KVM: x86: Use jmp to invoke kvm_spurious_fault() from .fixup
[linux/fpc-iii.git] / kernel / signal.c
blob5b13133093560bc3ef13740902958fbe75254b03
1 /*
2 * linux/kernel/signal.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
6 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson
8 * 2003-06-02 Jim Houston - Concurrent Computer Corp.
9 * Changes to use preallocated sigqueue structures
10 * to allow signals to be sent reliably.
13 #include <linux/slab.h>
14 #include <linux/export.h>
15 #include <linux/init.h>
16 #include <linux/sched.h>
17 #include <linux/fs.h>
18 #include <linux/tty.h>
19 #include <linux/binfmts.h>
20 #include <linux/coredump.h>
21 #include <linux/security.h>
22 #include <linux/syscalls.h>
23 #include <linux/ptrace.h>
24 #include <linux/signal.h>
25 #include <linux/signalfd.h>
26 #include <linux/ratelimit.h>
27 #include <linux/tracehook.h>
28 #include <linux/capability.h>
29 #include <linux/freezer.h>
30 #include <linux/pid_namespace.h>
31 #include <linux/nsproxy.h>
32 #include <linux/user_namespace.h>
33 #include <linux/uprobes.h>
34 #include <linux/compat.h>
35 #include <linux/cn_proc.h>
36 #include <linux/compiler.h>
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/signal.h>
41 #include <asm/param.h>
42 #include <asm/uaccess.h>
43 #include <asm/unistd.h>
44 #include <asm/siginfo.h>
45 #include <asm/cacheflush.h>
46 #include "audit.h" /* audit_signal_info() */
49 * SLAB caches for signal bits.
52 static struct kmem_cache *sigqueue_cachep;
54 int print_fatal_signals __read_mostly;
56 static void __user *sig_handler(struct task_struct *t, int sig)
58 return t->sighand->action[sig - 1].sa.sa_handler;
61 static int sig_handler_ignored(void __user *handler, int sig)
63 /* Is it explicitly or implicitly ignored? */
64 return handler == SIG_IGN ||
65 (handler == SIG_DFL && sig_kernel_ignore(sig));
68 static int sig_task_ignored(struct task_struct *t, int sig, bool force)
70 void __user *handler;
72 handler = sig_handler(t, sig);
74 if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
75 handler == SIG_DFL && !(force && sig_kernel_only(sig)))
76 return 1;
78 return sig_handler_ignored(handler, sig);
81 static int sig_ignored(struct task_struct *t, int sig, bool force)
84 * Blocked signals are never ignored, since the
85 * signal handler may change by the time it is
86 * unblocked.
88 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
89 return 0;
92 * Tracers may want to know about even ignored signal unless it
93 * is SIGKILL which can't be reported anyway but can be ignored
94 * by SIGNAL_UNKILLABLE task.
96 if (t->ptrace && sig != SIGKILL)
97 return 0;
99 return sig_task_ignored(t, sig, force);
103 * Re-calculate pending state from the set of locally pending
104 * signals, globally pending signals, and blocked signals.
106 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
108 unsigned long ready;
109 long i;
111 switch (_NSIG_WORDS) {
112 default:
113 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
114 ready |= signal->sig[i] &~ blocked->sig[i];
115 break;
117 case 4: ready = signal->sig[3] &~ blocked->sig[3];
118 ready |= signal->sig[2] &~ blocked->sig[2];
119 ready |= signal->sig[1] &~ blocked->sig[1];
120 ready |= signal->sig[0] &~ blocked->sig[0];
121 break;
123 case 2: ready = signal->sig[1] &~ blocked->sig[1];
124 ready |= signal->sig[0] &~ blocked->sig[0];
125 break;
127 case 1: ready = signal->sig[0] &~ blocked->sig[0];
129 return ready != 0;
132 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
134 static int recalc_sigpending_tsk(struct task_struct *t)
136 if ((t->jobctl & JOBCTL_PENDING_MASK) ||
137 PENDING(&t->pending, &t->blocked) ||
138 PENDING(&t->signal->shared_pending, &t->blocked)) {
139 set_tsk_thread_flag(t, TIF_SIGPENDING);
140 return 1;
143 * We must never clear the flag in another thread, or in current
144 * when it's possible the current syscall is returning -ERESTART*.
145 * So we don't clear it here, and only callers who know they should do.
147 return 0;
151 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
152 * This is superfluous when called on current, the wakeup is a harmless no-op.
154 void recalc_sigpending_and_wake(struct task_struct *t)
156 if (recalc_sigpending_tsk(t))
157 signal_wake_up(t, 0);
160 void recalc_sigpending(void)
162 if (!recalc_sigpending_tsk(current) && !freezing(current))
163 clear_thread_flag(TIF_SIGPENDING);
167 /* Given the mask, find the first available signal that should be serviced. */
169 #define SYNCHRONOUS_MASK \
170 (sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
171 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
173 int next_signal(struct sigpending *pending, sigset_t *mask)
175 unsigned long i, *s, *m, x;
176 int sig = 0;
178 s = pending->signal.sig;
179 m = mask->sig;
182 * Handle the first word specially: it contains the
183 * synchronous signals that need to be dequeued first.
185 x = *s &~ *m;
186 if (x) {
187 if (x & SYNCHRONOUS_MASK)
188 x &= SYNCHRONOUS_MASK;
189 sig = ffz(~x) + 1;
190 return sig;
193 switch (_NSIG_WORDS) {
194 default:
195 for (i = 1; i < _NSIG_WORDS; ++i) {
196 x = *++s &~ *++m;
197 if (!x)
198 continue;
199 sig = ffz(~x) + i*_NSIG_BPW + 1;
200 break;
202 break;
204 case 2:
205 x = s[1] &~ m[1];
206 if (!x)
207 break;
208 sig = ffz(~x) + _NSIG_BPW + 1;
209 break;
211 case 1:
212 /* Nothing to do */
213 break;
216 return sig;
219 static inline void print_dropped_signal(int sig)
221 static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
223 if (!print_fatal_signals)
224 return;
226 if (!__ratelimit(&ratelimit_state))
227 return;
229 printk(KERN_INFO "%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
230 current->comm, current->pid, sig);
234 * task_set_jobctl_pending - set jobctl pending bits
235 * @task: target task
236 * @mask: pending bits to set
238 * Clear @mask from @task->jobctl. @mask must be subset of
239 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
240 * %JOBCTL_TRAPPING. If stop signo is being set, the existing signo is
241 * cleared. If @task is already being killed or exiting, this function
242 * becomes noop.
244 * CONTEXT:
245 * Must be called with @task->sighand->siglock held.
247 * RETURNS:
248 * %true if @mask is set, %false if made noop because @task was dying.
250 bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask)
252 BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
253 JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
254 BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
256 if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
257 return false;
259 if (mask & JOBCTL_STOP_SIGMASK)
260 task->jobctl &= ~JOBCTL_STOP_SIGMASK;
262 task->jobctl |= mask;
263 return true;
267 * task_clear_jobctl_trapping - clear jobctl trapping bit
268 * @task: target task
270 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
271 * Clear it and wake up the ptracer. Note that we don't need any further
272 * locking. @task->siglock guarantees that @task->parent points to the
273 * ptracer.
275 * CONTEXT:
276 * Must be called with @task->sighand->siglock held.
278 void task_clear_jobctl_trapping(struct task_struct *task)
280 if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
281 task->jobctl &= ~JOBCTL_TRAPPING;
282 smp_mb(); /* advised by wake_up_bit() */
283 wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
288 * task_clear_jobctl_pending - clear jobctl pending bits
289 * @task: target task
290 * @mask: pending bits to clear
292 * Clear @mask from @task->jobctl. @mask must be subset of
293 * %JOBCTL_PENDING_MASK. If %JOBCTL_STOP_PENDING is being cleared, other
294 * STOP bits are cleared together.
296 * If clearing of @mask leaves no stop or trap pending, this function calls
297 * task_clear_jobctl_trapping().
299 * CONTEXT:
300 * Must be called with @task->sighand->siglock held.
302 void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask)
304 BUG_ON(mask & ~JOBCTL_PENDING_MASK);
306 if (mask & JOBCTL_STOP_PENDING)
307 mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
309 task->jobctl &= ~mask;
311 if (!(task->jobctl & JOBCTL_PENDING_MASK))
312 task_clear_jobctl_trapping(task);
316 * task_participate_group_stop - participate in a group stop
317 * @task: task participating in a group stop
319 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
320 * Group stop states are cleared and the group stop count is consumed if
321 * %JOBCTL_STOP_CONSUME was set. If the consumption completes the group
322 * stop, the appropriate %SIGNAL_* flags are set.
324 * CONTEXT:
325 * Must be called with @task->sighand->siglock held.
327 * RETURNS:
328 * %true if group stop completion should be notified to the parent, %false
329 * otherwise.
331 static bool task_participate_group_stop(struct task_struct *task)
333 struct signal_struct *sig = task->signal;
334 bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
336 WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
338 task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
340 if (!consume)
341 return false;
343 if (!WARN_ON_ONCE(sig->group_stop_count == 0))
344 sig->group_stop_count--;
347 * Tell the caller to notify completion iff we are entering into a
348 * fresh group stop. Read comment in do_signal_stop() for details.
350 if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
351 signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED);
352 return true;
354 return false;
358 * allocate a new signal queue record
359 * - this may be called without locks if and only if t == current, otherwise an
360 * appropriate lock must be held to stop the target task from exiting
362 static struct sigqueue *
363 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit)
365 struct sigqueue *q = NULL;
366 struct user_struct *user;
369 * Protect access to @t credentials. This can go away when all
370 * callers hold rcu read lock.
372 rcu_read_lock();
373 user = get_uid(__task_cred(t)->user);
374 atomic_inc(&user->sigpending);
375 rcu_read_unlock();
377 if (override_rlimit ||
378 atomic_read(&user->sigpending) <=
379 task_rlimit(t, RLIMIT_SIGPENDING)) {
380 q = kmem_cache_alloc(sigqueue_cachep, flags);
381 } else {
382 print_dropped_signal(sig);
385 if (unlikely(q == NULL)) {
386 atomic_dec(&user->sigpending);
387 free_uid(user);
388 } else {
389 INIT_LIST_HEAD(&q->list);
390 q->flags = 0;
391 q->user = user;
394 return q;
397 static void __sigqueue_free(struct sigqueue *q)
399 if (q->flags & SIGQUEUE_PREALLOC)
400 return;
401 atomic_dec(&q->user->sigpending);
402 free_uid(q->user);
403 kmem_cache_free(sigqueue_cachep, q);
406 void flush_sigqueue(struct sigpending *queue)
408 struct sigqueue *q;
410 sigemptyset(&queue->signal);
411 while (!list_empty(&queue->list)) {
412 q = list_entry(queue->list.next, struct sigqueue , list);
413 list_del_init(&q->list);
414 __sigqueue_free(q);
419 * Flush all pending signals for this kthread.
421 void flush_signals(struct task_struct *t)
423 unsigned long flags;
425 spin_lock_irqsave(&t->sighand->siglock, flags);
426 clear_tsk_thread_flag(t, TIF_SIGPENDING);
427 flush_sigqueue(&t->pending);
428 flush_sigqueue(&t->signal->shared_pending);
429 spin_unlock_irqrestore(&t->sighand->siglock, flags);
432 static void __flush_itimer_signals(struct sigpending *pending)
434 sigset_t signal, retain;
435 struct sigqueue *q, *n;
437 signal = pending->signal;
438 sigemptyset(&retain);
440 list_for_each_entry_safe(q, n, &pending->list, list) {
441 int sig = q->info.si_signo;
443 if (likely(q->info.si_code != SI_TIMER)) {
444 sigaddset(&retain, sig);
445 } else {
446 sigdelset(&signal, sig);
447 list_del_init(&q->list);
448 __sigqueue_free(q);
452 sigorsets(&pending->signal, &signal, &retain);
455 void flush_itimer_signals(void)
457 struct task_struct *tsk = current;
458 unsigned long flags;
460 spin_lock_irqsave(&tsk->sighand->siglock, flags);
461 __flush_itimer_signals(&tsk->pending);
462 __flush_itimer_signals(&tsk->signal->shared_pending);
463 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
466 void ignore_signals(struct task_struct *t)
468 int i;
470 for (i = 0; i < _NSIG; ++i)
471 t->sighand->action[i].sa.sa_handler = SIG_IGN;
473 flush_signals(t);
477 * Flush all handlers for a task.
480 void
481 flush_signal_handlers(struct task_struct *t, int force_default)
483 int i;
484 struct k_sigaction *ka = &t->sighand->action[0];
485 for (i = _NSIG ; i != 0 ; i--) {
486 if (force_default || ka->sa.sa_handler != SIG_IGN)
487 ka->sa.sa_handler = SIG_DFL;
488 ka->sa.sa_flags = 0;
489 #ifdef __ARCH_HAS_SA_RESTORER
490 ka->sa.sa_restorer = NULL;
491 #endif
492 sigemptyset(&ka->sa.sa_mask);
493 ka++;
497 int unhandled_signal(struct task_struct *tsk, int sig)
499 void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
500 if (is_global_init(tsk))
501 return 1;
502 if (handler != SIG_IGN && handler != SIG_DFL)
503 return 0;
504 /* if ptraced, let the tracer determine */
505 return !tsk->ptrace;
508 static void collect_signal(int sig, struct sigpending *list, siginfo_t *info,
509 bool *resched_timer)
511 struct sigqueue *q, *first = NULL;
514 * Collect the siginfo appropriate to this signal. Check if
515 * there is another siginfo for the same signal.
