
1106 * @idx: pointer to u64 loop variable
1107 * @nid: node selector, %NUMA_NO_NODE for all nodes
1108 * @flags: pick from blocks based on memory attributes
1109 * @type_a: pointer to memblock_type from where the range is taken
1110 * @type_b: pointer to memblock_type which excludes memory from being taken
1111 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
1112 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
1113 * @out_nid: ptr to int for nid of the range, can be %NULL
1115 * Finds the next range from type_a which is not marked as unsuitable
1118 * Reverse of __next_mem_range().
1120 void __init_memblock
__next_mem_range_rev(u64
*idx
, int nid
,
1121 enum memblock_flags flags
,
1122 struct memblock_type
*type_a
,
1123 struct memblock_type
*type_b
,
1124 phys_addr_t
*out_start
,
1125 phys_addr_t
*out_end
, int *out_nid
)
1127 int idx_a
= *idx
& 0xffffffff;
1128 int idx_b
= *idx
>> 32;
1130 if (WARN_ONCE(nid
== MAX_NUMNODES
, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1133 if (*idx
== (u64
)ULLONG_MAX
) {
1134 idx_a
= type_a
->cnt
- 1;
1136 idx_b
= type_b
->cnt
;
1141 for (; idx_a
>= 0; idx_a
--) {
1142 struct memblock_region
*m
= &type_a
->regions
[idx_a
];
1144 phys_addr_t m_start
= m
->base
;
1145 phys_addr_t m_end
= m
->base
+ m
->size
;
1146 int m_nid
= memblock_get_region_node(m
);
1148 if (should_skip_region(m
, nid
, flags
))
1153 *out_start
= m_start
;
1159 *idx
= (u32
)idx_a
| (u64
)idx_b
<< 32;
1163 /* scan areas before each reservation */
1164 for (; idx_b
>= 0; idx_b
--) {
1165 struct memblock_region
*r
;
1166 phys_addr_t r_start
;
1169 r
= &type_b
->regions
[idx_b
];
1170 r_start
= idx_b
? r
[-1].base
+ r
[-1].size
: 0;
1171 r_end
= idx_b
< type_b
->cnt
?
1172 r
->base
: PHYS_ADDR_MAX
;
1174 * if idx_b advanced past idx_a,
1175 * break out to advance idx_a
1178 if (r_end
<= m_start
)
1180 /* if the two regions intersect, we're done */
1181 if (m_end
> r_start
) {
1183 *out_start
= max(m_start
, r_start
);
1185 *out_end
= min(m_end
, r_end
);
1188 if (m_start
>= r_start
)
1192 *idx
= (u32
)idx_a
| (u64
)idx_b
<< 32;
1197 /* signal end of iteration */
1202 * Common iterator interface used to define for_each_mem_pfn_range().
1204 void __init_memblock
__next_mem_pfn_range(int *idx
, int nid
,
1205 unsigned long *out_start_pfn
,
1206 unsigned long *out_end_pfn
, int *out_nid
)
1208 struct memblock_type
*type
= &memblock
.memory
;
1209 struct memblock_region
*r
;
1212 while (++*idx
< type
->cnt
) {
1213 r
= &type
->regions
[*idx
];
1214 r_nid
= memblock_get_region_node(r
);
1216 if (PFN_UP(r
->base
) >= PFN_DOWN(r
->base
+ r
->size
))
1218 if (nid
== MAX_NUMNODES
|| nid
== r_nid
)
1221 if (*idx
>= type
->cnt
) {
1227 *out_start_pfn
= PFN_UP(r
->base
);
1229 *out_end_pfn
= PFN_DOWN(r
->base
+ r
->size
);
1235 * memblock_set_node - set node ID on memblock regions
1236 * @base: base of area to set node ID for
1237 * @size: size of area to set node ID for
1238 * @type: memblock type to set node ID for
1239 * @nid: node ID to set
1241 * Set the nid of memblock @type regions in [@base, @base + @size) to @nid.
1242 * Regions which cross the area boundaries are split as necessary.
1245 * 0 on success, -errno on failure.
