4 * Copyright (C) 1991, 1992 Linus Torvalds
8 * #!-checking implemented by tytso.
11 * Demand-loading implemented 01.12.91 - no need to read anything but
12 * the header into memory. The inode of the executable is put into
13 * "current->executable", and page faults do the actual loading. Clean.
15 * Once more I can proudly say that linux stood up to being changed: it
16 * was less than 2 hours work to get demand-loading completely implemented.
18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
19 * current->executable is only used by the procfs. This allows a dispatch
20 * table to check for several different types of binary formats. We keep
21 * trying until we recognize the file or we run out of supported binary
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
29 #include <linux/stat.h>
30 #include <linux/fcntl.h>
31 #include <linux/swap.h>
32 #include <linux/string.h>
33 #include <linux/init.h>
34 #include <linux/pagemap.h>
35 #include <linux/perf_event.h>
36 #include <linux/highmem.h>
37 #include <linux/spinlock.h>
38 #include <linux/key.h>
39 #include <linux/personality.h>
40 #include <linux/binfmts.h>
41 #include <linux/utsname.h>
42 #include <linux/pid_namespace.h>
43 #include <linux/module.h>
44 #include <linux/namei.h>
45 #include <linux/mount.h>
46 #include <linux/security.h>
47 #include <linux/syscalls.h>
48 #include <linux/tsacct_kern.h>
49 #include <linux/cn_proc.h>
50 #include <linux/audit.h>
51 #include <linux/tracehook.h>
52 #include <linux/kmod.h>
53 #include <linux/fsnotify.h>
54 #include <linux/fs_struct.h>
55 #include <linux/pipe_fs_i.h>
56 #include <linux/oom.h>
57 #include <linux/compat.h>
59 #include <asm/uaccess.h>
60 #include <asm/mmu_context.h>
65 char core_pattern
[CORENAME_MAX_SIZE
] = "core";
66 unsigned int core_pipe_limit
;
67 int suid_dumpable
= 0;
73 static atomic_t call_count
= ATOMIC_INIT(1);
75 /* The maximal length of core_pattern is also specified in sysctl.c */
77 static LIST_HEAD(formats
);
78 static DEFINE_RWLOCK(binfmt_lock
);
80 int __register_binfmt(struct linux_binfmt
* fmt
, int insert
)
84 write_lock(&binfmt_lock
);
85 insert
? list_add(&fmt
->lh
, &formats
) :
86 list_add_tail(&fmt
->lh
, &formats
);
87 write_unlock(&binfmt_lock
);
91 EXPORT_SYMBOL(__register_binfmt
);
93 void unregister_binfmt(struct linux_binfmt
* fmt
)
95 write_lock(&binfmt_lock
);
97 write_unlock(&binfmt_lock
);
100 EXPORT_SYMBOL(unregister_binfmt
);
102 static inline void put_binfmt(struct linux_binfmt
* fmt
)
104 module_put(fmt
->module
);
108 * Note that a shared library must be both readable and executable due to
111 * Also note that we take the address to load from from the file itself.
113 SYSCALL_DEFINE1(uselib
, const char __user
*, library
)
116 char *tmp
= getname(library
);
117 int error
= PTR_ERR(tmp
);
118 static const struct open_flags uselib_flags
= {
119 .open_flag
= O_LARGEFILE
| O_RDONLY
| __FMODE_EXEC
,
120 .acc_mode
= MAY_READ
| MAY_EXEC
| MAY_OPEN
,
121 .intent
= LOOKUP_OPEN
127 file
= do_filp_open(AT_FDCWD
, tmp
, &uselib_flags
, LOOKUP_FOLLOW
);
129 error
= PTR_ERR(file
);
134 if (!S_ISREG(file
->f_path
.dentry
->d_inode
->i_mode
))
138 if (file
->f_path
.mnt
->mnt_flags
& MNT_NOEXEC
)
145 struct linux_binfmt
* fmt
;
147 read_lock(&binfmt_lock
);
148 list_for_each_entry(fmt
, &formats
, lh
) {
149 if (!fmt
->load_shlib
)
151 if (!try_module_get(fmt
->module
))
153 read_unlock(&binfmt_lock
);
154 error
= fmt
->load_shlib(file
);
155 read_lock(&binfmt_lock
);
157 if (error
!= -ENOEXEC
)
160 read_unlock(&binfmt_lock
);
170 * The nascent bprm->mm is not visible until exec_mmap() but it can
171 * use a lot of memory, account these pages in current->mm temporary
172 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
173 * change the counter back via acct_arg_size(0).