517 list_for_each_entry(q, &list->list, list) {
518 if (q->info.si_signo == sig) {
519 if (first)
520 goto still_pending;
521 first = q;
525 sigdelset(&list->signal, sig);
527 if (first) {
528 still_pending:
529 list_del_init(&first->list);
530 copy_siginfo(info, &first->info);
532 *resched_timer =
533 (first->flags & SIGQUEUE_PREALLOC) &&
534 (info->si_code == SI_TIMER) &&
535 (info->si_sys_private);
537 __sigqueue_free(first);
538 } else {
540 * Ok, it wasn't in the queue. This must be
541 * a fast-pathed signal or we must have been
542 * out of queue space. So zero out the info.
544 info->si_signo = sig;
545 info->si_errno = 0;
546 info->si_code = SI_USER;
547 info->si_pid = 0;
548 info->si_uid = 0;
552 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
553 siginfo_t *info, bool *resched_timer)
555 int sig = next_signal(pending, mask);
557 if (sig)
558 collect_signal(sig, pending, info, resched_timer);
559 return sig;
563 * Dequeue a signal and return the element to the caller, which is
564 * expected to free it.
566 * All callers have to hold the siglock.
568 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
570 bool resched_timer = false;
571 int signr;
573 /* We only dequeue private signals from ourselves, we don't let
574 * signalfd steal them
576 signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer);
577 if (!signr) {
578 signr = __dequeue_signal(&tsk->signal->shared_pending,
579 mask, info, &resched_timer);
581 * itimer signal ?
583 * itimers are process shared and we restart periodic
584 * itimers in the signal delivery path to prevent DoS
585 * attacks in the high resolution timer case. This is
586 * compliant with the old way of self-restarting
587 * itimers, as the SIGALRM is a legacy signal and only
588 * queued once. Changing the restart behaviour to
589 * restart the timer in the signal dequeue path is
590 * reducing the timer noise on heavy loaded !highres
591 * systems too.
593 if (unlikely(signr == SIGALRM)) {
594 struct hrtimer *tmr = &tsk->signal->real_timer;
596 if (!hrtimer_is_queued(tmr) &&
597 tsk->signal->it_real_incr.tv64 != 0) {
598 hrtimer_forward(tmr, tmr->base->get_time(),
599 tsk->signal->it_real_incr);
600 hrtimer_restart(tmr);
605 recalc_sigpending();
606 if (!signr)
607 return 0;
609 if (unlikely(sig_kernel_stop(signr))) {
611 * Set a marker that we have dequeued a stop signal. Our
612 * caller might release the siglock and then the pending
613 * stop signal it is about to process is no longer in the
614 * pending bitmasks, but must still be cleared by a SIGCONT
615 * (and overruled by a SIGKILL). So those cases clear this
616 * shared flag after we've set it. Note that this flag may
617 * remain set after the signal we return is ignored or
618 * handled. That doesn't matter because its only purpose
619 * is to alert stop-signal processing code when another
620 * processor has come along and cleared the flag.
622 current->jobctl |= JOBCTL_STOP_DEQUEUED;
624 if (resched_timer) {
626 * Release the siglock to ensure proper locking order
627 * of timer locks outside of siglocks. Note, we leave
628 * irqs disabled here, since the posix-timers code is
629 * about to disable them again anyway.
631 spin_unlock(&tsk->sighand->siglock);
632 do_schedule_next_timer(info);
633 spin_lock(&tsk->sighand->siglock);
635 return signr;
639 * Tell a process that it has a new active signal..
641 * NOTE! we rely on the previous spin_lock to
642 * lock interrupts for us! We can only be called with
643 * "siglock" held, and the local interrupt must
644 * have been disabled when that got acquired!
646 * No need to set need_resched since signal event passing
647 * goes through ->blocked
649 void signal_wake_up_state(struct task_struct *t, unsigned int state)
651 set_tsk_thread_flag(t, TIF_SIGPENDING);
653 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
654 * case. We don't check t->state here because there is a race with it
655 * executing another processor and just now entering stopped state.
656 * By using wake_up_state, we ensure the process will wake up and
657 * handle its death signal.
659 if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
660 kick_process(t);
664 * Remove signals in mask from the pending set and queue.
665 * Returns 1 if any signals were found.
667 * All callers must be holding the siglock.
669 static int flush_sigqueue_mask(sigset_t *mask, struct sigpending *s)
671 struct sigqueue *q, *n;
672 sigset_t m;
674 sigandsets(&m, mask, &s->signal);
675 if (sigisemptyset(&m))
676 return 0;
678 sigandnsets(&s->signal, &s->signal, mask);
679 list_for_each_entry_safe(q, n, &s->list, list) {
680 if (sigismember(mask, q->info.si_signo)) {
681 list_del_init(&q->list);
682 __sigqueue_free(q);
685 return 1;
688 static inline int is_si_special(const struct siginfo *info)
690 return info <= SEND_SIG_FORCED;
693 static inline bool si_fromuser(const struct siginfo *info)
695 return info == SEND_SIG_NOINFO ||
696 (!is_si_special(info) && SI_FROMUSER(info));
700 * called with RCU read lock from check_kill_permission()
702 static int kill_ok_by_cred(struct task_struct *t)
704 const struct cred *cred = current_cred();
705 const struct cred *tcred = __task_cred(t);
707 if (uid_eq(cred->euid, tcred->suid) ||
708 uid_eq(cred->euid, tcred->uid) ||
709 uid_eq(cred->uid, tcred->suid) ||
710 uid_eq(cred->uid, tcred->uid))
711 return 1;
713 if (ns_capable(tcred->user_ns, CAP_KILL))
714 return 1;
716 return 0;
720 * Bad permissions for sending the signal
721 * - the caller must hold the RCU read lock
723 static int check_kill_permission(int sig, struct siginfo *info,
724 struct task_struct *t)
726 struct pid *sid;
727 int error;
729 if (!valid_signal(sig))
730 return -EINVAL;
732 if (!si_fromuser(info))
733 return 0;
735 error = audit_signal_info(sig, t); /* Let audit system see the signal */
736 if (error)
737 return error;
739 if (!same_thread_group(current, t) &&
740 !kill_ok_by_cred(t)) {
741 switch (sig) {
742 case SIGCONT:
743 sid = task_session(t);
745 * We don't return the error if sid == NULL. The
746 * task was unhashed, the caller must notice this.
748 if (!sid || sid == task_session(current))
749 break;
750 default:
751 return -EPERM;
755 return security_task_kill(t, info, sig, 0);
759 * ptrace_trap_notify - schedule trap to notify ptracer
760 * @t: tracee wanting to notify tracer
762 * This function schedules sticky ptrace trap which is cleared on the next
763 * TRAP_STOP to notify ptracer of an event. @t must have been seized by
764 * ptracer.
766 * If @t is running, STOP trap will be taken. If trapped for STOP and
767 * ptracer is listening for events, tracee is woken up so that it can
768 * re-trap for the new event. If trapped otherwise, STOP trap will be
769 * eventually taken without returning to userland after the existing traps
770 * are finished by PTRACE_CONT.
772 * CONTEXT:
773 * Must be called with @task->sighand->siglock held.
775 static void ptrace_trap_notify(struct task_struct *t)
777 WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
778 assert_spin_locked(&t->sighand->siglock);
780 task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
781 ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
785 * Handle magic process-wide effects of stop/continue signals. Unlike
786 * the signal actions, these happen immediately at signal-generation
787 * time regardless of blocking, ignoring, or handling. This does the
788 * actual continuing for SIGCONT, but not the actual stopping for stop
789 * signals. The process stop is done as a signal action for SIG_DFL.
791 * Returns true if the signal should be actually delivered, otherwise
792 * it should be dropped.
794 static bool prepare_signal(int sig, struct task_struct *p, bool force)
796 struct signal_struct *signal = p->signal;
797 struct task_struct *t;
798 sigset_t flush;
800 if (signal->flags & (SIGNAL_GROUP_EXIT | SIGNAL_GROUP_COREDUMP)) {
801 if (!(signal->flags & SIGNAL_GROUP_EXIT))
802 return sig == SIGKILL;
804 * The process is in the middle of dying, nothing to do.
806 } else if (sig_kernel_stop(sig)) {
808 * This is a stop signal. Remove SIGCONT from all queues.
810 siginitset(&flush, sigmask(SIGCONT));
811 flush_sigqueue_mask(&flush, &signal->shared_pending);
812 for_each_thread(p, t)
813 flush_sigqueue_mask(&flush, &t->pending);
814 } else if (sig == SIGCONT) {
815 unsigned int why;
817 * Remove all stop signals from all queues, wake all threads.
819 siginitset(&flush, SIG_KERNEL_STOP_MASK);
820 flush_sigqueue_mask(&flush, &signal->shared_pending);
821 for_each_thread(p, t) {
822 flush_sigqueue_mask(&flush, &t->pending);
823 task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
824 if (likely(!(t->ptrace & PT_SEIZED)))
825 wake_up_state(t, __TASK_STOPPED);
826 else
827 ptrace_trap_notify(t);
831 * Notify the parent with CLD_CONTINUED if we were stopped.
833 * If we were in the middle of a group stop, we pretend it
834 * was already finished, and then continued. Since SIGCHLD
835 * doesn't queue we report only CLD_STOPPED, as if the next
836 * CLD_CONTINUED was dropped.
838 why = 0;
839 if (signal->flags & SIGNAL_STOP_STOPPED)
840 why |= SIGNAL_CLD_CONTINUED;
841 else if (signal->group_stop_count)
842 why |= SIGNAL_CLD_STOPPED;
844 if (why) {
846 * The first thread which returns from do_signal_stop()
847 * will take ->siglock, notice SIGNAL_CLD_MASK, and
848 * notify its parent. See get_signal_to_deliver().
850 signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED);
851 signal->group_stop_count = 0;
852 signal->group_exit_code = 0;
856 return !sig_ignored(p, sig, force);
860 * Test if P wants to take SIG. After we've checked all threads with this,
861 * it's equivalent to finding no threads not blocking SIG. Any threads not
862 * blocking SIG were ruled out because they are not running and already
863 * have pending signals. Such threads will dequeue from the shared queue
864 * as soon as they're available, so putting the signal on the shared queue
865 * will be equivalent to sending it to one such thread.
867 static inline int wants_signal(int sig, struct task_struct *p)
869 if (sigismember(&p->blocked, sig))
870 return 0;
871 if (p->flags & PF_EXITING)
872 return 0;
873 if (sig == SIGKILL)
874 return 1;
875 if (task_is_stopped_or_traced(p))
876 return 0;
877 return task_curr(p) || !signal_pending(p);
880 static void complete_signal(int sig, struct task_struct *p, int group)
882 struct signal_struct *signal = p->signal;
883 struct task_struct *t;
886 * Now find a thread we can wake up to take the signal off the queue.
888 * If the main thread wants the signal, it gets first crack.
889 * Probably the least surprising to the average bear.
891 if (wants_signal(sig, p))
892 t = p;
893 else if (!group || thread_group_empty(p))
895 * There is just one thread and it does not need to be woken.
896 * It will dequeue unblocked signals before it runs again.
898 return;
899 else {
901 * Otherwise try to find a suitable thread.
903 t = signal->curr_target;
904 while (!wants_signal(sig, t)) {
905 t = next_thread(t);
906 if (t == signal->curr_target)
908 * No thread needs to be woken.
909 * Any eligible threads will see
910 * the signal in the queue soon.
912 return;
914 signal->curr_target = t;
918 * Found a killable thread. If the signal will be fatal,
919 * then start taking the whole group down immediately.
921 if (sig_fatal(p, sig) &&
922 !(signal->flags & SIGNAL_GROUP_EXIT) &&
923 !sigismember(&t->real_blocked, sig) &&
924 (sig == SIGKILL || !p->ptrace)) {
926 * This signal will be fatal to the whole group.
928 if (!sig_kernel_coredump(sig)) {
930 * Start a group exit and wake everybody up.
931 * This way we don't have other threads
932 * running and doing things after a slower
933 * thread has the fatal signal pending.
935 signal->flags = SIGNAL_GROUP_EXIT;
936 signal->group_exit_code = sig;
937 signal->group_stop_count = 0;
938 t = p;
939 do {
940 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
941 sigaddset(&t->pending.signal, SIGKILL);
942 signal_wake_up(t, 1);
943 } while_each_thread(p, t);
944 return;
949 * The signal is already in the shared-pending queue.
950 * Tell the chosen thread to wake up and dequeue it.