1247 int __init_memblock
memblock_set_node(phys_addr_t base
, phys_addr_t size
,
1248 struct memblock_type
*type
, int nid
)
1250 #ifdef CONFIG_NEED_MULTIPLE_NODES
1251 int start_rgn
, end_rgn
;
1254 ret
= memblock_isolate_range(type
, base
, size
, &start_rgn
, &end_rgn
);
1258 for (i
= start_rgn
; i
< end_rgn
; i
++)
1259 memblock_set_region_node(&type
->regions
[i
], nid
);
1261 memblock_merge_regions(type
);
1266 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1268 * __next_mem_pfn_range_in_zone - iterator for for_each_*_range_in_zone()
1270 * @idx: pointer to u64 loop variable
1271 * @zone: zone in which all of the memory blocks reside
1272 * @out_spfn: ptr to ulong for start pfn of the range, can be %NULL
1273 * @out_epfn: ptr to ulong for end pfn of the range, can be %NULL
1275 * This function is meant to be a zone/pfn specific wrapper for the
1276 * for_each_mem_range type iterators. Specifically they are used in the
1277 * deferred memory init routines and as such we were duplicating much of
1278 * this logic throughout the code. So instead of having it in multiple
1279 * locations it seemed like it would make more sense to centralize this to
1280 * one new iterator that does everything they need.
1282 void __init_memblock
1283 __next_mem_pfn_range_in_zone(u64
*idx
, struct zone
*zone
,
1284 unsigned long *out_spfn
, unsigned long *out_epfn
)
1286 int zone_nid
= zone_to_nid(zone
);
1287 phys_addr_t spa
, epa
;
1290 __next_mem_range(idx
, zone_nid
, MEMBLOCK_NONE
,
1291 &memblock
.memory
, &memblock
.reserved
,
1294 while (*idx
!= U64_MAX
) {
1295 unsigned long epfn
= PFN_DOWN(epa
);
1296 unsigned long spfn
= PFN_UP(spa
);
1299 * Verify the end is at least past the start of the zone and
1300 * that we have at least one PFN to initialize.
1302 if (zone
->zone_start_pfn
< epfn
&& spfn
< epfn
) {
1303 /* if we went too far just stop searching */
1304 if (zone_end_pfn(zone
) <= spfn
) {
1310 *out_spfn
= max(zone
->zone_start_pfn
, spfn
);
1312 *out_epfn
= min(zone_end_pfn(zone
), epfn
);
1317 __next_mem_range(idx
, zone_nid
, MEMBLOCK_NONE
,
1318 &memblock
.memory
, &memblock
.reserved
,
1322 /* signal end of iteration */
1324 *out_spfn
= ULONG_MAX
;
1329 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1332 * memblock_alloc_range_nid - allocate boot memory block
1333 * @size: size of memory block to be allocated in bytes
1334 * @align: alignment of the region and block's size
1335 * @start: the lower bound of the memory region to allocate (phys address)
1336 * @end: the upper bound of the memory region to allocate (phys address)
1337 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1338 * @exact_nid: control the allocation fall back to other nodes
1340 * The allocation is performed from memory region limited by
1341 * memblock.current_limit if @end == %MEMBLOCK_ALLOC_ACCESSIBLE.
1343 * If the specified node can not hold the requested memory and @exact_nid
1344 * is false, the allocation falls back to any node in the system.
1346 * For systems with memory mirroring, the allocation is attempted first
1347 * from the regions with mirroring enabled and then retried from any
1350 * In addition, function sets the min_count to 0 using kmemleak_alloc_phys for
1351 * allocated boot memory block, so that it is never reported as leaks.
1354 * Physical address of allocated memory block on success, %0 on failure.
1356 phys_addr_t __init
memblock_alloc_range_nid(phys_addr_t size
,
1357 phys_addr_t align
, phys_addr_t start
,
1358 phys_addr_t end
, int nid
,
1361 enum memblock_flags flags
= choose_memblock_flags();
1364 if (WARN_ONCE(nid
== MAX_NUMNODES
, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1368 /* Can't use WARNs this early in boot on powerpc */
1370 align
= SMP_CACHE_BYTES
;
1374 found
= memblock_find_in_range_node(size
, align
, start
, end
, nid
,
1376 if (found
&& !memblock_reserve(found
, size
))
1379 if (nid
!= NUMA_NO_NODE
&& !exact_nid
) {
1380 found
= memblock_find_in_range_node(size
, align
, start
,
1383 if (found
&& !memblock_reserve(found
, size
))
1387 if (flags
& MEMBLOCK_MIRROR
) {
1388 flags
&= ~MEMBLOCK_MIRROR
;
1389 pr_warn("Could not allocate %pap bytes of mirrored memory\n",
1397 /* Skip kmemleak for kasan_init() due to high volume. */
1398 if (end
!= MEMBLOCK_ALLOC_KASAN
)
1400 * The min_count is set to 0 so that memblock allocated
1401 * blocks are never reported as leaks. This is because many
1402 * of these blocks are only referred via the physical
1403 * address which is not looked up by kmemleak.