175 static void acct_arg_size(struct linux_binprm
*bprm
, unsigned long pages
)
177 struct mm_struct
*mm
= current
->mm
;
178 long diff
= (long)(pages
- bprm
->vma_pages
);
183 bprm
->vma_pages
= pages
;
184 add_mm_counter(mm
, MM_ANONPAGES
, diff
);
187 static struct page
*get_arg_page(struct linux_binprm
*bprm
, unsigned long pos
,
193 #ifdef CONFIG_STACK_GROWSUP
195 ret
= expand_downwards(bprm
->vma
, pos
);
200 ret
= get_user_pages(current
, bprm
->mm
, pos
,
201 1, write
, 1, &page
, NULL
);
206 unsigned long size
= bprm
->vma
->vm_end
- bprm
->vma
->vm_start
;
209 acct_arg_size(bprm
, size
/ PAGE_SIZE
);
212 * We've historically supported up to 32 pages (ARG_MAX)
213 * of argument strings even with small stacks
219 * Limit to 1/4-th the stack size for the argv+env strings.
221 * - the remaining binfmt code will not run out of stack space,
222 * - the program will have a reasonable amount of stack left
225 rlim
= current
->signal
->rlim
;
226 if (size
> ACCESS_ONCE(rlim
[RLIMIT_STACK
].rlim_cur
) / 4) {
235 static void put_arg_page(struct page
*page
)
240 static void free_arg_page(struct linux_binprm
*bprm
, int i
)
244 static void free_arg_pages(struct linux_binprm
*bprm
)
248 static void flush_arg_page(struct linux_binprm
*bprm
, unsigned long pos
,
251 flush_cache_page(bprm
->vma
, pos
, page_to_pfn(page
));
254 static int __bprm_mm_init(struct linux_binprm
*bprm
)
257 struct vm_area_struct
*vma
= NULL
;
258 struct mm_struct
*mm
= bprm
->mm
;
260 bprm
->vma
= vma
= kmem_cache_zalloc(vm_area_cachep
, GFP_KERNEL
);
264 down_write(&mm
->mmap_sem
);
268 * Place the stack at the largest stack address the architecture
269 * supports. Later, we'll move this to an appropriate place. We don't
270 * use STACK_TOP because that can depend on attributes which aren't
273 BUILD_BUG_ON(VM_STACK_FLAGS
& VM_STACK_INCOMPLETE_SETUP
);
274 vma
->vm_end
= STACK_TOP_MAX
;
275 vma
->vm_start
= vma
->vm_end
- PAGE_SIZE
;
276 vma
->vm_flags
= VM_STACK_FLAGS
| VM_STACK_INCOMPLETE_SETUP
;
277 vma
->vm_page_prot
= vm_get_page_prot(vma
->vm_flags
);
278 INIT_LIST_HEAD(&vma
->anon_vma_chain
);
280 err
= security_file_mmap(NULL
, 0, 0, 0, vma
->vm_start
, 1);
284 err
= insert_vm_struct(mm
, vma
);
288 mm
->stack_vm
= mm
->total_vm
= 1;
289 up_write(&mm
->mmap_sem
);
290 bprm
->p
= vma
->vm_end
- sizeof(void *);
293 up_write(&mm
->mmap_sem
);
295 kmem_cache_free(vm_area_cachep
, vma
);
299 static bool valid_arg_len(struct linux_binprm
*bprm