952 signal_wake_up(t, sig == SIGKILL);
953 return;
956 static inline int legacy_queue(struct sigpending *signals, int sig)
958 return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
961 #ifdef CONFIG_USER_NS
962 static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
964 if (current_user_ns() == task_cred_xxx(t, user_ns))
965 return;
967 if (SI_FROMKERNEL(info))
968 return;
970 rcu_read_lock();
971 info->si_uid = from_kuid_munged(task_cred_xxx(t, user_ns),
972 make_kuid(current_user_ns(), info->si_uid));
973 rcu_read_unlock();
975 #else
976 static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
978 return;
980 #endif
982 static int __send_signal(int sig, struct siginfo *info, struct task_struct *t,
983 int group, int from_ancestor_ns)
985 struct sigpending *pending;
986 struct sigqueue *q;
987 int override_rlimit;
988 int ret = 0, result;
990 assert_spin_locked(&t->sighand->siglock);
992 result = TRACE_SIGNAL_IGNORED;
993 if (!prepare_signal(sig, t,
994 from_ancestor_ns || (info == SEND_SIG_PRIV) || (info == SEND_SIG_FORCED)))
995 goto ret;
997 pending = group ? &t->signal->shared_pending : &t->pending;
999 * Short-circuit ignored signals and support queuing
1000 * exactly one non-rt signal, so that we can get more
1001 * detailed information about the cause of the signal.
1003 result = TRACE_SIGNAL_ALREADY_PENDING;
1004 if (legacy_queue(pending, sig))
1005 goto ret;
1007 result = TRACE_SIGNAL_DELIVERED;
1009 * fast-pathed signals for kernel-internal things like SIGSTOP
1010 * or SIGKILL.
1012 if (info == SEND_SIG_FORCED)
1013 goto out_set;
1016 * Real-time signals must be queued if sent by sigqueue, or
1017 * some other real-time mechanism. It is implementation
1018 * defined whether kill() does so. We attempt to do so, on
1019 * the principle of least surprise, but since kill is not
1020 * allowed to fail with EAGAIN when low on memory we just
1021 * make sure at least one signal gets delivered and don't
1022 * pass on the info struct.
1024 if (sig < SIGRTMIN)
1025 override_rlimit = (is_si_special(info) || info->si_code >= 0);
1026 else
1027 override_rlimit = 0;
1029 q = __sigqueue_alloc(sig, t, GFP_ATOMIC | __GFP_NOTRACK_FALSE_POSITIVE,
1030 override_rlimit);
1031 if (q) {
1032 list_add_tail(&q->list, &pending->list);
1033 switch ((unsigned long) info) {
1034 case (unsigned long) SEND_SIG_NOINFO:
1035 q->info.si_signo = sig;
1036 q->info.si_errno = 0;
1037 q->info.si_code = SI_USER;
1038 q->info.si_pid = task_tgid_nr_ns(current,
1039 task_active_pid_ns(t));
1040 q->info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
1041 break;
1042 case (unsigned long) SEND_SIG_PRIV:
1043 q->info.si_signo = sig;
1044 q->info.si_errno = 0;
1045 q->info.si_code = SI_KERNEL;
1046 q->info.si_pid = 0;
1047 q->info.si_uid = 0;
1048 break;
1049 default:
1050 copy_siginfo(&q->info, info);
1051 if (from_ancestor_ns)
1052 q->info.si_pid = 0;
1053 break;
1056 userns_fixup_signal_uid(&q->info, t);
1058 } else if (!is_si_special(info)) {
1059 if (sig >= SIGRTMIN && info->si_code != SI_USER) {
1061 * Queue overflow, abort. We may abort if the
1062 * signal was rt and sent by user using something
1063 * other than kill().
1065 result = TRACE_SIGNAL_OVERFLOW_FAIL;
1066 ret = -EAGAIN;
1067 goto ret;
1068 } else {
1070 * This is a silent loss of information. We still
1071 * send the signal, but the *info bits are lost.
1073 result = TRACE_SIGNAL_LOSE_INFO;
1077 out_set:
1078 signalfd_notify(t, sig);
1079 sigaddset(&pending->signal, sig);
1080 complete_signal(sig, t, group);
1081 ret:
1082 trace_signal_generate(sig, info, t, group, result);
1083 return ret;
1086 static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
1087 int group)
1089 int from_ancestor_ns = 0;
1091 #ifdef CONFIG_PID_NS
1092 from_ancestor_ns = si_fromuser(info) &&
1093 !task_pid_nr_ns(current, task_active_pid_ns(t));
1094 #endif
1096 return __send_signal(sig, info, t, group, from_ancestor_ns);
1099 static void print_fatal_signal(int signr)
1101 struct pt_regs *regs = signal_pt_regs();
1102 printk(KERN_INFO "potentially unexpected fatal signal %d.\n", signr);
1104 #if defined(__i386__) && !defined(__arch_um__)
1105 printk(KERN_INFO "code at %08lx: ", regs->ip);
1107 int i;
1108 for (i = 0; i < 16; i++) {
1109 unsigned char insn;
1111 if (get_user(insn, (unsigned char *)(regs->ip + i)))
1112 break;
1113 printk(KERN_CONT "%02x ", insn);
1116 printk(KERN_CONT "\n");
1117 #endif
1118 preempt_disable();
1119 show_regs(regs);
1120 preempt_enable();
1123 static int __init setup_print_fatal_signals(char *str)
1125 get_option (&str, &print_fatal_signals);
1127 return 1;
1130 __setup("print-fatal-signals=", setup_print_fatal_signals);
1133 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1135 return send_signal(sig, info, p, 1);
1138 static int
1139 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1141 return send_signal(sig, info, t, 0);
1144 int do_send_sig_info(int sig, struct siginfo *info, struct task_struct *p,
1145 bool group)
1147 unsigned long flags;
1148 int ret = -ESRCH;
1150 if (lock_task_sighand(p, &flags)) {
1151 ret = send_signal(sig, info, p, group);
1152 unlock_task_sighand(p, &flags);
1155 return ret;
1159 * Force a signal that the process can't ignore: if necessary
1160 * we unblock the signal and change any SIG_IGN to SIG_DFL.
1162 * Note: If we unblock the signal, we always reset it to SIG_DFL,
1163 * since we do not want to have a signal handler that was blocked
1164 * be invoked when user space had explicitly blocked it.
1166 * We don't want to have recursive SIGSEGV's etc, for example,
1167 * that is why we also clear SIGNAL_UNKILLABLE.
1170 force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1172 unsigned long int flags;
1173 int ret, blocked, ignored;
1174 struct k_sigaction *action;
1176 spin_lock_irqsave(&t->sighand->siglock, flags);
1177 action = &t->sighand->action[sig-1];
1178 ignored = action->sa.sa_handler == SIG_IGN;
1179 blocked = sigismember(&t->blocked, sig);
1180 if (blocked || ignored) {
1181 action->sa.sa_handler = SIG_DFL;
1182 if (blocked) {
1183 sigdelset(&t->blocked, sig);
1184 recalc_sigpending_and_wake(t);
1187 if (action->sa.sa_handler == SIG_DFL)
1188 t->signal->flags &= ~SIGNAL_UNKILLABLE;
1189 ret = specific_send_sig_info(sig, info, t);
1190 spin_unlock_irqrestore(&t->sighand->siglock, flags);
1192 return ret;
1196 * Nuke all other threads in the group.
1198 int zap_other_threads(struct task_struct *p)
1200 struct task_struct *t = p;
1201 int count = 0;
1203 p->signal->group_stop_count = 0;
1205 while_each_thread(p, t) {
1206 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1207 count++;
1209 /* Don't bother with already dead threads */
1210 if (t->exit_state)
1211 continue;
1212 sigaddset(&t->pending.signal, SIGKILL);
1213 signal_wake_up(t, 1);
1216 return count;
1219 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1220 unsigned long *flags)
1222 struct sighand_struct *sighand;
1224 for (;;) {
1226 * Disable interrupts early to avoid deadlocks.
1227 * See rcu_read_unlock() comment header for details.
1229 local_irq_save(*flags);
1230 rcu_read_lock();
1231 sighand = rcu_dereference(tsk->sighand);
1232 if (unlikely(sighand == NULL)) {
1233 rcu_read_unlock();
1234 local_irq_restore(*flags);
1235 break;
1238 * This sighand can be already freed and even reused, but
1239 * we rely on SLAB_DESTROY_BY_RCU and sighand_ctor() which
1240 * initializes ->siglock: this slab can't go away, it has
1241 * the same object type, ->siglock can't be reinitialized.
1243 * We need to ensure that tsk->sighand is still the same
1244 * after we take the lock, we can race with de_thread() or
1245 * __exit_signal(). In the latter case the next iteration
1246 * must see ->sighand == NULL.
1248 spin_lock(&sighand->siglock);
1249 if (likely(sighand == tsk->sighand)) {
1250 rcu_read_unlock();
1251 break;
1253 spin_unlock(&sighand->siglock);
1254 rcu_read_unlock();
1255 local_irq_restore(*flags);
1258 return sighand;
1262 * send signal info to all the members of a group
1264 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1266 int ret;
1268 rcu_read_lock();
1269 ret = check_kill_permission(sig, info, p);
1270 rcu_read_unlock();
1272 if (!ret && sig)
1273 ret = do_send_sig_info(sig, info, p, true);
1275 return ret;
1279 * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1280 * control characters do (^C, ^Z etc)
1281 * - the caller must hold at least a readlock on tasklist_lock
1283 int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1285 struct task_struct *p = NULL;
1286 int retval, success;
1288 success = 0;
1289 retval = -ESRCH;
1290 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1291 int err = group_send_sig_info(sig, info, p);
1292 success |= !err;
1293 retval = err;
1294 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1295 return success ? 0 : retval;
1298 int kill_pid_info(int sig, struct siginfo *info, struct pid *pid)
1300 int error = -ESRCH;
1301 struct task_struct *p;
1303 for (;;) {
1304 rcu_read_lock();
1305 p = pid_task(pid, PIDTYPE_PID);
1306 if (p)
1307 error = group_send_sig_info(sig, info, p);
1308 rcu_read_unlock();
1309 if (likely(!p || error != -ESRCH))
1310 return error;
1313 * The task was unhashed in between, try again. If it
1314 * is dead, pid_task() will return NULL, if we race with
1315 * de_thread() it will find the new leader.
1320 int kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1322 int error;
1323 rcu_read_lock();
1324 error = kill_pid_info(sig, info, find_vpid(pid));
1325 rcu_read_unlock();
1326 return error;
1329 static int kill_as_cred_perm(const struct cred *cred,
1330 struct task_struct *target)
1332 const struct cred *pcred = __task_cred(target);
1333 if (!uid_eq(cred->euid, pcred->suid) && !uid_eq(cred->euid, pcred->uid) &&
1334 !uid_eq(cred->uid, pcred->suid) && !uid_eq(cred->uid, pcred->uid))
1335 return 0;
1336 return 1;
1339 /* like kill_pid_info(), but doesn't use uid/euid of "current" */
1340 int kill_pid_info_as_cred(int sig, struct siginfo *info, struct pid *pid,
1341 const struct cred *cred, u32 secid)
1343 int ret = -EINVAL;
1344 struct task_struct *p;
1345 unsigned long flags;
1347 if (!valid_signal(sig))
1348 return ret;
1350 rcu_read_lock();
1351 p = pid_task(pid, PIDTYPE_PID);
1352 if (!p) {
1353 ret = -ESRCH;
1354 goto out_unlock;
1356 if (si_fromuser(info) && !kill_as_cred_perm(cred, p)) {
1357 ret = -EPERM;
1358 goto out_unlock;
1360 ret = security_task_kill(p, info, sig, secid);
1361 if (ret)
1362 goto out_unlock;
1364 if (sig) {
1365 if (lock_task_sighand(p, &flags)) {
1366 ret = __send_signal(sig, info, p, 1, 0);
1367 unlock_task_sighand(p, &flags);
1368 } else
1369 ret = -ESRCH;
1371 out_unlock:
1372 rcu_read_unlock();
1373 return ret;
1375 EXPORT_SYMBOL_GPL(kill_pid_info_as_cred);
1378 * kill_something_info() interprets pid in interesting ways just like kill(2).
1380 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1381 * is probably wrong. Should make it like BSD or SYSV.
1384 static int kill_something_info(int sig, struct siginfo *info, pid_t pid)
1386 int ret;
1388 if (pid > 0) {
1389 rcu_read_lock();
1390 ret = kill_pid_info(sig, info, find_vpid(pid));
1391 rcu_read_unlock();
1392 return ret;
1395 /* -INT_MIN is undefined. Exclude this case to avoid a UBSAN warning */
1396 if (pid == INT_MIN)
1397 return -ESRCH;
1399 read_lock(&tasklist_lock);
1400 if (pid != -1) {
1401 ret = __kill_pgrp_info(sig, info,
1402 pid ? find_vpid(-pid) : task_pgrp(current));
1403 } else {
1404 int retval = 0, count = 0;
1405 struct task_struct * p;
1407 for_each_process(p) {
1408 if (task_pid_vnr(p) > 1 &&
1409 !same_thread_group(p, current)) {
1410 int err = group_send_sig_info(sig, info, p);
1411 ++count;
1412 if (err != -EPERM)
1413 retval = err;
1416 ret = count ? retval : -ESRCH;
1418 read_unlock(&tasklist_lock);
1420 return ret;
1424 * These are for backward compatibility with the rest of the kernel source.
1427 int send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1430 * Make sure legacy kernel users don't send in bad values
1431 * (normal paths check this in check_kill_permission).
1433 if (!valid_signal(sig))
1434 return -EINVAL;
1436 return do_send_sig_info(sig, info, p, false);
1439 #define __si_special(priv) \
1440 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1443 send_sig(int sig, struct task_struct *p, int priv)
1445 return send_sig_info(sig, __si_special(priv), p);
1448 void
1449 force_sig(int sig, struct task_struct *p)
1451 force_sig_info(sig, SEND_SIG_PRIV, p);
1455 * When things go south during signal handling, we
1456 * will force a SIGSEGV. And if the signal that caused
1457 * the problem was already a SIGSEGV, we'll want to
1458 * make sure we don't even try to deliver the signal..
