Linux 4.19.15
[linux/fpc-iii.git] / block / partition-generic.c
blobd3d14e81fb12dc3cc518852d5c7ca33054e42756
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Code extracted from drivers/block/genhd.c
4 * Copyright (C) 1991-1998 Linus Torvalds
5 * Re-organised Feb 1998 Russell King
7 * We now have independent partition support from the
8 * block drivers, which allows all the partition code to
9 * be grouped in one location, and it to be mostly self
10 * contained.
13 #include <linux/init.h>
14 #include <linux/module.h>
15 #include <linux/fs.h>
16 #include <linux/slab.h>
17 #include <linux/kmod.h>
18 #include <linux/ctype.h>
19 #include <linux/genhd.h>
20 #include <linux/blktrace_api.h>
22 #include "partitions/check.h"
24 #ifdef CONFIG_BLK_DEV_MD
25 extern void md_autodetect_dev(dev_t dev);
26 #endif
29 * disk_name() is used by partition check code and the genhd driver.
30 * It formats the devicename of the indicated disk into
31 * the supplied buffer (of size at least 32), and returns
32 * a pointer to that same buffer (for convenience).
35 char *disk_name(struct gendisk *hd, int partno, char *buf)
37 if (!partno)
38 snprintf(buf, BDEVNAME_SIZE, "%s", hd->disk_name);
39 else if (isdigit(hd->disk_name[strlen(hd->disk_name)-1]))
40 snprintf(buf, BDEVNAME_SIZE, "%sp%d", hd->disk_name, partno);
41 else
42 snprintf(buf, BDEVNAME_SIZE, "%s%d", hd->disk_name, partno);
44 return buf;
47 const char *bdevname(struct block_device *bdev, char *buf)
49 return disk_name(bdev->bd_disk, bdev->bd_part->partno, buf);
52 EXPORT_SYMBOL(bdevname);
54 const char *bio_devname(struct bio *bio, char *buf)
56 return disk_name(bio->bi_disk, bio->bi_partno, buf);
58 EXPORT_SYMBOL(bio_devname);
61 * There's very little reason to use this, you should really
62 * have a struct block_device just about everywhere and use
63 * bdevname() instead.
65 const char *__bdevname(dev_t dev, char *buffer)
67 scnprintf(buffer, BDEVNAME_SIZE, "unknown-block(%u,%u)",
68 MAJOR(dev), MINOR(dev));
69 return buffer;
72 EXPORT_SYMBOL(__bdevname);
74 static ssize_t part_partition_show(struct device *dev,
75 struct device_attribute *attr, char *buf)
77 struct hd_struct *p = dev_to_part(dev);
79 return sprintf(buf, "%d\n", p->partno);
82 static ssize_t part_start_show(struct device *dev,
83 struct device_attribute *attr, char *buf)
85 struct hd_struct *p = dev_to_part(dev);
87 return sprintf(buf, "%llu\n",(unsigned long long)p->start_sect);
90 ssize_t part_size_show(struct device *dev,
91 struct device_attribute *attr, char *buf)
93 struct hd_struct *p = dev_to_part(dev);
94 return sprintf(buf, "%llu\n",(unsigned long long)part_nr_sects_read(p));
97 static ssize_t part_ro_show(struct device *dev,
98 struct device_attribute *attr, char *buf)
100 struct hd_struct *p = dev_to_part(dev);
101 return sprintf(buf, "%d\n", p->policy ? 1 : 0);
104 static ssize_t part_alignment_offset_show(struct device *dev,
105 struct device_attribute *attr, char *buf)
107 struct hd_struct *p = dev_to_part(dev);
108 return sprintf(buf, "%llu\n", (unsigned long long)p->alignment_offset);
111 static ssize_t part_discard_alignment_show(struct device *dev,
112 struct device_attribute *attr, char *buf)
114 struct hd_struct *p = dev_to_part(dev);
115 return sprintf(buf, "%u\n", p->discard_alignment);
118 ssize_t part_stat_show(struct device *dev,
119 struct device_attribute *attr, char *buf)
121 struct hd_struct *p = dev_to_part(dev);
122 struct request_queue *q = part_to_disk(p)->queue;
123 unsigned int inflight[2];
124 int cpu;
126 cpu = part_stat_lock();
127 part_round_stats(q, cpu, p);
128 part_stat_unlock();
129 part_in_flight(q, p, inflight);
130 return sprintf(buf,
131 "%8lu %8lu %8llu %8u "
132 "%8lu %8lu %8llu %8u "
133 "%8u %8u %8u "
134 "%8lu %8lu %8llu %8u"
135 "\n",
136 part_stat_read(p, ios[STAT_READ]),
137 part_stat_read(p, merges[STAT_READ]),
138 (unsigned long long)part_stat_read(p, sectors[STAT_READ]),
