1 // SPDX-License-Identifier: GPL-2.0-only
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 * demand-loading started 01.12.91 - seems it is high on the list of
10 * things wanted, and it should be easy to implement. - Linus
14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15 * pages started 02.12.91, seems to work. - Linus.
17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18 * would have taken more than the 6M I have free, but it worked well as
21 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
25 * Real VM (paging to/from disk) started 18.12.91. Much more work and
26 * thought has to go into this. Oh, well..
27 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
28 * Found it. Everything seems to work now.
29 * 20.12.91 - Ok, making the swap-device changeable like the root.
33 * 05.04.94 - Multi-page memory management added for v1.1.
34 * Idea by Alex Bligh (alex@cconcepts.co.uk)
36 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
37 * (Gerhard.Wichert@pdb.siemens.de)
39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
42 #include <linux/kernel_stat.h>
44 #include <linux/sched/mm.h>
45 #include <linux/sched/coredump.h>
46 #include <linux/sched/numa_balancing.h>
47 #include <linux/sched/task.h>
48 #include <linux/hugetlb.h>
49 #include <linux/mman.h>
50 #include <linux/swap.h>
51 #include <linux/highmem.h>
52 #include <linux/pagemap.h>
53 #include <linux/memremap.h>
54 #include <linux/ksm.h>
55 #include <linux/rmap.h>
56 #include <linux/export.h>
57 #include <linux/delayacct.h>
58 #include <linux/init.h>
59 #include <linux/pfn_t.h>
60 #include <linux/writeback.h>
61 #include <linux/memcontrol.h>
62 #include <linux/mmu_notifier.h>
63 #include <linux/swapops.h>
64 #include <linux/elf.h>
65 #include <linux/gfp.h>
66 #include <linux/migrate.h>
67 #include <linux/string.h>
68 #include <linux/dma-debug.h>
69 #include <linux/debugfs.h>
70 #include <linux/userfaultfd_k.h>
71 #include <linux/dax.h>
72 #include <linux/oom.h>
73 #include <linux/numa.h>
74 #include <linux/perf_event.h>
75 #include <linux/ptrace.h>
77 #include <trace/events/kmem.h>
80 #include <asm/mmu_context.h>
81 #include <asm/pgalloc.h>
82 #include <linux/uaccess.h>
84 #include <asm/tlbflush.h>
88 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
89 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
92 #ifndef CONFIG_NEED_MULTIPLE_NODES
93 /* use the per-pgdat data instead for discontigmem - mbligh */
94 unsigned long max_mapnr
;
95 EXPORT_SYMBOL(max_mapnr
);
98 EXPORT_SYMBOL(mem_map
);
102 * A number of key systems in x86 including ioremap() rely on the assumption
103 * that high_memory defines the upper bound on direct map memory, then end
104 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
105 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
109 EXPORT_SYMBOL(high_memory
);
112 * Randomize the address space (stacks, mmaps, brk, etc.).
114 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
115 * as ancient (libc5 based) binaries can segfault. )
117 int randomize_va_space __read_mostly
=
118 #ifdef CONFIG_COMPAT_BRK
124 #ifndef arch_faults_on_old_pte
125 static inline bool arch_faults_on_old_pte(void)
128 * Those arches which don't have hw access flag feature need to
129 * implement their own helper. By default, "true" means pagefault
130 * will be hit on old pte.
136 static int __init
disable_randmaps(char *s
)
138 randomize_va_space
= 0;
141 __setup("norandmaps", disable_randmaps
);
143 unsigned long zero_pfn __read_mostly
;
144 EXPORT_SYMBOL(zero_pfn
);
146 unsigned long highest_memmap_pfn __read_mostly
;
149 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
151 static int __init
init_zero_pfn(void)
153 zero_pfn
= page_to_pfn(ZERO_PAGE(0));
156 core_initcall(init_zero_pfn
);
158 void mm_trace_rss_stat(struct mm_struct
*mm
, int member
, long count
)
160 trace_rss_stat(mm
, member
, count
);
163 #if defined(SPLIT_RSS_COUNTING)
165 void sync_mm_rss(struct mm_struct
*mm
)
169 for (i
= 0; i
< NR_MM_COUNTERS
; i
++) {
170 if (current
->rss_stat
.count
[i
]) {
171 add_mm_counter(mm
, i
, current
->rss_stat
.count
[i
]);
172 current
->rss_stat
.count
[i
] = 0;
175 current
->rss_stat
.events
= 0;
178 static void add_mm_counter_fast(struct mm_struct
*mm
, int member
, int val
)
180 struct task_struct
*task
= current
;
182 if (likely(task
->mm
== mm
))
183 task
->rss_stat
.count
[member
] += val
;
185 add_mm_counter(mm
, member
, val
);
187 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
188 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
190 /* sync counter once per 64 page faults */
191 #define TASK_RSS_EVENTS_THRESH (64)
192 static void check_sync_rss_stat(struct task_struct
*task
)
194 if (unlikely(task
!= current
))
196 if (unlikely(task
->rss_stat
.events
++ > TASK_RSS_EVENTS_THRESH
))
197 sync_mm_rss(task
->mm
);
199 #else /* SPLIT_RSS_COUNTING */
201 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
202 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
204 static void check_sync_rss_stat(struct task_struct
*task
)
208 #endif /* SPLIT_RSS_COUNTING */
211 * Note: this doesn't free the actual pages themselves. That
212 * has been handled earlier when unmapping all the memory regions.
214 static void free_pte_range(struct mmu_gather
*tlb
, pmd_t
*pmd
,
217 pgtable_t token
= pmd_pgtable(*pmd
);
219 pte_free_tlb(tlb
, token
, addr
);
220 mm_dec_nr_ptes(tlb
->mm
);
223 static inline void free_pmd_range(struct mmu_gather
*tlb
, pud_t
*pud
,
224 unsigned long addr
, unsigned long end
,
225 unsigned long floor
, unsigned long ceiling
)
232 pmd
= pmd_offset(pud
, addr
);
234 next
= pmd_addr_end(addr
, end
);
235 if (pmd_none_or_clear_bad(pmd
))
237 free_pte_range(tlb
, pmd
, addr
);
238 } while (pmd
++, addr
= next
, addr
!= end
);
248 if (end
- 1 > ceiling
- 1)
251 pmd
= pmd_offset(pud
, start
);
253 pmd_free_tlb(tlb
, pmd
, start
);
254 mm_dec_nr_pmds(tlb
->mm
);
257 static inline void free_pud_range(struct mmu_gather
*tlb
, p4d_t
*p4d
,
258 unsigned long addr
, unsigned long end
,
259 unsigned long floor
, unsigned long ceiling
)
266 pud
= pud_offset(p4d
, addr
);
268 next
= pud_addr_end(addr
, end
);
269 if (pud_none_or_clear_bad(pud
))
271 free_pmd_range(tlb
, pud
, addr
, next
, floor
, ceiling
);
272 } while (pud
++, addr
= next
, addr
!= end
);
282 if (end
- 1 > ceiling
- 1)
285 pud
= pud_offset(p4d
, start
);
287 pud_free_tlb(tlb
, pud
, start
);
288 mm_dec_nr_puds(tlb
->mm
);
291 static inline void free_p4d_range(struct mmu_gather
*tlb
, pgd_t
*pgd
,
292 unsigned long addr
, unsigned long end
,
293 unsigned long floor
, unsigned long ceiling
)
300 p4d
= p4d_offset(pgd
, addr
);
302 next
= p4d_addr_end(addr
, end
);
303 if (p4d_none_or_clear_bad(p4d
))
305 free_pud_range(tlb
, p4d
, addr
, next
, floor
, ceiling
);
306 } while (p4d
++, addr
= next
, addr
!= end
);
312 ceiling
&= PGDIR_MASK
;
316 if (end
- 1 > ceiling
- 1)
319 p4d
= p4d_offset(pgd
, start
);
321 p4d_free_tlb(tlb
, p4d
, start
);
325 * This function frees user-level page tables of a process.
327 void free_pgd_range(struct mmu_gather
*tlb
,
328 unsigned long addr
, unsigned long end
,
329 unsigned long floor
, unsigned long ceiling
)
335 * The next few lines have given us lots of grief...
337 * Why are we testing PMD* at this top level? Because often
338 * there will be no work to do at all, and we'd prefer not to
339 * go all the way down to the bottom just to discover that.
341 * Why all these "- 1"s? Because 0 represents both the bottom
342 * of the address space and the top of it (using -1 for the
343 * top wouldn't help much: the masks would do the wrong thing).
344 * The rule is that addr 0 and floor 0 refer to the bottom of
345 * the address space, but end 0 and ceiling 0 refer to the top
346 * Comparisons need to use "end - 1" and "ceiling - 1" (though
347 * that end 0 case should be mythical).
349 * Wherever addr is brought up or ceiling brought down, we must
350 * be careful to reject "the opposite 0" before it confuses the
351 * subsequent tests. But what about where end is brought down
352 * by PMD_SIZE below? no, end can't go down to 0 there.
354 * Whereas we round start (addr) and ceiling down, by different
355 * masks at different levels, in order to test whether a table
356 * now has no other vmas using it, so can be freed, we don't
357 * bother to round floor or end up - the tests don't need that.
371 if (end
- 1 > ceiling
- 1)
376 * We add page table cache pages with PAGE_SIZE,
377 * (see pte_free_tlb()), flush the tlb if we need
379 tlb_change_page_size(tlb
, PAGE_SIZE
);
380 pgd
= pgd_offset(tlb
->mm
, addr
);
382 next
= pgd_addr_end(addr
, end
);
383 if (pgd_none_or_clear_bad(pgd
))
385 free_p4d_range(tlb
, pgd
, addr
, next
, floor
, ceiling
);
386 } while (pgd
++, addr
= next
, addr
!= end
);
389 void free_pgtables(struct mmu_gather
*tlb
, struct vm_area_struct
*vma
,
390 unsigned long floor
, unsigned long ceiling
)
393 struct vm_area_struct
*next
= vma
->vm_next
;
394 unsigned long addr
= vma
->vm_start
;
397 * Hide vma from rmap and truncate_pagecache before freeing
400 unlink_anon_vmas(vma
);
401 unlink_file_vma(vma
);
403 if (is_vm_hugetlb_page(vma
)) {
404 hugetlb_free_pgd_range(tlb
, addr
, vma
->vm_end
,
405 floor
, next
? next
->vm_start
: ceiling
);
408 * Optimization: gather nearby vmas into one call down
410 while (next
&& next
->vm_start
<= vma
->vm_end
+ PMD_SIZE
411 && !is_vm_hugetlb_page(next
)) {
414 unlink_anon_vmas(vma
);
415 unlink_file_vma(vma
);
417 free_pgd_range(tlb
, addr
, vma
->vm_end
,
418 floor
, next
? next
->vm_start
: ceiling
);
424 int __pte_alloc(struct mm_struct
*mm
, pmd_t
*pmd
)
427 pgtable_t
new = pte_alloc_one(mm
);
432 * Ensure all pte setup (eg. pte page lock and page clearing) are
433 * visible before the pte is made visible to other CPUs by being
434 * put into page tables.
436 * The other side of the story is the pointer chasing in the page
437 * table walking code (when walking the page table without locking;
438 * ie. most of the time). Fortunately, these data accesses consist
439 * of a chain of data-dependent loads, meaning most CPUs (alpha
440 * being the notable exception) will already guarantee loads are
441 * seen in-order. See the alpha page table accessors for the
442 * smp_rmb() barriers in page table walking code.
444 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
446 ptl
= pmd_lock(mm
, pmd
);
447 if (likely(pmd_none(*pmd
))) { /* Has another populated it ? */
449 pmd_populate(mm
, pmd
, new);
458 int __pte_alloc_kernel(pmd_t
*pmd
)
460 pte_t
*new = pte_alloc_one_kernel(&init_mm
);
464 smp_wmb(); /* See comment in __pte_alloc */
466 spin_lock(&init_mm
.page_table_lock
);
467 if (likely(pmd_none(*pmd
))) { /* Has another populated it ? */
468 pmd_populate_kernel(&init_mm
, pmd
, new);
471 spin_unlock(&init_mm
.page_table_lock
);
473 pte_free_kernel(&init_mm
, new);
477 static inline void init_rss_vec(int *rss
)
479 memset(rss
, 0, sizeof(int) * NR_MM_COUNTERS
);
482 static inline void add_mm_rss_vec(struct mm_struct
*mm
, int *rss
)
486 if (current
->mm
== mm
)
488 for (i
= 0; i
< NR_MM_COUNTERS
; i
++)
490 add_mm_counter(mm
, i
, rss
[i
]);
494 * This function is called to print an error when a bad pte
495 * is found. For example, we might have a PFN-mapped pte in
496 * a region that doesn't allow it.
498 * The calling function must still handle the error.
500 static void print_bad_pte(struct vm_area_struct
*vma
, unsigned long addr
,
501 pte_t pte
, struct page
*page
)
503 pgd_t
*pgd
= pgd_offset(vma
->vm_mm
, addr
);
504 p4d_t
*p4d
= p4d_offset(pgd
, addr
);
505 pud_t
*pud
= pud_offset(p4d
, addr
);
506 pmd_t
*pmd
= pmd_offset(pud
, addr
);
507 struct address_space
*mapping
;
509 static unsigned long resume
;
510 static unsigned long nr_shown
;
511 static unsigned long nr_unshown
;
514 * Allow a burst of 60 reports, then keep quiet for that minute;
515 * or allow a steady drip of one report per second.
517 if (nr_shown
== 60) {
518 if (time_before(jiffies
, resume
)) {
523 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
530 resume
= jiffies
+ 60 * HZ
;
532 mapping
= vma
->vm_file
? vma
->vm_file
->f_mapping
: NULL
;
533 index
= linear_page_index(vma
, addr
);
535 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
537 (long long)pte_val(pte
), (long long)pmd_val(*pmd
));
539 dump_page(page
, "bad pte");
540 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
541 (void *)addr
, vma
->vm_flags
, vma
->anon_vma
, mapping
, index
);
542 pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n",
544 vma
->vm_ops
? vma
->vm_ops
->fault
: NULL
,
545 vma
->vm_file
? vma
->vm_file
->f_op
->mmap
: NULL
,
546 mapping
? mapping
->a_ops
->readpage
: NULL
);
548 add_taint(TAINT_BAD_PAGE
, LOCKDEP_NOW_UNRELIABLE
);
552 * vm_normal_page -- This function gets the "struct page" associated with a pte.
554 * "Special" mappings do not wish to be associated with a "struct page" (either
555 * it doesn't exist, or it exists but they don't want to touch it). In this
556 * case, NULL is returned here. "Normal" mappings do have a struct page.
558 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
559 * pte bit, in which case this function is trivial. Secondly, an architecture
560 * may not have a spare pte bit, which requires a more complicated scheme,
563 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
564 * special mapping (even if there are underlying and valid "struct pages").
565 * COWed pages of a VM_PFNMAP are always normal.
567 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
568 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
569 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
570 * mapping will always honor the rule
572 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
574 * And for normal mappings this is false.
576 * This restricts such mappings to be a linear translation from virtual address
577 * to pfn. To get around this restriction, we allow arbitrary mappings so long
578 * as the vma is not a COW mapping; in that case, we know that all ptes are
579 * special (because none can have been COWed).
582 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
584 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
585 * page" backing, however the difference is that _all_ pages with a struct
586 * page (that is, those where pfn_valid is true) are refcounted and considered
587 * normal pages by the VM. The disadvantage is that pages are refcounted
588 * (which can be slower and simply not an option for some PFNMAP users). The
589 * advantage is that we don't have to follow the strict linearity rule of
590 * PFNMAP mappings in order to support COWable mappings.
593 struct page
*vm_normal_page(struct vm_area_struct
*vma
, unsigned long addr
,
596 unsigned long pfn
= pte_pfn(pte
);
598 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL
)) {
599 if (likely(!pte_special(pte
)))
601 if (vma
->vm_ops
&& vma
->vm_ops
->find_special_page
)
602 return vma
->vm_ops
->find_special_page(vma
, addr
);
603 if (vma
->vm_flags
& (VM_PFNMAP
| VM_MIXEDMAP
))
605 if (is_zero_pfn(pfn
))
610 print_bad_pte(vma
, addr
, pte
, NULL
);
614 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
616 if (unlikely(vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
))) {
617 if (vma
->vm_flags
& VM_MIXEDMAP
) {
623 off
= (addr
- vma
->vm_start
) >> PAGE_SHIFT
;
624 if (pfn
== vma
->vm_pgoff
+ off
)
626 if (!is_cow_mapping(vma
->vm_flags
))
631 if (is_zero_pfn(pfn
))
635 if (unlikely(pfn
> highest_memmap_pfn
)) {
636 print_bad_pte(vma
, addr
, pte
, NULL
);
641 * NOTE! We still have PageReserved() pages in the page tables.
642 * eg. VDSO mappings can cause them to exist.
645 return pfn_to_page(pfn
);
648 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
649 struct page
*vm_normal_page_pmd(struct vm_area_struct
*vma
, unsigned long addr
,
652 unsigned long pfn
= pmd_pfn(pmd
);
655 * There is no pmd_special() but there may be special pmds, e.g.
656 * in a direct-access (dax) mapping, so let's just replicate the
657 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
659 if (unlikely(vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
))) {
660 if (vma
->vm_flags
& VM_MIXEDMAP
) {
666 off
= (addr
- vma
->vm_start
) >> PAGE_SHIFT
;
667 if (pfn
== vma
->vm_pgoff
+ off
)
669 if (!is_cow_mapping(vma
->vm_flags
))
676 if (is_huge_zero_pmd(pmd
))
678 if (unlikely(pfn
> highest_memmap_pfn
))
682 * NOTE! We still have PageReserved() pages in the page tables.
683 * eg. VDSO mappings can cause them to exist.
686 return pfn_to_page(pfn
);
691 * copy one vm_area from one task to the other. Assumes the page tables
692 * already present in the new task to be cleared in the whole range
693 * covered by this vma.
696 static inline unsigned long
697 copy_one_pte(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
698 pte_t
*dst_pte
, pte_t
*src_pte
, struct vm_area_struct
*vma
,
699 unsigned long addr
, int *rss
)
701 unsigned long vm_flags
= vma
->vm_flags
;
702 pte_t pte
= *src_pte
;
705 /* pte contains position in swap or file, so copy. */
706 if (unlikely(!pte_present(pte
))) {
707 swp_entry_t entry
= pte_to_swp_entry(pte
);
709 if (likely(!non_swap_entry(entry
))) {
710 if (swap_duplicate(entry
) < 0)
713 /* make sure dst_mm is on swapoff's mmlist. */
714 if (unlikely(list_empty(&dst_mm
->mmlist
))) {
715 spin_lock(&mmlist_lock
);
716 if (list_empty(&dst_mm
->mmlist
))
717 list_add(&dst_mm
->mmlist
,
719 spin_unlock(&mmlist_lock
);
722 } else if (is_migration_entry(entry
)) {
723 page
= migration_entry_to_page(entry
);
725 rss
[mm_counter(page
)]++;
727 if (is_write_migration_entry(entry
) &&
728 is_cow_mapping(vm_flags
)) {
730 * COW mappings require pages in both
731 * parent and child to be set to read.
733 make_migration_entry_read(&entry
);
734 pte
= swp_entry_to_pte(entry
);
735 if (pte_swp_soft_dirty(*src_pte
))
736 pte
= pte_swp_mksoft_dirty(pte
);
737 if (pte_swp_uffd_wp(*src_pte
))
738 pte
= pte_swp_mkuffd_wp(pte
);
739 set_pte_at(src_mm
, addr
, src_pte
, pte
);
741 } else if (is_device_private_entry(entry
)) {
742 page
= device_private_entry_to_page(entry
);
745 * Update rss count even for unaddressable pages, as
746 * they should treated just like normal pages in this
749 * We will likely want to have some new rss counters
750 * for unaddressable pages, at some point. But for now
751 * keep things as they are.