1405 kmemleak_alloc_phys(found
, size
, 0, 0);
1411 * memblock_phys_alloc_range - allocate a memory block inside specified range
1412 * @size: size of memory block to be allocated in bytes
1413 * @align: alignment of the region and block's size
1414 * @start: the lower bound of the memory region to allocate (physical address)
1415 * @end: the upper bound of the memory region to allocate (physical address)
1417 * Allocate @size bytes in the between @start and @end.
1419 * Return: physical address of the allocated memory block on success,
1422 phys_addr_t __init
memblock_phys_alloc_range(phys_addr_t size
,
1427 return memblock_alloc_range_nid(size
, align
, start
, end
, NUMA_NO_NODE
,
1432 * memblock_phys_alloc_try_nid - allocate a memory block from specified MUMA node
1433 * @size: size of memory block to be allocated in bytes
1434 * @align: alignment of the region and block's size
1435 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1437 * Allocates memory block from the specified NUMA node. If the node
1438 * has no available memory, attempts to allocated from any node in the
1441 * Return: physical address of the allocated memory block on success,
1444 phys_addr_t __init
memblock_phys_alloc_try_nid(phys_addr_t size
, phys_addr_t align
, int nid
)
1446 return memblock_alloc_range_nid(size
, align
, 0,
1447 MEMBLOCK_ALLOC_ACCESSIBLE
, nid
, false);
1451 * memblock_alloc_internal - allocate boot memory block
1452 * @size: size of memory block to be allocated in bytes
1453 * @align: alignment of the region and block's size
1454 * @min_addr: the lower bound of the memory region to allocate (phys address)
1455 * @max_addr: the upper bound of the memory region to allocate (phys address)
1456 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1457 * @exact_nid: control the allocation fall back to other nodes
1459 * Allocates memory block using memblock_alloc_range_nid() and
1460 * converts the returned physical address to virtual.
1462 * The @min_addr limit is dropped if it can not be satisfied and the allocation
1463 * will fall back to memory below @min_addr. Other constraints, such
1464 * as node and mirrored memory will be handled again in
1465 * memblock_alloc_range_nid().
1468 * Virtual address of allocated memory block on success, NULL on failure.
1470 static void * __init
memblock_alloc_internal(
1471 phys_addr_t size
, phys_addr_t align
,
1472 phys_addr_t min_addr
, phys_addr_t max_addr
,
1473 int nid
, bool exact_nid
)
1478 * Detect any accidental use of these APIs after slab is ready, as at
1479 * this moment memblock may be deinitialized already and its
1480 * internal data may be destroyed (after execution of memblock_free_all)
1482 if (WARN_ON_ONCE(slab_is_available()))
1483 return kzalloc_node(size
, GFP_NOWAIT
, nid
);
1485 if (max_addr
> memblock
.current_limit
)
1486 max_addr
= memblock
.current_limit
;
1488 alloc
= memblock_alloc_range_nid(size
, align
, min_addr
, max_addr
, nid
,
1491 /* retry allocation without lower limit */
1492 if (!alloc
&& min_addr
)
1493 alloc
= memblock_alloc_range_nid(size
, align
, 0, max_addr
, nid
,
1499 return phys_to_virt(alloc
);
1503 * memblock_alloc_exact_nid_raw - allocate boot memory block on the exact node
1504 * without zeroing memory
1505 * @size: size of memory block to be allocated in bytes
1506 * @align: alignment of the region and block's size
1507 * @min_addr: the lower bound of the memory region from where the allocation
1508 * is preferred (phys address)
1509 * @max_addr: the upper bound of the memory region from where the allocation
1510 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1511 * allocate only from memory limited by memblock.current_limit value
1512 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1514 * Public function, provides additional debug information (including caller
1515 * info), if enabled. Does not zero allocated memory.