, long len
)
301 return len
<= MAX_ARG_STRLEN
;
306 static inline void acct_arg_size(struct linux_binprm
*bprm
, unsigned long pages
)
310 static struct page
*get_arg_page(struct linux_binprm
*bprm
, unsigned long pos
,
315 page
= bprm
->page
[pos
/ PAGE_SIZE
];
316 if (!page
&& write
) {
317 page
= alloc_page(GFP_HIGHUSER
|__GFP_ZERO
);
320 bprm
->page
[pos
/ PAGE_SIZE
] = page
;
326 static void put_arg_page(struct page
*page
)
330 static void free_arg_page(struct linux_binprm
*bprm
, int i
)
333 __free_page(bprm
->page
[i
]);
334 bprm
->page
[i
] = NULL
;
338 static void free_arg_pages(struct linux_binprm
*bprm
)
342 for (i
= 0; i
< MAX_ARG_PAGES
; i
++)
343 free_arg_page(bprm
, i
);
346 static void flush_arg_page(struct linux_binprm
*bprm
, unsigned long pos
,
351 static int __bprm_mm_init(struct linux_binprm
*bprm
)
353 bprm
->p
= PAGE_SIZE
* MAX_ARG_PAGES
- sizeof(void *);
357 static bool valid_arg_len(struct linux_binprm
*bprm
, long len
)
359 return len
<= bprm
->p
;
362 #endif /* CONFIG_MMU */
365 * Create a new mm_struct and populate it with a temporary stack
366 * vm_area_struct. We don't have enough context at this point to set the stack
367 * flags, permissions, and offset, so we use temporary values. We'll update
368 * them later in setup_arg_pages().
370 int bprm_mm_init(struct linux_binprm
*bprm
)
373 struct mm_struct
*mm
= NULL
;
375 bprm
->mm
= mm
= mm_alloc();
380 err
= init_new_context(current
, mm
);
384 err
= __bprm_mm_init(bprm
);
399 struct user_arg_ptr
{
404 const char __user
*const __user
*native
;
406 compat_uptr_t __user
*compat
;
411 static const char __user
*get_user_arg_ptr(struct user_arg_ptr argv
, int nr
)
413 const char __user
*native
;
416 if (unlikely(argv
.is_compat
)) {
417 compat_uptr_t compat
;
419 if (get_user(compat
, argv
.ptr
.compat
+ nr
))
420 return ERR_PTR(-EFAULT
);
422 return compat_ptr(compat
);
426 if (get_user(native
, argv
.ptr
.native
+ nr
))
427 return ERR_PTR(-EFAULT
);
433 * count() counts the number of strings in array ARGV.
435 static int count(struct user_arg_ptr argv
, int max
)
439 if (argv
.ptr
.native
!= NULL
) {
441 const char __user
*p
= get_user_arg_ptr(argv
, i
);
452 if (fatal_signal_pending(current
))
453 return -ERESTARTNOHAND
;
461 * 'copy_strings()' copies argument/environment strings from the old
462 * processes's memory to the new process's stack. The call to get_user_pages()
463 * ensures the destination page is created and not swapped out.