754 rss
[mm_counter(page
)]++;
755 page_dup_rmap(page
, false);
758 * We do not preserve soft-dirty information, because so
759 * far, checkpoint/restore is the only feature that
760 * requires that. And checkpoint/restore does not work
761 * when a device driver is involved (you cannot easily
762 * save and restore device driver state).
764 if (is_write_device_private_entry(entry
) &&
765 is_cow_mapping(vm_flags
)) {
766 make_device_private_entry_read(&entry
);
767 pte
= swp_entry_to_pte(entry
);
768 if (pte_swp_uffd_wp(*src_pte
))
769 pte
= pte_swp_mkuffd_wp(pte
);
770 set_pte_at(src_mm
, addr
, src_pte
, pte
);
777 * If it's a COW mapping, write protect it both
778 * in the parent and the child
780 if (is_cow_mapping(vm_flags
) && pte_write(pte
)) {
781 ptep_set_wrprotect(src_mm
, addr
, src_pte
);
782 pte
= pte_wrprotect(pte
);
786 * If it's a shared mapping, mark it clean in
789 if (vm_flags
& VM_SHARED
)
790 pte
= pte_mkclean(pte
);
791 pte
= pte_mkold(pte
);
794 * Make sure the _PAGE_UFFD_WP bit is cleared if the new VMA
795 * does not have the VM_UFFD_WP, which means that the uffd
796 * fork event is not enabled.
798 if (!(vm_flags
& VM_UFFD_WP
))
799 pte
= pte_clear_uffd_wp(pte
);
801 page
= vm_normal_page(vma
, addr
, pte
);
804 page_dup_rmap(page
, false);
805 rss
[mm_counter(page
)]++;
809 set_pte_at(dst_mm
, addr
, dst_pte
, pte
);
813 static int copy_pte_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
814 pmd_t
*dst_pmd
, pmd_t
*src_pmd
, struct vm_area_struct
*vma
,
815 unsigned long addr
, unsigned long end
)
817 pte_t
*orig_src_pte
, *orig_dst_pte
;
818 pte_t
*src_pte
, *dst_pte
;
819 spinlock_t
*src_ptl
, *dst_ptl
;
821 int rss
[NR_MM_COUNTERS
];
822 swp_entry_t entry
= (swp_entry_t
){0};
827 dst_pte
= pte_alloc_map_lock(dst_mm
, dst_pmd
, addr
, &dst_ptl
);
830 src_pte
= pte_offset_map(src_pmd
, addr
);
831 src_ptl
= pte_lockptr(src_mm
, src_pmd
);
832 spin_lock_nested(src_ptl
, SINGLE_DEPTH_NESTING
);
833 orig_src_pte
= src_pte
;
834 orig_dst_pte
= dst_pte
;
835 arch_enter_lazy_mmu_mode();
839 * We are holding two locks at this point - either of them
840 * could generate latencies in another task on another CPU.
842 if (progress
>= 32) {
844 if (need_resched() ||
845 spin_needbreak(src_ptl
) || spin_needbreak(dst_ptl
))
848 if (pte_none(*src_pte
)) {
852 entry
.val
= copy_one_pte(dst_mm
, src_mm
, dst_pte
, src_pte
,
857 } while (dst_pte
++, src_pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
859 arch_leave_lazy_mmu_mode();
860 spin_unlock(src_ptl
);
861 pte_unmap(orig_src_pte
);
862 add_mm_rss_vec(dst_mm
, rss
);
863 pte_unmap_unlock(orig_dst_pte
, dst_ptl
);
867 if (add_swap_count_continuation(entry
, GFP_KERNEL
) < 0)
876 static inline int copy_pmd_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
877 pud_t
*dst_pud
, pud_t
*src_pud
, struct vm_area_struct
*vma
,
878 unsigned long addr
, unsigned long end
)
880 pmd_t
*src_pmd
, *dst_pmd
;
883 dst_pmd
= pmd_alloc(dst_mm
, dst_pud
, addr
);
886 src_pmd
= pmd_offset(src_pud
, addr
);
888 next
= pmd_addr_end(addr
, end
);
889 if (is_swap_pmd(*src_pmd
) || pmd_trans_huge(*src_pmd
)
890 || pmd_devmap(*src_pmd
)) {
892 VM_BUG_ON_VMA(next
-addr
!= HPAGE_PMD_SIZE
, vma
);
893 err
= copy_huge_pmd(dst_mm
, src_mm
,
894 dst_pmd
, src_pmd
, addr
, vma
);
901 if (pmd_none_or_clear_bad(src_pmd
))
903 if (copy_pte_range(dst_mm
, src_mm
, dst_pmd
, src_pmd
,
906 } while (dst_pmd
++, src_pmd
++, addr
= next
, addr
!= end
);
910 static inline int copy_pud_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
911 p4d_t
*dst_p4d
, p4d_t
*src_p4d
, struct vm_area_struct
*vma
,
912 unsigned long addr
, unsigned long end
)
914 pud_t
*src_pud
, *dst_pud
;
917 dst_pud
= pud_alloc(dst_mm
, dst_p4d
, addr
);
920 src_pud
= pud_offset(src_p4d
, addr
);
922 next
= pud_addr_end(addr
, end
);
923 if (pud_trans_huge(*src_pud
) || pud_devmap(*src_pud
)) {
926 VM_BUG_ON_VMA(next
-addr
!= HPAGE_PUD_SIZE
, vma
);
927 err
= copy_huge_pud(dst_mm
, src_mm
,
928 dst_pud
, src_pud
, addr
, vma
);
935 if (pud_none_or_clear_bad(src_pud
))
937 if (copy_pmd_range(dst_mm
, src_mm
, dst_pud
, src_pud
,
940 } while (dst_pud
++, src_pud
++, addr
= next
, addr
!= end
);
944 static inline int copy_p4d_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
945 pgd_t
*dst_pgd
, pgd_t
*src_pgd
, struct vm_area_struct
*vma
,
946 unsigned long addr
, unsigned long end
)
948 p4d_t
*src_p4d
, *dst_p4d
;
951 dst_p4d
= p4d_alloc(dst_mm
, dst_pgd
, addr
);
954 src_p4d
= p4d_offset(src_pgd
, addr
);
956 next
= p4d_addr_end(addr
, end
);
957 if (p4d_none_or_clear_bad(src_p4d
))
959 if (copy_pud_range(dst_mm
, src_mm
, dst_p4d
, src_p4d
,
962 } while (dst_p4d
++, src_p4d
++, addr
= next
, addr
!= end
);
966 int copy_page_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
967 struct vm_area_struct
*vma
)
969 pgd_t
*src_pgd
, *dst_pgd
;
971 unsigned long addr
= vma
->vm_start
;
972 unsigned long end
= vma
->vm_end
;
973 struct mmu_notifier_range range
;
978 * Don't copy ptes where a page fault will fill them correctly.
979 * Fork becomes much lighter when there are big shared or private
980 * readonly mappings. The tradeoff is that copy_page_range is more
981 * efficient than faulting.
983 if (!(vma
->vm_flags
& (VM_HUGETLB
| VM_PFNMAP
| VM_MIXEDMAP
)) &&
987 if (is_vm_hugetlb_page(vma
))
988 return copy_hugetlb_page_range(dst_mm
, src_mm
, vma
);
990 if (unlikely(vma
->vm_flags
& VM_PFNMAP
)) {
992 * We do not free on error cases below as remove_vma
993 * gets called on error from higher level routine
995 ret
= track_pfn_copy(vma
);
1001 * We need to invalidate the secondary MMU mappings only when
1002 * there could be a permission downgrade on the ptes of the
1003 * parent mm. And a permission downgrade will only happen if
1004 * is_cow_mapping() returns true.
1006 is_cow
= is_cow_mapping(vma
->vm_flags
);
1009 mmu_notifier_range_init(&range
, MMU_NOTIFY_PROTECTION_PAGE
,
1010 0, vma
, src_mm
, addr
, end
);
1011 mmu_notifier_invalidate_range_start(&range
);
1015 dst_pgd
= pgd_offset(dst_mm
, addr
);
1016 src_pgd
= pgd_offset(src_mm
, addr
);
1018 next
= pgd_addr_end(addr
, end
);
1019 if (pgd_none_or_clear_bad(src_pgd
))
1021 if (unlikely(copy_p4d_range(dst_mm
, src_mm
, dst_pgd
, src_pgd
,
1022 vma
, addr
, next
))) {
1026 } while (dst_pgd
++, src_pgd
++, addr
= next
, addr
!= end
);
1029 mmu_notifier_invalidate_range_end(&range
);
1033 static unsigned long zap_pte_range(struct mmu_gather
*tlb
,
1034 struct vm_area_struct
*vma
, pmd_t
*pmd
,
1035 unsigned long addr
, unsigned long end
,
1036 struct zap_details
*details
)
1038 struct mm_struct
*mm
= tlb
->mm
;
1039 int force_flush
= 0;
1040 int rss
[NR_MM_COUNTERS
];
1046 tlb_change_page_size(tlb
, PAGE_SIZE
);
1049 start_pte
= pte_offset_map_lock(mm
, pmd
, addr
, &ptl
);
1051 flush_tlb_batched_pending(mm
);
1052 arch_enter_lazy_mmu_mode();
1055 if (pte_none(ptent
))
1061 if (pte_present(ptent
)) {
1064 page
= vm_normal_page(vma
, addr
, ptent
);
1065 if (unlikely(details
) && page
) {
1067 * unmap_shared_mapping_pages() wants to
1068 * invalidate cache without truncating:
1069 * unmap shared but keep private pages.
1071 if (details
->check_mapping
&&
1072 details
->check_mapping
!= page_rmapping(page
))
1075 ptent
= ptep_get_and_clear_full(mm
, addr
, pte
,
1077 tlb_remove_tlb_entry(tlb
, pte
, addr
);
1078 if (unlikely(!page
))
1081 if (!PageAnon(page
)) {
1082 if (pte_dirty(ptent
)) {
1084 set_page_dirty(page
);
1086 if (pte_young(ptent
) &&
1087 likely(!(vma
->vm_flags
& VM_SEQ_READ
)))
1088 mark_page_accessed(page
);
1090 rss
[mm_counter(page
)]--;
1091 page_remove_rmap(page
, false);
1092 if (unlikely(page_mapcount(page
) < 0))
1093 print_bad_pte(vma
, addr
, ptent
, page
);
1094 if (unlikely(__tlb_remove_page(tlb
, page
))) {
1102 entry
= pte_to_swp_entry(ptent
);
1103 if (is_device_private_entry(entry
)) {
1104 struct page
*page
= device_private_entry_to_page(entry
);
1106 if (unlikely(details
&& details
->check_mapping
)) {
1108 * unmap_shared_mapping_pages() wants to
1109 * invalidate cache without truncating:
1110 * unmap shared but keep private pages.
1112 if (details
->check_mapping
!=
1113 page_rmapping(page
))
1117 pte_clear_not_present_full(mm
, addr
, pte
, tlb
->fullmm
);
1118 rss
[mm_counter(page
)]--;
1119 page_remove_rmap(page
, false);
1124 /* If details->check_mapping, we leave swap entries. */
1125 if (unlikely(details
))
1128 if (!non_swap_entry(entry
))
1130 else if (is_migration_entry(entry
)) {
1133 page
= migration_entry_to_page(entry
);
1134 rss
[mm_counter(page
)]--;
1136 if (unlikely(!free_swap_and_cache(entry
)))
1137 print_bad_pte(vma
, addr
, ptent
, NULL
);
1138 pte_clear_not_present_full(mm
, addr
, pte
, tlb
->fullmm
);
1139 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
1141 add_mm_rss_vec(mm
, rss
);
1142 arch_leave_lazy_mmu_mode();
1144 /* Do the actual TLB flush before dropping ptl */
1146 tlb_flush_mmu_tlbonly(tlb
);
1147 pte_unmap_unlock(start_pte
, ptl
);
1150 * If we forced a TLB flush (either due to running out of
1151 * batch buffers or because we needed to flush dirty TLB
1152 * entries before releasing the ptl), free the batched
1153 * memory too. Restart if we didn't do everything.
1168 static inline unsigned long zap_pmd_range(struct mmu_gather
*tlb
,
1169 struct vm_area_struct
*vma
, pud_t
*pud
,
1170 unsigned long addr
, unsigned long end
,
1171 struct zap_details
*details
)
1176 pmd
= pmd_offset(pud
, addr
);
1178 next
= pmd_addr_end(addr
, end
);
1179 if (is_swap_pmd(*pmd
) || pmd_trans_huge(*pmd
) || pmd_devmap(*pmd
)) {
1180 if (next
- addr
!= HPAGE_PMD_SIZE
)
1181 __split_huge_pmd(vma
, pmd
, addr
, false, NULL
);
1182 else if (zap_huge_pmd(tlb
, vma
, pmd
, addr
))
1187 * Here there can be other concurrent MADV_DONTNEED or
1188 * trans huge page faults running, and if the pmd is
1189 * none or trans huge it can change under us. This is
1190 * because MADV_DONTNEED holds the mmap_lock in read
1193 if (pmd_none_or_trans_huge_or_clear_bad(pmd
))
1195 next
= zap_pte_range(tlb
, vma
, pmd
, addr
, next
, details
);
1198 } while (pmd
++, addr
= next
, addr
!= end
);
1203 static inline unsigned long zap_pud_range(struct mmu_gather
*tlb
,
1204 struct vm_area_struct
*vma
, p4d_t
*p4d
,
1205 unsigned long addr
, unsigned long end
,
1206 struct zap_details
*details
)
1211 pud
= pud_offset(p4d
, addr
);
1213 next
= pud_addr_end(addr
, end
);
1214 if (pud_trans_huge(*pud
) || pud_devmap(*pud
)) {
1215 if (next
- addr
!= HPAGE_PUD_SIZE
) {
1216 mmap_assert_locked(tlb
->mm
);
1217 split_huge_pud(vma
, pud
, addr
);
1218 } else if (zap_huge_pud(tlb
, vma
, pud
, addr
))
1222 if (pud_none_or_clear_bad(pud
))
1224 next
= zap_pmd_range(tlb
, vma
, pud
, addr
, next
, details
);
1227 } while (pud
++, addr
= next
, addr
!= end
);
1232 static inline unsigned long zap_p4d_range(struct mmu_gather
*tlb
,
1233 struct vm_area_struct
*vma
, pgd_t
*pgd
,
1234 unsigned long addr
, unsigned long end
,
1235 struct zap_details
*details
)
1240 p4d
= p4d_offset(pgd
, addr
);
1242 next
= p4d_addr_end(addr
, end
);
1243 if (p4d_none_or_clear_bad(p4d
))
1245 next
= zap_pud_range(tlb
, vma
, p4d
, addr
, next
, details
);
1246 } while (p4d
++, addr
= next
, addr
!= end
);
1251 void unmap_page_range(struct mmu_gather
*tlb
,
1252 struct vm_area_struct
*vma
,
1253 unsigned long addr
, unsigned long end
,
1254 struct zap_details
*details
)
1259 BUG_ON(addr
>= end
);
1260 tlb_start_vma(tlb
, vma
);
1261 pgd
= pgd_offset(vma
->vm_mm
, addr
);
1263 next
= pgd_addr_end(addr
, end
);
1264 if (pgd_none_or_clear_bad(pgd
))
1266 next
= zap_p4d_range(tlb
, vma
, pgd
, addr
, next
, details
);
1267 } while (pgd
++, addr
= next
, addr
!= end
);
1268 tlb_end_vma(tlb
, vma
);
1272 static void unmap_single_vma(struct mmu_gather
*tlb
,
1273 struct vm_area_struct
*vma
, unsigned long start_addr
,
1274 unsigned long end_addr
,
1275 struct zap_details
*details
)
1277 unsigned long start
= max(vma
->vm_start
, start_addr
);
1280 if (start
>= vma
->vm_end
)
1282 end
= min(vma
->vm_end
, end_addr
);
1283 if (end
<= vma
->vm_start
)
1287 uprobe_munmap(vma
, start
, end
);
1289 if (unlikely(vma
->vm_flags
& VM_PFNMAP
))
1290 untrack_pfn(vma
, 0, 0);
1293 if (unlikely(is_vm_hugetlb_page(vma
))) {
1295 * It is undesirable to test vma->vm_file as it
1296 * should be non-null for valid hugetlb area.
1297 * However, vm_file will be NULL in the error
1298 * cleanup path of mmap_region. When
1299 * hugetlbfs ->mmap method fails,
1300 * mmap_region() nullifies vma->vm_file
1301 * before calling this function to clean up.
1302 * Since no pte has actually been setup, it is
1303 * safe to do nothing in this case.
1306 i_mmap_lock_write(vma
->vm_file
->f_mapping
);
1307 __unmap_hugepage_range_final(tlb
, vma
, start
, end
, NULL
);
1308 i_mmap_unlock_write(vma
->vm_file
->f_mapping
);
1311 unmap_page_range(tlb
, vma
, start
, end
, details
);
1316 * unmap_vmas - unmap a range of memory covered by a list of vma's
1317 * @tlb: address of the caller's struct mmu_gather
1318 * @vma: the starting vma
1319 * @start_addr: virtual address at which to start unmapping
1320 * @end_addr: virtual address at which to end unmapping
1322 * Unmap all pages in the vma list.
1324 * Only addresses between `start' and `end' will be unmapped.
1326 * The VMA list must be sorted in ascending virtual address order.
1328 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1329 * range after unmap_vmas() returns. So the only responsibility here is to
1330 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1331 * drops the lock and schedules.
1333 void unmap_vmas(struct mmu_gather
*tlb
,
1334 struct vm_area_struct
*vma
, unsigned long start_addr
,
1335 unsigned long end_addr
)
1337 struct mmu_notifier_range range
;
1339 mmu_notifier_range_init(&range
, MMU_NOTIFY_UNMAP
, 0, vma
, vma
->vm_mm
,
1340 start_addr
, end_addr
);
1341 mmu_notifier_invalidate_range_start(&range
);
1342 for ( ; vma
&& vma
->vm_start
< end_addr
; vma
= vma
->vm_next
)
1343 unmap_single_vma(tlb
, vma
, start_addr
, end_addr
, NULL
);
1344 mmu_notifier_invalidate_range_end(&range
);
1348 * zap_page_range - remove user pages in a given range
1349 * @vma: vm_area_struct holding the applicable pages
1350 * @start: starting address of pages to zap
1351 * @size: number of bytes to zap
1353 * Caller must protect the VMA list
1355 void zap_page_range(struct vm_area_struct
*vma
, unsigned long start
,
1358 struct mmu_notifier_range range
;
1359 struct mmu_gather tlb
;
1362 mmu_notifier_range_init(&range
, MMU_NOTIFY_CLEAR
, 0, vma
, vma
->vm_mm
,
1363 start
, start
+ size
);
1364 tlb_gather_mmu(&tlb
, vma
->vm_mm
, start
, range
.end
);
1365 update_hiwater_rss(vma
->vm_mm
);
1366 mmu_notifier_invalidate_range_start(&range
);
1367 for ( ; vma
&& vma
->vm_start
< range
.end
; vma
= vma
->vm_next
)
1368 unmap_single_vma(&tlb
, vma
, start
, range
.end
, NULL
);
1369 mmu_notifier_invalidate_range_end(&range
);
1370 tlb_finish_mmu(&tlb
, start
, range
.end
);
1374 * zap_page_range_single - remove user pages in a given range
1375 * @vma: vm_area_struct holding the applicable pages
1376 * @address: starting address of pages to zap
1377 * @size: number of bytes to zap
1378 * @details: details of shared cache invalidation
1380 * The range must fit into one VMA.