139 (unsigned int)part_stat_read_msecs(p, STAT_READ),
140 part_stat_read(p, ios[STAT_WRITE]),
141 part_stat_read(p, merges[STAT_WRITE]),
142 (unsigned long long)part_stat_read(p, sectors[STAT_WRITE]),
143 (unsigned int)part_stat_read_msecs(p, STAT_WRITE),
144 inflight[0],
145 jiffies_to_msecs(part_stat_read(p, io_ticks)),
146 jiffies_to_msecs(part_stat_read(p, time_in_queue)),
147 part_stat_read(p, ios[STAT_DISCARD]),
148 part_stat_read(p, merges[STAT_DISCARD]),
149 (unsigned long long)part_stat_read(p, sectors[STAT_DISCARD]),
150 (unsigned int)part_stat_read_msecs(p, STAT_DISCARD));
153 ssize_t part_inflight_show(struct device *dev, struct device_attribute *attr,
154 char *buf)
156 struct hd_struct *p = dev_to_part(dev);
157 struct request_queue *q = part_to_disk(p)->queue;
158 unsigned int inflight[2];
160 part_in_flight_rw(q, p, inflight);
161 return sprintf(buf, "%8u %8u\n", inflight[0], inflight[1]);
164 #ifdef CONFIG_FAIL_MAKE_REQUEST
165 ssize_t part_fail_show(struct device *dev,
166 struct device_attribute *attr, char *buf)
168 struct hd_struct *p = dev_to_part(dev);
170 return sprintf(buf, "%d\n", p->make_it_fail);
173 ssize_t part_fail_store(struct device *dev,
174 struct device_attribute *attr,
175 const char *buf, size_t count)
177 struct hd_struct *p = dev_to_part(dev);
178 int i;
180 if (count > 0 && sscanf(buf, "%d", &i) > 0)
181 p->make_it_fail = (i == 0) ? 0 : 1;
183 return count;
185 #endif
187 static DEVICE_ATTR(partition, 0444, part_partition_show, NULL);
188 static DEVICE_ATTR(start, 0444, part_start_show, NULL);
189 static DEVICE_ATTR(size, 0444, part_size_show, NULL);
190 static DEVICE_ATTR(ro, 0444, part_ro_show, NULL);
191 static DEVICE_ATTR(alignment_offset, 0444, part_alignment_offset_show, NULL);
192 static DEVICE_ATTR(discard_alignment, 0444, part_discard_alignment_show, NULL);
193 static DEVICE_ATTR(stat, 0444, part_stat_show, NULL);
194 static DEVICE_ATTR(inflight, 0444, part_inflight_show, NULL);
195 #ifdef CONFIG_FAIL_MAKE_REQUEST
196 static struct device_attribute dev_attr_fail =
197 __ATTR(make-it-fail, 0644, part_fail_show, part_fail_store);
198 #endif
200 static struct attribute *part_attrs[] = {
201 &dev_attr_partition.attr,
202 &dev_attr_start.attr,
203 &dev_attr_size.attr,
204 &dev_attr_ro.attr,
205 &dev_attr_alignment_offset.attr,
206 &dev_attr_discard_alignment.attr,
207 &dev_attr_stat.attr,
208 &dev_attr_inflight.attr,
209 #ifdef CONFIG_FAIL_MAKE_REQUEST
210 &dev_attr_fail.attr,
211 #endif
212 NULL
215 static struct attribute_group part_attr_group = {
216 .attrs = part_attrs,
219 static const struct attribute_group *part_attr_groups[] = {
220 &part_attr_group,
221 #ifdef CONFIG_BLK_DEV_IO_TRACE
222 &blk_trace_attr_group,
223 #endif
224 NULL
227 static void part_release(struct device *dev)
229 struct hd_struct *p = dev_to_part(dev);
230 blk_free_devt(dev->devt);
231 hd_free_part(p);
232 kfree(p);
235 static int part_uevent(struct device *dev, struct kobj_uevent_env *env)
237 struct hd_struct *part = dev_to_part(dev);
239 add_uevent_var(env, "PARTN=%u", part->partno);
240 if (part->info && part->info->volname[0])
241 add_uevent_var(env, "PARTNAME=%s", part->info->volname);
242 return 0;
245 struct device_type part_type = {
246 .name = "partition",
247 .groups = part_attr_groups,
248 .release = part_release,
249 .uevent = part_uevent,
252 static void delete_partition_rcu_cb(struct rcu_head *head)
254 struct hd_struct *part = container_of(head, struct hd_struct, rcu_head);
256 part->start_sect = 0;
257 part->nr_sects = 0;
258 part_stat_set_all(part, 0);
259 put_device(part_to_dev(part));
262 void __delete_partition(struct percpu_ref *ref)
264 struct hd_struct *part = container_of(ref, struct hd_struct, ref);
265 call_rcu(&part->rcu_head, delete_partition_rcu_cb);
269 * Must be called either with bd_mutex held, before a disk can be opened or
270 * after all disk users are gone.