465 static int copy_strings(int argc
, struct user_arg_ptr argv
,
466 struct linux_binprm
*bprm
)
468 struct page
*kmapped_page
= NULL
;
470 unsigned long kpos
= 0;
474 const char __user
*str
;
479 str
= get_user_arg_ptr(argv
, argc
);
483 len
= strnlen_user(str
, MAX_ARG_STRLEN
);
488 if (!valid_arg_len(bprm
, len
))
491 /* We're going to work our way backwords. */
497 int offset
, bytes_to_copy
;
499 if (fatal_signal_pending(current
)) {
500 ret
= -ERESTARTNOHAND
;
505 offset
= pos
% PAGE_SIZE
;
509 bytes_to_copy
= offset
;
510 if (bytes_to_copy
> len
)
513 offset
-= bytes_to_copy
;
514 pos
-= bytes_to_copy
;
515 str
-= bytes_to_copy
;
516 len
-= bytes_to_copy
;
518 if (!kmapped_page
|| kpos
!= (pos
& PAGE_MASK
)) {
521 page
= get_arg_page(bprm
, pos
, 1);
528 flush_kernel_dcache_page(kmapped_page
);
529 kunmap(kmapped_page
);
530 put_arg_page(kmapped_page
);
533 kaddr
= kmap(kmapped_page
);
534 kpos
= pos
& PAGE_MASK
;
535 flush_arg_page(bprm
, kpos
, kmapped_page
);
537 if (copy_from_user(kaddr
+offset
, str
, bytes_to_copy
)) {
546 flush_kernel_dcache_page(kmapped_page
);
547 kunmap(kmapped_page
);
548 put_arg_page(kmapped_page
);
554 * Like copy_strings, but get argv and its values from kernel memory.
556 int copy_strings_kernel(int argc
, const char *const *__argv
,
557 struct linux_binprm
*bprm
)
560 mm_segment_t oldfs
= get_fs();
561 struct user_arg_ptr argv
= {
562 .ptr
.native
= (const char __user
*const __user
*)__argv
,
566 r
= copy_strings(argc
, argv
, bprm
);
571 EXPORT_SYMBOL(copy_strings_kernel
);
576 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
577 * the binfmt code determines where the new stack should reside, we shift it to
578 * its final location. The process proceeds as follows:
580 * 1) Use shift to calculate the new vma endpoints.
581 * 2) Extend vma to cover both the old and new ranges. This ensures the
582 * arguments passed to subsequent functions are consistent.
583 * 3) Move vma's page tables to the new range.
584 * 4) Free up any cleared pgd range.
585 * 5) Shrink the vma to cover only the new range.
587 static int shift_arg_pages(struct vm_area_struct
*vma
, unsigned long shift
)
589 struct mm_struct
*mm
= vma
->vm_mm
;
590 unsigned long old_start
= vma
->vm_start
;
591 unsigned long old_end
= vma
->vm_end
;
592 unsigned long length
= old_end
- old_start
;
593 unsigned long new_start
= old_start
- shift
;
594 unsigned long new_end
= old_end
- shift
;
595 struct mmu_gather tlb
;
597 BUG_ON(new_start
> new_end
);
600 * ensure there are no vmas between where we want to go
603 if (vma
!= find_vma(mm
, new_start
))
607 * cover the whole range: [new_start, old_end)
609 if (vma_adjust(vma
, new_start
, old_end
, vma
->vm_pgoff
, NULL
))
613 * move the page tables downwards, on failure we rely on
614 * process cleanup to remove whatever mess we made.
616 if (length
!= move_page_tables(vma
, old_start
,
617 vma
, new_start
, length
))
621 tlb_gather_mmu(&tlb
, mm
, 0);
622 if (new_end
> old_start
) {
624 * when the old and new regions overlap clear from new_end.
626 free_pgd_range(&tlb
, new_end
, old_end
, new_end
,
627 vma
->vm_next
? vma
->vm_next
->vm_start
: 0);
630 * otherwise, clean from old_start; this is done to not touch
631 * the address space in [new_end, old_start) some architectures
632 * have constraints on va-space that make this illegal (IA64) -
633 * for the others its just a little faster.
635 free_pgd_range(&tlb
, old_start
, old_end
, new_end
,
636 vma
->vm_next
? vma
->vm_next
->vm_start
: 0);
638 tlb_finish_mmu(&tlb
, new_end
, old_end
);
641 * Shrink the vma to just the new range. Always succeeds.
643 vma_adjust(vma
, new_start
, new_end
, vma
->vm_pgoff
, NULL
);
649 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
650 * the stack is optionally relocated, and some extra space is added.