1461 force_sigsegv(int sig, struct task_struct *p)
1463 if (sig == SIGSEGV) {
1464 unsigned long flags;
1465 spin_lock_irqsave(&p->sighand->siglock, flags);
1466 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1467 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1469 force_sig(SIGSEGV, p);
1470 return 0;
1473 int kill_pgrp(struct pid *pid, int sig, int priv)
1475 int ret;
1477 read_lock(&tasklist_lock);
1478 ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1479 read_unlock(&tasklist_lock);
1481 return ret;
1483 EXPORT_SYMBOL(kill_pgrp);
1485 int kill_pid(struct pid *pid, int sig, int priv)
1487 return kill_pid_info(sig, __si_special(priv), pid);
1489 EXPORT_SYMBOL(kill_pid);
1492 * These functions support sending signals using preallocated sigqueue
1493 * structures. This is needed "because realtime applications cannot
1494 * afford to lose notifications of asynchronous events, like timer
1495 * expirations or I/O completions". In the case of POSIX Timers
1496 * we allocate the sigqueue structure from the timer_create. If this
1497 * allocation fails we are able to report the failure to the application
1498 * with an EAGAIN error.
1500 struct sigqueue *sigqueue_alloc(void)
1502 struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0);
1504 if (q)
1505 q->flags |= SIGQUEUE_PREALLOC;
1507 return q;
1510 void sigqueue_free(struct sigqueue *q)
1512 unsigned long flags;
1513 spinlock_t *lock = &current->sighand->siglock;
1515 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1517 * We must hold ->siglock while testing q->list
1518 * to serialize with collect_signal() or with
1519 * __exit_signal()->flush_sigqueue().
1521 spin_lock_irqsave(lock, flags);
1522 q->flags &= ~SIGQUEUE_PREALLOC;
1524 * If it is queued it will be freed when dequeued,
1525 * like the "regular" sigqueue.
1527 if (!list_empty(&q->list))
1528 q = NULL;
1529 spin_unlock_irqrestore(lock, flags);
1531 if (q)
1532 __sigqueue_free(q);
1535 int send_sigqueue(struct sigqueue *q, struct task_struct *t, int group)
1537 int sig = q->info.si_signo;
1538 struct sigpending *pending;
1539 unsigned long flags;
1540 int ret, result;
1542 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1544 ret = -1;
1545 if (!likely(lock_task_sighand(t, &flags)))
1546 goto ret;
1548 ret = 1; /* the signal is ignored */
1549 result = TRACE_SIGNAL_IGNORED;
1550 if (!prepare_signal(sig, t, false))
1551 goto out;
1553 ret = 0;
1554 if (unlikely(!list_empty(&q->list))) {
1556 * If an SI_TIMER entry is already queue just increment
1557 * the overrun count.
1559 BUG_ON(q->info.si_code != SI_TIMER);
1560 q->info.si_overrun++;
1561 result = TRACE_SIGNAL_ALREADY_PENDING;
1562 goto out;
1564 q->info.si_overrun = 0;
1566 signalfd_notify(t, sig);
1567 pending = group ? &t->signal->shared_pending : &t->pending;
1568 list_add_tail(&q->list, &pending->list);
1569 sigaddset(&pending->signal, sig);
1570 complete_signal(sig, t, group);
1571 result = TRACE_SIGNAL_DELIVERED;
1572 out:
1573 trace_signal_generate(sig, &q->info, t, group, result);
1574 unlock_task_sighand(t, &flags);
1575 ret:
1576 return ret;
1580 * Let a parent know about the death of a child.
1581 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1583 * Returns true if our parent ignored us and so we've switched to
1584 * self-reaping.
1586 bool do_notify_parent(struct task_struct *tsk, int sig)
1588 struct siginfo info;
1589 unsigned long flags;
1590 struct sighand_struct *psig;
1591 bool autoreap = false;
1592 cputime_t utime, stime;
1594 BUG_ON(sig == -1);
1596 /* do_notify_parent_cldstop should have been called instead. */
1597 BUG_ON(task_is_stopped_or_traced(tsk));
1599 BUG_ON(!tsk->ptrace &&
1600 (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1602 if (sig != SIGCHLD) {
1604 * This is only possible if parent == real_parent.
1605 * Check if it has changed security domain.
1607 if (tsk->parent_exec_id != tsk->parent->self_exec_id)
1608 sig = SIGCHLD;
1611 info.si_signo = sig;
1612 info.si_errno = 0;
1614 * We are under tasklist_lock here so our parent is tied to
1615 * us and cannot change.
1617 * task_active_pid_ns will always return the same pid namespace
1618 * until a task passes through release_task.
1620 * write_lock() currently calls preempt_disable() which is the
1621 * same as rcu_read_lock(), but according to Oleg, this is not
1622 * correct to rely on this
1624 rcu_read_lock();
1625 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
1626 info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
1627 task_uid(tsk));
1628 rcu_read_unlock();
1630 task_cputime(tsk, &utime, &stime);
1631 info.si_utime = cputime_to_clock_t(utime + tsk->signal->utime);
1632 info.si_stime = cputime_to_clock_t(stime + tsk->signal->stime);
1634 info.si_status = tsk->exit_code & 0x7f;
1635 if (tsk->exit_code & 0x80)
1636 info.si_code = CLD_DUMPED;
1637 else if (tsk->exit_code & 0x7f)
1638 info.si_code = CLD_KILLED;
1639 else {
1640 info.si_code = CLD_EXITED;
1641 info.si_status = tsk->exit_code >> 8;
1644 psig = tsk->parent->sighand;
1645 spin_lock_irqsave(&psig->siglock, flags);
1646 if (!tsk->ptrace && sig == SIGCHLD &&
1647 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1648 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1650 * We are exiting and our parent doesn't care. POSIX.1
1651 * defines special semantics for setting SIGCHLD to SIG_IGN
1652 * or setting the SA_NOCLDWAIT flag: we should be reaped
1653 * automatically and not left for our parent's wait4 call.
1654 * Rather than having the parent do it as a magic kind of
1655 * signal handler, we just set this to tell do_exit that we
1656 * can be cleaned up without becoming a zombie. Note that
1657 * we still call __wake_up_parent in this case, because a
1658 * blocked sys_wait4 might now return -ECHILD.
1660 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1661 * is implementation-defined: we do (if you don't want
1662 * it, just use SIG_IGN instead).
1664 autoreap = true;
1665 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1666 sig = 0;
1668 if (valid_signal(sig) && sig)
1669 __group_send_sig_info(sig, &info, tsk->parent);
1670 __wake_up_parent(tsk, tsk->parent);
1671 spin_unlock_irqrestore(&psig->siglock, flags);
1673 return autoreap;
1677 * do_notify_parent_cldstop - notify parent of stopped/continued state change
1678 * @tsk: task reporting the state change
1679 * @for_ptracer: the notification is for ptracer
1680 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
1682 * Notify @tsk's parent that the stopped/continued state has changed. If
1683 * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
1684 * If %true, @tsk reports to @tsk->parent which should be the ptracer.
1686 * CONTEXT:
1687 * Must be called with tasklist_lock at least read locked.
1689 static void do_notify_parent_cldstop(struct task_struct *tsk,
1690 bool for_ptracer, int why)
1692 struct siginfo info;
1693 unsigned long flags;
1694 struct task_struct *parent;
1695 struct sighand_struct *sighand;
1696 cputime_t utime, stime;
1698 if (for_ptracer) {
1699 parent = tsk->parent;
1700 } else {
1701 tsk = tsk->group_leader;
1702 parent = tsk->real_parent;
1705 info.si_signo = SIGCHLD;
1706 info.si_errno = 0;
1708 * see comment in do_notify_parent() about the following 4 lines
1710 rcu_read_lock();
1711 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
1712 info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
1713 rcu_read_unlock();
1715 task_cputime(tsk, &utime, &stime);
1716 info.si_utime = cputime_to_clock_t(utime);
1717 info.si_stime = cputime_to_clock_t(stime);
1719 info.si_code = why;
1720 switch (why) {
1721 case CLD_CONTINUED:
1722 info.si_status = SIGCONT;
1723 break;
1724 case CLD_STOPPED:
1725 info.si_status = tsk->signal->group_exit_code & 0x7f;
1726 break;
1727 case CLD_TRAPPED:
1728 info.si_status = tsk->exit_code & 0x7f;
1729 break;
1730 default:
1731 BUG();
1734 sighand = parent->sighand;
1735 spin_lock_irqsave(&sighand->siglock, flags);
1736 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1737 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1738 __group_send_sig_info(SIGCHLD, &info, parent);
1740 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1742 __wake_up_parent(tsk, parent);
1743 spin_unlock_irqrestore(&sighand->siglock, flags);
1746 static inline int may_ptrace_stop(void)
1748 if (!likely(current->ptrace))
1749 return 0;
1751 * Are we in the middle of do_coredump?
1752 * If so and our tracer is also part of the coredump stopping
1753 * is a deadlock situation, and pointless because our tracer
1754 * is dead so don't allow us to stop.
1755 * If SIGKILL was already sent before the caller unlocked
1756 * ->siglock we must see ->core_state != NULL. Otherwise it
1757 * is safe to enter schedule().
1759 * This is almost outdated, a task with the pending SIGKILL can't
1760 * block in TASK_TRACED. But PTRACE_EVENT_EXIT can be reported
1761 * after SIGKILL was already dequeued.
1763 if (unlikely(current->mm->core_state) &&
1764 unlikely(current->mm == current->parent->mm))
1765 return 0;
1767 return 1;
1771 * Return non-zero if there is a SIGKILL that should be waking us up.
1772 * Called with the siglock held.
1774 static int sigkill_pending(struct task_struct *tsk)
1776 return sigismember(&tsk->pending.signal, SIGKILL) ||
1777 sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
1781 * This must be called with current->sighand->siglock held.
1783 * This should be the path for all ptrace stops.
1784 * We always set current->last_siginfo while stopped here.
1785 * That makes it a way to test a stopped process for
1786 * being ptrace-stopped vs being job-control-stopped.
1788 * If we actually decide not to stop at all because the tracer
1789 * is gone, we keep current->exit_code unless clear_code.
1791 static void ptrace_stop(int exit_code, int why, int clear_code, siginfo_t *info)
1792 __releases(&current->sighand->siglock)
1793 __acquires(&current->sighand->siglock)
1795 bool gstop_done = false;
1797 if (arch_ptrace_stop_needed(exit_code, info)) {
1799 * The arch code has something special to do before a
1800 * ptrace stop. This is allowed to block, e.g. for faults
1801 * on user stack pages. We can't keep the siglock while
1802 * calling arch_ptrace_stop, so we must release it now.
1803 * To preserve proper semantics, we must do this before
1804 * any signal bookkeeping like checking group_stop_count.
1805 * Meanwhile, a SIGKILL could come in before we retake the
1806 * siglock. That must prevent us from sleeping in TASK_TRACED.
1807 * So after regaining the lock, we must check for SIGKILL.
1809 spin_unlock_irq(&current->sighand->siglock);
1810 arch_ptrace_stop(exit_code, info);
1811 spin_lock_irq(&current->sighand->siglock);
1812 if (sigkill_pending(current))
1813 return;
1817 * We're committing to trapping. TRACED should be visible before
1818 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
1819 * Also, transition to TRACED and updates to ->jobctl should be
1820 * atomic with respect to siglock and should be done after the arch
1821 * hook as siglock is released and regrabbed across it.
1823 set_current_state(TASK_TRACED);
1825 current->last_siginfo = info;
1826 current->exit_code = exit_code;
1829 * If @why is CLD_STOPPED, we're trapping to participate in a group
1830 * stop. Do the bookkeeping. Note that if SIGCONT was delievered
1831 * across siglock relocks since INTERRUPT was scheduled, PENDING
1832 * could be clear now. We act as if SIGCONT is received after
1833 * TASK_TRACED is entered - ignore it.
1835 if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
1836 gstop_done = task_participate_group_stop(current);
1838 /* any trap clears pending STOP trap, STOP trap clears NOTIFY */
1839 task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
1840 if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
1841 task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
1843 /* entering a trap, clear TRAPPING */
1844 task_clear_jobctl_trapping(current);
1846 spin_unlock_irq(&current->sighand->siglock);
1847 read_lock(&tasklist_lock);
1848 if (may_ptrace_stop()) {
1850 * Notify parents of the stop.
1852 * While ptraced, there are two parents - the ptracer and
1853 * the real_parent of the group_leader. The ptracer should
1854 * know about every stop while the real parent is only
1855 * interested in the completion of group stop. The states
1856 * for the two don't interact with each other. Notify
1857 * separately unless they're gonna be duplicates.
1859 do_notify_parent_cldstop(current, true, why);
1860 if (gstop_done && ptrace_reparented(current))
1861 do_notify_parent_cldstop(current, false, why);
1864 * Don't want to allow preemption here, because
1865 * sys_ptrace() needs this task to be inactive.
1867 * XXX: implement read_unlock_no_resched().
1869 preempt_disable();
1870 read_unlock(&tasklist_lock);
1871 preempt_enable_no_resched();
1872 freezable_schedule();
1873 } else {
1875 * By the time we got the lock, our tracer went away.