1518 * Virtual address of allocated memory block on success, NULL on failure.
1520 void * __init
memblock_alloc_exact_nid_raw(
1521 phys_addr_t size
, phys_addr_t align
,
1522 phys_addr_t min_addr
, phys_addr_t max_addr
,
1527 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1528 __func__
, (u64
)size
, (u64
)align
, nid
, &min_addr
,
1529 &max_addr
, (void *)_RET_IP_
);
1531 ptr
= memblock_alloc_internal(size
, align
,
1532 min_addr
, max_addr
, nid
, true);
1533 if (ptr
&& size
> 0)
1534 page_init_poison(ptr
, size
);
1540 * memblock_alloc_try_nid_raw - allocate boot memory block without zeroing
1541 * memory and without panicking
1542 * @size: size of memory block to be allocated in bytes
1543 * @align: alignment of the region and block's size
1544 * @min_addr: the lower bound of the memory region from where the allocation
1545 * is preferred (phys address)
1546 * @max_addr: the upper bound of the memory region from where the allocation
1547 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1548 * allocate only from memory limited by memblock.current_limit value
1549 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1551 * Public function, provides additional debug information (including caller
1552 * info), if enabled. Does not zero allocated memory, does not panic if request
1553 * cannot be satisfied.
1556 * Virtual address of allocated memory block on success, NULL on failure.
1558 void * __init
memblock_alloc_try_nid_raw(
1559 phys_addr_t size
, phys_addr_t align
,
1560 phys_addr_t min_addr
, phys_addr_t max_addr
,
1565 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1566 __func__
, (u64
)size
, (u64
)align
, nid
, &min_addr
,
1567 &max_addr
, (void *)_RET_IP_
);
1569 ptr
= memblock_alloc_internal(size
, align
,
1570 min_addr
, max_addr
, nid
, false);
1571 if (ptr
&& size
> 0)
1572 page_init_poison(ptr
, size
);
1578 * memblock_alloc_try_nid - allocate boot memory block
1579 * @size: size of memory block to be allocated in bytes
1580 * @align: alignment of the region and block's size
1581 * @min_addr: the lower bound of the memory region from where the allocation
1582 * is preferred (phys address)
1583 * @max_addr: the upper bound of the memory region from where the allocation
1584 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1585 * allocate only from memory limited by memblock.current_limit value
1586 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1588 * Public function, provides additional debug information (including caller
1589 * info), if enabled. This function zeroes the allocated memory.
1592 * Virtual address of allocated memory block on success, NULL on failure.
1594 void * __init
memblock_alloc_try_nid(
1595 phys_addr_t size
, phys_addr_t align
,
1596 phys_addr_t min_addr
, phys_addr_t max_addr
,
1601 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1602 __func__
, (u64
)size
, (u64
)align
, nid
, &min_addr
,
1603 &max_addr
, (void *)_RET_IP_
);
1604 ptr
= memblock_alloc_internal(size
, align
,
1605 min_addr
, max_addr
, nid
, false);
1607 memset(ptr
, 0, size
);
1613 * __memblock_free_late - free pages directly to buddy allocator
1614 * @base: phys starting address of the boot memory block
1615 * @size: size of the boot memory block in bytes
1617 * This is only useful when the memblock allocator has already been torn
1618 * down, but we are still initializing the system. Pages are released directly
1619 * to the buddy allocator.