272 void delete_partition(struct gendisk *disk, int partno)
274 struct disk_part_tbl *ptbl =
275 rcu_dereference_protected(disk->part_tbl, 1);
276 struct hd_struct *part;
278 if (partno >= ptbl->len)
279 return;
281 part = rcu_dereference_protected(ptbl->part[partno], 1);
282 if (!part)
283 return;
285 rcu_assign_pointer(ptbl->part[partno], NULL);
286 rcu_assign_pointer(ptbl->last_lookup, NULL);
287 kobject_put(part->holder_dir);
288 device_del(part_to_dev(part));
290 hd_struct_kill(part);
293 static ssize_t whole_disk_show(struct device *dev,
294 struct device_attribute *attr, char *buf)
296 return 0;
298 static DEVICE_ATTR(whole_disk, 0444, whole_disk_show, NULL);
301 * Must be called either with bd_mutex held, before a disk can be opened or
302 * after all disk users are gone.
304 struct hd_struct *add_partition(struct gendisk *disk, int partno,
305 sector_t start, sector_t len, int flags,
306 struct partition_meta_info *info)
308 struct hd_struct *p;
309 dev_t devt = MKDEV(0, 0);
310 struct device *ddev = disk_to_dev(disk);
311 struct device *pdev;
312 struct disk_part_tbl *ptbl;
313 const char *dname;
314 int err;
316 err = disk_expand_part_tbl(disk, partno);
317 if (err)
318 return ERR_PTR(err);
319 ptbl = rcu_dereference_protected(disk->part_tbl, 1);
321 if (ptbl->part[partno])
322 return ERR_PTR(-EBUSY);
324 p = kzalloc(sizeof(*p), GFP_KERNEL);
325 if (!p)
326 return ERR_PTR(-EBUSY);
328 if (!init_part_stats(p)) {
329 err = -ENOMEM;
330 goto out_free;
333 seqcount_init(&p->nr_sects_seq);
334 pdev = part_to_dev(p);
336 p->start_sect = start;
337 p->alignment_offset =
338 queue_limit_alignment_offset(&disk->queue->limits, start);
339 p->discard_alignment =
340 queue_limit_discard_alignment(&disk->queue->limits, start);
341 p->nr_sects = len;
342 p->partno = partno;
343 p->policy = get_disk_ro(disk);
345 if (info) {
346 struct partition_meta_info *pinfo = alloc_part_info(disk);
347 if (!pinfo) {
348 err = -ENOMEM;
349 goto out_free_stats;
351 memcpy(pinfo, info, sizeof(*info));
352 p->info = pinfo;
355 dname = dev_name(ddev);
356 if (isdigit(dname[strlen(dname) - 1]))
357 dev_set_name(pdev, "%sp%d", dname, partno);
358 else
359 dev_set_name(pdev, "%s%d", dname, partno);
361 device_initialize(pdev);
362 pdev->class = &block_class;
363 pdev->type = &part_type;
364 pdev->parent = ddev;
366 err = blk_alloc_devt(p, &devt);
367 if (err)
368 goto out_free_info;
369 pdev->devt = devt;
371 /* delay uevent until 'holders' subdir is created */
372 dev_set_uevent_suppress(pdev, 1);
373 err = device_add(pdev);
374 if (err)
375 goto out_put;
377 err = -ENOMEM;
378 p->holder_dir = kobject_create_and_add("holders", &pdev->kobj);
379 if (!p->holder_dir)
380 goto out_del;
382 dev_set_uevent_suppress(pdev, 0);
383 if (flags & ADDPART_FLAG_WHOLEDISK) {
384 err = device_create_file(pdev, &dev_attr_whole_disk);
385 if (err)
386 goto out_del;
389 err = hd_ref_init(p);
390 if (err) {
391 if (flags & ADDPART_FLAG_WHOLEDISK)
392 goto out_remove_file;
393 goto out_del;
396 /* everything is up and running, commence */
397 rcu_assign_pointer(ptbl->part[partno], p);
399 /* suppress uevent if the disk suppresses it */
400 if (!dev_get_uevent_suppress(ddev))
401 kobject_uevent(&pdev->kobj, KOBJ_ADD);
402 return p;
404 out_free_info:
405 free_part_info(p);
406 out_free_stats:
407 free_part_stats(p);
408 out_free:
409 kfree(p);
410 return ERR_PTR(err);
411 out_remove_file:
412 device_remove_file(pdev, &dev_attr_whole_disk);
413 out_del:
414 kobject_put(p->holder_dir);
415 device_del(pdev);
416 out_put:
417 put_device(pdev);
418 return ERR_PTR(err);
421 static bool disk_unlock_native_capacity(struct gendisk *disk)
423 const struct block_device_operations *bdops = disk->fops;
425 if (bdops->unlock_native_capacity &&
426 !(disk->flags & GENHD_FL_NATIVE_CAPACITY)) {
427 printk(KERN_CONT "enabling native capacity\n");
428 bdops->unlock_native_capacity(disk);
429 disk->flags |= GENHD_FL_NATIVE_CAPACITY;
430 return true;
431 } else {
432 printk(KERN_CONT "truncated\n");
433 return false;
437 static int drop_partitions(struct gendisk *disk, struct block_device *bdev)
439 struct disk_part_iter piter;
440 struct hd_struct *part;
441 int res;
443 if (bdev->bd_part_count || bdev->bd_super)
444 return -EBUSY;
445 res = invalidate_partition(disk, 0);
446 if (res)
447 return res;
449 disk_part_iter_init(&piter, disk, DISK_PITER_INCL_EMPTY);
450 while ((part = disk_part_iter_next(&piter)))
451 delete_partition(disk, part->partno);
452 disk_part_iter_exit(&piter);
454 return 0;
457 static bool part_zone_aligned(struct gendisk *disk,
458 struct block_device *bdev,
459 sector_t from, sector_t size)
461 unsigned int zone_sectors = bdev_zone_sectors(bdev);
464 * If this function is called, then the disk is a zoned block device
465 * (host-aware or host-managed). This can be detected even if the
466 * zoned block device support is disabled (CONFIG_BLK_DEV_ZONED not
467 * set). In this case, however, only host-aware devices will be seen
468 * as a block device is not created for host-managed devices. Without
469 * zoned block device support, host-aware drives can still be used as
470 * regular block devices (no zone operation) and their zone size will
471 * be reported as 0. Allow this case.
473 if (!zone_sectors)
474 return true;
477 * Check partition start and size alignement. If the drive has a
478 * smaller last runt zone, ignore it and allow the partition to
479 * use it. Check the zone size too: it should be a power of 2 number
480 * of sectors.
482 if (WARN_ON_ONCE(!is_power_of_2(zone_sectors))) {
483 u32 rem;
485 div_u64_rem(from, zone_sectors, &rem);
486 if (rem)
487 return false;
488 if ((from + size) < get_capacity(disk)) {
489 div_u64_rem(size, zone_sectors, &rem);
490 if (rem)
491 return false;
494 } else {
496 if (from & (zone_sectors - 1))
497 return false;
498 if ((from + size) < get_capacity(disk) &&
499 (size & (zone_sectors - 1)))
500 return false;
504 return true;
507 int rescan_partitions(struct gendisk *disk, struct block_device *bdev)
509 struct parsed_partitions *state = NULL;
510 struct hd_struct *part;
511 int p, highest, res;
512 rescan:
513 if (state && !IS_ERR(state)) {
514 free_partitions(state);
515 state = NULL;
518 res = drop_partitions(disk, bdev);
519 if (res)
520 return res;
522 if (disk->fops->revalidate_disk)
523 disk->fops->revalidate_disk(disk);
524 check_disk_size_change(disk, bdev, true);
525 bdev->bd_invalidated = 0;
526 if (!get_capacity(disk) || !(state = check_partition(disk, bdev)))
527 return 0;
528 if (IS_ERR(state)) {
530 * I/O error reading the partition table. If any
531 * partition code tried to read beyond EOD, retry
532 * after unlocking native capacity.