1876 * Don't drop the lock yet, another tracer may come.
1878 * If @gstop_done, the ptracer went away between group stop
1879 * completion and here. During detach, it would have set
1880 * JOBCTL_STOP_PENDING on us and we'll re-enter
1881 * TASK_STOPPED in do_signal_stop() on return, so notifying
1882 * the real parent of the group stop completion is enough.
1884 if (gstop_done)
1885 do_notify_parent_cldstop(current, false, why);
1887 /* tasklist protects us from ptrace_freeze_traced() */
1888 __set_current_state(TASK_RUNNING);
1889 if (clear_code)
1890 current->exit_code = 0;
1891 read_unlock(&tasklist_lock);
1895 * We are back. Now reacquire the siglock before touching
1896 * last_siginfo, so that we are sure to have synchronized with
1897 * any signal-sending on another CPU that wants to examine it.
1899 spin_lock_irq(&current->sighand->siglock);
1900 current->last_siginfo = NULL;
1902 /* LISTENING can be set only during STOP traps, clear it */
1903 current->jobctl &= ~JOBCTL_LISTENING;
1906 * Queued signals ignored us while we were stopped for tracing.
1907 * So check for any that we should take before resuming user mode.
1908 * This sets TIF_SIGPENDING, but never clears it.
1910 recalc_sigpending_tsk(current);
1913 static void ptrace_do_notify(int signr, int exit_code, int why)
1915 siginfo_t info;
1917 memset(&info, 0, sizeof info);
1918 info.si_signo = signr;
1919 info.si_code = exit_code;
1920 info.si_pid = task_pid_vnr(current);
1921 info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
1923 /* Let the debugger run. */
1924 ptrace_stop(exit_code, why, 1, &info);
1927 void ptrace_notify(int exit_code)
1929 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1930 if (unlikely(current->task_works))
1931 task_work_run();
1933 spin_lock_irq(&current->sighand->siglock);
1934 ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED);
1935 spin_unlock_irq(&current->sighand->siglock);
1939 * do_signal_stop - handle group stop for SIGSTOP and other stop signals
1940 * @signr: signr causing group stop if initiating
1942 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
1943 * and participate in it. If already set, participate in the existing
1944 * group stop. If participated in a group stop (and thus slept), %true is
1945 * returned with siglock released.
1947 * If ptraced, this function doesn't handle stop itself. Instead,
1948 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
1949 * untouched. The caller must ensure that INTERRUPT trap handling takes
1950 * places afterwards.
1952 * CONTEXT:
1953 * Must be called with @current->sighand->siglock held, which is released
1954 * on %true return.
1956 * RETURNS:
1957 * %false if group stop is already cancelled or ptrace trap is scheduled.
1958 * %true if participated in group stop.
1960 static bool do_signal_stop(int signr)
1961 __releases(&current->sighand->siglock)
1963 struct signal_struct *sig = current->signal;
1965 if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
1966 unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
1967 struct task_struct *t;
1969 /* signr will be recorded in task->jobctl for retries */
1970 WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
1972 if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
1973 unlikely(signal_group_exit(sig)))
1974 return false;
1976 * There is no group stop already in progress. We must
1977 * initiate one now.
1979 * While ptraced, a task may be resumed while group stop is
1980 * still in effect and then receive a stop signal and
1981 * initiate another group stop. This deviates from the
1982 * usual behavior as two consecutive stop signals can't
1983 * cause two group stops when !ptraced. That is why we
1984 * also check !task_is_stopped(t) below.
1986 * The condition can be distinguished by testing whether
1987 * SIGNAL_STOP_STOPPED is already set. Don't generate
1988 * group_exit_code in such case.
1990 * This is not necessary for SIGNAL_STOP_CONTINUED because
1991 * an intervening stop signal is required to cause two
1992 * continued events regardless of ptrace.
1994 if (!(sig->flags & SIGNAL_STOP_STOPPED))
1995 sig->group_exit_code = signr;
1997 sig->group_stop_count = 0;
1999 if (task_set_jobctl_pending(current, signr | gstop))
2000 sig->group_stop_count++;
2002 t = current;
2003 while_each_thread(current, t) {
2005 * Setting state to TASK_STOPPED for a group
2006 * stop is always done with the siglock held,
2007 * so this check has no races.
2009 if (!task_is_stopped(t) &&
2010 task_set_jobctl_pending(t, signr | gstop)) {
2011 sig->group_stop_count++;
2012 if (likely(!(t->ptrace & PT_SEIZED)))
2013 signal_wake_up(t, 0);
2014 else
2015 ptrace_trap_notify(t);
2020 if (likely(!current->ptrace)) {
2021 int notify = 0;
2024 * If there are no other threads in the group, or if there
2025 * is a group stop in progress and we are the last to stop,
2026 * report to the parent.
2028 if (task_participate_group_stop(current))
2029 notify = CLD_STOPPED;
2031 __set_current_state(TASK_STOPPED);
2032 spin_unlock_irq(&current->sighand->siglock);
2035 * Notify the parent of the group stop completion. Because
2036 * we're not holding either the siglock or tasklist_lock
2037 * here, ptracer may attach inbetween; however, this is for
2038 * group stop and should always be delivered to the real
2039 * parent of the group leader. The new ptracer will get
2040 * its notification when this task transitions into
2041 * TASK_TRACED.
2043 if (notify) {
2044 read_lock(&tasklist_lock);
2045 do_notify_parent_cldstop(current, false, notify);
2046 read_unlock(&tasklist_lock);
2049 /* Now we don't run again until woken by SIGCONT or SIGKILL */
2050 freezable_schedule();
2051 return true;
2052 } else {
2054 * While ptraced, group stop is handled by STOP trap.
2055 * Schedule it and let the caller deal with it.
2057 task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2058 return false;
2063 * do_jobctl_trap - take care of ptrace jobctl traps
2065 * When PT_SEIZED, it's used for both group stop and explicit
2066 * SEIZE/INTERRUPT traps. Both generate PTRACE_EVENT_STOP trap with
2067 * accompanying siginfo. If stopped, lower eight bits of exit_code contain
2068 * the stop signal; otherwise, %SIGTRAP.
2070 * When !PT_SEIZED, it's used only for group stop trap with stop signal
2071 * number as exit_code and no siginfo.
2073 * CONTEXT:
2074 * Must be called with @current->sighand->siglock held, which may be
2075 * released and re-acquired before returning with intervening sleep.
2077 static void do_jobctl_trap(void)
2079 struct signal_struct *signal = current->signal;
2080 int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2082 if (current->ptrace & PT_SEIZED) {
2083 if (!signal->group_stop_count &&
2084 !(signal->flags & SIGNAL_STOP_STOPPED))
2085 signr = SIGTRAP;
2086 WARN_ON_ONCE(!signr);
2087 ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2088 CLD_STOPPED);
2089 } else {
2090 WARN_ON_ONCE(!signr);
2091 ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2092 current->exit_code = 0;
2096 static int ptrace_signal(int signr, siginfo_t *info)
2098 ptrace_signal_deliver();
2100 * We do not check sig_kernel_stop(signr) but set this marker
2101 * unconditionally because we do not know whether debugger will
2102 * change signr. This flag has no meaning unless we are going
2103 * to stop after return from ptrace_stop(). In this case it will
2104 * be checked in do_signal_stop(), we should only stop if it was
2105 * not cleared by SIGCONT while we were sleeping. See also the
2106 * comment in dequeue_signal().
2108 current->jobctl |= JOBCTL_STOP_DEQUEUED;
2109 ptrace_stop(signr, CLD_TRAPPED, 0, info);
2111 /* We're back. Did the debugger cancel the sig? */
2112 signr = current->exit_code;
2113 if (signr == 0)
2114 return signr;
2116 current->exit_code = 0;
2119 * Update the siginfo structure if the signal has
2120 * changed. If the debugger wanted something
2121 * specific in the siginfo structure then it should
2122 * have updated *info via PTRACE_SETSIGINFO.
2124 if (signr != info->si_signo) {
2125 info->si_signo = signr;
2126 info->si_errno = 0;
2127 info->si_code = SI_USER;
2128 rcu_read_lock();
2129 info->si_pid = task_pid_vnr(current->parent);
2130 info->si_uid = from_kuid_munged(current_user_ns(),
2131 task_uid(current->parent));
2132 rcu_read_unlock();
2135 /* If the (new) signal is now blocked, requeue it. */
2136 if (sigismember(&current->blocked, signr)) {
2137 specific_send_sig_info(signr, info, current);
2138 signr = 0;
2141 return signr;
2144 int get_signal(struct ksignal *ksig)
2146 struct sighand_struct *sighand = current->sighand;
2147 struct signal_struct *signal = current->signal;
2148 int signr;
2150 if (unlikely(current->task_works))
2151 task_work_run();
2153 if (unlikely(uprobe_deny_signal()))
2154 return 0;
2157 * Do this once, we can't return to user-mode if freezing() == T.
2158 * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2159 * thus do not need another check after return.
2161 try_to_freeze();
2163 relock:
2164 spin_lock_irq(&sighand->siglock);
2166 * Every stopped thread goes here after wakeup. Check to see if
2167 * we should notify the parent, prepare_signal(SIGCONT) encodes
2168 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2170 if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2171 int why;
2173 if (signal->flags & SIGNAL_CLD_CONTINUED)
2174 why = CLD_CONTINUED;
2175 else
2176 why = CLD_STOPPED;
2178 signal->flags &= ~SIGNAL_CLD_MASK;
2180 spin_unlock_irq(&sighand->siglock);
2183 * Notify the parent that we're continuing. This event is
2184 * always per-process and doesn't make whole lot of sense
2185 * for ptracers, who shouldn't consume the state via
2186 * wait(2) either, but, for backward compatibility, notify
2187 * the ptracer of the group leader too unless it's gonna be
2188 * a duplicate.
2190 read_lock(&tasklist_lock);
2191 do_notify_parent_cldstop(current, false, why);
2193 if (ptrace_reparented(current->group_leader))
2194 do_notify_parent_cldstop(current->group_leader,
2195 true, why);
2196 read_unlock(&tasklist_lock);
2198 goto relock;
2201 for (;;) {
2202 struct k_sigaction *ka;
2204 if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2205 do_signal_stop(0))
2206 goto relock;
2208 if (unlikely(current->jobctl & JOBCTL_TRAP_MASK)) {
2209 do_jobctl_trap();
2210 spin_unlock_irq(&sighand->siglock);
2211 goto relock;
2214 signr = dequeue_signal(current, &current->blocked, &ksig->info);
2216 if (!signr)
2217 break; /* will return 0 */
2219 if (unlikely(current->ptrace) && signr != SIGKILL) {
2220 signr = ptrace_signal(signr, &ksig->info);
2221 if (!signr)
2222 continue;
2225 ka = &sighand->action[signr-1];
2227 /* Trace actually delivered signals. */
2228 trace_signal_deliver(signr, &ksig->info, ka);
2230 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */
2231 continue;
2232 if (ka->sa.sa_handler != SIG_DFL) {
2233 /* Run the handler. */
2234 ksig->ka = *ka;
2236 if (ka->sa.sa_flags & SA_ONESHOT)
2237 ka->sa.sa_handler = SIG_DFL;
2239 break; /* will return non-zero "signr" value */
2243 * Now we are doing the default action for this signal.
2245 if (sig_kernel_ignore(signr)) /* Default is nothing. */
2246 continue;
2249 * Global init gets no signals it doesn't want.
2250 * Container-init gets no signals it doesn't want from same
2251 * container.
2253 * Note that if global/container-init sees a sig_kernel_only()
2254 * signal here, the signal must have been generated internally
2255 * or must have come from an ancestor namespace. In either
2256 * case, the signal cannot be dropped.
2258 if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2259 !sig_kernel_only(signr))
2260 continue;
2262 if (sig_kernel_stop(signr)) {
2264 * The default action is to stop all threads in
2265 * the thread group. The job control signals
2266 * do nothing in an orphaned pgrp, but SIGSTOP
2267 * always works. Note that siglock needs to be
2268 * dropped during the call to is_orphaned_pgrp()
2269 * because of lock ordering with tasklist_lock.
2270 * This allows an intervening SIGCONT to be posted.
2271 * We need to check for that and bail out if necessary.
2273 if (signr != SIGSTOP) {
2274 spin_unlock_irq(&sighand->siglock);
2276 /* signals can be posted during this window */
2278 if (is_current_pgrp_orphaned())
2279 goto relock;
2281 spin_lock_irq(&sighand->siglock);
2284 if (likely(do_signal_stop(ksig->info.si_signo))) {
2285 /* It released the siglock. */
2286 goto relock;
2290 * We didn't actually stop, due to a race
2291 * with SIGCONT or something like that.
2293 continue;
2296 spin_unlock_irq(&sighand->siglock);
2299 * Anything else is fatal, maybe with a core dump.
2301 current->flags |= PF_SIGNALED;
2303 if (sig_kernel_coredump(signr)) {
2304 if (print_fatal_signals)
2305 print_fatal_signal(ksig->info.si_signo);
2306 proc_coredump_connector(current);
2308 * If it was able to dump core, this kills all
2309 * other threads in the group and synchronizes with
2310 * their demise. If we lost the race with another
2311 * thread getting here, it set group_exit_code
2312 * first and our do_group_exit call below will use
2313 * that value and ignore the one we pass it.