652 int setup_arg_pages(struct linux_binprm
*bprm
,
653 unsigned long stack_top
,
654 int executable_stack
)
657 unsigned long stack_shift
;
658 struct mm_struct
*mm
= current
->mm
;
659 struct vm_area_struct
*vma
= bprm
->vma
;
660 struct vm_area_struct
*prev
= NULL
;
661 unsigned long vm_flags
;
662 unsigned long stack_base
;
663 unsigned long stack_size
;
664 unsigned long stack_expand
;
665 unsigned long rlim_stack
;
667 #ifdef CONFIG_STACK_GROWSUP
668 /* Limit stack size to 1GB */
669 stack_base
= rlimit_max(RLIMIT_STACK
);
670 if (stack_base
> (1 << 30))
671 stack_base
= 1 << 30;
673 /* Make sure we didn't let the argument array grow too large. */
674 if (vma
->vm_end
- vma
->vm_start
> stack_base
)
677 stack_base
= PAGE_ALIGN(stack_top
- stack_base
);
679 stack_shift
= vma
->vm_start
- stack_base
;
680 mm
->arg_start
= bprm
->p
- stack_shift
;
681 bprm
->p
= vma
->vm_end
- stack_shift
;
683 stack_top
= arch_align_stack(stack_top
);
684 stack_top
= PAGE_ALIGN(stack_top
);
686 if (unlikely(stack_top
< mmap_min_addr
) ||
687 unlikely(vma
->vm_end
- vma
->vm_start
>= stack_top
- mmap_min_addr
))
690 stack_shift
= vma
->vm_end
- stack_top
;
692 bprm
->p
-= stack_shift
;
693 mm
->arg_start
= bprm
->p
;
697 bprm
->loader
-= stack_shift
;
698 bprm
->exec
-= stack_shift
;
700 down_write(&mm
->mmap_sem
);
701 vm_flags
= VM_STACK_FLAGS
;
704 * Adjust stack execute permissions; explicitly enable for
705 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
706 * (arch default) otherwise.
708 if (unlikely(executable_stack
== EXSTACK_ENABLE_X
))
710 else if (executable_stack
== EXSTACK_DISABLE_X
)
711 vm_flags
&= ~VM_EXEC
;
712 vm_flags
|= mm
->def_flags
;
713 vm_flags
|= VM_STACK_INCOMPLETE_SETUP
;
715 ret
= mprotect_fixup(vma
, &prev
, vma
->vm_start
, vma
->vm_end
,
721 /* Move stack pages down in memory. */
723 ret
= shift_arg_pages(vma
, stack_shift
);
728 /* mprotect_fixup is overkill to remove the temporary stack flags */
729 vma
->vm_flags
&= ~VM_STACK_INCOMPLETE_SETUP
;
731 stack_expand
= 131072UL; /* randomly 32*4k (or 2*64k) pages */
732 stack_size
= vma
->vm_end
- vma
->vm_start
;
734 * Align this down to a page boundary as expand_stack
737 rlim_stack
= rlimit(RLIMIT_STACK
) & PAGE_MASK
;
738 #ifdef CONFIG_STACK_GROWSUP
739 if (stack_size
+ stack_expand
> rlim_stack
)
740 stack_base
= vma
->vm_start
+ rlim_stack
;
742 stack_base
= vma
->vm_end
+ stack_expand
;
744 if (stack_size
+ stack_expand
> rlim_stack
)
745 stack_base
= vma
->vm_end
- rlim_stack
;
747 stack_base
= vma
->vm_start
- stack_expand
;
749 current
->mm
->start_stack
= bprm
->p
;
750 ret
= expand_stack(vma
, stack_base
);
755 up_write(&mm
->mmap_sem
);
758 EXPORT_SYMBOL(setup_arg_pages
);
760 #endif /* CONFIG_MMU */
762 struct file
*open_exec(const char *name
)
766 static const struct open_flags open_exec_flags
= {
767 .open_flag
= O_LARGEFILE
| O_RDONLY
| __FMODE_EXEC
,
768 .acc_mode
= MAY_EXEC
| MAY_OPEN
,
769 .intent
= LOOKUP_OPEN
772 file
= do_filp_open(AT_FDCWD
, name
, &open_exec_flags
, LOOKUP_FOLLOW
);
777 if (!S_ISREG(file
->f_path
