x86/speculation/mds: Add BUG_MSBDS_ONLY
[linux/fpc-iii.git] / include / net / tls.h
blob5934246b2c6f4bafbe318fdddfacb328a2b9bf5c
1 /*
2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
5 * This software is available to you under a choice of one of two
6 * licenses. You may choose to be licensed under the terms of the GNU
7 * General Public License (GPL) Version 2, available from the file
8 * COPYING in the main directory of this source tree, or the
9 * OpenIB.org BSD license below:
11 * Redistribution and use in source and binary forms, with or
12 * without modification, are permitted provided that the following
13 * conditions are met:
15 * - Redistributions of source code must retain the above
16 * copyright notice, this list of conditions and the following
17 * disclaimer.
19 * - Redistributions in binary form must reproduce the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer in the documentation and/or other materials
22 * provided with the distribution.
24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31 * SOFTWARE.
34 #ifndef _TLS_OFFLOAD_H
35 #define _TLS_OFFLOAD_H
37 #include <linux/types.h>
38 #include <asm/byteorder.h>
39 #include <linux/crypto.h>
40 #include <linux/socket.h>
41 #include <linux/tcp.h>
42 #include <linux/skmsg.h>
44 #include <net/tcp.h>
45 #include <net/strparser.h>
46 #include <crypto/aead.h>
47 #include <uapi/linux/tls.h>
50 /* Maximum data size carried in a TLS record */
51 #define TLS_MAX_PAYLOAD_SIZE ((size_t)1 << 14)
53 #define TLS_HEADER_SIZE 5
54 #define TLS_NONCE_OFFSET TLS_HEADER_SIZE
56 #define TLS_CRYPTO_INFO_READY(info) ((info)->cipher_type)
58 #define TLS_RECORD_TYPE_DATA 0x17
60 #define TLS_AAD_SPACE_SIZE 13
61 #define TLS_DEVICE_NAME_MAX 32
64 * This structure defines the routines for Inline TLS driver.
65 * The following routines are optional and filled with a
66 * null pointer if not defined.
68 * @name: Its the name of registered Inline tls device
69 * @dev_list: Inline tls device list
70 * int (*feature)(struct tls_device *device);
71 * Called to return Inline TLS driver capability
73 * int (*hash)(struct tls_device *device, struct sock *sk);
74 * This function sets Inline driver for listen and program
75 * device specific functioanlity as required
77 * void (*unhash)(struct tls_device *device, struct sock *sk);
78 * This function cleans listen state set by Inline TLS driver
80 * void (*release)(struct kref *kref);
81 * Release the registered device and allocated resources
82 * @kref: Number of reference to tls_device
84 struct tls_device {
85 char name[TLS_DEVICE_NAME_MAX];
86 struct list_head dev_list;
87 int (*feature)(struct tls_device *device);
88 int (*hash)(struct tls_device *device, struct sock *sk);
89 void (*unhash)(struct tls_device *device, struct sock *sk);
90 void (*release)(struct kref *kref);
91 struct kref kref;
94 enum {
95 TLS_BASE,
96 TLS_SW,
97 #ifdef CONFIG_TLS_DEVICE
98 TLS_HW,
99 #endif
100 TLS_HW_RECORD,
101 TLS_NUM_CONFIG,
104 /* TLS records are maintained in 'struct tls_rec'. It stores the memory pages
105 * allocated or mapped for each TLS record. After encryption, the records are
106 * stores in a linked list.