1621 void __init
__memblock_free_late(phys_addr_t base
, phys_addr_t size
)
1623 phys_addr_t cursor
, end
;
1625 end
= base
+ size
- 1;
1626 memblock_dbg("%s: [%pa-%pa] %pS\n",
1627 __func__
, &base
, &end
, (void *)_RET_IP_
);
1628 kmemleak_free_part_phys(base
, size
);
1629 cursor
= PFN_UP(base
);
1630 end
= PFN_DOWN(base
+ size
);
1632 for (; cursor
< end
; cursor
++) {
1633 memblock_free_pages(pfn_to_page(cursor
), cursor
, 0);
1634 totalram_pages_inc();
1639 * Remaining API functions
1642 phys_addr_t __init_memblock
memblock_phys_mem_size(void)
1644 return memblock
.memory
.total_size
;
1647 phys_addr_t __init_memblock
memblock_reserved_size(void)
1649 return memblock
.reserved
.total_size
;
1652 phys_addr_t __init
memblock_mem_size(unsigned long limit_pfn
)
1654 unsigned long pages
= 0;
1655 struct memblock_region
*r
;
1656 unsigned long start_pfn
, end_pfn
;
1658 for_each_memblock(memory
, r
) {
1659 start_pfn
= memblock_region_memory_base_pfn(r
);
1660 end_pfn
= memblock_region_memory_end_pfn(r
);
1661 start_pfn
= min_t(unsigned long, start_pfn
, limit_pfn
);
1662 end_pfn
= min_t(unsigned long, end_pfn
, limit_pfn
);
1663 pages
+= end_pfn
- start_pfn
;
1666 return PFN_PHYS(pages
);
1669 /* lowest address */
1670 phys_addr_t __init_memblock
memblock_start_of_DRAM(void)
1672 return memblock
.memory
.regions
[0].base
;
1675 phys_addr_t __init_memblock
memblock_end_of_DRAM(void)
1677 int idx
= memblock
.memory
.cnt
- 1;
1679 return (memblock
.memory
.regions
[idx
].base
+ memblock
.memory
.regions
[idx
].size
);
1682 static phys_addr_t __init_memblock
__find_max_addr(phys_addr_t limit
)
1684 phys_addr_t max_addr
= PHYS_ADDR_MAX
;
1685 struct memblock_region
*r
;
1688 * translate the memory @limit size into the max address within one of
1689 * the memory memblock regions, if the @limit exceeds the total size
1690 * of those regions, max_addr will keep original value PHYS_ADDR_MAX
1692 for_each_memblock(memory
, r
) {
1693 if (limit
<= r
->size
) {
1694 max_addr
= r
->base
+ limit
;
1703 void __init
memblock_enforce_memory_limit(phys_addr_t limit
)
1705 phys_addr_t max_addr
;
1710 max_addr
= __find_max_addr(limit
);
1712 /* @limit exceeds the total size of the memory, do nothing */
1713 if (max_addr
== PHYS_ADDR_MAX
)
1716 /* truncate both memory and reserved regions */
1717 memblock_remove_range(&memblock
.memory
, max_addr
,
1719 memblock_remove_range(&memblock
.reserved
, max_addr
,
1723 void __init
memblock_cap_memory_range(phys_addr_t base
, phys_addr_t size
)
1725 int start_rgn
, end_rgn
;
1731 ret
= memblock_isolate_range(&memblock
.memory
, base
, size
,
1732 &start_rgn
, &end_rgn
);
1736 /* remove all the MAP regions */
1737 for (i
= memblock
.memory
.cnt
- 1; i
>= end_rgn
; i
--)
1738 if (!memblock_is_nomap(&memblock
.memory
.regions
[i
]))
1739 memblock_remove_region(&memblock
.memory
, i
);
1741 for (i
= start_rgn
- 1; i
>= 0; i
--)
1742 if (!memblock_is_nomap(&memblock
.memory
.regions
[i
]))
1743 memblock_remove_region(&memblock
.memory
, i
);
1745 /* truncate the reserved regions */
1746 memblock_remove_range(&memblock
.reserved
, 0, base
);
1747 memblock_remove_range(&memblock
.reserved
,
1748 base
+ size
, PHYS_ADDR_MAX
);
1751 void __init
memblock_mem_limit_remove_map(phys_addr_t limit
)
1753 phys_addr_t max_addr
;
1758 max_addr
= __find_max_addr(limit
);
1760 /* @limit exceeds the total size of the memory, do nothing */
1761 if (max_addr
== PHYS_ADDR_MAX
)
1764 memblock_cap_memory_range(0, max_addr
);
1767 static int __init_memblock
memblock_search(struct memblock_type
*type
, phys_addr_t addr
)