2315 do_coredump(&ksig->info);
2319 * Death signals, no core dump.
2321 do_group_exit(ksig->info.si_signo);
2322 /* NOTREACHED */
2324 spin_unlock_irq(&sighand->siglock);
2326 ksig->sig = signr;
2327 return ksig->sig > 0;
2331 * signal_delivered -
2332 * @ksig: kernel signal struct
2333 * @stepping: nonzero if debugger single-step or block-step in use
2335 * This function should be called when a signal has successfully been
2336 * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask
2337 * is always blocked, and the signal itself is blocked unless %SA_NODEFER
2338 * is set in @ksig->ka.sa.sa_flags. Tracing is notified.
2340 static void signal_delivered(struct ksignal *ksig, int stepping)
2342 sigset_t blocked;
2344 /* A signal was successfully delivered, and the
2345 saved sigmask was stored on the signal frame,
2346 and will be restored by sigreturn. So we can
2347 simply clear the restore sigmask flag. */
2348 clear_restore_sigmask();
2350 sigorsets(&blocked, &current->blocked, &ksig->ka.sa.sa_mask);
2351 if (!(ksig->ka.sa.sa_flags & SA_NODEFER))
2352 sigaddset(&blocked, ksig->sig);
2353 set_current_blocked(&blocked);
2354 tracehook_signal_handler(stepping);
2357 void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
2359 if (failed)
2360 force_sigsegv(ksig->sig, current);
2361 else
2362 signal_delivered(ksig, stepping);
2366 * It could be that complete_signal() picked us to notify about the
2367 * group-wide signal. Other threads should be notified now to take
2368 * the shared signals in @which since we will not.
2370 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2372 sigset_t retarget;
2373 struct task_struct *t;
2375 sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2376 if (sigisemptyset(&retarget))
2377 return;
2379 t = tsk;
2380 while_each_thread(tsk, t) {
2381 if (t->flags & PF_EXITING)
2382 continue;
2384 if (!has_pending_signals(&retarget, &t->blocked))
2385 continue;
2386 /* Remove the signals this thread can handle. */
2387 sigandsets(&retarget, &retarget, &t->blocked);
2389 if (!signal_pending(t))
2390 signal_wake_up(t, 0);
2392 if (sigisemptyset(&retarget))
2393 break;
2397 void exit_signals(struct task_struct *tsk)
2399 int group_stop = 0;
2400 sigset_t unblocked;
2403 * @tsk is about to have PF_EXITING set - lock out users which
2404 * expect stable threadgroup.
2406 threadgroup_change_begin(tsk);
2408 if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
2409 tsk->flags |= PF_EXITING;
2410 threadgroup_change_end(tsk);
2411 return;
2414 spin_lock_irq(&tsk->sighand->siglock);
2416 * From now this task is not visible for group-wide signals,
2417 * see wants_signal(), do_signal_stop().
2419 tsk->flags |= PF_EXITING;
2421 threadgroup_change_end(tsk);
2423 if (!signal_pending(tsk))
2424 goto out;
2426 unblocked = tsk->blocked;
2427 signotset(&unblocked);
2428 retarget_shared_pending(tsk, &unblocked);
2430 if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
2431 task_participate_group_stop(tsk))
2432 group_stop = CLD_STOPPED;
2433 out:
2434 spin_unlock_irq(&tsk->sighand->siglock);
2437 * If group stop has completed, deliver the notification. This
2438 * should always go to the real parent of the group leader.
2440 if (unlikely(group_stop)) {
2441 read_lock(&tasklist_lock);
2442 do_notify_parent_cldstop(tsk, false, group_stop);
2443 read_unlock(&tasklist_lock);
2447 EXPORT_SYMBOL(recalc_sigpending);
2448 EXPORT_SYMBOL_GPL(dequeue_signal);
2449 EXPORT_SYMBOL(flush_signals);
2450 EXPORT_SYMBOL(force_sig);
2451 EXPORT_SYMBOL(send_sig);
2452 EXPORT_SYMBOL(send_sig_info);
2453 EXPORT_SYMBOL(sigprocmask);
2456 * System call entry points.
2460 * sys_restart_syscall - restart a system call
2462 SYSCALL_DEFINE0(restart_syscall)
2464 struct restart_block *restart = &current->restart_block;
2465 return restart->fn(restart);
2468 long do_no_restart_syscall(struct restart_block *param)
2470 return -EINTR;
2473 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
2475 if (signal_pending(tsk) && !thread_group_empty(tsk)) {
2476 sigset_t newblocked;
2477 /* A set of now blocked but previously unblocked signals. */
2478 sigandnsets(&newblocked, newset, &current->blocked);
2479 retarget_shared_pending(tsk, &newblocked);
2481 tsk->blocked = *newset;
2482 recalc_sigpending();
2486 * set_current_blocked - change current->blocked mask
2487 * @newset: new mask
2489 * It is wrong to change ->blocked directly, this helper should be used
2490 * to ensure the process can't miss a shared signal we are going to block.
2492 void set_current_blocked(sigset_t *newset)
2494 sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
2495 __set_current_blocked(newset);
2498 void __set_current_blocked(const sigset_t *newset)
2500 struct task_struct *tsk = current;
2503 * In case the signal mask hasn't changed, there is nothing we need
2504 * to do. The current->blocked shouldn't be modified by other task.
2506 if (sigequalsets(&tsk->blocked, newset))
2507 return;
2509 spin_lock_irq(&tsk->sighand->siglock);
2510 __set_task_blocked(tsk, newset);
2511 spin_unlock_irq(&tsk->sighand->siglock);
2515 * This is also useful for kernel threads that want to temporarily
2516 * (or permanently) block certain signals.
2518 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2519 * interface happily blocks "unblockable" signals like SIGKILL
2520 * and friends.
2522 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2524 struct task_struct *tsk = current;
2525 sigset_t newset;
2527 /* Lockless, only current can change ->blocked, never from irq */
2528 if (oldset)
2529 *oldset = tsk->blocked;
2531 switch (how) {
2532 case SIG_BLOCK:
2533 sigorsets(&newset, &tsk->blocked, set);
2534 break;
2535 case SIG_UNBLOCK:
2536 sigandnsets(&newset, &tsk->blocked, set);
2537 break;
2538 case SIG_SETMASK:
2539 newset = *set;
2540 break;
2541 default:
2542 return -EINVAL;
2545 __set_current_blocked(&newset);
2546 return 0;
2550 * sys_rt_sigprocmask - change the list of currently blocked signals
2551 * @how: whether to add, remove, or set signals
2552 * @nset: stores pending signals
2553 * @oset: previous value of signal mask if non-null
2554 * @sigsetsize: size of sigset_t type
2556 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
2557 sigset_t __user *, oset, size_t, sigsetsize)
2559 sigset_t old_set, new_set;
2560 int error;
2562 /* XXX: Don't preclude handling different sized sigset_t's. */
2563 if (sigsetsize != sizeof(sigset_t))
2564 return -EINVAL;
2566 old_set = current->blocked;
2568 if (nset) {
2569 if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
2570 return -EFAULT;
2571 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2573 error = sigprocmask(how, &new_set, NULL);
2574 if (error)
2575 return error;
2578 if (oset) {
2579 if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
2580 return -EFAULT;
2583 return 0;
2586 #ifdef CONFIG_COMPAT
2587 COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
2588 compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
2590 #ifdef __BIG_ENDIAN
2591 sigset_t old_set = current->blocked;
2593 /* XXX: Don't preclude handling different sized sigset_t's. */
2594 if (sigsetsize != sizeof(sigset_t))
2595 return -EINVAL;
2597 if (nset) {
2598 compat_sigset_t new32;
2599 sigset_t new_set;
2600 int error;
2601 if (copy_from_user(&new32, nset, sizeof(compat_sigset_t)))
2602 return -EFAULT;
2604 sigset_from_compat(&new_set, &new32);
2605 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2607 error = sigprocmask(how, &new_set, NULL);
2608 if (error)
2609 return error;
2611 if (oset) {
2612 compat_sigset_t old32;
2613 sigset_to_compat(&old32, &old_set);
2614 if (copy_to_user(oset, &old32, sizeof(compat_sigset_t)))
2615 return -EFAULT;
2617 return 0;
2618 #else
2619 return sys_rt_sigprocmask(how, (sigset_t __user *)nset,
2620 (sigset_t __user *)oset, sigsetsize);
2621 #endif
2623 #endif
2625 static int do_sigpending(void *set, unsigned long sigsetsize)
2627 if (sigsetsize > sizeof(sigset_t))
2628 return -EINVAL;
2630 spin_lock_irq(&current->sighand->siglock);
2631 sigorsets(set, &current->pending.signal,
2632 &current->signal->shared_pending.signal);
2633 spin_unlock_irq(&current->sighand->siglock);
2635 /* Outside the lock because only this thread touches it. */
2636 sigandsets(set, &current->blocked, set);
2637 return 0;
2641 * sys_rt_sigpending - examine a pending signal that has been raised
2642 * while blocked
2643 * @uset: stores pending signals
2644 * @sigsetsize: size of sigset_t type or larger
2646 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
2648 sigset_t set;
2649 int err = do_sigpending(&set, sigsetsize);
2650 if (!err && copy_to_user(uset, &set, sigsetsize))
2651 err = -EFAULT;
2652 return err;
2655 #ifdef CONFIG_COMPAT
2656 COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
2657 compat_size_t, sigsetsize)
2659 #ifdef __BIG_ENDIAN
2660 sigset_t set;
2661 int err = do_sigpending(&set, sigsetsize);
2662 if (!err) {
2663 compat_sigset_t set32;
2664 sigset_to_compat(&set32, &set);
2665 /* we can get here only if sigsetsize <= sizeof(set) */
2666 if (copy_to_user(uset, &set32, sigsetsize))
2667 err = -EFAULT;
2669 return err;
2670 #else
2671 return sys_rt_sigpending((sigset_t __user *)uset, sigsetsize);
2672 #endif
2674 #endif
2676 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2678 int copy_siginfo_to_user(siginfo_t __user *to, const siginfo_t *from)
2680 int err;
2682 if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2683 return -EFAULT;
2684 if (from->si_code < 0)
2685 return __copy_to_user(to, from, sizeof(siginfo_t))
2686 ? -EFAULT : 0;
2688 * If you change siginfo_t structure, please be sure
2689 * this code is fixed accordingly.
2690 * Please remember to update the signalfd_copyinfo() function
2691 * inside fs/signalfd.c too, in case siginfo_t changes.
2692 * It should never copy any pad contained in the structure
2693 * to avoid security leaks, but must copy the generic
2694 * 3 ints plus the relevant union member.
2696 err = __put_user(from->si_signo, &to->si_signo);
2697 err |= __put_user(from->si_errno, &to->si_errno);
2698 err |= __put_user((short)from->si_code, &to->si_code);
2699 switch (from->si_code & __SI_MASK) {
2700 case __SI_KILL:
2701 err |= __put_user(from->si_pid, &to->si_pid);
2702 err |= __put_user(from->si_uid, &to->si_uid);
2703 break;
2704 case __SI_TIMER:
2705 err |= __put_user(from->si_tid, &to->si_tid);
2706 err |= __put_user(from->si_overrun, &to->si_overrun);
2707 err |= __put_user(from->si_ptr, &to->si_ptr);
2708 break;
2709 case __SI_POLL:
2710 err |= __put_user(from->si_band, &to->si_band);
2711 err |= __put_user(from->si_fd, &to->si_fd);
2712 break;
2713 case __SI_FAULT:
2714 err |= __put_user(from->si_addr, &to->si_addr);
2715 #ifdef __ARCH_SI_TRAPNO
2716 err |= __put_user(from->si_trapno, &to->si_trapno);
2717 #endif
2718 #ifdef BUS_MCEERR_AO
2720 * Other callers might not initialize the si_lsb field,
2721 * so check explicitly for the right codes here.
2723 if (from->si_signo == SIGBUS &&
2724 (from->si_code == BUS_MCEERR_AR || from->si_code == BUS_MCEERR_AO))
2725 err |= __put_user(from->si_addr_lsb, &to->si_addr_lsb);
2726 #endif
2727 #ifdef SEGV_BNDERR
2728 if (from->si_signo == SIGSEGV && from->si_code == SEGV_BNDERR) {
2729 err |= __put_user(from->si_lower, &to->si_lower);
2730 err |= __put_user(from->si_upper, &to->si_upper);
2732 #endif
2733 break;
2734 case __SI_CHLD:
2735 err |= __put_user(from->si_pid, &to->si_pid);
2736 err |= __put_user(from->si_uid, &to->si_uid);
2737 err |= __put_user(from->si_status, &to->si_status);
2738 err |= __put_user(from->si_utime, &to->si_utime);
2739 err |= __put_user(from->si_stime, &to->si_stime);
2740 break;
2741 case __SI_RT: /* This is not generated by the kernel as of now. */
2742 case __SI_MESGQ: /* But this is */
2743 err |= __put_user(from->si_pid, &to->si_pid);
2744 err |= __put_user(from->si_uid, &to->si_uid);
2745 err |= __put_user(from->si_ptr, &to->si_ptr);
2746 break;
2747 #ifdef __ARCH_SIGSYS
2748 case __SI_SYS:
2749 err |= __put_user(from->si_call_addr, &to->si_call_addr);
2750 err |= __put_user(from->si_syscall, &to->si_syscall);
2751 err |= __put_user(from->si_arch, &to->si_arch);
2752 break;
2753 #endif
2754 default: /* this is just in case for now ... */
2755 err |= __put_user(from->si_pid, &to->si_pid);
2756 err |= __put_user(from->si_uid, &to->si_uid);
2757 break;
2759 return err;
2762 #endif
2765 * do_sigtimedwait - wait for queued signals specified in @which
2766 * @which: queued signals to wait for
2767 * @info: if non-null, the signal's siginfo is returned here
2768 * @ts: upper bound on process time suspension
2770 int do_sigtimedwait(const sigset_t *which, siginfo_t *info,
2771 const struct timespec *ts)
2773 struct task_struct *tsk = current;
2774 long timeout = MAX_SCHEDULE_TIMEOUT;
2775 sigset_t mask = *which;
2776 int sig;
2778 if (ts) {
2779 if (!timespec_valid(ts))
2780 return -EINVAL;
2781 timeout = timespec_to_jiffies(ts);
2783 * We can be close to the next tick, add another one
2784 * to ensure we will wait at least the time asked for.