108 struct tls_rec {
109 struct list_head list;
110 int tx_ready;
111 int tx_flags;
112 int inplace_crypto;
114 struct sk_msg msg_plaintext;
115 struct sk_msg msg_encrypted;
117 /* AAD | msg_plaintext.sg.data | sg_tag */
118 struct scatterlist sg_aead_in[2];
119 /* AAD | msg_encrypted.sg.data (data contains overhead for hdr & iv & tag) */
120 struct scatterlist sg_aead_out[2];
122 char content_type;
123 struct scatterlist sg_content_type;
125 char aad_space[TLS_AAD_SPACE_SIZE];
126 u8 iv_data[TLS_CIPHER_AES_GCM_128_IV_SIZE +
127 TLS_CIPHER_AES_GCM_128_SALT_SIZE];
128 struct aead_request aead_req;
129 u8 aead_req_ctx[];
132 struct tls_msg {
133 struct strp_msg rxm;
134 u8 control;
137 struct tx_work {
138 struct delayed_work work;
139 struct sock *sk;
142 struct tls_sw_context_tx {
143 struct crypto_aead *aead_send;
144 struct crypto_wait async_wait;
145 struct tx_work tx_work;
146 struct tls_rec *open_rec;
147 struct list_head tx_list;
148 atomic_t encrypt_pending;
149 int async_notify;
150 int async_capable;
152 #define BIT_TX_SCHEDULED 0
153 unsigned long tx_bitmask;
156 struct tls_sw_context_rx {
157 struct crypto_aead *aead_recv;
158 struct crypto_wait async_wait;
159 struct strparser strp;
160 struct sk_buff_head rx_list; /* list of decrypted 'data' records */
161 void (*saved_data_ready)(struct sock *sk);
163 struct sk_buff *recv_pkt;
164 u8 control;
165 int async_capable;
166 bool decrypted;
167 atomic_t decrypt_pending;
168 bool async_notify;
171 struct tls_record_info {
172 struct list_head list;
173 u32 end_seq;
174 int len;
175 int num_frags;
176 skb_frag_t frags[MAX_SKB_FRAGS];
179 struct tls_offload_context_tx {
180 struct crypto_aead *aead_send;
181 spinlock_t lock; /* protects records list */
182 struct list_head records_list;
183 struct tls_record_info *open_record;
184 struct tls_record_info *retransmit_hint;
185 u64 hint_record_sn;
186 u64 unacked_record_sn;
188 struct scatterlist sg_tx_data[MAX_SKB_FRAGS];
189 void (*sk_destruct)(struct sock *sk);
190 u8 driver_state[];
191 /* The TLS layer reserves room for driver specific state
192 * Currently the belief is that there is not enough
193 * driver specific state to justify another layer of indirection
195 #define TLS_DRIVER_STATE_SIZE (max_t(size_t, 8, sizeof(void *)))
198 #define TLS_OFFLOAD_CONTEXT_SIZE_TX \
199 (ALIGN(sizeof(struct tls_offload_context_tx), sizeof(void *)) + \
200 TLS_DRIVER_STATE_SIZE)
202 struct cipher_context {
203 char *iv;
204 char *rec_seq;
207 union tls_crypto_context {
208 struct tls_crypto_info info;
209 union {
210 struct tls12_crypto_info_aes_gcm_128 aes_gcm_128;
211 struct tls12_crypto_info_aes_gcm_256 aes_gcm_256;
215 struct tls_prot_info {
216 u16 version;
217 u16 cipher_type;
218 u16 prepend_size;
219 u16 tag_size;
220 u16 overhead_size;
221 u16 iv_size;
222 u16 rec_seq_size;
223 u16 aad_size;
224 u16 tail_size;
227 struct tls_context {
228 struct tls_prot_info prot_info;
230 union tls_crypto_context crypto_send;
231 union tls_crypto_context crypto_recv;
233 struct list_head list;
234 struct net_device *netdev;
235 refcount_t refcount;
237 void *priv_ctx_tx;
238 void *priv_ctx_rx;
240 u8 tx_conf:3;
241 u8 rx_conf:3;
243 struct cipher_context tx;
244 struct cipher_context rx;
246 struct scatterlist *partially_sent_record;
247 u16 partially_sent_offset;
249 unsigned long flags;
250 bool in_tcp_sendpages;
251 bool pending_open_record_frags;
253 int (*push_pending_record)(struct sock *sk, int flags);
255 void (*sk_write_space)(struct sock *sk);
256 void (*sk_destruct)(struct sock *sk);
257 void (*sk_proto_close)(struct sock *sk, long timeout);
259 int (*setsockopt)(struct sock *sk, int level,
260 int optname, char __user *optval,
261 unsigned int optlen);
262 int (*getsockopt)(struct sock *sk, int level,
263 int optname, char __user *optval,
264 int __user *optlen);
265 int (*hash)(struct sock *sk);
266 void (*unhash)(struct sock *sk);
269 struct tls_offload_context_rx {
270 /* sw must be the first member of tls_offload_context_rx */
271 struct tls_sw_context_rx sw;
272 atomic64_t resync_req;
273 u8 driver_state[];
274 /* The TLS layer reserves room for driver specific state
275 * Currently the belief is that there is not enough
276 * driver specific state to justify another layer of indirection
280 #define TLS_OFFLOAD_CONTEXT_SIZE_RX \
281 (ALIGN(sizeof(struct tls_offload_context_rx), sizeof(void *)) + \
282 TLS_DRIVER_STATE_SIZE)
284 int wait_on_pending_writer(struct sock *sk, long *timeo);
285 int tls_sk_query(struct sock *sk, int optname, char __user *optval,
286 int __user *optlen);
287 int tls_sk_attach(struct sock *sk, int optname, char __user *optval,
288 unsigned int optlen);
290 int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx);