1382 static void zap_page_range_single(struct vm_area_struct
*vma
, unsigned long address
,
1383 unsigned long size
, struct zap_details
*details
)
1385 struct mmu_notifier_range range
;
1386 struct mmu_gather tlb
;
1389 mmu_notifier_range_init(&range
, MMU_NOTIFY_CLEAR
, 0, vma
, vma
->vm_mm
,
1390 address
, address
+ size
);
1391 tlb_gather_mmu(&tlb
, vma
->vm_mm
, address
, range
.end
);
1392 update_hiwater_rss(vma
->vm_mm
);
1393 mmu_notifier_invalidate_range_start(&range
);
1394 unmap_single_vma(&tlb
, vma
, address
, range
.end
, details
);
1395 mmu_notifier_invalidate_range_end(&range
);
1396 tlb_finish_mmu(&tlb
, address
, range
.end
);
1400 * zap_vma_ptes - remove ptes mapping the vma
1401 * @vma: vm_area_struct holding ptes to be zapped
1402 * @address: starting address of pages to zap
1403 * @size: number of bytes to zap
1405 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1407 * The entire address range must be fully contained within the vma.
1410 void zap_vma_ptes(struct vm_area_struct
*vma
, unsigned long address
,
1413 if (address
< vma
->vm_start
|| address
+ size
> vma
->vm_end
||
1414 !(vma
->vm_flags
& VM_PFNMAP
))
1417 zap_page_range_single(vma
, address
, size
, NULL
);
1419 EXPORT_SYMBOL_GPL(zap_vma_ptes
);
1421 static pmd_t
*walk_to_pmd(struct mm_struct
*mm
, unsigned long addr
)
1428 pgd
= pgd_offset(mm
, addr
);
1429 p4d
= p4d_alloc(mm
, pgd
, addr
);
1432 pud
= pud_alloc(mm
, p4d
, addr
);
1435 pmd
= pmd_alloc(mm
, pud
, addr
);
1439 VM_BUG_ON(pmd_trans_huge(*pmd
));
1443 pte_t
*__get_locked_pte(struct mm_struct
*mm
, unsigned long addr
,
1446 pmd_t
*pmd
= walk_to_pmd(mm
, addr
);
1450 return pte_alloc_map_lock(mm
, pmd
, addr
, ptl
);
1453 static int validate_page_before_insert(struct page
*page
)
1455 if (PageAnon(page
) || PageSlab(page
) || page_has_type(page
))
1457 flush_dcache_page(page
);
1461 static int insert_page_into_pte_locked(struct mm_struct
*mm
, pte_t
*pte
,
1462 unsigned long addr
, struct page
*page
, pgprot_t prot
)
1464 if (!pte_none(*pte
))
1466 /* Ok, finally just insert the thing.. */
1468 inc_mm_counter_fast(mm
, mm_counter_file(page
));
1469 page_add_file_rmap(page
, false);
1470 set_pte_at(mm
, addr
, pte
, mk_pte(page
, prot
));
1475 * This is the old fallback for page remapping.
1477 * For historical reasons, it only allows reserved pages. Only
1478 * old drivers should use this, and they needed to mark their
1479 * pages reserved for the old functions anyway.
1481 static int insert_page(struct vm_area_struct
*vma
, unsigned long addr
,
1482 struct page
*page
, pgprot_t prot
)
1484 struct mm_struct
*mm
= vma
->vm_mm
;
1489 retval
= validate_page_before_insert(page
);
1493 pte
= get_locked_pte(mm
, addr
, &ptl
);
1496 retval
= insert_page_into_pte_locked(mm
, pte
, addr
, page
, prot
);
1497 pte_unmap_unlock(pte
, ptl
);
1503 static int insert_page_in_batch_locked(struct mm_struct
*mm
, pte_t
*pte
,
1504 unsigned long addr
, struct page
*page
, pgprot_t prot
)
1508 if (!page_count(page
))
1510 err
= validate_page_before_insert(page
);
1513 return insert_page_into_pte_locked(mm
, pte
, addr
, page
, prot
);
1516 /* insert_pages() amortizes the cost of spinlock operations
1517 * when inserting pages in a loop. Arch *must* define pte_index.
1519 static int insert_pages(struct vm_area_struct
*vma
, unsigned long addr
,
1520 struct page
**pages
, unsigned long *num
, pgprot_t prot
)
1523 pte_t
*start_pte
, *pte
;
1524 spinlock_t
*pte_lock
;
1525 struct mm_struct
*const mm
= vma
->vm_mm
;
1526 unsigned long curr_page_idx
= 0;
1527 unsigned long remaining_pages_total
= *num
;
1528 unsigned long pages_to_write_in_pmd
;
1532 pmd
= walk_to_pmd(mm
, addr
);
1536 pages_to_write_in_pmd
= min_t(unsigned long,
1537 remaining_pages_total
, PTRS_PER_PTE
- pte_index(addr
));
1539 /* Allocate the PTE if necessary; takes PMD lock once only. */
1541 if (pte_alloc(mm
, pmd
))
1544 while (pages_to_write_in_pmd
) {
1546 const int batch_size
= min_t(int, pages_to_write_in_pmd
, 8);
1548 start_pte
= pte_offset_map_lock(mm
, pmd
, addr
, &pte_lock
);
1549 for (pte
= start_pte
; pte_idx
< batch_size
; ++pte
, ++pte_idx
) {
1550 int err
= insert_page_in_batch_locked(mm
, pte
,
1551 addr
, pages
[curr_page_idx
], prot
);
1552 if (unlikely(err
)) {
1553 pte_unmap_unlock(start_pte
, pte_lock
);
1555 remaining_pages_total
-= pte_idx
;
1561 pte_unmap_unlock(start_pte
, pte_lock
);
1562 pages_to_write_in_pmd
-= batch_size
;
1563 remaining_pages_total
-= batch_size
;
1565 if (remaining_pages_total
)
1569 *num
= remaining_pages_total
;
1572 #endif /* ifdef pte_index */
1575 * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1576 * @vma: user vma to map to
1577 * @addr: target start user address of these pages
1578 * @pages: source kernel pages
1579 * @num: in: number of pages to map. out: number of pages that were *not*
1580 * mapped. (0 means all pages were successfully mapped).
1582 * Preferred over vm_insert_page() when inserting multiple pages.
1584 * In case of error, we may have mapped a subset of the provided
1585 * pages. It is the caller's responsibility to account for this case.
1587 * The same restrictions apply as in vm_insert_page().
1589 int vm_insert_pages(struct vm_area_struct
*vma
, unsigned long addr
,
1590 struct page
**pages
, unsigned long *num
)
1593 const unsigned long end_addr
= addr
+ (*num
* PAGE_SIZE
) - 1;
1595 if (addr
< vma
->vm_start
|| end_addr
>= vma
->vm_end
)
1597 if (!(vma
->vm_flags
& VM_MIXEDMAP
)) {
1598 BUG_ON(mmap_read_trylock(vma
->vm_mm
));
1599 BUG_ON(vma
->vm_flags
& VM_PFNMAP
);
1600 vma
->vm_flags
|= VM_MIXEDMAP
;
1602 /* Defer page refcount checking till we're about to map that page. */
1603 return insert_pages(vma
, addr
, pages
, num
, vma
->vm_page_prot
);
1605 unsigned long idx
= 0, pgcount
= *num
;
1608 for (; idx
< pgcount
; ++idx
) {
1609 err
= vm_insert_page(vma
, addr
+ (PAGE_SIZE
* idx
), pages
[idx
]);
1613 *num
= pgcount
- idx
;
1615 #endif /* ifdef pte_index */
1617 EXPORT_SYMBOL(vm_insert_pages
);
1620 * vm_insert_page - insert single page into user vma
1621 * @vma: user vma to map to
1622 * @addr: target user address of this page
1623 * @page: source kernel page
1625 * This allows drivers to insert individual pages they've allocated
1628 * The page has to be a nice clean _individual_ kernel allocation.
1629 * If you allocate a compound page, you need to have marked it as
1630 * such (__GFP_COMP), or manually just split the page up yourself
1631 * (see split_page()).
1633 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1634 * took an arbitrary page protection parameter. This doesn't allow
1635 * that. Your vma protection will have to be set up correctly, which
1636 * means that if you want a shared writable mapping, you'd better
1637 * ask for a shared writable mapping!
1639 * The page does not need to be reserved.
1641 * Usually this function is called from f_op->mmap() handler
1642 * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
1643 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1644 * function from other places, for example from page-fault handler.
1646 * Return: %0 on success, negative error code otherwise.
1648 int vm_insert_page(struct vm_area_struct
*vma
, unsigned long addr
,
1651 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
1653 if (!page_count(page
))
1655 if (!(vma
->vm_flags
& VM_MIXEDMAP
)) {
1656 BUG_ON(mmap_read_trylock(vma
->vm_mm
));
1657 BUG_ON(vma
->vm_flags
& VM_PFNMAP
);
1658 vma
->vm_flags
|= VM_MIXEDMAP
;
1660 return insert_page(vma
, addr
, page
, vma
->vm_page_prot
);
1662 EXPORT_SYMBOL(vm_insert_page
);
1665 * __vm_map_pages - maps range of kernel pages into user vma
1666 * @vma: user vma to map to
1667 * @pages: pointer to array of source kernel pages
1668 * @num: number of pages in page array
1669 * @offset: user's requested vm_pgoff
1671 * This allows drivers to map range of kernel pages into a user vma.
1673 * Return: 0 on success and error code otherwise.
1675 static int __vm_map_pages(struct vm_area_struct
*vma
, struct page
**pages
,
1676 unsigned long num
, unsigned long offset
)
1678 unsigned long count
= vma_pages(vma
);
1679 unsigned long uaddr
= vma
->vm_start
;
1682 /* Fail if the user requested offset is beyond the end of the object */
1686 /* Fail if the user requested size exceeds available object size */
1687 if (count
> num
- offset
)
1690 for (i
= 0; i
< count
; i
++) {
1691 ret
= vm_insert_page(vma
, uaddr
, pages
[offset
+ i
]);
1701 * vm_map_pages - maps range of kernel pages starts with non zero offset
1702 * @vma: user vma to map to
1703 * @pages: pointer to array of source kernel pages
1704 * @num: number of pages in page array
1706 * Maps an object consisting of @num pages, catering for the user's
1707 * requested vm_pgoff
1709 * If we fail to insert any page into the vma, the function will return
1710 * immediately leaving any previously inserted pages present. Callers
1711 * from the mmap handler may immediately return the error as their caller
1712 * will destroy the vma, removing any successfully inserted pages. Other
1713 * callers should make their own arrangements for calling unmap_region().
1715 * Context: Process context. Called by mmap handlers.
1716 * Return: 0 on success and error code otherwise.
1718 int vm_map_pages(struct vm_area_struct
*vma
, struct page
**pages
,
1721 return __vm_map_pages(vma
, pages
, num
, vma
->vm_pgoff
);
1723 EXPORT_SYMBOL(vm_map_pages
);
1726 * vm_map_pages_zero - map range of kernel pages starts with zero offset
1727 * @vma: user vma to map to
1728 * @pages: pointer to array of source kernel pages
1729 * @num: number of pages in page array
1731 * Similar to vm_map_pages(), except that it explicitly sets the offset
1732 * to 0. This function is intended for the drivers that did not consider
1735 * Context: Process context. Called by mmap handlers.
1736 * Return: 0 on success and error code otherwise.
1738 int vm_map_pages_zero(struct vm_area_struct
*vma
, struct page
**pages
,
1741 return __vm_map_pages(vma
, pages
, num
, 0);
1743 EXPORT_SYMBOL(vm_map_pages_zero
);
1745 static vm_fault_t
insert_pfn(struct vm_area_struct
*vma
, unsigned long addr
,
1746 pfn_t pfn
, pgprot_t prot
, bool mkwrite
)
1748 struct mm_struct
*mm
= vma
->vm_mm
;
1752 pte
= get_locked_pte(mm
, addr
, &ptl
);
1754 return VM_FAULT_OOM
;
1755 if (!pte_none(*pte
)) {
1758 * For read faults on private mappings the PFN passed
1759 * in may not match the PFN we have mapped if the
1760 * mapped PFN is a writeable COW page. In the mkwrite
1761 * case we are creating a writable PTE for a shared
1762 * mapping and we expect the PFNs to match. If they
1763 * don't match, we are likely racing with block
1764 * allocation and mapping invalidation so just skip the
1767 if (pte_pfn(*pte
) != pfn_t_to_pfn(pfn
)) {
1768 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte
)));
1771 entry
= pte_mkyoung(*pte
);
1772 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
1773 if (ptep_set_access_flags(vma
, addr
, pte
, entry
, 1))
1774 update_mmu_cache(vma
, addr
, pte
);
1779 /* Ok, finally just insert the thing.. */
1780 if (pfn_t_devmap(pfn
))
1781 entry
= pte_mkdevmap(pfn_t_pte(pfn
, prot
));
1783 entry
= pte_mkspecial(pfn_t_pte(pfn
, prot
));
1786 entry
= pte_mkyoung(entry
);
1787 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
1790 set_pte_at(mm
, addr
, pte
, entry
);
1791 update_mmu_cache(vma
, addr
, pte
); /* XXX: why not for insert_page? */
1794 pte_unmap_unlock(pte
, ptl
);
1795 return VM_FAULT_NOPAGE
;
1799 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1800 * @vma: user vma to map to
1801 * @addr: target user address of this page
1802 * @pfn: source kernel pfn
1803 * @pgprot: pgprot flags for the inserted page
1805 * This is exactly like vmf_insert_pfn(), except that it allows drivers
1806 * to override pgprot on a per-page basis.
1808 * This only makes sense for IO mappings, and it makes no sense for
1809 * COW mappings. In general, using multiple vmas is preferable;
1810 * vmf_insert_pfn_prot should only be used if using multiple VMAs is
1813 * See vmf_insert_mixed_prot() for a discussion of the implication of using
1814 * a value of @pgprot different from that of @vma->vm_page_prot.
1816 * Context: Process context. May allocate using %GFP_KERNEL.
1817 * Return: vm_fault_t value.
1819 vm_fault_t
vmf_insert_pfn_prot(struct vm_area_struct
*vma
, unsigned long addr
,
1820 unsigned long pfn
, pgprot_t pgprot
)
1823 * Technically, architectures with pte_special can avoid all these
1824 * restrictions (same for remap_pfn_range). However we would like
1825 * consistency in testing and feature parity among all, so we should
1826 * try to keep these invariants in place for everybody.
1828 BUG_ON(!(vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
)));
1829 BUG_ON((vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
)) ==
1830 (VM_PFNMAP
|VM_MIXEDMAP
));
1831 BUG_ON((vma
->vm_flags
& VM_PFNMAP
) && is_cow_mapping(vma
->vm_flags
));
1832 BUG_ON((vma
->vm_flags
& VM_MIXEDMAP
) && pfn_valid(pfn
));
1834 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
1835 return VM_FAULT_SIGBUS
;
1837 if (!pfn_modify_allowed(pfn
, pgprot
))
1838 return VM_FAULT_SIGBUS
;
1840 track_pfn_insert(vma
, &pgprot
, __pfn_to_pfn_t(pfn
, PFN_DEV
));
1842 return insert_pfn(vma
, addr
, __pfn_to_pfn_t(pfn
, PFN_DEV
), pgprot
,
1845 EXPORT_SYMBOL(vmf_insert_pfn_prot
);
1848 * vmf_insert_pfn - insert single pfn into user vma
1849 * @vma: user vma to map to
1850 * @addr: target user address of this page
1851 * @pfn: source kernel pfn
1853 * Similar to vm_insert_page, this allows drivers to insert individual pages
1854 * they've allocated into a user vma. Same comments apply.
1856 * This function should only be called from a vm_ops->fault handler, and
1857 * in that case the handler should return the result of this function.
1859 * vma cannot be a COW mapping.
1861 * As this is called only for pages that do not currently exist, we
1862 * do not need to flush old virtual caches or the TLB.
1864 * Context: Process context. May allocate using %GFP_KERNEL.
1865 * Return: vm_fault_t value.
1867 vm_fault_t
vmf_insert_pfn(struct vm_area_struct
*vma
, unsigned long addr
,
1870 return vmf_insert_pfn_prot(vma
, addr
, pfn
, vma
->vm_page_prot
);
1872 EXPORT_SYMBOL(vmf_insert_pfn
);
1874 static bool vm_mixed_ok(struct vm_area_struct
*vma
, pfn_t pfn
)
1876 /* these checks mirror the abort conditions in vm_normal_page */
1877 if (vma
->vm_flags
& VM_MIXEDMAP
)
1879 if (pfn_t_devmap(pfn
))
1881 if (pfn_t_special(pfn
))
1883 if (is_zero_pfn(pfn_t_to_pfn(pfn
)))
1888 static vm_fault_t
__vm_insert_mixed(struct vm_area_struct
*vma
,
1889 unsigned long addr
, pfn_t pfn
, pgprot_t pgprot
,
1894 BUG_ON(!vm_mixed_ok(vma
, pfn
));
1896 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
1897 return VM_FAULT_SIGBUS
;
1899 track_pfn_insert(vma
, &pgprot
, pfn
);
1901 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn
), pgprot
))
1902 return VM_FAULT_SIGBUS
;
1905 * If we don't have pte special, then we have to use the pfn_valid()
1906 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1907 * refcount the page if pfn_valid is true (hence insert_page rather
1908 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
1909 * without pte special, it would there be refcounted as a normal page.
1911 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL
) &&
1912 !pfn_t_devmap(pfn
) && pfn_t_valid(pfn
)) {
1916 * At this point we are committed to insert_page()
1917 * regardless of whether the caller specified flags that
1918 * result in pfn_t_has_page() == false.
1920 page
= pfn_to_page(pfn_t_to_pfn(pfn
));
1921 err
= insert_page(vma
, addr
, page
, pgprot
);
1923 return insert_pfn(vma
, addr
, pfn
, pgprot
, mkwrite
);
1927 return VM_FAULT_OOM
;
1928 if (err
< 0 && err
!= -EBUSY
)
1929 return VM_FAULT_SIGBUS
;
1931 return VM_FAULT_NOPAGE
;
1935 * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot
1936 * @vma: user vma to map to
1937 * @addr: target user address of this page
1938 * @pfn: source kernel pfn
1939 * @pgprot: pgprot flags for the inserted page
1941 * This is exactly like vmf_insert_mixed(), except that it allows drivers
1942 * to override pgprot on a per-page basis.
1944 * Typically this function should be used by drivers to set caching- and
1945 * encryption bits different than those of @vma->vm_page_prot, because
1946 * the caching- or encryption mode may not be known at mmap() time.
1947 * This is ok as long as @vma->vm_page_prot is not used by the core vm
1948 * to set caching and encryption bits for those vmas (except for COW pages).
1949 * This is ensured by core vm only modifying these page table entries using
1950 * functions that don't touch caching- or encryption bits, using pte_modify()
1951 * if needed. (See for example mprotect()).
1952 * Also when new page-table entries are created, this is only done using the
1953 * fault() callback, and never using the value of vma->vm_page_prot,
1954 * except for page-table entries that point to anonymous pages as the result
1957 * Context: Process context. May allocate using %GFP_KERNEL.
1958 * Return: vm_fault_t value.
