Merge tag 'dmaengine-fix-5.9-rc4' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux/fpc-iii.git] / mm / swap_slots.c
blob3e6453573a898bd6cfa3f0d5049f3d9217fba780
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Manage cache of swap slots to be used for and returned from
4 * swap.
6 * Copyright(c) 2016 Intel Corporation.
8 * Author: Tim Chen <tim.c.chen@linux.intel.com>
10 * We allocate the swap slots from the global pool and put
11 * it into local per cpu caches. This has the advantage
12 * of no needing to acquire the swap_info lock every time
13 * we need a new slot.
15 * There is also opportunity to simply return the slot
16 * to local caches without needing to acquire swap_info
17 * lock. We do not reuse the returned slots directly but
18 * move them back to the global pool in a batch. This
19 * allows the slots to coaellesce and reduce fragmentation.
21 * The swap entry allocated is marked with SWAP_HAS_CACHE
22 * flag in map_count that prevents it from being allocated
23 * again from the global pool.
25 * The swap slots cache is protected by a mutex instead of
26 * a spin lock as when we search for slots with scan_swap_map,
27 * we can possibly sleep.
30 #include <linux/swap_slots.h>
31 #include <linux/cpu.h>
32 #include <linux/cpumask.h>
33 #include <linux/vmalloc.h>
34 #include <linux/mutex.h>
35 #include <linux/mm.h>
37 static DEFINE_PER_CPU(struct swap_slots_cache, swp_slots);
38 static bool swap_slot_cache_active;
39 bool swap_slot_cache_enabled;
40 static bool swap_slot_cache_initialized;
41 static DEFINE_MUTEX(swap_slots_cache_mutex);
42 /* Serialize swap slots cache enable/disable operations */
43 static DEFINE_MUTEX(swap_slots_cache_enable_mutex);
45 static void __drain_swap_slots_cache(unsigned int type);
46 static void deactivate_swap_slots_cache(void);
47 static void reactivate_swap_slots_cache(void);
49 #define use_swap_slot_cache (swap_slot_cache_active && swap_slot_cache_enabled)
50 #define SLOTS_CACHE 0x1
51 #define SLOTS_CACHE_RET 0x2
53 static void deactivate_swap_slots_cache(void)
55 mutex_lock(&swap_slots_cache_mutex);
56 swap_slot_cache_active = false;
57 __drain_swap_slots_cache(SLOTS_CACHE|SLOTS_CACHE_RET);
58 mutex_unlock(&swap_slots_cache_mutex);
61 static void reactivate_swap_slots_cache(void)
63 mutex_lock(&swap_slots_cache_mutex);
64 swap_slot_cache_active = true;
65 mutex_unlock(&swap_slots_cache_mutex);
68 /* Must not be called with cpu hot plug lock */
69 void disable_swap_slots_cache_lock(void)
71 mutex_lock(&swap_slots_cache_enable_mutex);
72 swap_slot_cache_enabled = false;
73 if (swap_slot_cache_initialized) {
74 /* serialize with cpu hotplug operations */
75 get_online_cpus();
76 __drain_swap_slots_cache(SLOTS_CACHE|SLOTS_CACHE_RET);
77 put_online_cpus();
81 static void __reenable_swap_slots_cache(void)
83 swap_slot_cache_enabled = has_usable_swap();
86 void reenable_swap_slots_cache_unlock(void)
88 __reenable_swap_slots_cache();
89 mutex_unlock(&swap_slots_cache_enable_mutex);
92 static bool check_cache_active(void)
94 long pages;
96 if (!swap_slot_cache_enabled)
97 return false;
99 pages = get_nr_swap_pages();
100 if (!swap_slot_cache_active) {
101 if (pages > num_online_cpus() *
102 THRESHOLD_ACTIVATE_SWAP_SLOTS_CACHE)
103 reactivate_swap_slots_cache();
104 goto out;
107 /* if global pool of slot caches too low, deactivate cache */
108 if (pages < num_online_cpus() * THRESHOLD_DEACTIVATE_SWAP_SLOTS_CACHE)
109 deactivate_swap_slots_cache();
110 out:
111 return swap_slot_cache_active;
114 static int alloc_swap_slot_cache(unsigned int cpu)
116 struct swap_slots_cache *cache;
117 swp_entry_t *slots, *slots_ret;
120 * Do allocation outside swap_slots_cache_mutex
121 * as kvzalloc could trigger reclaim and get_swap_page,
122 * which can lock swap_slots_cache_mutex.