291 int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
292 int tls_sw_sendpage(struct sock *sk, struct page *page,
293 int offset, size_t size, int flags);
294 void tls_sw_close(struct sock *sk, long timeout);
295 void tls_sw_free_resources_tx(struct sock *sk);
296 void tls_sw_free_resources_rx(struct sock *sk);
297 void tls_sw_release_resources_rx(struct sock *sk);
298 int tls_sw_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
299 int nonblock, int flags, int *addr_len);
300 bool tls_sw_stream_read(const struct sock *sk);
301 ssize_t tls_sw_splice_read(struct socket *sock, loff_t *ppos,
302 struct pipe_inode_info *pipe,
303 size_t len, unsigned int flags);
305 int tls_set_device_offload(struct sock *sk, struct tls_context *ctx);
306 int tls_device_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
307 int tls_device_sendpage(struct sock *sk, struct page *page,
308 int offset, size_t size, int flags);
309 void tls_device_sk_destruct(struct sock *sk);
310 void tls_device_free_resources_tx(struct sock *sk);
311 void tls_device_init(void);
312 void tls_device_cleanup(void);
313 int tls_tx_records(struct sock *sk, int flags);
315 struct tls_record_info *tls_get_record(struct tls_offload_context_tx *context,
316 u32 seq, u64 *p_record_sn);
318 static inline bool tls_record_is_start_marker(struct tls_record_info *rec)
320 return rec->len == 0;
323 static inline u32 tls_record_start_seq(struct tls_record_info *rec)
325 return rec->end_seq - rec->len;
328 void tls_sk_destruct(struct sock *sk, struct tls_context *ctx);
329 int tls_push_sg(struct sock *sk, struct tls_context *ctx,
330 struct scatterlist *sg, u16 first_offset,
331 int flags);
332 int tls_push_partial_record(struct sock *sk, struct tls_context *ctx,
333 int flags);
334 bool tls_free_partial_record(struct sock *sk, struct tls_context *ctx);
336 static inline struct tls_msg *tls_msg(struct sk_buff *skb)
338 return (struct tls_msg *)strp_msg(skb);
341 static inline bool tls_is_partially_sent_record(struct tls_context *ctx)
343 return !!ctx->partially_sent_record;
346 static inline int tls_complete_pending_work(struct sock *sk,
347 struct tls_context *ctx,
348 int flags, long *timeo)
350 int rc = 0;
352 if (unlikely(sk->sk_write_pending))
353 rc = wait_on_pending_writer(sk, timeo);
355 if (!rc && tls_is_partially_sent_record(ctx))
356 rc = tls_push_partial_record(sk, ctx, flags);
358 return rc;
361 static inline bool tls_is_pending_open_record(struct tls_context *tls_ctx)
363 return tls_ctx->pending_open_record_frags;
366 static inline bool is_tx_ready(struct tls_sw_context_tx *ctx)
368 struct tls_rec *rec;
370 rec = list_first_entry(&ctx->tx_list, struct tls_rec, list);
371 if (!rec)
372 return false;
374 return READ_ONCE(rec->tx_ready);
377 struct sk_buff *
378 tls_validate_xmit_skb(struct sock *sk, struct net_device *dev,
379 struct sk_buff *skb);
381 static inline bool tls_is_sk_tx_device_offloaded(struct sock *sk)
383 #ifdef CONFIG_SOCK_VALIDATE_XMIT
384 return sk_fullsock(sk) &&
385 (smp_load_acquire(&sk->sk_validate_xmit_skb) ==
386 &tls_validate_xmit_skb);
387 #else
388 return false;
389 #endif
392 static inline void tls_err_abort(struct sock *sk, int err)
394 sk->sk_err = err;
395 sk->sk_error_report(sk);
398 static inline bool tls_bigint_increment(unsigned char *seq, int len)
400 int i;
402 for (i = len - 1; i >= 0; i--) {
403 ++seq[i];
404 if (seq[i] != 0)
405 break;
408 return (i == -1);
411 static inline struct tls_context *tls_get_ctx(const struct sock *sk)
413 struct inet_connection_sock *icsk = inet_csk(sk);
415 return icsk->icsk_ulp_data;
418 static inline void tls_advance_record_sn(struct sock *sk,
419 struct cipher_context *ctx,
420 int version)
422 struct tls_context *tls_ctx = tls_get_ctx(sk);
423 struct tls_prot_info *prot = &tls_ctx->prot_info;
425 if (tls_bigint_increment(ctx->rec_seq, prot->rec_seq_size))
426 tls_err_abort(sk, EBADMSG);
428 if (version != TLS_1_3_VERSION) {
429 tls_bigint_increment(ctx->iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
430 prot->iv_size);
434 static inline void tls_fill_prepend(struct tls_context *ctx,
435 char *buf,
436 size_t plaintext_len,
437 unsigned char record_type,
438 int version)
440 struct tls_prot_info *prot = &ctx->prot_info;
441 size_t pkt_len, iv_size = prot->iv_size;
443 pkt_len = plaintext_len + prot->tag_size;
444 if (version != TLS_1_3_VERSION) {
445 pkt_len += iv_size;
447 memcpy(buf + TLS_NONCE_OFFSET,
448 ctx->tx.iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE, iv_size);
451 /* we cover nonce explicit here as well, so buf should be of
452 * size KTLS_DTLS_HEADER_SIZE + KTLS_DTLS_NONCE_EXPLICIT_SIZE
454 buf[0] = version == TLS_1_3_VERSION ?