1769 unsigned int left
= 0, right
= type
->cnt
;
1772 unsigned int mid
= (right
+ left
) / 2;
1774 if (addr
< type
->regions
[mid
].base
)
1776 else if (addr
>= (type
->regions
[mid
].base
+
1777 type
->regions
[mid
].size
))
1781 } while (left
< right
);
1785 bool __init_memblock
memblock_is_reserved(phys_addr_t addr
)
1787 return memblock_search(&memblock
.reserved
, addr
) != -1;
1790 bool __init_memblock
memblock_is_memory(phys_addr_t addr
)
1792 return memblock_search(&memblock
.memory
, addr
) != -1;
1795 bool __init_memblock
memblock_is_map_memory(phys_addr_t addr
)
1797 int i
= memblock_search(&memblock
.memory
, addr
);
1801 return !memblock_is_nomap(&memblock
.memory
.regions
[i
]);
1804 int __init_memblock
memblock_search_pfn_nid(unsigned long pfn
,
1805 unsigned long *start_pfn
, unsigned long *end_pfn
)
1807 struct memblock_type
*type
= &memblock
.memory
;
1808 int mid
= memblock_search(type
, PFN_PHYS(pfn
));
1813 *start_pfn
= PFN_DOWN(type
->regions
[mid
].base
);
1814 *end_pfn
= PFN_DOWN(type
->regions
[mid
].base
+ type
->regions
[mid
].size
);
1816 return memblock_get_region_node(&type
->regions
[mid
]);
1820 * memblock_is_region_memory - check if a region is a subset of memory
1821 * @base: base of region to check
1822 * @size: size of region to check
1824 * Check if the region [@base, @base + @size) is a subset of a memory block.
1827 * 0 if false, non-zero if true
1829 bool __init_memblock
memblock_is_region_memory(phys_addr_t base
, phys_addr_t size
)
1831 int idx
= memblock_search(&memblock
.memory
, base
);
1832 phys_addr_t end
= base
+ memblock_cap_size(base
, &size
);
1836 return (memblock
.memory
.regions
[idx
].base
+
1837 memblock
.memory
.regions
[idx
].size
) >= end
;
1841 * memblock_is_region_reserved - check if a region intersects reserved memory
1842 * @base: base of region to check
1843 * @size: size of region to check
1845 * Check if the region [@base, @base + @size) intersects a reserved
1849 * True if they intersect, false if not.
1851 bool __init_memblock
memblock_is_region_reserved(phys_addr_t base
, phys_addr_t size
)
1853 memblock_cap_size(base
, &size
);
1854 return memblock_overlaps_region(&memblock
.reserved
, base
, size
);
1857 void __init_memblock
memblock_trim_memory(phys_addr_t align
)
1859 phys_addr_t start
, end
, orig_start
, orig_end
;
1860 struct memblock_region
*r
;
1862 for_each_memblock(memory
, r
) {
1863 orig_start
= r
->base
;
1864 orig_end
= r
->base
+ r
->size
;
1865 start
= round_up(orig_start
, align
);
1866 end
= round_down(orig_end
, align
);
1868 if (start
== orig_start
&& end
== orig_end
)
1873 r
->size
= end
- start
;
1875 memblock_remove_region(&memblock
.memory
,
1876 r
- memblock
.memory
.regions
);
1882 void __init_memblock
memblock_set_current_limit(phys_addr_t limit
)
1884 memblock
.current_limit
= limit
;
1887 phys_addr_t __init_memblock
memblock_get_current_limit(void)
1889 return memblock
.current_limit
;
1892 static void __init_memblock
memblock_dump(struct memblock_type
*type
)
1894 phys_addr_t base
, end
, size
;
1895 enum memblock_flags flags
;
1897 struct memblock_region
*rgn
;
1899 pr_info(" %s.cnt = 0x%lx\n", type
->name
, type
->cnt
);
1901 for_each_memblock_type(idx
, type
, rgn
) {
1902 char nid_buf
[32] = "";
1906 end
= base
+ size
- 1;
1908 #ifdef CONFIG_NEED_MULTIPLE_NODES
1909 if (memblock_get_region_node(rgn
) != MAX_NUMNODES
)
1910 snprintf(nid_buf
, sizeof(nid_buf
), " on node %d",
1911 memblock_get_region_node(rgn
));
1913 pr_info(" %s[%#x]\t[%pa-%pa], %pa bytes%s flags: %#x\n",
1914 type
->name
, idx
, &base
, &end
, &size
, nid_buf