124 slots = kvcalloc(SWAP_SLOTS_CACHE_SIZE, sizeof(swp_entry_t),
125 GFP_KERNEL);
126 if (!slots)
127 return -ENOMEM;
129 slots_ret = kvcalloc(SWAP_SLOTS_CACHE_SIZE, sizeof(swp_entry_t),
130 GFP_KERNEL);
131 if (!slots_ret) {
132 kvfree(slots);
133 return -ENOMEM;
136 mutex_lock(&swap_slots_cache_mutex);
137 cache = &per_cpu(swp_slots, cpu);
138 if (cache->slots || cache->slots_ret) {
139 /* cache already allocated */
140 mutex_unlock(&swap_slots_cache_mutex);
142 kvfree(slots);
143 kvfree(slots_ret);
145 return 0;
148 if (!cache->lock_initialized) {
149 mutex_init(&cache->alloc_lock);
150 spin_lock_init(&cache->free_lock);
151 cache->lock_initialized = true;
153 cache->nr = 0;
154 cache->cur = 0;
155 cache->n_ret = 0;
157 * We initialized alloc_lock and free_lock earlier. We use
158 * !cache->slots or !cache->slots_ret to know if it is safe to acquire
159 * the corresponding lock and use the cache. Memory barrier below
160 * ensures the assumption.
162 mb();
163 cache->slots = slots;
164 cache->slots_ret = slots_ret;
165 mutex_unlock(&swap_slots_cache_mutex);
166 return 0;
169 static void drain_slots_cache_cpu(unsigned int cpu, unsigned int type,
170 bool free_slots)
172 struct swap_slots_cache *cache;
173 swp_entry_t *slots = NULL;
175 cache = &per_cpu(swp_slots, cpu);
176 if ((type & SLOTS_CACHE) && cache->slots) {
177 mutex_lock(&cache->alloc_lock);
178 swapcache_free_entries(cache->slots + cache->cur, cache->nr);
179 cache->cur = 0;
180 cache->nr = 0;
181 if (free_slots && cache->slots) {
182 kvfree(cache->slots);
183 cache->slots = NULL;
185 mutex_unlock(&cache->alloc_lock);
187 if ((type & SLOTS_CACHE_RET) && cache->slots_ret) {
188 spin_lock_irq(&cache->free_lock);
189 swapcache_free_entries(cache->slots_ret, cache->n_ret);
190 cache->n_ret = 0;
191 if (free_slots && cache->slots_ret) {
192 slots = cache->slots_ret;
193 cache->slots_ret = NULL;
195 spin_unlock_irq(&cache->free_lock);
196 if (slots)
197 kvfree(slots);
201 static void __drain_swap_slots_cache(unsigned int type)
203 unsigned int cpu;
206 * This function is called during
207 * 1) swapoff, when we have to make sure no
208 * left over slots are in cache when we remove
209 * a swap device;
210 * 2) disabling of swap slot cache, when we run low
211 * on swap slots when allocating memory and need
212 * to return swap slots to global pool.
214 * We cannot acquire cpu hot plug lock here as
215 * this function can be invoked in the cpu
216 * hot plug path:
217 * cpu_up -> lock cpu_hotplug -> cpu hotplug state callback
218 * -> memory allocation -> direct reclaim -> get_swap_page
219 * -> drain_swap_slots_cache
221 * Hence the loop over current online cpu below could miss cpu that
222 * is being brought online but not yet marked as online.
223 * That is okay as we do not schedule and run anything on a
224 * cpu before it has been marked online. Hence, we will not
225 * fill any swap slots in slots cache of such cpu.
226 * There are no slots on such cpu that need to be drained.