2786 if (ts->tv_sec || ts->tv_nsec)
2787 timeout++;
2791 * Invert the set of allowed signals to get those we want to block.
2793 sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
2794 signotset(&mask);
2796 spin_lock_irq(&tsk->sighand->siglock);
2797 sig = dequeue_signal(tsk, &mask, info);
2798 if (!sig && timeout) {
2800 * None ready, temporarily unblock those we're interested
2801 * while we are sleeping in so that we'll be awakened when
2802 * they arrive. Unblocking is always fine, we can avoid
2803 * set_current_blocked().
2805 tsk->real_blocked = tsk->blocked;
2806 sigandsets(&tsk->blocked, &tsk->blocked, &mask);
2807 recalc_sigpending();
2808 spin_unlock_irq(&tsk->sighand->siglock);
2810 timeout = freezable_schedule_timeout_interruptible(timeout);
2812 spin_lock_irq(&tsk->sighand->siglock);
2813 __set_task_blocked(tsk, &tsk->real_blocked);
2814 sigemptyset(&tsk->real_blocked);
2815 sig = dequeue_signal(tsk, &mask, info);
2817 spin_unlock_irq(&tsk->sighand->siglock);
2819 if (sig)
2820 return sig;
2821 return timeout ? -EINTR : -EAGAIN;
2825 * sys_rt_sigtimedwait - synchronously wait for queued signals specified
2826 * in @uthese
2827 * @uthese: queued signals to wait for
2828 * @uinfo: if non-null, the signal's siginfo is returned here
2829 * @uts: upper bound on process time suspension
2830 * @sigsetsize: size of sigset_t type
2832 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
2833 siginfo_t __user *, uinfo, const struct timespec __user *, uts,
2834 size_t, sigsetsize)
2836 sigset_t these;
2837 struct timespec ts;
2838 siginfo_t info;
2839 int ret;
2841 /* XXX: Don't preclude handling different sized sigset_t's. */
2842 if (sigsetsize != sizeof(sigset_t))
2843 return -EINVAL;
2845 if (copy_from_user(&these, uthese, sizeof(these)))
2846 return -EFAULT;
2848 if (uts) {
2849 if (copy_from_user(&ts, uts, sizeof(ts)))
2850 return -EFAULT;
2853 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
2855 if (ret > 0 && uinfo) {
2856 if (copy_siginfo_to_user(uinfo, &info))
2857 ret = -EFAULT;
2860 return ret;
2864 * sys_kill - send a signal to a process
2865 * @pid: the PID of the process
2866 * @sig: signal to be sent
2868 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
2870 struct siginfo info;
2872 info.si_signo = sig;
2873 info.si_errno = 0;
2874 info.si_code = SI_USER;
2875 info.si_pid = task_tgid_vnr(current);
2876 info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2878 return kill_something_info(sig, &info, pid);
2881 static int
2882 do_send_specific(pid_t tgid, pid_t pid, int sig, struct siginfo *info)
2884 struct task_struct *p;
2885 int error = -ESRCH;
2887 rcu_read_lock();
2888 p = find_task_by_vpid(pid);
2889 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
2890 error = check_kill_permission(sig, info, p);
2892 * The null signal is a permissions and process existence
2893 * probe. No signal is actually delivered.
2895 if (!error && sig) {
2896 error = do_send_sig_info(sig, info, p, false);
2898 * If lock_task_sighand() failed we pretend the task
2899 * dies after receiving the signal. The window is tiny,
2900 * and the signal is private anyway.
2902 if (unlikely(error == -ESRCH))
2903 error = 0;
2906 rcu_read_unlock();
2908 return error;
2911 static int do_tkill(pid_t tgid, pid_t pid, int sig)
2913 struct siginfo info = {};
2915 info.si_signo = sig;
2916 info.si_errno = 0;
2917 info.si_code = SI_TKILL;
2918 info.si_pid = task_tgid_vnr(current);
2919 info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2921 return do_send_specific(tgid, pid, sig, &info);
2925 * sys_tgkill - send signal to one specific thread
2926 * @tgid: the thread group ID of the thread
2927 * @pid: the PID of the thread
2928 * @sig: signal to be sent
2930 * This syscall also checks the @tgid and returns -ESRCH even if the PID
2931 * exists but it's not belonging to the target process anymore. This
2932 * method solves the problem of threads exiting and PIDs getting reused.
2934 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
2936 /* This is only valid for single tasks */
2937 if (pid <= 0 || tgid <= 0)
2938 return -EINVAL;
2940 return do_tkill(tgid, pid, sig);
2944 * sys_tkill - send signal to one specific task
2945 * @pid: the PID of the task
2946 * @sig: signal to be sent
2948 * Send a signal to only one task, even if it's a CLONE_THREAD task.
2950 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
2952 /* This is only valid for single tasks */
2953 if (pid <= 0)
2954 return -EINVAL;
2956 return do_tkill(0, pid, sig);
2959 static int do_rt_sigqueueinfo(pid_t pid, int sig, siginfo_t *info)
2961 /* Not even root can pretend to send signals from the kernel.
2962 * Nor can they impersonate a kill()/tgkill(), which adds source info.
2964 if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
2965 (task_pid_vnr(current) != pid))
2966 return -EPERM;
2968 info->si_signo = sig;
2970 /* POSIX.1b doesn't mention process groups. */
2971 return kill_proc_info(sig, info, pid);
2975 * sys_rt_sigqueueinfo - send signal information to a signal
2976 * @pid: the PID of the thread
2977 * @sig: signal to be sent
2978 * @uinfo: signal info to be sent
2980 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
2981 siginfo_t __user *, uinfo)
2983 siginfo_t info;
2984 if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2985 return -EFAULT;
2986 return do_rt_sigqueueinfo(pid, sig, &info);
2989 #ifdef CONFIG_COMPAT
2990 COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
2991 compat_pid_t, pid,
2992 int, sig,
2993 struct compat_siginfo __user *, uinfo)
2995 siginfo_t info = {};
2996 int ret = copy_siginfo_from_user32(&info, uinfo);
2997 if (unlikely(ret))
2998 return ret;
2999 return do_rt_sigqueueinfo(pid, sig, &info);
3001 #endif
3003 static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, siginfo_t *info)
3005 /* This is only valid for single tasks */
3006 if (pid <= 0 || tgid <= 0)
3007 return -EINVAL;
3009 /* Not even root can pretend to send signals from the kernel.
3010 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3012 if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3013 (task_pid_vnr(current) != pid))
3014 return -EPERM;
3016 info->si_signo = sig;
3018 return do_send_specific(tgid, pid, sig, info);
3021 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
3022 siginfo_t __user *, uinfo)
3024 siginfo_t info;
3026 if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
3027 return -EFAULT;
3029 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3032 #ifdef CONFIG_COMPAT
3033 COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
3034 compat_pid_t, tgid,
3035 compat_pid_t, pid,
3036 int, sig,
3037 struct compat_siginfo __user *, uinfo)
3039 siginfo_t info = {};
3041 if (copy_siginfo_from_user32(&info, uinfo))
3042 return -EFAULT;
3043 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3045 #endif
3048 * For kthreads only, must not be used if cloned with CLONE_SIGHAND
3050 void kernel_sigaction(int sig, __sighandler_t action)
3052 spin_lock_irq(&current->sighand->siglock);
3053 current->sighand->action[sig - 1].sa.sa_handler = action;
3054 if (action == SIG_IGN) {
3055 sigset_t mask;
3057 sigemptyset(&mask);
3058 sigaddset(&mask, sig);
3060 flush_sigqueue_mask(&mask, &current->signal->shared_pending);
3061 flush_sigqueue_mask(&mask, &current->pending);
3062 recalc_sigpending();
3064 spin_unlock_irq(&current->sighand->siglock);
3066 EXPORT_SYMBOL(kernel_sigaction);
3068 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
3070 struct task_struct *p = current, *t;
3071 struct k_sigaction *k;
3072 sigset_t mask;
3074 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
3075 return -EINVAL;
3077 k = &p->sighand->action[sig-1];
3079 spin_lock_irq(&p->sighand->siglock);
3080 if (oact)
3081 *oact = *k;
3083 if (act) {
3084 sigdelsetmask(&act->sa.sa_mask,
3085 sigmask(SIGKILL) | sigmask(SIGSTOP));
3086 *k = *act;
3088 * POSIX 3.3.1.3:
3089 * "Setting a signal action to SIG_IGN for a signal that is
3090 * pending shall cause the pending signal to be discarded,
3091 * whether or not it is blocked."
3093 * "Setting a signal action to SIG_DFL for a signal that is
3094 * pending and whose default action is to ignore the signal
3095 * (for example, SIGCHLD), shall cause the pending signal to
3096 * be discarded, whether or not it is blocked"
3098 if (sig_handler_ignored(sig_handler(p, sig), sig)) {
3099 sigemptyset(&mask);
3100 sigaddset(&mask, sig);
3101 flush_sigqueue_mask(&mask, &p->signal->shared_pending);
3102 for_each_thread(p, t)
3103 flush_sigqueue_mask(&mask, &t->pending);
3107 spin_unlock_irq(&p->sighand->siglock);
3108 return 0;
3111 static int
3112 do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
3114 stack_t oss;
3115 int error;
3117 oss.ss_sp = (void __user *) current->sas_ss_sp;
3118 oss.ss_size = current->sas_ss_size;
3119 oss.ss_flags = sas_ss_flags(sp);
3121 if (uss) {
3122 void __user *ss_sp;
3123 size_t ss_size;
3124 int ss_flags;
3126 error = -EFAULT;
3127 if (!access_ok(VERIFY_READ, uss, sizeof(*uss)))
3128 goto out;
3129 error = __get_user(ss_sp, &uss->ss_sp) |
3130 __get_user(ss_flags, &uss->ss_flags) |
3131 __get_user(ss_size, &uss->ss_size);
3132 if (error)
3133 goto out;
3135 error = -EPERM;
3136 if (on_sig_stack(sp))
3137 goto out;
3139 error = -EINVAL;
3141 * Note - this code used to test ss_flags incorrectly:
3142 * old code may have been written using ss_flags==0
3143 * to mean ss_flags==SS_ONSTACK (as this was the only
3144 * way that worked) - this fix preserves that older
3145 * mechanism.