, flags
);
1918 void __init_memblock
__memblock_dump_all(void)
1920 pr_info("MEMBLOCK configuration:\n");
1921 pr_info(" memory size = %pa reserved size = %pa\n",
1922 &memblock
.memory
.total_size
,
1923 &memblock
.reserved
.total_size
);
1925 memblock_dump(&memblock
.memory
);
1926 memblock_dump(&memblock
.reserved
);
1927 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
1928 memblock_dump(&physmem
);
1932 void __init
memblock_allow_resize(void)
1934 memblock_can_resize
= 1;
1937 static int __init
early_memblock(char *p
)
1939 if (p
&& strstr(p
, "debug"))
1943 early_param("memblock", early_memblock
);
1945 static void __init
__free_pages_memory(unsigned long start
, unsigned long end
)
1949 while (start
< end
) {
1950 order
= min(MAX_ORDER
- 1UL, __ffs(start
));
1952 while (start
+ (1UL << order
) > end
)
1955 memblock_free_pages(pfn_to_page(start
), start
, order
);
1957 start
+= (1UL << order
);
1961 static unsigned long __init
__free_memory_core(phys_addr_t start
,
1964 unsigned long start_pfn
= PFN_UP(start
);
1965 unsigned long end_pfn
= min_t(unsigned long,
1966 PFN_DOWN(end
), max_low_pfn
);
1968 if (start_pfn
>= end_pfn
)
1971 __free_pages_memory(start_pfn
, end_pfn
);
1973 return end_pfn
- start_pfn
;
1976 static unsigned long __init
free_low_memory_core_early(void)
1978 unsigned long count
= 0;
1979 phys_addr_t start
, end
;
1982 memblock_clear_hotplug(0, -1);
1984 for_each_reserved_mem_region(i
, &start
, &end
)
1985 reserve_bootmem_region(start
, end
);
1988 * We need to use NUMA_NO_NODE instead of NODE_DATA(0)->node_id
1989 * because in some case like Node0 doesn't have RAM installed
1990 * low ram will be on Node1
1992 for_each_free_mem_range(i
, NUMA_NO_NODE
, MEMBLOCK_NONE
, &start
, &end
,
1994 count
+= __free_memory_core(start
, end
);
1999 static int reset_managed_pages_done __initdata
;
2001 void reset_node_managed_pages(pg_data_t
*pgdat
)
2005 for (z
= pgdat
->node_zones
; z
< pgdat
->node_zones
+ MAX_NR_ZONES
; z
++)
2006 atomic_long_set(&z
->managed_pages
, 0);
2009 void __init
reset_all_zones_managed_pages(void)
2011 struct pglist_data
*pgdat
;
2013 if (reset_managed_pages_done
)
2016 for_each_online_pgdat(pgdat
)
2017 reset_node_managed_pages(pgdat
);
2019 reset_managed_pages_done
= 1;
2023 * memblock_free_all - release free pages to the buddy allocator
2025 * Return: the number of pages actually released.
2027 unsigned long __init
memblock_free_all(void)
2029 unsigned long pages
;
2031 reset_all_zones_managed_pages();
2033 pages
= free_low_memory_core_early();
2034 totalram_pages_add(pages
);
2039 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_ARCH_KEEP_MEMBLOCK)
2041 static int memblock_debug_show(struct seq_file
*m
, void *private)
2043 struct memblock_type
*type
= m
->private;
2044 struct memblock_region
*reg
;
2048 for (i
= 0; i
< type
->cnt
; i
++) {
2049 reg
= &type
->regions
[i
];
2050 end
= reg
->base
+ reg
->size
- 1;
2052 seq_printf(m
, "%4d: ", i
);
2053 seq_printf(m
, "%pa..%pa\n", ®
->base
, &end
);
2057 DEFINE_SHOW_ATTRIBUTE(memblock_debug
);
2059 static int __init
memblock_init_debugfs(void)
2061 struct dentry
*root
= debugfs_create_dir("memblock", NULL
);
2063 debugfs_create_file("memory", 0444, root
,
2064 &memblock
.memory
, &memblock_debug_fops
);
2065 debugfs_create_file("reserved", 0444, root
,
2066 &memblock
.reserved
, &memblock_debug_fops
);
2067 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
2068 debugfs_create_file("physmem", 0444, root
, &physmem
,
2069 &memblock_debug_fops
);
2074 __initcall(memblock_init_debugfs
);
2076 #endif /* CONFIG_DEBUG_FS */