534 if (PTR_ERR(state) == -ENOSPC) {
535 printk(KERN_WARNING "%s: partition table beyond EOD, ",
536 disk->disk_name);
537 if (disk_unlock_native_capacity(disk))
538 goto rescan;
540 return -EIO;
543 * If any partition code tried to read beyond EOD, try
544 * unlocking native capacity even if partition table is
545 * successfully read as we could be missing some partitions.
547 if (state->access_beyond_eod) {
548 printk(KERN_WARNING
549 "%s: partition table partially beyond EOD, ",
550 disk->disk_name);
551 if (disk_unlock_native_capacity(disk))
552 goto rescan;
555 /* tell userspace that the media / partition table may have changed */
556 kobject_uevent(&disk_to_dev(disk)->kobj, KOBJ_CHANGE);
558 /* Detect the highest partition number and preallocate
559 * disk->part_tbl. This is an optimization and not strictly
560 * necessary.
562 for (p = 1, highest = 0; p < state->limit; p++)
563 if (state->parts[p].size)
564 highest = p;
566 disk_expand_part_tbl(disk, highest);
568 /* add partitions */
569 for (p = 1; p < state->limit; p++) {
570 sector_t size, from;
572 size = state->parts[p].size;
573 if (!size)
574 continue;
576 from = state->parts[p].from;
577 if (from >= get_capacity(disk)) {
578 printk(KERN_WARNING
579 "%s: p%d start %llu is beyond EOD, ",
580 disk->disk_name, p, (unsigned long long) from);
581 if (disk_unlock_native_capacity(disk))
582 goto rescan;
583 continue;
586 if (from + size > get_capacity(disk)) {
587 printk(KERN_WARNING
588 "%s: p%d size %llu extends beyond EOD, ",
589 disk->disk_name, p, (unsigned long long) size);
591 if (disk_unlock_native_capacity(disk)) {
592 /* free state and restart */
593 goto rescan;
594 } else {
596 * we can not ignore partitions of broken tables
597 * created by for example camera firmware, but
598 * we limit them to the end of the disk to avoid
599 * creating invalid block devices
601 size = get_capacity(disk) - from;
606 * On a zoned block device, partitions should be aligned on the
607 * device zone size (i.e. zone boundary crossing not allowed).
608 * Otherwise, resetting the write pointer of the last zone of
609 * one partition may impact the following partition.
611 if (bdev_is_zoned(bdev) &&
612 !part_zone_aligned(disk, bdev, from, size)) {
613 printk(KERN_WARNING
614 "%s: p%d start %llu+%llu is not zone aligned\n",
615 disk->disk_name, p, (unsigned long long) from,
616 (unsigned long long) size);
617 continue;
620 part = add_partition(disk, p, from, size,
621 state->parts[p].flags,
622 &state->parts[p].info);
623 if (IS_ERR(part)) {
624 printk(KERN_ERR " %s: p%d could not be added: %ld\n",
625 disk->disk_name, p, -PTR_ERR(part));
626 continue;
628 #ifdef CONFIG_BLK_DEV_MD
629 if (state->parts[p].flags & ADDPART_FLAG_RAID)
630 md_autodetect_dev(part_to_dev(part)->devt);
631 #endif
633 free_partitions(state);
634 return 0;
637 int invalidate_partitions(struct gendisk *disk, struct block_device *bdev)
639 int res;
641 if (!bdev->bd_invalidated)
642 return 0;
644 res = drop_partitions(disk, bdev);
645 if (res)
646 return res;
648 set_capacity(disk, 0);
649 check_disk_size_change(disk, bdev, false);
650 bdev->bd_invalidated = 0;
651 /* tell userspace that the media / partition table may have changed */
652 kobject_uevent(&disk_to_dev(disk)->kobj, KOBJ_CHANGE);
654 return 0;
657 unsigned char *read_dev_sector(struct block_device *bdev, sector_t n, Sector *p)
659 struct address_space *mapping = bdev->bd_inode->i_mapping;
660 struct page *page;
662 page = read_mapping_page(mapping, (pgoff_t)(n >> (PAGE_SHIFT-9)), NULL);
663 if (!IS_ERR(page)) {
664 if (PageError(page))
665 goto fail;
666 p->v = page;
667 return (unsigned char *)page_address(page) + ((n & ((1 << (PAGE_SHIFT - 9)) - 1)) << 9);
668 fail:
669 put_page(page);
671 p->v = NULL;
672 return NULL;
675 EXPORT_SYMBOL(read_dev_sector);