3147 if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0)
3148 goto out;
3150 if (ss_flags == SS_DISABLE) {
3151 ss_size = 0;
3152 ss_sp = NULL;
3153 } else {
3154 error = -ENOMEM;
3155 if (ss_size < MINSIGSTKSZ)
3156 goto out;
3159 current->sas_ss_sp = (unsigned long) ss_sp;
3160 current->sas_ss_size = ss_size;
3163 error = 0;
3164 if (uoss) {
3165 error = -EFAULT;
3166 if (!access_ok(VERIFY_WRITE, uoss, sizeof(*uoss)))
3167 goto out;
3168 error = __put_user(oss.ss_sp, &uoss->ss_sp) |
3169 __put_user(oss.ss_size, &uoss->ss_size) |
3170 __put_user(oss.ss_flags, &uoss->ss_flags);
3173 out:
3174 return error;
3176 SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
3178 return do_sigaltstack(uss, uoss, current_user_stack_pointer());
3181 int restore_altstack(const stack_t __user *uss)
3183 int err = do_sigaltstack(uss, NULL, current_user_stack_pointer());
3184 /* squash all but EFAULT for now */
3185 return err == -EFAULT ? err : 0;
3188 int __save_altstack(stack_t __user *uss, unsigned long sp)
3190 struct task_struct *t = current;
3191 return __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
3192 __put_user(sas_ss_flags(sp), &uss->ss_flags) |
3193 __put_user(t->sas_ss_size, &uss->ss_size);
3196 #ifdef CONFIG_COMPAT
3197 COMPAT_SYSCALL_DEFINE2(sigaltstack,
3198 const compat_stack_t __user *, uss_ptr,
3199 compat_stack_t __user *, uoss_ptr)
3201 stack_t uss, uoss;
3202 int ret;
3203 mm_segment_t seg;
3205 if (uss_ptr) {
3206 compat_stack_t uss32;
3208 memset(&uss, 0, sizeof(stack_t));
3209 if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
3210 return -EFAULT;
3211 uss.ss_sp = compat_ptr(uss32.ss_sp);
3212 uss.ss_flags = uss32.ss_flags;
3213 uss.ss_size = uss32.ss_size;
3215 seg = get_fs();
3216 set_fs(KERNEL_DS);
3217 ret = do_sigaltstack((stack_t __force __user *) (uss_ptr ? &uss : NULL),
3218 (stack_t __force __user *) &uoss,
3219 compat_user_stack_pointer());
3220 set_fs(seg);
3221 if (ret >= 0 && uoss_ptr) {
3222 if (!access_ok(VERIFY_WRITE, uoss_ptr, sizeof(compat_stack_t)) ||
3223 __put_user(ptr_to_compat(uoss.ss_sp), &uoss_ptr->ss_sp) ||
3224 __put_user(uoss.ss_flags, &uoss_ptr->ss_flags) ||
3225 __put_user(uoss.ss_size, &uoss_ptr->ss_size))
3226 ret = -EFAULT;
3228 return ret;
3231 int compat_restore_altstack(const compat_stack_t __user *uss)
3233 int err = compat_sys_sigaltstack(uss, NULL);
3234 /* squash all but -EFAULT for now */
3235 return err == -EFAULT ? err : 0;
3238 int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
3240 struct task_struct *t = current;
3241 return __put_user(ptr_to_compat((void __user *)t->sas_ss_sp), &uss->ss_sp) |
3242 __put_user(sas_ss_flags(sp), &uss->ss_flags) |
3243 __put_user(t->sas_ss_size, &uss->ss_size);
3245 #endif
3247 #ifdef __ARCH_WANT_SYS_SIGPENDING
3250 * sys_sigpending - examine pending signals
3251 * @set: where mask of pending signal is returned
3253 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, set)
3255 return sys_rt_sigpending((sigset_t __user *)set, sizeof(old_sigset_t));
3258 #endif
3260 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
3262 * sys_sigprocmask - examine and change blocked signals
3263 * @how: whether to add, remove, or set signals
3264 * @nset: signals to add or remove (if non-null)
3265 * @oset: previous value of signal mask if non-null
3267 * Some platforms have their own version with special arguments;
3268 * others support only sys_rt_sigprocmask.
3271 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
3272 old_sigset_t __user *, oset)
3274 old_sigset_t old_set, new_set;
3275 sigset_t new_blocked;
3277 old_set = current->blocked.sig[0];
3279 if (nset) {
3280 if (copy_from_user(&new_set, nset, sizeof(*nset)))
3281 return -EFAULT;
3283 new_blocked = current->blocked;
3285 switch (how) {
3286 case SIG_BLOCK:
3287 sigaddsetmask(&new_blocked, new_set);
3288 break;
3289 case SIG_UNBLOCK:
3290 sigdelsetmask(&new_blocked, new_set);
3291 break;
3292 case SIG_SETMASK:
3293 new_blocked.sig[0] = new_set;
3294 break;
3295 default:
3296 return -EINVAL;
3299 set_current_blocked(&new_blocked);
3302 if (oset) {
3303 if (copy_to_user(oset, &old_set, sizeof(*oset)))
3304 return -EFAULT;
3307 return 0;
3309 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
3311 #ifndef CONFIG_ODD_RT_SIGACTION
3313 * sys_rt_sigaction - alter an action taken by a process
3314 * @sig: signal to be sent
3315 * @act: new sigaction
3316 * @oact: used to save the previous sigaction
3317 * @sigsetsize: size of sigset_t type
3319 SYSCALL_DEFINE4(rt_sigaction, int, sig,
3320 const struct sigaction __user *, act,
3321 struct sigaction __user *, oact,
3322 size_t, sigsetsize)
3324 struct k_sigaction new_sa, old_sa;
3325 int ret = -EINVAL;
3327 /* XXX: Don't preclude handling different sized sigset_t's. */
3328 if (sigsetsize != sizeof(sigset_t))
3329 goto out;
3331 if (act) {
3332 if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
3333 return -EFAULT;
3336 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
3338 if (!ret && oact) {
3339 if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
3340 return -EFAULT;
3342 out:
3343 return ret;
3345 #ifdef CONFIG_COMPAT
3346 COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
3347 const struct compat_sigaction __user *, act,
3348 struct compat_sigaction __user *, oact,
3349 compat_size_t, sigsetsize)
3351 struct k_sigaction new_ka, old_ka;
3352 compat_sigset_t mask;
3353 #ifdef __ARCH_HAS_SA_RESTORER
3354 compat_uptr_t restorer;
3355 #endif
3356 int ret;
3358 /* XXX: Don't preclude handling different sized sigset_t's. */
3359 if (sigsetsize != sizeof(compat_sigset_t))
3360 return -EINVAL;
3362 if (act) {
3363 compat_uptr_t handler;
3364 ret = get_user(handler, &act->sa_handler);
3365 new_ka.sa.sa_handler = compat_ptr(handler);
3366 #ifdef __ARCH_HAS_SA_RESTORER
3367 ret |= get_user(restorer, &act->sa_restorer);
3368 new_ka.sa.sa_restorer = compat_ptr(restorer);
3369 #endif
3370 ret |= copy_from_user(&mask, &act->sa_mask, sizeof(mask));
3371 ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags);
3372 if (ret)
3373 return -EFAULT;
3374 sigset_from_compat(&new_ka.sa.sa_mask, &mask);
3377 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3378 if (!ret && oact) {
3379 sigset_to_compat(&mask, &old_ka.sa.sa_mask);
3380 ret = put_user(ptr_to_compat(old_ka.sa.sa_handler),
3381 &oact->sa_handler);
3382 ret |= copy_to_user(&oact->sa_mask, &mask, sizeof(mask));
3383 ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags);
3384 #ifdef __ARCH_HAS_SA_RESTORER
3385 ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
3386 &oact->sa_restorer);
3387 #endif
3389 return ret;
3391 #endif
3392 #endif /* !CONFIG_ODD_RT_SIGACTION */
3394 #ifdef CONFIG_OLD_SIGACTION
3395 SYSCALL_DEFINE3(sigaction, int, sig,
3396 const struct old_sigaction __user *, act,
3397 struct old_sigaction __user *, oact)
3399 struct k_sigaction new_ka, old_ka;
3400 int ret;
3402 if (act) {
3403 old_sigset_t mask;
3404 if (!access_ok(VERIFY_READ, act, sizeof(*act)) ||
3405 __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
3406 __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
3407 __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
3408 __get_user(mask, &act->sa_mask))
3409 return -EFAULT;
3410 #ifdef __ARCH_HAS_KA_RESTORER
3411 new_ka.ka_restorer = NULL;
3412 #endif
3413 siginitset(&new_ka.sa.sa_mask, mask);
3416 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3418 if (!ret && oact) {
3419 if (!access_ok(VERIFY_WRITE, oact, sizeof(*oact)) ||
3420 __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
3421 __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
3422 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
3423 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
3424 return -EFAULT;
3427 return ret;
3429 #endif
3430 #ifdef CONFIG_COMPAT_OLD_SIGACTION
3431 COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
3432 const struct compat_old_sigaction __user *, act,
3433 struct compat_old_sigaction __user *, oact)
3435 struct k_sigaction new_ka, old_ka;
3436 int ret;
3437 compat_old_sigset_t mask;
3438 compat_uptr_t handler, restorer;
3440 if (act) {
3441 if (!access_ok(VERIFY_READ, act, sizeof(*act)) ||
3442 __get_user(handler, &act->sa_handler) ||
3443 __get_user(restorer, &act->sa_restorer) ||
3444 __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
3445 __get_user(mask, &act->sa_mask))
3446 return -EFAULT;
3448 #ifdef __ARCH_HAS_KA_RESTORER
3449 new_ka.ka_restorer = NULL;
3450 #endif
3451 new_ka.sa.sa_handler = compat_ptr(handler);
3452 new_ka.sa.sa_restorer = compat_ptr(restorer);
3453 siginitset(&new_ka.sa.sa_mask, mask);
3456 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3458 if (!ret && oact) {
3459 if (!access_ok(VERIFY_WRITE, oact, sizeof(*oact)) ||
3460 __put_user(ptr_to_compat(old_ka.sa.sa_handler),
3461 &oact->sa_handler) ||
3462 __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
3463 &oact->sa_restorer) ||
3464 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
3465 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
3466 return -EFAULT;
3468 return ret;
3470 #endif
3472 #ifdef CONFIG_SGETMASK_SYSCALL
3475 * For backwards compatibility. Functionality superseded by sigprocmask.
3477 SYSCALL_DEFINE0(sgetmask)
3479 /* SMP safe */
3480 return current->blocked.sig[0];
3483 SYSCALL_DEFINE1(ssetmask, int, newmask)
3485 int old = current->blocked.sig[0];
3486 sigset_t newset;
3488 siginitset(&newset, newmask);
3489 set_current_blocked(&newset);
3491 return old;
3493 #endif /* CONFIG_SGETMASK_SYSCALL */
3495 #ifdef __ARCH_WANT_SYS_SIGNAL
3497 * For backwards compatibility. Functionality superseded by sigaction.
3499 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
3501 struct k_sigaction new_sa, old_sa;
3502 int ret;
3504 new_sa.sa.sa_handler = handler;
3505 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
3506 sigemptyset(&new_sa.sa.sa_mask);
3508 ret = do_sigaction(sig, &new_sa, &old_sa);
3510 return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
3512 #endif /* __ARCH_WANT_SYS_SIGNAL */
3514 #ifdef __ARCH_WANT_SYS_PAUSE
3516 SYSCALL_DEFINE0(pause)
3518 while (!signal_pending(current)) {
3519 __set_current_state(TASK_INTERRUPTIBLE);
3520 schedule();
3522 return -ERESTARTNOHAND;
3525 #endif
3527 static int sigsuspend(sigset_t *set)
3529 current->saved_sigmask = current->blocked;
3530 set_current_blocked(set);
3532 __set_current_state(TASK_INTERRUPTIBLE);
3533 schedule();
3534 set_restore_sigmask();
3535 return -ERESTARTNOHAND;
3539 * sys_rt_sigsuspend - replace the signal mask for a value with the
3540 * @unewset value until a signal is received
3541 * @unewset: new signal mask value
3542 * @sigsetsize: size of sigset_t type
3544 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
3546 sigset_t newset;
3548 /* XXX: Don't preclude handling different sized sigset_t's. */
3549 if (sigsetsize != sizeof(sigset_t))
3550 return -EINVAL;
3552 if (copy_from_user(&newset, unewset, sizeof(newset)))
3553 return -EFAULT;
3554 return sigsuspend(&newset);
3557 #ifdef CONFIG_COMPAT
3558 COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
3560 #ifdef __BIG_ENDIAN
3561 sigset_t newset;
3562 compat_sigset_t newset32;
3564 /* XXX: Don't preclude handling different sized sigset_t's. */
3565 if (sigsetsize != sizeof(sigset_t))
3566 return -EINVAL;
3568 if (copy_from_user(&newset32, unewset, sizeof(compat_sigset_t)))
3569 return -EFAULT;
3570 sigset_from_compat(&newset, &newset32);
3571 return sigsuspend(&newset);
3572 #else
3573 /* on little-endian bitmaps don't care about granularity */
3574 return sys_rt_sigsuspend((sigset_t __user *)unewset, sigsetsize);
3575 #endif
3577 #endif
3579 #ifdef CONFIG_OLD_SIGSUSPEND
3580 SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
3582 sigset_t blocked;
3583 siginitset(&blocked, mask);
3584 return sigsuspend(&blocked);
3586 #endif
3587 #ifdef CONFIG_OLD_SIGSUSPEND3
3588 SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
3590 sigset_t blocked;
3591 siginitset(&blocked, mask);
3592 return sigsuspend(&blocked);
3594 #endif
3596 __weak const char *arch_vma_name(struct vm_area_struct *vma)
3598 return NULL;
3601 void __init signals_init(void)
3603 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
3606 #ifdef CONFIG_KGDB_KDB
3607 #include <linux/kdb.h>
3609 * kdb_send_sig_info - Allows kdb to send signals without exposing
3610 * signal internals. This function checks if the required locks are
3611 * available before calling the main signal code, to avoid kdb
3612 * deadlocks.
3614 void
3615 kdb_send_sig_info(struct task_struct *t, struct siginfo *info)
3617 static struct task_struct *kdb_prev_t;
3618 int sig, new_t;
3619 if (!spin_trylock(&t->sighand->siglock)) {
3620 kdb_printf("Can't do kill command now.\n"
3621 "The sigmask lock is held somewhere else in "
3622 "kernel, try again later\n");
3623 return;
3625 spin_unlock(&t->sighand->siglock);
3626 new_t = kdb_prev_t != t;
3627 kdb_prev_t = t;
3628 if (t->state != TASK_RUNNING && new_t) {
3629 kdb_printf("Process is not RUNNING, sending a signal from "
3630 "kdb risks deadlock\n"
3631 "on the run queue locks. "
3632 "The signal has _not_ been sent.\n"
3633 "Reissue the kill command if you want to risk "
3634 "the deadlock.\n");
3635 return;
3637 sig = info->si_signo;
3638 if (send_sig_info(sig, info, t))
3639 kdb_printf("Fail to deliver Signal %d to process %d.\n",
3640 sig, t->pid);
3641 else
3642 kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
3644 #endif /* CONFIG_KGDB_KDB */