228 for_each_online_cpu(cpu)
229 drain_slots_cache_cpu(cpu, type, false);
232 static int free_slot_cache(unsigned int cpu)
234 mutex_lock(&swap_slots_cache_mutex);
235 drain_slots_cache_cpu(cpu, SLOTS_CACHE | SLOTS_CACHE_RET, true);
236 mutex_unlock(&swap_slots_cache_mutex);
237 return 0;
240 int enable_swap_slots_cache(void)
242 mutex_lock(&swap_slots_cache_enable_mutex);
243 if (!swap_slot_cache_initialized) {
244 int ret;
246 ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "swap_slots_cache",
247 alloc_swap_slot_cache, free_slot_cache);
248 if (WARN_ONCE(ret < 0, "Cache allocation failed (%s), operating "
249 "without swap slots cache.\n", __func__))
250 goto out_unlock;
252 swap_slot_cache_initialized = true;
255 __reenable_swap_slots_cache();
256 out_unlock:
257 mutex_unlock(&swap_slots_cache_enable_mutex);
258 return 0;
261 /* called with swap slot cache's alloc lock held */
262 static int refill_swap_slots_cache(struct swap_slots_cache *cache)
264 if (!use_swap_slot_cache || cache->nr)
265 return 0;
267 cache->cur = 0;
268 if (swap_slot_cache_active)
269 cache->nr = get_swap_pages(SWAP_SLOTS_CACHE_SIZE,
270 cache->slots, 1);
272 return cache->nr;
275 int free_swap_slot(swp_entry_t entry)
277 struct swap_slots_cache *cache;
279 cache = raw_cpu_ptr(&swp_slots);
280 if (likely(use_swap_slot_cache && cache->slots_ret)) {
281 spin_lock_irq(&cache->free_lock);
282 /* Swap slots cache may be deactivated before acquiring lock */
283 if (!use_swap_slot_cache || !cache->slots_ret) {
284 spin_unlock_irq(&cache->free_lock);
285 goto direct_free;
287 if (cache->n_ret >= SWAP_SLOTS_CACHE_SIZE) {
289 * Return slots to global pool.
290 * The current swap_map value is SWAP_HAS_CACHE.
291 * Set it to 0 to indicate it is available for
292 * allocation in global pool
294 swapcache_free_entries(cache->slots_ret, cache->n_ret);
295 cache->n_ret = 0;
297 cache->slots_ret[cache->n_ret++] = entry;
298 spin_unlock_irq(&cache->free_lock);
299 } else {
300 direct_free:
301 swapcache_free_entries(&entry, 1);
304 return 0;
307 swp_entry_t get_swap_page(struct page *page)
309 swp_entry_t entry;
310 struct swap_slots_cache *cache;
312 entry.val = 0;
314 if (PageTransHuge(page)) {
315 if (IS_ENABLED(CONFIG_THP_SWAP))
316 get_swap_pages(1, &entry, HPAGE_PMD_NR);
317 goto out;
321 * Preemption is allowed here, because we may sleep
322 * in refill_swap_slots_cache(). But it is safe, because
323 * accesses to the per-CPU data structure are protected by the
324 * mutex cache->alloc_lock.
326 * The alloc path here does not touch cache->slots_ret
327 * so cache->free_lock is not taken.
329 cache = raw_cpu_ptr(&swp_slots);
331 if (likely(check_cache_active() && cache->slots)) {
332 mutex_lock(&cache->alloc_lock);
333 if (cache->slots) {
334 repeat:
335 if (cache->nr) {
336 entry = cache->slots[cache->cur];
337 cache->slots[cache->cur++].val = 0;
338 cache->nr--;
339 } else if (refill_swap_slots_cache(cache)) {
340 goto repeat;
343 mutex_unlock(&cache->alloc_lock);
344 if (entry.val)
345 goto out;
348 get_swap_pages(1, &entry, 1);
349 out:
350 if (mem_cgroup_try_charge_swap(page, entry)) {
351 put_swap_page(page, entry);
352 entry.val = 0;
354 return entry;