1960 vm_fault_t
vmf_insert_mixed_prot(struct vm_area_struct
*vma
, unsigned long addr
,
1961 pfn_t pfn
, pgprot_t pgprot
)
1963 return __vm_insert_mixed(vma
, addr
, pfn
, pgprot
, false);
1965 EXPORT_SYMBOL(vmf_insert_mixed_prot
);
1967 vm_fault_t
vmf_insert_mixed(struct vm_area_struct
*vma
, unsigned long addr
,
1970 return __vm_insert_mixed(vma
, addr
, pfn
, vma
->vm_page_prot
, false);
1972 EXPORT_SYMBOL(vmf_insert_mixed
);
1975 * If the insertion of PTE failed because someone else already added a
1976 * different entry in the mean time, we treat that as success as we assume
1977 * the same entry was actually inserted.
1979 vm_fault_t
vmf_insert_mixed_mkwrite(struct vm_area_struct
*vma
,
1980 unsigned long addr
, pfn_t pfn
)
1982 return __vm_insert_mixed(vma
, addr
, pfn
, vma
->vm_page_prot
, true);
1984 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite
);
1987 * maps a range of physical memory into the requested pages. the old
1988 * mappings are removed. any references to nonexistent pages results
1989 * in null mappings (currently treated as "copy-on-access")
1991 static int remap_pte_range(struct mm_struct
*mm
, pmd_t
*pmd
,
1992 unsigned long addr
, unsigned long end
,
1993 unsigned long pfn
, pgprot_t prot
)
1999 pte
= pte_alloc_map_lock(mm
, pmd
, addr
, &ptl
);
2002 arch_enter_lazy_mmu_mode();
2004 BUG_ON(!pte_none(*pte
));
2005 if (!pfn_modify_allowed(pfn
, prot
)) {
2009 set_pte_at(mm
, addr
, pte
, pte_mkspecial(pfn_pte(pfn
, prot
)));
2011 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
2012 arch_leave_lazy_mmu_mode();
2013 pte_unmap_unlock(pte
- 1, ptl
);
2017 static inline int remap_pmd_range(struct mm_struct
*mm
, pud_t
*pud
,
2018 unsigned long addr
, unsigned long end
,
2019 unsigned long pfn
, pgprot_t prot
)
2025 pfn
-= addr
>> PAGE_SHIFT
;
2026 pmd
= pmd_alloc(mm
, pud
, addr
);
2029 VM_BUG_ON(pmd_trans_huge(*pmd
));
2031 next
= pmd_addr_end(addr
, end
);
2032 err
= remap_pte_range(mm
, pmd
, addr
, next
,
2033 pfn
+ (addr
>> PAGE_SHIFT
), prot
);
2036 } while (pmd
++, addr
= next
, addr
!= end
);
2040 static inline int remap_pud_range(struct mm_struct
*mm
, p4d_t
*p4d
,
2041 unsigned long addr
, unsigned long end
,
2042 unsigned long pfn
, pgprot_t prot
)
2048 pfn
-= addr
>> PAGE_SHIFT
;
2049 pud
= pud_alloc(mm
, p4d
, addr
);
2053 next
= pud_addr_end(addr
, end
);
2054 err
= remap_pmd_range(mm
, pud
, addr
, next
,
2055 pfn
+ (addr
>> PAGE_SHIFT
), prot
);
2058 } while (pud
++, addr
= next
, addr
!= end
);
2062 static inline int remap_p4d_range(struct mm_struct
*mm
, pgd_t
*pgd
,
2063 unsigned long addr
, unsigned long end
,
2064 unsigned long pfn
, pgprot_t prot
)
2070 pfn
-= addr
>> PAGE_SHIFT
;
2071 p4d
= p4d_alloc(mm
, pgd
, addr
);
2075 next
= p4d_addr_end(addr
, end
);
2076 err
= remap_pud_range(mm
, p4d
, addr
, next
,
2077 pfn
+ (addr
>> PAGE_SHIFT
), prot
);
2080 } while (p4d
++, addr
= next
, addr
!= end
);
2085 * remap_pfn_range - remap kernel memory to userspace
2086 * @vma: user vma to map to
2087 * @addr: target page aligned user address to start at
2088 * @pfn: page frame number of kernel physical memory address
2089 * @size: size of mapping area
2090 * @prot: page protection flags for this mapping
2092 * Note: this is only safe if the mm semaphore is held when called.
2094 * Return: %0 on success, negative error code otherwise.
2096 int remap_pfn_range(struct vm_area_struct
*vma
, unsigned long addr
,
2097 unsigned long pfn
, unsigned long size
, pgprot_t prot
)
2101 unsigned long end
= addr
+ PAGE_ALIGN(size
);
2102 struct mm_struct
*mm
= vma
->vm_mm
;
2103 unsigned long remap_pfn
= pfn
;
2106 if (WARN_ON_ONCE(!PAGE_ALIGNED(addr
)))
2110 * Physically remapped pages are special. Tell the
2111 * rest of the world about it:
2112 * VM_IO tells people not to look at these pages
2113 * (accesses can have side effects).
2114 * VM_PFNMAP tells the core MM that the base pages are just
2115 * raw PFN mappings, and do not have a "struct page" associated
2118 * Disable vma merging and expanding with mremap().
2120 * Omit vma from core dump, even when VM_IO turned off.
2122 * There's a horrible special case to handle copy-on-write
2123 * behaviour that some programs depend on. We mark the "original"
2124 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2125 * See vm_normal_page() for details.
2127 if (is_cow_mapping(vma
->vm_flags
)) {
2128 if (addr
!= vma
->vm_start
|| end
!= vma
->vm_end
)
2130 vma
->vm_pgoff
= pfn
;
2133 err
= track_pfn_remap(vma
, &prot
, remap_pfn
, addr
, PAGE_ALIGN(size
));
2137 vma
->vm_flags
|= VM_IO
| VM_PFNMAP
| VM_DONTEXPAND
| VM_DONTDUMP
;
2139 BUG_ON(addr
>= end
);
2140 pfn
-= addr
>> PAGE_SHIFT
;
2141 pgd
= pgd_offset(mm
, addr
);
2142 flush_cache_range(vma
, addr
, end
);
2144 next
= pgd_addr_end(addr
, end
);
2145 err
= remap_p4d_range(mm
, pgd
, addr
, next
,
2146 pfn
+ (addr
>> PAGE_SHIFT
), prot
);
2149 } while (pgd
++, addr
= next
, addr
!= end
);
2152 untrack_pfn(vma
, remap_pfn
, PAGE_ALIGN(size
));
2156 EXPORT_SYMBOL(remap_pfn_range
);
2159 * vm_iomap_memory - remap memory to userspace
2160 * @vma: user vma to map to
2161 * @start: start of the physical memory to be mapped
2162 * @len: size of area
2164 * This is a simplified io_remap_pfn_range() for common driver use. The
2165 * driver just needs to give us the physical memory range to be mapped,
2166 * we'll figure out the rest from the vma information.
2168 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2169 * whatever write-combining details or similar.
2171 * Return: %0 on success, negative error code otherwise.
2173 int vm_iomap_memory(struct vm_area_struct
*vma
, phys_addr_t start
, unsigned long len
)
2175 unsigned long vm_len
, pfn
, pages
;
2177 /* Check that the physical memory area passed in looks valid */
2178 if (start
+ len
< start
)
2181 * You *really* shouldn't map things that aren't page-aligned,
2182 * but we've historically allowed it because IO memory might
2183 * just have smaller alignment.
2185 len
+= start
& ~PAGE_MASK
;
2186 pfn
= start
>> PAGE_SHIFT
;
2187 pages
= (len
+ ~PAGE_MASK
) >> PAGE_SHIFT
;
2188 if (pfn
+ pages
< pfn
)
2191 /* We start the mapping 'vm_pgoff' pages into the area */
2192 if (vma
->vm_pgoff
> pages
)
2194 pfn
+= vma
->vm_pgoff
;
2195 pages
-= vma
->vm_pgoff
;
2197 /* Can we fit all of the mapping? */
2198 vm_len
= vma
->vm_end
- vma
->vm_start
;
2199 if (vm_len
>> PAGE_SHIFT
> pages
)
2202 /* Ok, let it rip */
2203 return io_remap_pfn_range(vma
, vma
->vm_start
, pfn
, vm_len
, vma
->vm_page_prot
);
2205 EXPORT_SYMBOL(vm_iomap_memory
);
2207 static int apply_to_pte_range(struct mm_struct
*mm
, pmd_t
*pmd
,
2208 unsigned long addr
, unsigned long end
,
2209 pte_fn_t fn
, void *data
, bool create
)
2216 pte
= (mm
== &init_mm
) ?
2217 pte_alloc_kernel(pmd
, addr
) :
2218 pte_alloc_map_lock(mm
, pmd
, addr
, &ptl
);
2222 pte
= (mm
== &init_mm
) ?
2223 pte_offset_kernel(pmd
, addr
) :
2224 pte_offset_map_lock(mm
, pmd
, addr
, &ptl
);
2227 BUG_ON(pmd_huge(*pmd
));
2229 arch_enter_lazy_mmu_mode();
2232 if (create
|| !pte_none(*pte
)) {
2233 err
= fn(pte
++, addr
, data
);
2237 } while (addr
+= PAGE_SIZE
, addr
!= end
);
2239 arch_leave_lazy_mmu_mode();
2242 pte_unmap_unlock(pte
-1, ptl
);
2246 static int apply_to_pmd_range(struct mm_struct
*mm
, pud_t
*pud
,
2247 unsigned long addr
, unsigned long end
,
2248 pte_fn_t fn
, void *data
, bool create
)
2254 BUG_ON(pud_huge(*pud
));
2257 pmd
= pmd_alloc(mm
, pud
, addr
);
2261 pmd
= pmd_offset(pud
, addr
);
2264 next
= pmd_addr_end(addr
, end
);
2265 if (create
|| !pmd_none_or_clear_bad(pmd
)) {
2266 err
= apply_to_pte_range(mm
, pmd
, addr
, next
, fn
, data
,
2271 } while (pmd
++, addr
= next
, addr
!= end
);
2275 static int apply_to_pud_range(struct mm_struct
*mm
, p4d_t
*p4d
,
2276 unsigned long addr
, unsigned long end
,
2277 pte_fn_t fn
, void *data
, bool create
)
2284 pud
= pud_alloc(mm
, p4d
, addr
);
2288 pud
= pud_offset(p4d
, addr
);
2291 next
= pud_addr_end(addr
, end
);
2292 if (create
|| !pud_none_or_clear_bad(pud
)) {
2293 err
= apply_to_pmd_range(mm
, pud
, addr
, next
, fn
, data
,
2298 } while (pud
++, addr
= next
, addr
!= end
);
2302 static int apply_to_p4d_range(struct mm_struct
*mm
, pgd_t
*pgd
,
2303 unsigned long addr
, unsigned long end
,
2304 pte_fn_t fn
, void *data
, bool create
)
2311 p4d
= p4d_alloc(mm
, pgd
, addr
);
2315 p4d
= p4d_offset(pgd
, addr
);
2318 next
= p4d_addr_end(addr
, end
);
2319 if (create
|| !p4d_none_or_clear_bad(p4d
)) {
2320 err
= apply_to_pud_range(mm
, p4d
, addr
, next
, fn
, data
,
2325 } while (p4d
++, addr
= next
, addr
!= end
);
2329 static int __apply_to_page_range(struct mm_struct
*mm
, unsigned long addr
,
2330 unsigned long size
, pte_fn_t fn
,
2331 void *data
, bool create
)
2335 unsigned long end
= addr
+ size
;
2338 if (WARN_ON(addr
>= end
))
2341 pgd
= pgd_offset(mm
, addr
);
2343 next
= pgd_addr_end(addr
, end
);
2344 if (!create
&& pgd_none_or_clear_bad(pgd
))
2346 err
= apply_to_p4d_range(mm
, pgd
, addr
, next
, fn
, data
, create
);
2349 } while (pgd
++, addr
= next
, addr
!= end
);
2355 * Scan a region of virtual memory, filling in page tables as necessary
2356 * and calling a provided function on each leaf page table.
2358 int apply_to_page_range(struct mm_struct
*mm
, unsigned long addr
,
2359 unsigned long size
, pte_fn_t fn
, void *data
)
2361 return __apply_to_page_range(mm
, addr
, size
, fn
, data
, true);
2363 EXPORT_SYMBOL_GPL(apply_to_page_range
);
2366 * Scan a region of virtual memory, calling a provided function on
2367 * each leaf page table where it exists.
2369 * Unlike apply_to_page_range, this does _not_ fill in page tables
2370 * where they are absent.
2372 int apply_to_existing_page_range(struct mm_struct
*mm
, unsigned long addr
,
2373 unsigned long size
, pte_fn_t fn
, void *data
)
2375 return __apply_to_page_range(mm
, addr
, size
, fn
, data
, false);
2377 EXPORT_SYMBOL_GPL(apply_to_existing_page_range
);
2380 * handle_pte_fault chooses page fault handler according to an entry which was
2381 * read non-atomically. Before making any commitment, on those architectures
2382 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2383 * parts, do_swap_page must check under lock before unmapping the pte and
2384 * proceeding (but do_wp_page is only called after already making such a check;
2385 * and do_anonymous_page can safely check later on).
2387 static inline int pte_unmap_same(struct mm_struct
*mm
, pmd_t
*pmd
,
2388 pte_t
*page_table
, pte_t orig_pte
)
2391 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
2392 if (sizeof(pte_t
) > sizeof(unsigned long)) {
2393 spinlock_t
*ptl
= pte_lockptr(mm
, pmd
);
2395 same
= pte_same(*page_table
, orig_pte
);
2399 pte_unmap(page_table
);
2403 static inline bool cow_user_page(struct page
*dst
, struct page
*src
,
2404 struct vm_fault
*vmf
)
2409 bool locked
= false;
2410 struct vm_area_struct
*vma
= vmf
->vma
;
2411 struct mm_struct
*mm
= vma
->vm_mm
;
2412 unsigned long addr
= vmf
->address
;
2415 copy_user_highpage(dst
, src
, addr
, vma
);
2420 * If the source page was a PFN mapping, we don't have
2421 * a "struct page" for it. We do a best-effort copy by
2422 * just copying from the original user address. If that
2423 * fails, we just zero-fill it. Live with it.
2425 kaddr
= kmap_atomic(dst
);
2426 uaddr
= (void __user
*)(addr
& PAGE_MASK
);
2429 * On architectures with software "accessed" bits, we would
2430 * take a double page fault, so mark it accessed here.
2432 if (arch_faults_on_old_pte() && !pte_young(vmf
->orig_pte
)) {
2435 vmf
->pte
= pte_offset_map_lock(mm
, vmf
->pmd
, addr
, &vmf
->ptl
);
2437 if (!likely(pte_same(*vmf
->pte
, vmf
->orig_pte
))) {
2439 * Other thread has already handled the fault
2440 * and update local tlb only
2442 update_mmu_tlb(vma
, addr
, vmf
->pte
);
2447 entry
= pte_mkyoung(vmf
->orig_pte
);
2448 if (ptep_set_access_flags(vma
, addr
, vmf
->pte
, entry
, 0))
2449 update_mmu_cache(vma
, addr
, vmf
->pte
);
2453 * This really shouldn't fail, because the page is there
2454 * in the page tables. But it might just be unreadable,
2455 * in which case we just give up and fill the result with
2458 if (__copy_from_user_inatomic(kaddr
, uaddr
, PAGE_SIZE
)) {
2462 /* Re-validate under PTL if the page is still mapped */
2463 vmf
->pte
= pte_offset_map_lock(mm
, vmf
->pmd
, addr
, &vmf
->ptl
);
2465 if (!likely(pte_same(*vmf
->pte
, vmf
->orig_pte
))) {
2466 /* The PTE changed under us, update local tlb */
2467 update_mmu_tlb(vma
, addr
, vmf
->pte
);
2473 * The same page can be mapped back since last copy attempt.
2474 * Try to copy again under PTL.
2476 if (__copy_from_user_inatomic(kaddr
, uaddr
, PAGE_SIZE
)) {
2478 * Give a warn in case there can be some obscure
2491 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2492 kunmap_atomic(kaddr
);
2493 flush_dcache_page(dst
);
2498 static gfp_t
__get_fault_gfp_mask(struct vm_area_struct
*vma
)
2500 struct file
*vm_file
= vma
->vm_file
;
2503 return mapping_gfp_mask(vm_file
->f_mapping
) | __GFP_FS
| __GFP_IO
;
2506 * Special mappings (e.g. VDSO) do not have any file so fake
2507 * a default GFP_KERNEL for them.
2513 * Notify the address space that the page is about to become writable so that
2514 * it can prohibit this or wait for the page to get into an appropriate state.
2516 * We do this without the lock held, so that it can sleep if it needs to.
2518 static vm_fault_t
do_page_mkwrite(struct vm_fault
*vmf
)
2521 struct page
*page
= vmf
->page
;
2522 unsigned int old_flags
= vmf
->flags
;
2524 vmf
->flags
= FAULT_FLAG_WRITE
|FAULT_FLAG_MKWRITE
;
2526 if (vmf
->vma
->vm_file
&&
2527 IS_SWAPFILE(vmf
->vma
->vm_file
->f_mapping
->host
))
2528 return VM_FAULT_SIGBUS
;
2530 ret
= vmf
->vma
->vm_ops
->page_mkwrite(vmf
);
2531 /* Restore original flags so that caller is not surprised */
2532 vmf
->flags
= old_flags
;
2533 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
)))
2535 if (unlikely(!(ret
& VM_FAULT_LOCKED
))) {
2537 if (!page
->mapping
) {
2539 return 0; /* retry */
2541 ret
|= VM_FAULT_LOCKED
;
2543 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
2548 * Handle dirtying of a page in shared file mapping on a write fault.
2550 * The function expects the page to be locked and unlocks it.
2552 static vm_fault_t
fault_dirty_shared_page(struct vm_fault
*vmf
)
2554 struct vm_area_struct
*vma
= vmf
->vma
;
2555 struct address_space
*mapping
;
2556 struct page
*page
= vmf
->page
;
2558 bool page_mkwrite
= vma
->vm_ops
&& vma
->vm_ops
->page_mkwrite
;
2560 dirtied
= set_page_dirty(page
);
2561 VM_BUG_ON_PAGE(PageAnon(page
), page
);
2563 * Take a local copy of the address_space - page.mapping may be zeroed
2564 * by truncate after unlock_page(). The address_space itself remains
2565 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
2566 * release semantics to prevent the compiler from undoing this copying.
2568 mapping
= page_rmapping(page
);
2572 file_update_time(vma
->vm_file
);
2575 * Throttle page dirtying rate down to writeback speed.
2577 * mapping may be NULL here because some device drivers do not
2578 * set page.mapping but still dirty their pages
2580 * Drop the mmap_lock before waiting on IO, if we can. The file
2581 * is pinning the mapping, as per above.
2583 if ((dirtied
|| page_mkwrite
) && mapping
) {
2586 fpin
= maybe_unlock_mmap_for_io(vmf
, NULL
);
2587 balance_dirty_pages_ratelimited(mapping
);
2590 return VM_FAULT_RETRY
;
2598 * Handle write page faults for pages that can be reused in the current vma
2600 * This can happen either due to the mapping being with the VM_SHARED flag,
2601 * or due to us being the last reference standing to the page. In either
2602 * case, all we need to do here is to mark the page as writable and update
2603 * any related book-keeping.
2605 static inline void wp_page_reuse(struct vm_fault
*vmf
)
2606 __releases(vmf
->ptl
)
2608 struct vm_area_struct
*vma
= vmf
->vma
;
2609 struct page
*page
= vmf
->page
;
2612 * Clear the pages cpupid information as the existing
2613 * information potentially belongs to a now completely
2614 * unrelated process.