455 TLS_RECORD_TYPE_DATA : record_type;
456 /* Note that VERSION must be TLS_1_2 for both TLS1.2 and TLS1.3 */
457 buf[1] = TLS_1_2_VERSION_MINOR;
458 buf[2] = TLS_1_2_VERSION_MAJOR;
459 /* we can use IV for nonce explicit according to spec */
460 buf[3] = pkt_len >> 8;
461 buf[4] = pkt_len & 0xFF;
464 static inline void tls_make_aad(char *buf,
465 size_t size,
466 char *record_sequence,
467 int record_sequence_size,
468 unsigned char record_type,
469 int version)
471 if (version != TLS_1_3_VERSION) {
472 memcpy(buf, record_sequence, record_sequence_size);
473 buf += 8;
474 } else {
475 size += TLS_CIPHER_AES_GCM_128_TAG_SIZE;
478 buf[0] = version == TLS_1_3_VERSION ?
479 TLS_RECORD_TYPE_DATA : record_type;
480 buf[1] = TLS_1_2_VERSION_MAJOR;
481 buf[2] = TLS_1_2_VERSION_MINOR;
482 buf[3] = size >> 8;
483 buf[4] = size & 0xFF;
486 static inline void xor_iv_with_seq(int version, char *iv, char *seq)
488 int i;
490 if (version == TLS_1_3_VERSION) {
491 for (i = 0; i < 8; i++)
492 iv[i + 4] ^= seq[i];
497 static inline struct tls_sw_context_rx *tls_sw_ctx_rx(
498 const struct tls_context *tls_ctx)
500 return (struct tls_sw_context_rx *)tls_ctx->priv_ctx_rx;
503 static inline struct tls_sw_context_tx *tls_sw_ctx_tx(
504 const struct tls_context *tls_ctx)
506 return (struct tls_sw_context_tx *)tls_ctx->priv_ctx_tx;
509 static inline struct tls_offload_context_tx *
510 tls_offload_ctx_tx(const struct tls_context *tls_ctx)
512 return (struct tls_offload_context_tx *)tls_ctx->priv_ctx_tx;
515 static inline bool tls_sw_has_ctx_tx(const struct sock *sk)
517 struct tls_context *ctx = tls_get_ctx(sk);
519 if (!ctx)
520 return false;
521 return !!tls_sw_ctx_tx(ctx);
524 void tls_sw_write_space(struct sock *sk, struct tls_context *ctx);
525 void tls_device_write_space(struct sock *sk, struct tls_context *ctx);
527 static inline struct tls_offload_context_rx *
528 tls_offload_ctx_rx(const struct tls_context *tls_ctx)
530 return (struct tls_offload_context_rx *)tls_ctx->priv_ctx_rx;
533 /* The TLS context is valid until sk_destruct is called */
534 static inline void tls_offload_rx_resync_request(struct sock *sk, __be32 seq)
536 struct tls_context *tls_ctx = tls_get_ctx(sk);
537 struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx);
539 atomic64_set(&rx_ctx->resync_req, ((((uint64_t)seq) << 32) | 1));
543 int tls_proccess_cmsg(struct sock *sk, struct msghdr *msg,
544 unsigned char *record_type);
545 void tls_register_device(struct tls_device *device);
546 void tls_unregister_device(struct tls_device *device);
547 int tls_device_decrypted(struct sock *sk, struct sk_buff *skb);
548 int decrypt_skb(struct sock *sk, struct sk_buff *skb,
549 struct scatterlist *sgout);
551 struct sk_buff *tls_validate_xmit_skb(struct sock *sk,
552 struct net_device *dev,
553 struct sk_buff *skb);
555 int tls_sw_fallback_init(struct sock *sk,
556 struct tls_offload_context_tx *offload_ctx,
557 struct tls_crypto_info *crypto_info);
559 int tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx);
561 void tls_device_offload_cleanup_rx(struct sock *sk);
562 void handle_device_resync(struct sock *sk, u32 seq, u64 rcd_sn);
564 #endif /* _TLS_OFFLOAD_H */