.dentry
->d_inode
->i_mode
))
780 if (file
->f_path
.mnt
->mnt_flags
& MNT_NOEXEC
)
785 err
= deny_write_access(file
);
796 EXPORT_SYMBOL(open_exec
);
798 int kernel_read(struct file
*file
, loff_t offset
,
799 char *addr
, unsigned long count
)
807 /* The cast to a user pointer is valid due to the set_fs() */
808 result
= vfs_read(file
, (void __user
*)addr
, count
, &pos
);
813 EXPORT_SYMBOL(kernel_read
);
815 static int exec_mmap(struct mm_struct
*mm
)
817 struct task_struct
*tsk
;
818 struct mm_struct
* old_mm
, *active_mm
;
820 /* Notify parent that we're no longer interested in the old VM */
822 old_mm
= current
->mm
;
823 sync_mm_rss(tsk
, old_mm
);
824 mm_release(tsk
, old_mm
);
828 * Make sure that if there is a core dump in progress
829 * for the old mm, we get out and die instead of going
830 * through with the exec. We must hold mmap_sem around
831 * checking core_state and changing tsk->mm.
833 down_read(&old_mm
->mmap_sem
);
834 if (unlikely(old_mm
->core_state
)) {
835 up_read(&old_mm
->mmap_sem
);
840 active_mm
= tsk
->active_mm
;
843 activate_mm(active_mm
, mm
);
845 arch_pick_mmap_layout(mm
);
847 up_read(&old_mm
->mmap_sem
);
848 BUG_ON(active_mm
!= old_mm
);
849 mm_update_next_owner(old_mm
);
858 * This function makes sure the current process has its own signal table,
859 * so that flush_signal_handlers can later reset the handlers without
860 * disturbing other processes. (Other processes might share the signal
861 * table via the CLONE_SIGHAND option to clone().)
863 static int de_thread(struct task_struct
*tsk
)
865 struct signal_struct
*sig
= tsk
->signal
;
866 struct sighand_struct
*oldsighand
= tsk
->sighand
;
867 spinlock_t
*lock
= &oldsighand
->siglock
;
869 if (thread_group_empty(tsk
))
870 goto no_thread_group
;
873 * Kill all other threads in the thread group.
876 if (signal_group_exit(sig
)) {
878 * Another group action in progress, just
879 * return so that the signal is processed.
881 spin_unlock_irq(lock
);
885 sig
->group_exit_task
= tsk
;
886 sig
->notify_count
= zap_other_threads(tsk
);
887 if (!thread_group_leader(tsk
))
890 while (sig
->notify_count
) {
891 __set_current_state(TASK_UNINTERRUPTIBLE
);
892 spin_unlock_irq(lock
);
896 spin_unlock_irq(lock
);
899 * At this point all other threads have exited, all we have to
900 * do is to wait for the thread group leader to become inactive,
901 * and to assume its PID:
903 if (!thread_group_leader(tsk
)) {
904 struct task_struct
*leader
= tsk
->group_leader
;
906 sig
->notify_count
= -1; /* for exit_notify() */
908 write_lock_irq(&tasklist_lock
);
909 if (likely(leader
->exit_state
))
911 __set_current_state(TASK_UNINTERRUPTIBLE
);
912 write_unlock_irq(&tasklist_lock
);
917 * The only record we have of the real-time age of a
918 * process, regardless of execs it's done, is start_time.
919 * All the past CPU time is accumulated in signal_struct
920 * from sister threads now dead. But in this non-leader
921 * exec, nothing survives from the original leader thread,
922 * whose birth marks the true age of this process now.