2617 page_cpupid_xchg_last(page
, (1 << LAST_CPUPID_SHIFT
) - 1);
2619 flush_cache_page(vma
, vmf
->address
, pte_pfn(vmf
->orig_pte
));
2620 entry
= pte_mkyoung(vmf
->orig_pte
);
2621 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
2622 if (ptep_set_access_flags(vma
, vmf
->address
, vmf
->pte
, entry
, 1))
2623 update_mmu_cache(vma
, vmf
->address
, vmf
->pte
);
2624 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2625 count_vm_event(PGREUSE
);
2629 * Handle the case of a page which we actually need to copy to a new page.
2631 * Called with mmap_lock locked and the old page referenced, but
2632 * without the ptl held.
2634 * High level logic flow:
2636 * - Allocate a page, copy the content of the old page to the new one.
2637 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2638 * - Take the PTL. If the pte changed, bail out and release the allocated page
2639 * - If the pte is still the way we remember it, update the page table and all
2640 * relevant references. This includes dropping the reference the page-table
2641 * held to the old page, as well as updating the rmap.
2642 * - In any case, unlock the PTL and drop the reference we took to the old page.
2644 static vm_fault_t
wp_page_copy(struct vm_fault
*vmf
)
2646 struct vm_area_struct
*vma
= vmf
->vma
;
2647 struct mm_struct
*mm
= vma
->vm_mm
;
2648 struct page
*old_page
= vmf
->page
;
2649 struct page
*new_page
= NULL
;
2651 int page_copied
= 0;
2652 struct mmu_notifier_range range
;
2654 if (unlikely(anon_vma_prepare(vma
)))
2657 if (is_zero_pfn(pte_pfn(vmf
->orig_pte
))) {
2658 new_page
= alloc_zeroed_user_highpage_movable(vma
,
2663 new_page
= alloc_page_vma(GFP_HIGHUSER_MOVABLE
, vma
,
2668 if (!cow_user_page(new_page
, old_page
, vmf
)) {
2670 * COW failed, if the fault was solved by other,
2671 * it's fine. If not, userspace would re-fault on
2672 * the same address and we will handle the fault
2673 * from the second attempt.
2682 if (mem_cgroup_charge(new_page
, mm
, GFP_KERNEL
))
2684 cgroup_throttle_swaprate(new_page
, GFP_KERNEL
);
2686 __SetPageUptodate(new_page
);
2688 mmu_notifier_range_init(&range
, MMU_NOTIFY_CLEAR
, 0, vma
, mm
,
2689 vmf
->address
& PAGE_MASK
,
2690 (vmf
->address
& PAGE_MASK
) + PAGE_SIZE
);
2691 mmu_notifier_invalidate_range_start(&range
);
2694 * Re-check the pte - we dropped the lock
2696 vmf
->pte
= pte_offset_map_lock(mm
, vmf
->pmd
, vmf
->address
, &vmf
->ptl
);
2697 if (likely(pte_same(*vmf
->pte
, vmf
->orig_pte
))) {
2699 if (!PageAnon(old_page
)) {
2700 dec_mm_counter_fast(mm
,
2701 mm_counter_file(old_page
));
2702 inc_mm_counter_fast(mm
, MM_ANONPAGES
);
2705 inc_mm_counter_fast(mm
, MM_ANONPAGES
);
2707 flush_cache_page(vma
, vmf
->address
, pte_pfn(vmf
->orig_pte
));
2708 entry
= mk_pte(new_page
, vma
->vm_page_prot
);
2709 entry
= pte_sw_mkyoung(entry
);
2710 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
2712 * Clear the pte entry and flush it first, before updating the
2713 * pte with the new entry. This will avoid a race condition
2714 * seen in the presence of one thread doing SMC and another
2717 ptep_clear_flush_notify(vma
, vmf
->address
, vmf
->pte
);
2718 page_add_new_anon_rmap(new_page
, vma
, vmf
->address
, false);
2719 lru_cache_add_inactive_or_unevictable(new_page
, vma
);
2721 * We call the notify macro here because, when using secondary
2722 * mmu page tables (such as kvm shadow page tables), we want the
2723 * new page to be mapped directly into the secondary page table.
2725 set_pte_at_notify(mm
, vmf
->address
, vmf
->pte
, entry
);
2726 update_mmu_cache(vma
, vmf
->address
, vmf
->pte
);
2729 * Only after switching the pte to the new page may
2730 * we remove the mapcount here. Otherwise another
2731 * process may come and find the rmap count decremented
2732 * before the pte is switched to the new page, and
2733 * "reuse" the old page writing into it while our pte
2734 * here still points into it and can be read by other
2737 * The critical issue is to order this
2738 * page_remove_rmap with the ptp_clear_flush above.
2739 * Those stores are ordered by (if nothing else,)
2740 * the barrier present in the atomic_add_negative
2741 * in page_remove_rmap.
2743 * Then the TLB flush in ptep_clear_flush ensures that
2744 * no process can access the old page before the
2745 * decremented mapcount is visible. And the old page
2746 * cannot be reused until after the decremented
2747 * mapcount is visible. So transitively, TLBs to
2748 * old page will be flushed before it can be reused.
2750 page_remove_rmap(old_page
, false);
2753 /* Free the old page.. */
2754 new_page
= old_page
;
2757 update_mmu_tlb(vma
, vmf
->address
, vmf
->pte
);
2763 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2765 * No need to double call mmu_notifier->invalidate_range() callback as
2766 * the above ptep_clear_flush_notify() did already call it.
2768 mmu_notifier_invalidate_range_only_end(&range
);
2771 * Don't let another task, with possibly unlocked vma,
2772 * keep the mlocked page.
2774 if (page_copied
&& (vma
->vm_flags
& VM_LOCKED
)) {
2775 lock_page(old_page
); /* LRU manipulation */
2776 if (PageMlocked(old_page
))
2777 munlock_vma_page(old_page
);
2778 unlock_page(old_page
);
2782 return page_copied
? VM_FAULT_WRITE
: 0;
2788 return VM_FAULT_OOM
;
2792 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2793 * writeable once the page is prepared
2795 * @vmf: structure describing the fault
2797 * This function handles all that is needed to finish a write page fault in a
2798 * shared mapping due to PTE being read-only once the mapped page is prepared.
2799 * It handles locking of PTE and modifying it.
2801 * The function expects the page to be locked or other protection against
2802 * concurrent faults / writeback (such as DAX radix tree locks).
2804 * Return: %VM_FAULT_WRITE on success, %0 when PTE got changed before
2805 * we acquired PTE lock.
2807 vm_fault_t
finish_mkwrite_fault(struct vm_fault
*vmf
)
2809 WARN_ON_ONCE(!(vmf
->vma
->vm_flags
& VM_SHARED
));
2810 vmf
->pte
= pte_offset_map_lock(vmf
->vma
->vm_mm
, vmf
->pmd
, vmf
->address
,
2813 * We might have raced with another page fault while we released the
2814 * pte_offset_map_lock.
2816 if (!pte_same(*vmf
->pte
, vmf
->orig_pte
)) {
2817 update_mmu_tlb(vmf
->vma
, vmf
->address
, vmf
->pte
);
2818 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2819 return VM_FAULT_NOPAGE
;
2826 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2829 static vm_fault_t
wp_pfn_shared(struct vm_fault
*vmf
)
2831 struct vm_area_struct
*vma
= vmf
->vma
;
2833 if (vma
->vm_ops
&& vma
->vm_ops
->pfn_mkwrite
) {
2836 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2837 vmf
->flags
|= FAULT_FLAG_MKWRITE
;
2838 ret
= vma
->vm_ops
->pfn_mkwrite(vmf
);
2839 if (ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
))
2841 return finish_mkwrite_fault(vmf
);
2844 return VM_FAULT_WRITE
;
2847 static vm_fault_t
wp_page_shared(struct vm_fault
*vmf
)
2848 __releases(vmf
->ptl
)
2850 struct vm_area_struct
*vma
= vmf
->vma
;
2851 vm_fault_t ret
= VM_FAULT_WRITE
;
2853 get_page(vmf
->page
);
2855 if (vma
->vm_ops
&& vma
->vm_ops
->page_mkwrite
) {
2858 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2859 tmp
= do_page_mkwrite(vmf
);
2860 if (unlikely(!tmp
|| (tmp
&
2861 (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
)))) {
2862 put_page(vmf
->page
);
2865 tmp
= finish_mkwrite_fault(vmf
);
2866 if (unlikely(tmp
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
))) {
2867 unlock_page(vmf
->page
);
2868 put_page(vmf
->page
);
2873 lock_page(vmf
->page
);
2875 ret
|= fault_dirty_shared_page(vmf
);
2876 put_page(vmf
->page
);
2882 * This routine handles present pages, when users try to write
2883 * to a shared page. It is done by copying the page to a new address
2884 * and decrementing the shared-page counter for the old page.
2886 * Note that this routine assumes that the protection checks have been
2887 * done by the caller (the low-level page fault routine in most cases).
2888 * Thus we can safely just mark it writable once we've done any necessary
2891 * We also mark the page dirty at this point even though the page will
2892 * change only once the write actually happens. This avoids a few races,
2893 * and potentially makes it more efficient.
2895 * We enter with non-exclusive mmap_lock (to exclude vma changes,
2896 * but allow concurrent faults), with pte both mapped and locked.
2897 * We return with mmap_lock still held, but pte unmapped and unlocked.
2899 static vm_fault_t
do_wp_page(struct vm_fault
*vmf
)
2900 __releases(vmf
->ptl
)
2902 struct vm_area_struct
*vma
= vmf
->vma
;
2904 if (userfaultfd_pte_wp(vma
, *vmf
->pte
)) {
2905 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2906 return handle_userfault(vmf
, VM_UFFD_WP
);
2909 vmf
->page
= vm_normal_page(vma
, vmf
->address
, vmf
->orig_pte
);
2912 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2915 * We should not cow pages in a shared writeable mapping.
2916 * Just mark the pages writable and/or call ops->pfn_mkwrite.
2918 if ((vma
->vm_flags
& (VM_WRITE
|VM_SHARED
)) ==
2919 (VM_WRITE
|VM_SHARED
))
2920 return wp_pfn_shared(vmf
);
2922 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2923 return wp_page_copy(vmf
);
2927 * Take out anonymous pages first, anonymous shared vmas are
2928 * not dirty accountable.
2930 if (PageAnon(vmf
->page
)) {
2931 struct page
*page
= vmf
->page
;
2933 /* PageKsm() doesn't necessarily raise the page refcount */
2934 if (PageKsm(page
) || page_count(page
) != 1)
2936 if (!trylock_page(page
))
2938 if (PageKsm(page
) || page_mapcount(page
) != 1 || page_count(page
) != 1) {
2943 * Ok, we've got the only map reference, and the only
2944 * page count reference, and the page is locked,
2945 * it's dark out, and we're wearing sunglasses. Hit it.
2949 return VM_FAULT_WRITE
;
2950 } else if (unlikely((vma
->vm_flags
& (VM_WRITE
|VM_SHARED
)) ==
2951 (VM_WRITE
|VM_SHARED
))) {
2952 return wp_page_shared(vmf
);
2956 * Ok, we need to copy. Oh, well..
2958 get_page(vmf
->page
);
2960 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2961 return wp_page_copy(vmf
);
2964 static void unmap_mapping_range_vma(struct vm_area_struct
*vma
,
2965 unsigned long start_addr
, unsigned long end_addr
,
2966 struct zap_details
*details
)
2968 zap_page_range_single(vma
, start_addr
, end_addr
- start_addr
, details
);
2971 static inline void unmap_mapping_range_tree(struct rb_root_cached
*root
,
2972 struct zap_details
*details
)
2974 struct vm_area_struct
*vma
;
2975 pgoff_t vba
, vea
, zba
, zea
;
2977 vma_interval_tree_foreach(vma
, root
,
2978 details
->first_index
, details
->last_index
) {
2980 vba
= vma
->vm_pgoff
;
2981 vea
= vba
+ vma_pages(vma
) - 1;
2982 zba
= details
->first_index
;
2985 zea
= details
->last_index
;
2989 unmap_mapping_range_vma(vma
,
2990 ((zba
- vba
) << PAGE_SHIFT
) + vma
->vm_start
,
2991 ((zea
- vba
+ 1) << PAGE_SHIFT
) + vma
->vm_start
,
2997 * unmap_mapping_pages() - Unmap pages from processes.
2998 * @mapping: The address space containing pages to be unmapped.
2999 * @start: Index of first page to be unmapped.
3000 * @nr: Number of pages to be unmapped. 0 to unmap to end of file.
3001 * @even_cows: Whether to unmap even private COWed pages.
3003 * Unmap the pages in this address space from any userspace process which
3004 * has them mmaped. Generally, you want to remove COWed pages as well when
3005 * a file is being truncated, but not when invalidating pages from the page
3008 void unmap_mapping_pages(struct address_space
*mapping
, pgoff_t start
,
3009 pgoff_t nr
, bool even_cows
)
3011 struct zap_details details
= { };
3013 details
.check_mapping
= even_cows
? NULL
: mapping
;
3014 details
.first_index
= start
;
3015 details
.last_index
= start
+ nr
- 1;
3016 if (details
.last_index
< details
.first_index
)
3017 details
.last_index
= ULONG_MAX
;
3019 i_mmap_lock_write(mapping
);
3020 if (unlikely(!RB_EMPTY_ROOT(&mapping
->i_mmap
.rb_root
)))
3021 unmap_mapping_range_tree(&mapping
->i_mmap
, &details
);
3022 i_mmap_unlock_write(mapping
);
3026 * unmap_mapping_range - unmap the portion of all mmaps in the specified
3027 * address_space corresponding to the specified byte range in the underlying
3030 * @mapping: the address space containing mmaps to be unmapped.
3031 * @holebegin: byte in first page to unmap, relative to the start of
3032 * the underlying file. This will be rounded down to a PAGE_SIZE
3033 * boundary. Note that this is different from truncate_pagecache(), which
3034 * must keep the partial page. In contrast, we must get rid of
3036 * @holelen: size of prospective hole in bytes. This will be rounded
3037 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
3039 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3040 * but 0 when invalidating pagecache, don't throw away private data.
3042 void unmap_mapping_range(struct address_space
*mapping
,
3043 loff_t
const holebegin
, loff_t
const holelen
, int even_cows
)
3045 pgoff_t hba
= holebegin
>> PAGE_SHIFT
;
3046 pgoff_t hlen
= (holelen
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
3048 /* Check for overflow. */
3049 if (sizeof(holelen
) > sizeof(hlen
)) {
3051 (holebegin
+ holelen
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
3052 if (holeend
& ~(long long)ULONG_MAX
)
3053 hlen
= ULONG_MAX
- hba
+ 1;
3056 unmap_mapping_pages(mapping
, hba
, hlen
, even_cows
);
3058 EXPORT_SYMBOL(unmap_mapping_range
);
3061 * We enter with non-exclusive mmap_lock (to exclude vma changes,
3062 * but allow concurrent faults), and pte mapped but not yet locked.
3063 * We return with pte unmapped and unlocked.
3065 * We return with the mmap_lock locked or unlocked in the same cases
3066 * as does filemap_fault().
3068 vm_fault_t
do_swap_page(struct vm_fault
*vmf
)
3070 struct vm_area_struct
*vma
= vmf
->vma
;
3071 struct page
*page
= NULL
, *swapcache
;
3077 void *shadow
= NULL
;
3079 if (!pte_unmap_same(vma
->vm_mm
, vmf
->pmd
, vmf
->pte
, vmf
->orig_pte
))
3082 entry
= pte_to_swp_entry(vmf
->orig_pte
);
3083 if (unlikely(non_swap_entry(entry
))) {
3084 if (is_migration_entry(entry
)) {
3085 migration_entry_wait(vma
->vm_mm
, vmf
->pmd
,
3087 } else if (is_device_private_entry(entry
)) {
3088 vmf
->page
= device_private_entry_to_page(entry
);
3089 ret
= vmf
->page
->pgmap
->ops
->migrate_to_ram(vmf
);
3090 } else if (is_hwpoison_entry(entry
)) {
3091 ret
= VM_FAULT_HWPOISON
;
3093 print_bad_pte(vma
, vmf
->address
, vmf
->orig_pte
, NULL
);
3094 ret
= VM_FAULT_SIGBUS
;
3100 delayacct_set_flag(DELAYACCT_PF_SWAPIN
);
3101 page
= lookup_swap_cache(entry
, vma
, vmf
->address
);
3105 struct swap_info_struct
*si
= swp_swap_info(entry
);
3107 if (data_race(si
->flags
& SWP_SYNCHRONOUS_IO
) &&
3108 __swap_count(entry
) == 1) {
3109 /* skip swapcache */
3110 page
= alloc_page_vma(GFP_HIGHUSER_MOVABLE
, vma
,
3115 __SetPageLocked(page
);
3116 __SetPageSwapBacked(page
);
3117 set_page_private(page
, entry
.val
);
3119 /* Tell memcg to use swap ownership records */
3120 SetPageSwapCache(page
);
3121 err
= mem_cgroup_charge(page
, vma
->vm_mm
,
3123 ClearPageSwapCache(page
);
3129 shadow
= get_shadow_from_swap_cache(entry
);
3131 workingset_refault(page
, shadow
);
3133 lru_cache_add(page
);
3134 swap_readpage(page
, true);
3137 page
= swapin_readahead(entry
, GFP_HIGHUSER_MOVABLE
,
3144 * Back out if somebody else faulted in this pte
3145 * while we released the pte lock.
3147 vmf
->pte
= pte_offset_map_lock(vma
->vm_mm
, vmf
->pmd
,
3148 vmf
->address
, &vmf
->ptl
);
3149 if (likely(pte_same(*vmf
->pte
, vmf
->orig_pte
)))
3151 delayacct_clear_flag(DELAYACCT_PF_SWAPIN
);
3155 /* Had to read the page from swap area: Major fault */
3156 ret
= VM_FAULT_MAJOR
;
3157 count_vm_event(PGMAJFAULT
);
3158 count_memcg_event_mm(vma
->vm_mm
, PGMAJFAULT
);
3159 } else if (PageHWPoison(page
)) {
3161 * hwpoisoned dirty swapcache pages are kept for killing
3162 * owner processes (which may be unknown at hwpoison time)
3164 ret
= VM_FAULT_HWPOISON
;
3165 delayacct_clear_flag(DELAYACCT_PF_SWAPIN
);
3169 locked
= lock_page_or_retry(page
, vma
->vm_mm
, vmf
->flags
);
3171 delayacct_clear_flag(DELAYACCT_PF_SWAPIN
);
3173 ret
|= VM_FAULT_RETRY
;
3178 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3179 * release the swapcache from under us. The page pin, and pte_same
3180 * test below, are not enough to exclude that. Even if it is still
3181 * swapcache, we need to check that the page's swap has not changed.
3183 if (unlikely((!PageSwapCache(page
) ||
3184 page_private(page
) != entry
.val
)) && swapcache
)
3187 page
= ksm_might_need_to_copy(page
, vma
, vmf
->address
);
3188 if (unlikely(!page
)) {
3194 cgroup_throttle_swaprate(page
, GFP_KERNEL
);
3197 * Back out if somebody else already faulted in this pte.
3199 vmf
->pte
= pte_offset_map_lock(vma
->vm_mm
, vmf
->pmd
, vmf
->address
,
3201 if (unlikely(!pte_same(*vmf
->pte
, vmf
->orig_pte
)))
3204 if (unlikely(!PageUptodate(page
))) {
3205 ret
= VM_FAULT_SIGBUS
;
3210 * The page isn't present yet, go ahead with the fault.
3212 * Be careful about the sequence of operations here.
3213 * To get its accounting right, reuse_swap_page() must be called
3214 * while the page is counted on swap but not yet in mapcount i.e.
3215 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3216 * must be called after the swap_free(), or it will never succeed.
3219 inc_mm_counter_fast(vma
->vm_mm
, MM_ANONPAGES
);
3220 dec_mm_counter_fast(vma
->vm_mm
, MM_SWAPENTS
);
3221 pte
= mk_pte(page
, vma
->vm_page_prot
);
3222 if ((vmf
->flags
& FAULT_FLAG_WRITE
) && reuse_swap_page(page
, NULL
)) {
3223 pte
= maybe_mkwrite(pte_mkdirty(pte
), vma
);
3224 vmf
->flags
&= ~FAULT_FLAG_WRITE
;
3225 ret
|= VM_FAULT_WRITE
;
3226 exclusive
= RMAP_EXCLUSIVE
;
3228 flush_icache_page(vma
, page
);
3229 if (pte_swp_soft_dirty(vmf
->orig_pte
))
3230 pte
= pte_mksoft_dirty(pte
);
3231 if (pte_swp_uffd_wp(vmf
->orig_pte
)) {
3232 pte
= pte_mkuffd_wp(pte
);
3233 pte
= pte_wrprotect(pte
);
3235 set_pte_at(vma
->vm_mm
, vmf
->address
, vmf
->pte
, pte
);
3236 arch_do_swap_page(vma
->vm_mm
, vma
, vmf
->address
, pte
, vmf
->orig_pte
);
3237 vmf
->orig_pte
= pte
;
3239 /* ksm created a completely new copy */
3240 if (unlikely(page
!= swapcache
&& swapcache
)) {
3241 page_add_new_anon_rmap(page
, vma
, vmf
->address
, false);
3242 lru_cache_add_inactive_or_unevictable(page
, vma
);
3244 do_page_add_anon_rmap(page
, vma
, vmf
->address
, exclusive
);
3248 if (mem_cgroup_swap_full(page
) ||
3249 (vma
->vm_flags
& VM_LOCKED
) || PageMlocked(page
))
3250 try_to_free_swap(page
);
3252 if (page
!= swapcache
&& swapcache
) {
3254 * Hold the lock to avoid the swap entry to be reused
3255 * until we take the PT lock for the pte_same() check
3256 * (to avoid false positives from pte_same). For
3257 * further safety release the lock after the swap_free
3258 * so that the swap count won't change under a
3259 * parallel locked swapcache.
3261 unlock_page(swapcache
);
3262 put_page(swapcache
);
3265 if (vmf
->flags
& FAULT_FLAG_WRITE
) {
3266 ret
|= do_wp_page(vmf
);
3267 if (ret
& VM_FAULT_ERROR
)
3268 ret
&= VM_FAULT_ERROR
;
3272 /* No need to invalidate - it was non-present before */
3273 update_mmu_cache(vma
, vmf
->address
, vmf
->pte
);
3275 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
3279 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
3284 if (page
!= swapcache
&& swapcache
) {
3285 unlock_page(swapcache
);
3286 put_page(swapcache
);
3292 * We enter with non-exclusive mmap_lock (to exclude vma changes,
3293 * but allow concurrent faults), and pte mapped but not yet locked.
3294 * We return with mmap_lock still held, but pte unmapped and unlocked.
3296 static vm_fault_t
do_anonymous_page(struct vm_fault
*vmf
)
3298 struct vm_area_struct
*vma
= vmf
->vma
;
3303 /* File mapping without ->vm_ops ? */
3304 if (vma
->vm_flags
& VM_SHARED
)
3305 return VM_FAULT_SIGBUS
;
3308 * Use pte_alloc() instead of pte_alloc_map(). We can't run
3309 * pte_offset_map() on pmds where a huge pmd might be created
3310 * from a different thread.
3312 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
3313 * parallel threads are excluded by other means.
3315 * Here we only have mmap_read_lock(mm).
3317 if (pte_alloc(vma
->vm_mm
, vmf
->pmd
))
3318 return VM_FAULT_OOM
;
3320 /* See the comment in pte_alloc_one_map() */
3321 if (unlikely(pmd_trans_unstable(vmf
->pmd
)))
3324 /* Use the zero-page for reads */
3325 if (!(vmf
->flags
& FAULT_FLAG_WRITE
) &&
3326 !mm_forbids_zeropage(vma
->vm_mm
)) {
3327 entry
= pte_mkspecial(pfn_pte(my_zero_pfn(vmf
->address
),
3328 vma
->vm_page_prot
));
3329 vmf
->pte
= pte_offset_map_lock(vma
->vm_mm
, vmf
->pmd
,
3330 vmf
->address
, &vmf
->ptl
);
3331 if (!pte_none(*vmf
->pte
)) {
3332 update_mmu_tlb(vma
, vmf
->address
, vmf
->pte
);
3335 ret
= check_stable_address_space(vma
->vm_mm
);
3338 /* Deliver the page fault to userland, check inside PT lock */
3339 if (userfaultfd_missing(vma
)) {
3340 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
3341 return handle_userfault(vmf
, VM_UFFD_MISSING
);
3346 /* Allocate our own private page. */
3347 if (unlikely(anon_vma_prepare(vma
)))
3349 page
= alloc_zeroed_user_highpage_movable(vma
, vmf
->address
);
3353 if (mem_cgroup_charge(page
, vma
->vm_mm
, GFP_KERNEL
))
3355 cgroup_throttle_swaprate(page
, GFP_KERNEL
);
3358 * The memory barrier inside __SetPageUptodate makes sure that
3359 * preceding stores to the page contents become visible before
3360 * the set_pte_at() write.
3362 __SetPageUptodate(page
);
3364 entry
= mk_pte(page
, vma
->vm_page_prot
);
3365 entry
= pte_sw_mkyoung(entry
);
3366 if (vma
->vm_flags
& VM_WRITE
)
3367 entry
= pte_mkwrite(pte_mkdirty(entry
));
3369 vmf
->pte
= pte_offset_map_lock(vma
->vm_mm
, vmf
->pmd
, vmf
->address
,
3371 if (!pte_none(*vmf
->pte
)) {
3372 update_mmu_cache(vma
, vmf
->address
, vmf
->pte
);
3376 ret
= check_stable_address_space(vma
->vm_mm
);
3380 /* Deliver the page fault to userland, check inside PT lock */
3381 if (userfaultfd_missing(vma
)) {
3382 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
3384 return handle_userfault(vmf
, VM_UFFD_MISSING
);
3387 inc_mm_counter_fast(vma
->vm_mm
, MM_ANONPAGES
);
3388 page_add_new_anon_rmap(page
, vma
, vmf
->address
, false);
3389 lru_cache_add_inactive_or_unevictable(page
, vma
);
3391 set_pte_at(vma
->vm_mm
, vmf
->address
, vmf
->pte
, entry
);
3393 /* No need to invalidate - it was non-present before */
3394 update_mmu_cache(vma
, vmf
->address
, vmf
->pte
);
3396 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
3404 return VM_FAULT_OOM
;
3408 * The mmap_lock must have been held on entry, and may have been
3409 * released depending on flags and vma->vm_ops->fault() return value.
3410 * See filemap_fault() and __lock_page_retry().
3412 static vm_fault_t
__do_fault(struct vm_fault
*vmf
)
3414 struct vm_area_struct
*vma
= vmf
->vma
;
3418 * Preallocate pte before we take page_lock because this might lead to
3419 * deadlocks for memcg reclaim which waits for pages under writeback:
3421 * SetPageWriteback(A)
3427 * wait_on_page_writeback(A)
3428 * SetPageWriteback(B)
3430 * # flush A, B to clear the writeback
3432 if (pmd_none(*vmf
->pmd
) && !vmf
->prealloc_pte
) {
3433 vmf
->prealloc_pte
= pte_alloc_one(vmf
->vma
->vm_mm
);
3434 if (!vmf
->prealloc_pte
)
3435 return VM_FAULT_OOM
;
3436 smp_wmb(); /* See comment in __pte_alloc() */
3439 ret
= vma
->vm_ops
->fault(vmf
);
3440 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
| VM_FAULT_RETRY
|
3441 VM_FAULT_DONE_COW
)))
3444 if (unlikely(PageHWPoison(vmf
->page
))) {
3445 if (ret
& VM_FAULT_LOCKED
)
3446 unlock_page(vmf
->page
);
3447 put_page(vmf
->page
);
3449 return VM_FAULT_HWPOISON
;
3452 if (unlikely(!(ret
& VM_FAULT_LOCKED
)))
3453 lock_page(vmf
->page
);
3455 VM_BUG_ON_PAGE(!PageLocked(vmf
->page
), vmf
->page
);
3461 * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3462 * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3463 * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3464 * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3466 static int pmd_devmap_trans_unstable(pmd_t
*pmd
)
3468 return pmd_devmap(*pmd
) || pmd_trans_unstable(pmd
);
3471 static vm_fault_t
pte_alloc_one_map(struct vm_fault
*vmf
)
3473 struct vm_area_struct
*vma
= vmf
->vma
;
3475 if (!pmd_none(*vmf
->pmd
))
3477 if (vmf
->prealloc_pte
) {
3478 vmf
->ptl
= pmd_lock(vma
->vm_mm
, vmf
->pmd
);
3479 if (unlikely(!pmd_none(*vmf
->pmd
))) {
3480 spin_unlock(vmf
->ptl
);
3484 mm_inc_nr_ptes(vma
->vm_mm
);
3485 pmd_populate(vma
->vm_mm
, vmf
->pmd
, vmf
->prealloc_pte
);
3486 spin_unlock(vmf
->ptl
);
3487 vmf
->prealloc_pte
= NULL
;
3488 } else if (unlikely(pte_alloc(vma
->vm_mm
, vmf
->pmd
))) {
3489 return VM_FAULT_OOM
;
3493 * If a huge pmd materialized under us just retry later. Use
3494 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3495 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3496 * under us and then back to pmd_none, as a result of MADV_DONTNEED
3497 * running immediately after a huge pmd fault in a different thread of
3498 * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3499 * All we have to ensure is that it is a regular pmd that we can walk
3500 * with pte_offset_map() and we can do that through an atomic read in
3501 * C, which is what pmd_trans_unstable() provides.
3503 if (pmd_devmap_trans_unstable(vmf
->pmd
))
3504 return VM_FAULT_NOPAGE
;
3507 * At this point we know that our vmf->pmd points to a page of ptes
3508 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3509 * for the duration of the fault. If a racing MADV_DONTNEED runs and
3510 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3511 * be valid and we will re-check to make sure the vmf->pte isn't
3512 * pte_none() under vmf->ptl protection when we return to
3515 vmf
->pte
= pte_offset_map_lock(vma
->vm_mm
, vmf
->pmd
, vmf
->address
,
3520 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3521 static void deposit_prealloc_pte(struct vm_fault
*vmf
)
3523 struct vm_area_struct
*vma
= vmf
->vma
;
3525 pgtable_trans_huge_deposit(vma
->vm_mm
, vmf
->pmd
, vmf
->prealloc_pte
);
3527 * We are going to consume the prealloc table,
3528 * count that as nr_ptes.
3530 mm_inc_nr_ptes(vma
->vm_mm
);
3531 vmf
->prealloc_pte
= NULL
;
3534 static vm_fault_t
do_set_pmd(struct vm_fault
*vmf
, struct page
*page
)
3536 struct vm_area_struct
*vma
= vmf
->vma
;
3537 bool write
= vmf
->flags
& FAULT_FLAG_WRITE
;
3538 unsigned long haddr
= vmf
->address
& HPAGE_PMD_MASK
;
3543 if (!transhuge_vma_suitable(vma
, haddr
))
3544 return VM_FAULT_FALLBACK
;
3546 ret
= VM_FAULT_FALLBACK
;
3547 page
= compound_head(page
);
3550 * Archs like ppc64 need additonal space to store information
3551 * related to pte entry. Use the preallocated table for that.
3553 if (arch_needs_pgtable_deposit() && !vmf
->prealloc_pte
) {
3554 vmf
->prealloc_pte
= pte_alloc_one(vma
->vm_mm
);
3555 if (!vmf
->prealloc_pte
)
3556 return VM_FAULT_OOM
;
3557 smp_wmb(); /* See comment in __pte_alloc() */
3560 vmf
->ptl
= pmd_lock(vma
->vm_mm
, vmf
->pmd
);
3561 if (unlikely(!pmd_none(*vmf
->pmd
)))
3564 for (i
= 0; i
< HPAGE_PMD_NR
; i
++)
3565 flush_icache_page(vma
, page
+ i
);
3567 entry
= mk_huge_pmd(page
, vma
->vm_page_prot
);
3569 entry
= maybe_pmd_mkwrite(pmd_mkdirty(entry
), vma
);
3571 add_mm_counter(vma
->vm_mm
, mm_counter_file(page
), HPAGE_PMD_NR
);
3572 page_add_file_rmap(page
, true);
3574 * deposit and withdraw with pmd lock held
3576 if (arch_needs_pgtable_deposit())
3577 deposit_prealloc_pte(vmf
);
3579 set_pmd_at(vma
->vm_mm
, haddr
, vmf
->pmd
, entry
);
3581 update_mmu_cache_pmd(vma
, haddr
, vmf
->pmd
);
3583 /* fault is handled */
3585 count_vm_event(THP_FILE_MAPPED
);
3587 spin_unlock(vmf
->ptl
);
3591 static vm_fault_t
do_set_pmd(struct vm_fault
*vmf
, struct page
*page
)
3599 * alloc_set_pte - setup new PTE entry for given page and add reverse page
3600 * mapping. If needed, the fucntion allocates page table or use pre-allocated.
3602 * @vmf: fault environment
3603 * @page: page to map
3605 * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3608 * Target users are page handler itself and implementations of
3609 * vm_ops->map_pages.
3611 * Return: %0 on success, %VM_FAULT_ code in case of error.
3613 vm_fault_t
alloc_set_pte(struct vm_fault
*vmf
, struct page
*page
)
3615 struct vm_area_struct
*vma
= vmf
->vma
;
3616 bool write
= vmf
->flags
& FAULT_FLAG_WRITE
;
3620 if (pmd_none(*vmf
->pmd
) && PageTransCompound(page
)) {
3621 ret
= do_set_pmd(vmf
, page
);
3622 if (ret
!= VM_FAULT_FALLBACK
)
3627 ret
= pte_alloc_one_map(vmf
);
3632 /* Re-check under ptl */
3633 if (unlikely(!pte_none(*vmf
->pte
))) {
3634 update_mmu_tlb(vma
, vmf
->address
, vmf
->pte
);
3635 return VM_FAULT_NOPAGE
;
3638 flush_icache_page(vma
, page
);
3639 entry
= mk_pte(page
, vma
->vm_page_prot
);
3640 entry
= pte_sw_mkyoung(entry
);
3642 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
3643 /* copy-on-write page */
3644 if (write
&& !(vma
->vm_flags
& VM_SHARED
)) {
3645 inc_mm_counter_fast(vma
->vm_mm
, MM_ANONPAGES
);
3646 page_add_new_anon_rmap(page
, vma
, vmf
->address
, false);
3647 lru_cache_add_inactive_or_unevictable(page
, vma
);
3649 inc_mm_counter_fast(vma
->vm_mm
, mm_counter_file(page
));
3650 page_add_file_rmap(page
, false);
3652 set_pte_at(vma
->vm_mm
, vmf
->address
, vmf
->pte
, entry
);
3654 /* no need to invalidate: a not-present page won't be cached */
3655 update_mmu_cache(vma
, vmf
->address
, vmf
->pte
);
3662 * finish_fault - finish page fault once we have prepared the page to fault
3664 * @vmf: structure describing the fault
3666 * This function handles all that is needed to finish a page fault once the
3667 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3668 * given page, adds reverse page mapping, handles memcg charges and LRU
3671 * The function expects the page to be locked and on success it consumes a
3672 * reference of a page being mapped (for the PTE which maps it).
3674 * Return: %0 on success, %VM_FAULT_ code in case of error.
3676 vm_fault_t
finish_fault(struct vm_fault
*vmf
)
3681 /* Did we COW the page? */
3682 if ((vmf
->flags
& FAULT_FLAG_WRITE
) &&
3683 !(vmf
->vma
->vm_flags
& VM_SHARED
))
3684 page
= vmf
->cow_page
;
3689 * check even for read faults because we might have lost our CoWed
3692 if (!(vmf
->vma
->vm_flags
& VM_SHARED
))
3693 ret
= check_stable_address_space(vmf
->vma
->vm_mm
);
3695 ret
= alloc_set_pte(vmf
, page
);
3697 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
3701 static unsigned long fault_around_bytes __read_mostly
=
3702 rounddown_pow_of_two(65536);
3704 #ifdef CONFIG_DEBUG_FS
3705 static int fault_around_bytes_get(void *data
, u64
*val
)
3707 *val
= fault_around_bytes
;
3712 * fault_around_bytes must be rounded down to the nearest page order as it's
3713 * what do_fault_around() expects to see.
3715 static int fault_around_bytes_set(void *data
, u64 val
)
3717 if (val
/ PAGE_SIZE
> PTRS_PER_PTE
)
3719 if (val
> PAGE_SIZE
)
3720 fault_around_bytes
= rounddown_pow_of_two(val
);
3722 fault_around_bytes
= PAGE_SIZE
; /* rounddown_pow_of_two(0) is undefined */
3725 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops
,
3726 fault_around_bytes_get
, fault_around_bytes_set
, "%llu\n");
3728 static int __init
fault_around_debugfs(void)
3730 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL
, NULL
,
3731 &fault_around_bytes_fops
);
3734 late_initcall(fault_around_debugfs
);
3738 * do_fault_around() tries to map few pages around the fault address. The hope
3739 * is that the pages will be needed soon and this will lower the number of
3742 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3743 * not ready to be mapped: not up-to-date, locked, etc.
3745 * This function is called with the page table lock taken. In the split ptlock
3746 * case the page table lock only protects only those entries which belong to
3747 * the page table corresponding to the fault address.
3749 * This function doesn't cross the VMA boundaries, in order to call map_pages()
3752 * fault_around_bytes defines how many bytes we'll try to map.
3753 * do_fault_around() expects it to be set to a power of two less than or equal
3756 * The virtual address of the area that we map is naturally aligned to
3757 * fault_around_bytes rounded down to the machine page size
3758 * (and therefore to page order). This way it's easier to guarantee
3759 * that we don't cross page table boundaries.
3761 static vm_fault_t
do_fault_around(struct vm_fault
*vmf
)
3763 unsigned long address
= vmf
->address
, nr_pages
, mask
;
3764 pgoff_t start_pgoff
= vmf
->pgoff
;
3769 nr_pages
= READ_ONCE(fault_around_bytes
) >> PAGE_SHIFT
;
3770 mask
= ~(nr_pages
* PAGE_SIZE
- 1) & PAGE_MASK
;
3772 vmf
->address
= max(address
& mask
, vmf
->vma
->vm_start
);
3773 off
= ((address
- vmf
->address
) >> PAGE_SHIFT
) & (PTRS_PER_PTE
- 1);
3777 * end_pgoff is either the end of the page table, the end of
3778 * the vma or nr_pages from start_pgoff, depending what is nearest.
3780 end_pgoff
= start_pgoff
-
3781 ((vmf
->address
>> PAGE_SHIFT
) & (PTRS_PER_PTE
- 1)) +
3783 end_pgoff
= min3(end_pgoff
, vma_pages(vmf
->vma
) + vmf
->vma
->vm_pgoff
- 1,
3784 start_pgoff
+ nr_pages
- 1);
3786 if (pmd_none(*vmf
->pmd
)) {
3787 vmf
->prealloc_pte
= pte_alloc_one(vmf
->vma
->vm_mm
);
3788 if (!vmf
->prealloc_pte
)
3790 smp_wmb(); /* See comment in __pte_alloc() */
3793 vmf
->vma
->vm_ops
->map_pages(vmf
, start_pgoff
, end_pgoff
);
3795 /* Huge page is mapped? Page fault is solved */
3796 if (pmd_trans_huge(*vmf
->pmd
)) {
3797 ret
= VM_FAULT_NOPAGE
;
3801 /* ->map_pages() haven't done anything useful. Cold page cache? */
3805 /* check if the page fault is solved */
3806 vmf
->pte
-= (vmf
->address
>> PAGE_SHIFT
) - (address
>> PAGE_SHIFT
);
3807 if (!pte_none(*vmf
->pte
))
3808 ret
= VM_FAULT_NOPAGE
;
3809 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
3811 vmf
->address
= address
;
3816 static vm_fault_t
do_read_fault(struct vm_fault
*vmf
)
3818 struct vm_area_struct
*vma
= vmf
->vma
;
3822 * Let's call ->map_pages() first and use ->fault() as fallback
3823 * if page by the offset is not ready to be mapped (cold cache or
3826 if (vma
->vm_ops
->map_pages
&& fault_around_bytes
>> PAGE_SHIFT
> 1) {
3827 ret
= do_fault_around(vmf
);
3832 ret
= __do_fault(vmf
);
3833 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
| VM_FAULT_RETRY
)))
3836 ret
|= finish_fault(vmf
);
3837 unlock_page(vmf
->page
);
3838 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
| VM_FAULT_RETRY
)))
3839 put_page(vmf
->page
);
3843 static vm_fault_t
do_cow_fault(struct vm_fault
*vmf
)
3845 struct vm_area_struct
*vma
= vmf
->vma
;
3848 if (unlikely(anon_vma_prepare(vma
)))
3849 return VM_FAULT_OOM
;
3851 vmf
->cow_page
= alloc_page_vma(GFP_HIGHUSER_MOVABLE
, vma
, vmf
->address
);
3853 return VM_FAULT_OOM
;
3855 if (mem_cgroup_charge(vmf
->cow_page
, vma
->vm_mm
, GFP_KERNEL
)) {
3856 put_page(vmf
->cow_page
);
3857 return VM_FAULT_OOM
;
3859 cgroup_throttle_swaprate(vmf
->cow_page
, GFP_KERNEL
);
3861 ret
= __do_fault(vmf
);
3862 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
| VM_FAULT_RETRY
)))
3864 if (ret
& VM_FAULT_DONE_COW
)
3867 copy_user_highpage(vmf
->cow_page
, vmf
->page
, vmf
->address
, vma
);
3868 __SetPageUptodate(vmf
->cow_page
);
3870 ret
|= finish_fault(vmf
);
3871 unlock_page(vmf
->page
);
3872 put_page(vmf
->page
);
3873 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
| VM_FAULT_RETRY
)))
3877 put_page(vmf
->cow_page
);
3881 static vm_fault_t
do_shared_fault(struct vm_fault
*vmf
)
3883 struct vm_area_struct
*vma
= vmf
->vma
;
3884 vm_fault_t ret
, tmp
;
3886 ret
= __do_fault(vmf
);
3887 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
| VM_FAULT_RETRY
)))
3891 * Check if the backing address space wants to know that the page is
3892 * about to become writable
3894 if (vma
->vm_ops
->page_mkwrite
) {
3895 unlock_page(vmf
->page
);
3896 tmp
= do_page_mkwrite(vmf
);
3897 if (unlikely(!tmp
||
3898 (tmp
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
)))) {
3899 put_page(vmf
->page
);
3904 ret
|= finish_fault(vmf
);
3905 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
|
3907 unlock_page(vmf
->page
);
3908 put_page(vmf
->page
);
3912 ret
|= fault_dirty_shared_page(vmf
);
3917 * We enter with non-exclusive mmap_lock (to exclude vma changes,
3918 * but allow concurrent faults).
3919 * The mmap_lock may have been released depending on flags and our
3920 * return value. See filemap_fault() and __lock_page_or_retry().
3921 * If mmap_lock is released, vma may become invalid (for example
3922 * by other thread calling munmap()).
3924 static vm_fault_t
do_fault(struct vm_fault
*vmf
)
3926 struct vm_area_struct
*vma
= vmf
->vma
;
3927 struct mm_struct
*vm_mm
= vma
->vm_mm
;
3931 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
3933 if (!vma
->vm_ops
->fault
) {
3935 * If we find a migration pmd entry or a none pmd entry, which
3936 * should never happen, return SIGBUS
3938 if (unlikely(!pmd_present(*vmf
->pmd
)))
3939 ret
= VM_FAULT_SIGBUS
;
3941 vmf
->pte
= pte_offset_map_lock(vmf
->vma
->vm_mm
,
3946 * Make sure this is not a temporary clearing of pte
3947 * by holding ptl and checking again. A R/M/W update
3948 * of pte involves: take ptl, clearing the pte so that
3949 * we don't have concurrent modification by hardware
3950 * followed by an update.
3952 if (unlikely(pte_none(*vmf
->pte
)))
3953 ret
= VM_FAULT_SIGBUS
;
3955 ret
= VM_FAULT_NOPAGE
;
3957 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
3959 } else if (!(vmf
->flags
& FAULT_FLAG_WRITE
))
3960 ret
= do_read_fault(vmf
);
3961 else if (!(vma
->vm_flags
& VM_SHARED
))
3962 ret
= do_cow_fault(vmf
);
3964 ret
= do_shared_fault(vmf
);
3966 /* preallocated pagetable is unused: free it */
3967 if (vmf
->prealloc_pte
) {
3968 pte_free(vm_mm
, vmf
->prealloc_pte
);
3969 vmf
->prealloc_pte
= NULL
;
3974 static int numa_migrate_prep(struct page
*page
, struct vm_area_struct
*vma
,
3975 unsigned long addr
, int page_nid
,
3980 count_vm_numa_event(NUMA_HINT_FAULTS
);
3981 if (page_nid
== numa_node_id()) {
3982 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL
);
3983 *flags
|= TNF_FAULT_LOCAL
;
3986 return mpol_misplaced(page
, vma
, addr
);
3989 static vm_fault_t
do_numa_page(struct vm_fault
*vmf
)
3991 struct vm_area_struct
*vma
= vmf
->vma
;
3992 struct page
*page
= NULL
;
3993 int page_nid
= NUMA_NO_NODE
;
3996 bool migrated
= false;
3998 bool was_writable
= pte_savedwrite(vmf
->orig_pte
);
4002 * The "pte" at this point cannot be used safely without
4003 * validation through pte_unmap_same(). It's of NUMA type but
4004 * the pfn may be screwed if the read is non atomic.
4006 vmf
->ptl
= pte_lockptr(vma
->vm_mm
, vmf
->pmd
);
4007 spin_lock(vmf
->ptl
);
4008 if (unlikely(!pte_same(*vmf
->pte
, vmf
->orig_pte
))) {
4009 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
4014 * Make it present again, Depending on how arch implementes non
4015 * accessible ptes, some can allow access by kernel mode.
4017 old_pte
= ptep_modify_prot_start(vma
, vmf
->address
, vmf
->pte
);
4018 pte
= pte_modify(old_pte
, vma
->vm_page_prot
);
4019 pte
= pte_mkyoung(pte
);
4021 pte
= pte_mkwrite(pte
);
4022 ptep_modify_prot_commit(vma
, vmf
->address
, vmf
->pte
, old_pte
, pte
);
4023 update_mmu_cache(vma
, vmf
->address
, vmf
->pte
);
4025 page
= vm_normal_page(vma
, vmf
->address
, pte
);
4027 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
4031 /* TODO: handle PTE-mapped THP */
4032 if (PageCompound(page
)) {
4033 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
4038 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4039 * much anyway since they can be in shared cache state. This misses
4040 * the case where a mapping is writable but the process never writes
4041 * to it but pte_write gets cleared during protection updates and
4042 * pte_dirty has unpredictable behaviour between PTE scan updates,
4043 * background writeback, dirty balancing and application behaviour.
4045 if (!pte_write(pte
))
4046 flags
|= TNF_NO_GROUP
;
4049 * Flag if the page is shared between multiple address spaces. This
4050 * is later used when determining whether to group tasks together
4052 if (page_mapcount(page
) > 1 && (vma
->vm_flags
& VM_SHARED
))
4053 flags
|= TNF_SHARED
;
4055 last_cpupid
= page_cpupid_last(page
);
4056 page_nid
= page_to_nid(page
);
4057 target_nid
= numa_migrate_prep(page
, vma
, vmf
->address
, page_nid
,
4059 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
4060 if (target_nid
== NUMA_NO_NODE
) {
4065 /* Migrate to the requested node */
4066 migrated
= migrate_misplaced_page(page
, vma
, target_nid
);
4068 page_nid
= target_nid
;
4069 flags
|= TNF_MIGRATED
;
4071 flags
|= TNF_MIGRATE_FAIL
;
4074 if (page_nid
!= NUMA_NO_NODE
)
4075 task_numa_fault(last_cpupid
, page_nid
, 1, flags
);
4079 static inline vm_fault_t
create_huge_pmd(struct vm_fault
*vmf
)
4081 if (vma_is_anonymous(vmf
->vma
))
4082 return do_huge_pmd_anonymous_page(vmf
);
4083 if (vmf
->vma
->vm_ops
->huge_fault
)
4084 return vmf
->vma
->vm_ops
->huge_fault(vmf
, PE_SIZE_PMD
);
4085 return VM_FAULT_FALLBACK
;
4088 /* `inline' is required to avoid gcc 4.1.2 build error */
4089 static inline vm_fault_t
wp_huge_pmd(struct vm_fault
*vmf
, pmd_t orig_pmd
)
4091 if (vma_is_anonymous(vmf
->vma
)) {
4092 if (userfaultfd_huge_pmd_wp(vmf
->vma
, orig_pmd
))
4093 return handle_userfault(vmf
, VM_UFFD_WP
);
4094 return do_huge_pmd_wp_page(vmf
, orig_pmd
);
4096 if (vmf
->vma
->vm_ops
->huge_fault
) {
4097 vm_fault_t ret
= vmf
->vma
->vm_ops
->huge_fault(vmf
, PE_SIZE_PMD
);
4099 if (!(ret
& VM_FAULT_FALLBACK
))
4103 /* COW or write-notify handled on pte level: split pmd. */
4104 __split_huge_pmd(vmf
->vma
, vmf
->pmd
, vmf
->address
, false, NULL
);
4106 return VM_FAULT_FALLBACK
;
4109 static vm_fault_t
create_huge_pud(struct vm_fault
*vmf
)
4111 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
4112 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4113 /* No support for anonymous transparent PUD pages yet */
4114 if (vma_is_anonymous(vmf
->vma
))
4116 if (vmf
->vma
->vm_ops
->huge_fault
) {
4117 vm_fault_t ret
= vmf
->vma
->vm_ops
->huge_fault(vmf
, PE_SIZE_PUD
);
4119 if (!(ret
& VM_FAULT_FALLBACK
))
4123 /* COW or write-notify not handled on PUD level: split pud.*/
4124 __split_huge_pud(vmf
->vma
, vmf
->pud
, vmf
->address
);
4125 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4126 return VM_FAULT_FALLBACK
;
4129 static vm_fault_t
wp_huge_pud(struct vm_fault
*vmf
, pud_t orig_pud
)
4131 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4132 /* No support for anonymous transparent PUD pages yet */
4133 if (vma_is_anonymous(vmf
->vma
))
4134 return VM_FAULT_FALLBACK
;
4135 if (vmf
->vma
->vm_ops
->huge_fault
)
4136 return vmf
->vma
->vm_ops
->huge_fault(vmf
, PE_SIZE_PUD
);
4137 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4138 return VM_FAULT_FALLBACK
;
4142 * These routines also need to handle stuff like marking pages dirty
4143 * and/or accessed for architectures that don't do it in hardware (most
4144 * RISC architectures). The early dirtying is also good on the i386.
4146 * There is also a hook called "update_mmu_cache()" that architectures
4147 * with external mmu caches can use to update those (ie the Sparc or
4148 * PowerPC hashed page tables that act as extended TLBs).
4150 * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
4151 * concurrent faults).
4153 * The mmap_lock may have been released depending on flags and our return value.
4154 * See filemap_fault() and __lock_page_or_retry().
4156 static vm_fault_t
handle_pte_fault(struct vm_fault
*vmf
)
4160 if (unlikely(pmd_none(*vmf
->pmd
))) {
4162 * Leave __pte_alloc() until later: because vm_ops->fault may
4163 * want to allocate huge page, and if we expose page table
4164 * for an instant, it will be difficult to retract from
4165 * concurrent faults and from rmap lookups.
4169 /* See comment in pte_alloc_one_map() */
4170 if (pmd_devmap_trans_unstable(vmf
->pmd
))
4173 * A regular pmd is established and it can't morph into a huge
4174 * pmd from under us anymore at this point because we hold the
4175 * mmap_lock read mode and khugepaged takes it in write mode.
4176 * So now it's safe to run pte_offset_map().
4178 vmf
->pte
= pte_offset_map(vmf
->pmd
, vmf
->address
);
4179 vmf
->orig_pte
= *vmf
->pte
;
4182 * some architectures can have larger ptes than wordsize,
4183 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
4184 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
4185 * accesses. The code below just needs a consistent view
4186 * for the ifs and we later double check anyway with the
4187 * ptl lock held. So here a barrier will do.
4190 if (pte_none(vmf
->orig_pte
)) {
4191 pte_unmap(vmf
->pte
);
4197 if (vma_is_anonymous(vmf
->vma
))
4198 return do_anonymous_page(vmf
);
4200 return do_fault(vmf
);
4203 if (!pte_present(vmf
->orig_pte
))
4204 return do_swap_page(vmf
);
4206 if (pte_protnone(vmf
->orig_pte
) && vma_is_accessible(vmf
->vma
))
4207 return do_numa_page(vmf
);
4209 vmf
->ptl
= pte_lockptr(vmf
->vma
->vm_mm
, vmf
->pmd
);
4210 spin_lock(vmf
->ptl
);
4211 entry
= vmf
->orig_pte
;
4212 if (unlikely(!pte_same(*vmf
->pte
, entry
))) {
4213 update_mmu_tlb(vmf
->vma
, vmf
->address
, vmf
->pte
);
4216 if (vmf
->flags
& FAULT_FLAG_WRITE
) {
4217 if (!pte_write(entry
))
4218 return do_wp_page(vmf
);
4219 entry
= pte_mkdirty(entry
);
4221 entry
= pte_mkyoung(entry
);
4222 if (ptep_set_access_flags(vmf
->vma
, vmf
->address
, vmf
->pte
, entry
,
4223 vmf
->flags
& FAULT_FLAG_WRITE
)) {
4224 update_mmu_cache(vmf
->vma
, vmf
->address
, vmf
->pte
);
4226 /* Skip spurious TLB flush for retried page fault */
4227 if (vmf
->flags
& FAULT_FLAG_TRIED
)
4230 * This is needed only for protection faults but the arch code
4231 * is not yet telling us if this is a protection fault or not.
4232 * This still avoids useless tlb flushes for .text page faults
4235 if (vmf
->flags
& FAULT_FLAG_WRITE
)
4236 flush_tlb_fix_spurious_fault(vmf
->vma
, vmf
->address
);
4239 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
4244 * By the time we get here, we already hold the mm semaphore
4246 * The mmap_lock may have been released depending on flags and our
4247 * return value. See filemap_fault() and __lock_page_or_retry().
4249 static vm_fault_t
__handle_mm_fault(struct vm_area_struct
*vma
,
4250 unsigned long address
, unsigned int flags
)
4252 struct vm_fault vmf
= {
4254 .address
= address
& PAGE_MASK
,
4256 .pgoff
= linear_page_index(vma
, address
),
4257 .gfp_mask
= __get_fault_gfp_mask(vma
),
4259 unsigned int dirty
= flags
& FAULT_FLAG_WRITE
;
4260 struct mm_struct
*mm
= vma
->vm_mm
;
4265 pgd
= pgd_offset(mm
, address
);
4266 p4d
= p4d_alloc(mm
, pgd
, address
);
4268 return VM_FAULT_OOM
;
4270 vmf
.pud
= pud_alloc(mm
, p4d
, address
);
4272 return VM_FAULT_OOM
;
4274 if (pud_none(*vmf
.pud
) && __transparent_hugepage_enabled(vma
)) {
4275 ret
= create_huge_pud(&vmf
);
4276 if (!(ret
& VM_FAULT_FALLBACK
))
4279 pud_t orig_pud
= *vmf
.pud
;
4282 if (pud_trans_huge(orig_pud
) || pud_devmap(orig_pud
)) {
4284 /* NUMA case for anonymous PUDs would go here */
4286 if (dirty
&& !pud_write(orig_pud
)) {
4287 ret
= wp_huge_pud(&vmf
, orig_pud
);
4288 if (!(ret
& VM_FAULT_FALLBACK
))
4291 huge_pud_set_accessed(&vmf
, orig_pud
);
4297 vmf
.pmd
= pmd_alloc(mm
, vmf
.pud
, address
);
4299 return VM_FAULT_OOM
;
4301 /* Huge pud page fault raced with pmd_alloc? */
4302 if (pud_trans_unstable(vmf
.pud
))
4305 if (pmd_none(*vmf
.pmd
) && __transparent_hugepage_enabled(vma
)) {
4306 ret
= create_huge_pmd(&vmf
);
4307 if (!(ret
& VM_FAULT_FALLBACK
))
4310 pmd_t orig_pmd
= *vmf
.pmd
;
4313 if (unlikely(is_swap_pmd(orig_pmd
))) {
4314 VM_BUG_ON(thp_migration_supported() &&
4315 !is_pmd_migration_entry(orig_pmd
));
4316 if (is_pmd_migration_entry(orig_pmd
))
4317 pmd_migration_entry_wait(mm
, vmf
.pmd
);
4320 if (pmd_trans_huge(orig_pmd
) || pmd_devmap(orig_pmd
)) {
4321 if (pmd_protnone(orig_pmd
) && vma_is_accessible(vma
))
4322 return do_huge_pmd_numa_page(&vmf
, orig_pmd
);
4324 if (dirty
&& !pmd_write(orig_pmd
)) {
4325 ret
= wp_huge_pmd(&vmf
, orig_pmd
);
4326 if (!(ret
& VM_FAULT_FALLBACK
))
4329 huge_pmd_set_accessed(&vmf
, orig_pmd
);
4335 return handle_pte_fault(&vmf
);
4339 * mm_account_fault - Do page fault accountings
4341 * @regs: the pt_regs struct pointer. When set to NULL, will skip accounting
4342 * of perf event counters, but we'll still do the per-task accounting to
4343 * the task who triggered this page fault.
4344 * @address: the faulted address.
4345 * @flags: the fault flags.
4346 * @ret: the fault retcode.
4348 * This will take care of most of the page fault accountings. Meanwhile, it
4349 * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
4350 * updates. However note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
4351 * still be in per-arch page fault handlers at the entry of page fault.
4353 static inline void mm_account_fault(struct pt_regs
*regs
,
4354 unsigned long address
, unsigned int flags
,
4360 * We don't do accounting for some specific faults:
4362 * - Unsuccessful faults (e.g. when the address wasn't valid). That
4363 * includes arch_vma_access_permitted() failing before reaching here.
4364 * So this is not a "this many hardware page faults" counter. We
4365 * should use the hw profiling for that.
4367 * - Incomplete faults (VM_FAULT_RETRY). They will only be counted
4368 * once they're completed.
4370 if (ret
& (VM_FAULT_ERROR
| VM_FAULT_RETRY
))
4374 * We define the fault as a major fault when the final successful fault
4375 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
4376 * handle it immediately previously).
4378 major
= (ret
& VM_FAULT_MAJOR
) || (flags
& FAULT_FLAG_TRIED
);
4386 * If the fault is done for GUP, regs will be NULL. We only do the
4387 * accounting for the per thread fault counters who triggered the
4388 * fault, and we skip the perf event updates.
4394 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ
, 1, regs
, address
);
4396 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN
, 1, regs
, address
);
4400 * By the time we get here, we already hold the mm semaphore
4402 * The mmap_lock may have been released depending on flags and our
4403 * return value. See filemap_fault() and __lock_page_or_retry().
4405 vm_fault_t
handle_mm_fault(struct vm_area_struct
*vma
, unsigned long address
,
4406 unsigned int flags
, struct pt_regs
*regs
)
4410 __set_current_state(TASK_RUNNING
);
4412 count_vm_event(PGFAULT
);
4413 count_memcg_event_mm(vma
->vm_mm
, PGFAULT
);
4415 /* do counter updates before entering really critical section. */
4416 check_sync_rss_stat(current
);
4418 if (!arch_vma_access_permitted(vma
, flags
& FAULT_FLAG_WRITE
,
4419 flags
& FAULT_FLAG_INSTRUCTION
,
4420 flags
& FAULT_FLAG_REMOTE
))
4421 return VM_FAULT_SIGSEGV
;
4424 * Enable the memcg OOM handling for faults triggered in user
4425 * space. Kernel faults are handled more gracefully.
4427 if (flags
& FAULT_FLAG_USER
)
4428 mem_cgroup_enter_user_fault();
4430 if (unlikely(is_vm_hugetlb_page(vma
)))
4431 ret
= hugetlb_fault(vma
->vm_mm
, vma
, address
, flags
);
4433 ret
= __handle_mm_fault(vma
, address
, flags
);
4435 if (flags
& FAULT_FLAG_USER
) {
4436 mem_cgroup_exit_user_fault();
4438 * The task may have entered a memcg OOM situation but
4439 * if the allocation error was handled gracefully (no
4440 * VM_FAULT_OOM), there is no need to kill anything.
4441 * Just clean up the OOM state peacefully.
4443 if (task_in_memcg_oom(current
) && !(ret
& VM_FAULT_OOM
))
4444 mem_cgroup_oom_synchronize(false);
4447 mm_account_fault(regs
, address
, flags
, ret
);
4451 EXPORT_SYMBOL_GPL(handle_mm_fault
);
4453 #ifndef __PAGETABLE_P4D_FOLDED
4455 * Allocate p4d page table.
4456 * We've already handled the fast-path in-line.
4458 int __p4d_alloc(struct mm_struct
*mm
, pgd_t
*pgd
, unsigned long address
)
4460 p4d_t
*new = p4d_alloc_one(mm
, address
);
4464 smp_wmb(); /* See comment in __pte_alloc */
4466 spin_lock(&mm
->page_table_lock
);
4467 if (pgd_present(*pgd
)) /* Another has populated it */
4470 pgd_populate(mm
, pgd
, new);
4471 spin_unlock(&mm
->page_table_lock
);
4474 #endif /* __PAGETABLE_P4D_FOLDED */
4476 #ifndef __PAGETABLE_PUD_FOLDED
4478 * Allocate page upper directory.
4479 * We've already handled the fast-path in-line.
4481 int __pud_alloc(struct mm_struct
*mm
, p4d_t
*p4d
, unsigned long address
)
4483 pud_t
*new = pud_alloc_one(mm
, address
);
4487 smp_wmb(); /* See comment in __pte_alloc */
4489 spin_lock(&mm
->page_table_lock
);
4490 if (!p4d_present(*p4d
)) {
4492 p4d_populate(mm
, p4d
, new);
4493 } else /* Another has populated it */
4495 spin_unlock(&mm
->page_table_lock
);
4498 #endif /* __PAGETABLE_PUD_FOLDED */
4500 #ifndef __PAGETABLE_PMD_FOLDED
4502 * Allocate page middle directory.
4503 * We've already handled the fast-path in-line.
4505 int __pmd_alloc(struct mm_struct
*mm
, pud_t
*pud
, unsigned long address
)
4508 pmd_t
*new = pmd_alloc_one(mm
, address
);
4512 smp_wmb(); /* See comment in __pte_alloc */
4514 ptl
= pud_lock(mm
, pud
);
4515 if (!pud_present(*pud
)) {
4517 pud_populate(mm
, pud
, new);
4518 } else /* Another has populated it */
4523 #endif /* __PAGETABLE_PMD_FOLDED */
4525 static int __follow_pte_pmd(struct mm_struct
*mm
, unsigned long address
,
4526 struct mmu_notifier_range
*range
,
4527 pte_t
**ptepp
, pmd_t
**pmdpp
, spinlock_t
**ptlp
)
4535 pgd
= pgd_offset(mm
, address
);
4536 if (pgd_none(*pgd
) || unlikely(pgd_bad(*pgd
)))
4539 p4d
= p4d_offset(pgd
, address
);
4540 if (p4d_none(*p4d
) || unlikely(p4d_bad(*p4d
)))
4543 pud
= pud_offset(p4d
, address
);
4544 if (pud_none(*pud
) || unlikely(pud_bad(*pud
)))
4547 pmd
= pmd_offset(pud
, address
);
4548 VM_BUG_ON(pmd_trans_huge(*pmd
));
4550 if (pmd_huge(*pmd
)) {
4555 mmu_notifier_range_init(range
, MMU_NOTIFY_CLEAR
, 0,
4556 NULL
, mm
, address
& PMD_MASK
,
4557 (address
& PMD_MASK
) + PMD_SIZE
);
4558 mmu_notifier_invalidate_range_start(range
);
4560 *ptlp
= pmd_lock(mm
, pmd
);
4561 if (pmd_huge(*pmd
)) {
4567 mmu_notifier_invalidate_range_end(range
);
4570 if (pmd_none(*pmd
) || unlikely(pmd_bad(*pmd
)))
4574 mmu_notifier_range_init(range
, MMU_NOTIFY_CLEAR
, 0, NULL
, mm
,
4575 address
& PAGE_MASK
,
4576 (address
& PAGE_MASK
) + PAGE_SIZE
);
4577 mmu_notifier_invalidate_range_start(range
);
4579 ptep
= pte_offset_map_lock(mm
, pmd
, address
, ptlp
);
4580 if (!pte_present(*ptep
))
4585 pte_unmap_unlock(ptep
, *ptlp
);
4587 mmu_notifier_invalidate_range_end(range
);
4592 static inline int follow_pte(struct mm_struct
*mm
, unsigned long address
,
4593 pte_t
**ptepp
, spinlock_t
**ptlp
)
4597 /* (void) is needed to make gcc happy */
4598 (void) __cond_lock(*ptlp
,
4599 !(res
= __follow_pte_pmd(mm
, address
, NULL
,
4600 ptepp
, NULL
, ptlp
)));
4604 int follow_pte_pmd(struct mm_struct
*mm
, unsigned long address
,
4605 struct mmu_notifier_range
*range
,
4606 pte_t
**ptepp
, pmd_t
**pmdpp
, spinlock_t
**ptlp
)
4610 /* (void) is needed to make gcc happy */
4611 (void) __cond_lock(*ptlp
,
4612 !(res
= __follow_pte_pmd(mm
, address
, range
,
4613 ptepp
, pmdpp
, ptlp
)));
4616 EXPORT_SYMBOL(follow_pte_pmd
);
4619 * follow_pfn - look up PFN at a user virtual address
4620 * @vma: memory mapping
4621 * @address: user virtual address
4622 * @pfn: location to store found PFN
4624 * Only IO mappings and raw PFN mappings are allowed.
4626 * Return: zero and the pfn at @pfn on success, -ve otherwise.
4628 int follow_pfn(struct vm_area_struct
*vma
, unsigned long address
,
4635 if (!(vma
->vm_flags
& (VM_IO
| VM_PFNMAP
)))
4638 ret
= follow_pte(vma
->vm_mm
, address
, &ptep
, &ptl
);
4641 *pfn
= pte_pfn(*ptep
);
4642 pte_unmap_unlock(ptep
, ptl
);
4645 EXPORT_SYMBOL(follow_pfn
);
4647 #ifdef CONFIG_HAVE_IOREMAP_PROT
4648 int follow_phys(struct vm_area_struct
*vma
,
4649 unsigned long address
, unsigned int flags
,
4650 unsigned long *prot
, resource_size_t
*phys
)
4656 if (!(vma
->vm_flags
& (VM_IO
| VM_PFNMAP
)))
4659 if (follow_pte(vma
->vm_mm
, address
, &ptep
, &ptl
))
4663 if ((flags
& FOLL_WRITE
) && !pte_write(pte
))
4666 *prot
= pgprot_val(pte_pgprot(pte
));
4667 *phys
= (resource_size_t
)pte_pfn(pte
) << PAGE_SHIFT
;
4671 pte_unmap_unlock(ptep
, ptl
);
4676 int generic_access_phys(struct vm_area_struct
*vma
, unsigned long addr
,
4677 void *buf
, int len
, int write
)
4679 resource_size_t phys_addr
;
4680 unsigned long prot
= 0;
4681 void __iomem
*maddr
;
4682 int offset
= addr
& (PAGE_SIZE
-1);
4684 if (follow_phys(vma
, addr
, write
, &prot
, &phys_addr
))
4687 maddr
= ioremap_prot(phys_addr
, PAGE_ALIGN(len
+ offset
), prot
);
4692 memcpy_toio(maddr
+ offset
, buf
, len
);
4694 memcpy_fromio(buf
, maddr
+ offset
, len
);
4699 EXPORT_SYMBOL_GPL(generic_access_phys
);
4703 * Access another process' address space as given in mm. If non-NULL, use the
4704 * given task for page fault accounting.
4706 int __access_remote_vm(struct task_struct
*tsk
, struct mm_struct
*mm
,
4707 unsigned long addr
, void *buf
, int len
, unsigned int gup_flags
)
4709 struct vm_area_struct
*vma
;
4710 void *old_buf
= buf
;
4711 int write
= gup_flags
& FOLL_WRITE
;
4713 if (mmap_read_lock_killable(mm
))
4716 /* ignore errors, just check how much was successfully transferred */
4718 int bytes
, ret
, offset
;
4720 struct page
*page
= NULL
;
4722 ret
= get_user_pages_remote(mm
, addr
, 1,
4723 gup_flags
, &page
, &vma
, NULL
);
4725 #ifndef CONFIG_HAVE_IOREMAP_PROT
4729 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4730 * we can access using slightly different code.
4732 vma
= find_vma(mm
, addr
);
4733 if (!vma
|| vma
->vm_start
> addr
)
4735 if (vma
->vm_ops
&& vma
->vm_ops
->access
)
4736 ret
= vma
->vm_ops
->access(vma
, addr
, buf
,
4744 offset
= addr
& (PAGE_SIZE
-1);
4745 if (bytes
> PAGE_SIZE
-offset
)
4746 bytes
= PAGE_SIZE
-offset
;
4750 copy_to_user_page(vma
, page
, addr
,
4751 maddr
+ offset
, buf
, bytes
);
4752 set_page_dirty_lock(page
);
4754 copy_from_user_page(vma
, page
, addr
,
4755 buf
, maddr
+ offset
, bytes
);
4764 mmap_read_unlock(mm
);
4766 return buf
- old_buf
;
4770 * access_remote_vm - access another process' address space
4771 * @mm: the mm_struct of the target address space
4772 * @addr: start address to access
4773 * @buf: source or destination buffer
4774 * @len: number of bytes to transfer
4775 * @gup_flags: flags modifying lookup behaviour
4777 * The caller must hold a reference on @mm.
4779 * Return: number of bytes copied from source to destination.
4781 int access_remote_vm(struct mm_struct
*mm
, unsigned long addr
,
4782 void *buf
, int len
, unsigned int gup_flags
)
4784 return __access_remote_vm(NULL
, mm
, addr
, buf
, len
, gup_flags
);
4788 * Access another process' address space.
4789 * Source/target buffer must be kernel space,
4790 * Do not walk the page table directly, use get_user_pages
4792 int access_process_vm(struct task_struct
*tsk
, unsigned long addr
,
4793 void *buf
, int len
, unsigned int gup_flags
)
4795 struct mm_struct
*mm
;
4798 mm
= get_task_mm(tsk
);
4802 ret
= __access_remote_vm(tsk
, mm
, addr
, buf
, len
, gup_flags
);
4808 EXPORT_SYMBOL_GPL(access_process_vm
);
4811 * Print the name of a VMA.
4813 void print_vma_addr(char *prefix
, unsigned long ip
)
4815 struct mm_struct
*mm
= current
->mm
;
4816 struct vm_area_struct
*vma
;
4819 * we might be running from an atomic context so we cannot sleep
4821 if (!mmap_read_trylock(mm
))
4824 vma
= find_vma(mm
, ip
);
4825 if (vma
&& vma
->vm_file
) {
4826 struct file
*f
= vma
->vm_file
;
4827 char *buf
= (char *)__get_free_page(GFP_NOWAIT
);
4831 p
= file_path(f
, buf
, PAGE_SIZE
);
4834 printk("%s%s[%lx+%lx]", prefix
, kbasename(p
),
4836 vma
->vm_end
- vma
->vm_start
);
4837 free_page((unsigned long)buf
);
4840 mmap_read_unlock(mm
);
4843 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4844 void __might_fault(const char *file
, int line
)
4847 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4848 * holding the mmap_lock, this is safe because kernel memory doesn't
4849 * get paged out, therefore we'll never actually fault, and the
4850 * below annotations will generate false positives.
4852 if (uaccess_kernel())
4854 if (pagefault_disabled())
4856 __might_sleep(file
, line
, 0);
4857 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4859 might_lock_read(¤t
->mm
->mmap_lock
);
4862 EXPORT_SYMBOL(__might_fault
);
4865 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4867 * Process all subpages of the specified huge page with the specified
4868 * operation. The target subpage will be processed last to keep its
4871 static inline void process_huge_page(
4872 unsigned long addr_hint
, unsigned int pages_per_huge_page
,
4873 void (*process_subpage
)(unsigned long addr
, int idx
, void *arg
),
4877 unsigned long addr
= addr_hint
&
4878 ~(((unsigned long)pages_per_huge_page
<< PAGE_SHIFT
) - 1);
4880 /* Process target subpage last to keep its cache lines hot */
4882 n
= (addr_hint
- addr
) / PAGE_SIZE
;
4883 if (2 * n
<= pages_per_huge_page
) {
4884 /* If target subpage in first half of huge page */
4887 /* Process subpages at the end of huge page */
4888 for (i
= pages_per_huge_page
- 1; i
>= 2 * n
; i
--) {
4890 process_subpage(addr
+ i
* PAGE_SIZE
, i
, arg
);
4893 /* If target subpage in second half of huge page */
4894 base
= pages_per_huge_page
- 2 * (pages_per_huge_page
- n
);
4895 l
= pages_per_huge_page
- n
;
4896 /* Process subpages at the begin of huge page */
4897 for (i
= 0; i
< base
; i
++) {
4899 process_subpage(addr
+ i
* PAGE_SIZE
, i
, arg
);
4903 * Process remaining subpages in left-right-left-right pattern
4904 * towards the target subpage
4906 for (i
= 0; i
< l
; i
++) {
4907 int left_idx
= base
+ i
;
4908 int right_idx
= base
+ 2 * l
- 1 - i
;
4911 process_subpage(addr
+ left_idx
* PAGE_SIZE
, left_idx
, arg
);
4913 process_subpage(addr
+ right_idx
* PAGE_SIZE
, right_idx
, arg
);
4917 static void clear_gigantic_page(struct page
*page
,
4919 unsigned int pages_per_huge_page
)
4922 struct page
*p
= page
;
4925 for (i
= 0; i
< pages_per_huge_page
;
4926 i
++, p
= mem_map_next(p
, page
, i
)) {
4928 clear_user_highpage(p
, addr
+ i
* PAGE_SIZE
);
4932 static void clear_subpage(unsigned long addr
, int idx
, void *arg
)
4934 struct page
*page
= arg
;
4936 clear_user_highpage(page
+ idx
, addr
);
4939 void clear_huge_page(struct page
*page
,
4940 unsigned long addr_hint
, unsigned int pages_per_huge_page
)
4942 unsigned long addr
= addr_hint
&
4943 ~(((unsigned long)pages_per_huge_page
<< PAGE_SHIFT
) - 1);
4945 if (unlikely(pages_per_huge_page
> MAX_ORDER_NR_PAGES
)) {
4946 clear_gigantic_page(page
, addr
, pages_per_huge_page
);
4950 process_huge_page(addr_hint
, pages_per_huge_page
, clear_subpage
, page
);
4953 static void copy_user_gigantic_page(struct page
*dst
, struct page
*src
,
4955 struct vm_area_struct
*vma
,
4956 unsigned int pages_per_huge_page
)
4959 struct page
*dst_base
= dst
;
4960 struct page
*src_base
= src
;
4962 for (i
= 0; i
< pages_per_huge_page
; ) {
4964 copy_user_highpage(dst
, src
, addr
+ i
*PAGE_SIZE
, vma
);
4967 dst
= mem_map_next(dst
, dst_base
, i
);
4968 src
= mem_map_next(src
, src_base
, i
);
4972 struct copy_subpage_arg
{
4975 struct vm_area_struct
*vma
;
4978 static void copy_subpage(unsigned long addr
, int idx
, void *arg
)
4980 struct copy_subpage_arg
*copy_arg
= arg
;
4982 copy_user_highpage(copy_arg
->dst
+ idx
, copy_arg
->src
+ idx
,
4983 addr
, copy_arg
->vma
);
4986 void copy_user_huge_page(struct page
*dst
, struct page
*src
,
4987 unsigned long addr_hint
, struct vm_area_struct
*vma
,
4988 unsigned int pages_per_huge_page
)
4990 unsigned long addr
= addr_hint
&
4991 ~(((unsigned long)pages_per_huge_page
<< PAGE_SHIFT
) - 1);
4992 struct copy_subpage_arg arg
= {
4998 if (unlikely(pages_per_huge_page
> MAX_ORDER_NR_PAGES
)) {
4999 copy_user_gigantic_page(dst
, src
, addr
, vma
,
5000 pages_per_huge_page
);
5004 process_huge_page(addr_hint
, pages_per_huge_page
, copy_subpage
, &arg
);
5007 long copy_huge_page_from_user(struct page
*dst_page
,
5008 const void __user
*usr_src
,
5009 unsigned int pages_per_huge_page
,
5010 bool allow_pagefault
)
5012 void *src
= (void *)usr_src
;
5014 unsigned long i
, rc
= 0;
5015 unsigned long ret_val
= pages_per_huge_page
* PAGE_SIZE
;
5017 for (i
= 0; i
< pages_per_huge_page
; i
++) {
5018 if (allow_pagefault
)
5019 page_kaddr
= kmap(dst_page
+ i
);
5021 page_kaddr
= kmap_atomic(dst_page
+ i
);
5022 rc
= copy_from_user(page_kaddr
,
5023 (const void __user
*)(src
+ i
* PAGE_SIZE
),
5025 if (allow_pagefault
)
5026 kunmap(dst_page
+ i
);
5028 kunmap_atomic(page_kaddr
);
5030 ret_val
-= (PAGE_SIZE
- rc
);
5038 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
5040 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
5042 static struct kmem_cache
*page_ptl_cachep
;
5044 void __init
ptlock_cache_init(void)
5046 page_ptl_cachep
= kmem_cache_create("page->ptl", sizeof(spinlock_t
), 0,
5050 bool ptlock_alloc(struct page
*page
)
5054 ptl
= kmem_cache_alloc(page_ptl_cachep
, GFP_KERNEL
);
5061 void ptlock_free(struct page
*page
)
5063 kmem_cache_free(page_ptl_cachep
, page
->ptl
);