923 * When we take on its identity by switching to its PID, we
924 * also take its birthdate (always earlier than our own).
926 tsk
->start_time
= leader
->start_time
;
928 BUG_ON(!same_thread_group(leader
, tsk
));
929 BUG_ON(has_group_leader_pid(tsk
));
931 * An exec() starts a new thread group with the
932 * TGID of the previous thread group. Rehash the
933 * two threads with a switched PID, and release
934 * the former thread group leader:
937 /* Become a process group leader with the old leader's pid.
938 * The old leader becomes a thread of the this thread group.
939 * Note: The old leader also uses this pid until release_task
940 * is called. Odd but simple and correct.
942 detach_pid(tsk
, PIDTYPE_PID
);
943 tsk
->pid
= leader
->pid
;
944 attach_pid(tsk
, PIDTYPE_PID
, task_pid(leader
));
945 transfer_pid(leader
, tsk
, PIDTYPE_PGID
);
946 transfer_pid(leader
, tsk
, PIDTYPE_SID
);
948 list_replace_rcu(&leader
->tasks
, &tsk
->tasks
);
949 list_replace_init(&leader
->sibling
, &tsk
->sibling
);
951 tsk
->group_leader
= tsk
;
952 leader
->group_leader
= tsk
;
954 tsk
->exit_signal
= SIGCHLD
;
955 leader
->exit_signal
= -1;
957 BUG_ON(leader
->exit_state
!= EXIT_ZOMBIE
);
958 leader
->exit_state
= EXIT_DEAD
;
961 * We are going to release_task()->ptrace_unlink() silently,
962 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
963 * the tracer wont't block again waiting for this thread.
965 if (unlikely(leader
->ptrace
))
966 __wake_up_parent(leader
, leader
->parent
);
967 write_unlock_irq(&tasklist_lock
);
969 release_task(leader
);
972 sig
->group_exit_task
= NULL
;
973 sig
->notify_count
= 0;
976 /* we have changed execution domain */
977 tsk
->exit_signal
= SIGCHLD
;
980 setmax_mm_hiwater_rss(&sig
->maxrss
, current
->mm
);
983 flush_itimer_signals();
985 if (atomic_read(&oldsighand
->count
) != 1) {
986 struct sighand_struct
*newsighand
;
988 * This ->sighand is shared with the CLONE_SIGHAND
989 * but not CLONE_THREAD task, switch to the new one.
991 newsighand
= kmem_cache_alloc(sighand_cachep
, GFP_KERNEL
);
995 atomic_set(&newsighand
->count
, 1);
996 memcpy(newsighand
->action
, oldsighand
->action
,
997 sizeof(newsighand
->action
));
999 write_lock_irq(&tasklist_lock
);
1000 spin_lock(&oldsighand
->siglock
);
1001 rcu_assign_pointer(tsk
->sighand
, newsighand
);
1002 spin_unlock(&oldsighand
->siglock
);
1003 write_unlock_irq(&tasklist_lock
);
1005 __cleanup_sighand(oldsighand
);
1008 BUG_ON(!thread_group_leader(tsk
));
1013 * These functions flushes out all traces of the currently running executable
1014 * so that a new one can be started
1016 static void flush_old_files(struct files_struct
* files
)
1019 struct fdtable
*fdt
;
1021 spin_lock(&files
->file_lock
);
1023 unsigned long set
, i
;
1027 fdt
= files_fdtable(files
);
1028 if (i
>= fdt
->max_fds
)
1030 set
= fdt
->close_on_exec
->fds_bits
[j
];
1033 fdt
->close_on_exec
->fds_bits
[j
] = 0;
1034 spin_unlock(&files
->file_lock
);
1035 for ( ; set
; i
++,set
>>= 1) {
1040 spin_lock(&files
->file_lock
);
1043 spin_unlock(&files
->file_lock
);
1046 char *get_task_comm(char *buf
, struct task_struct
*tsk
)
1048 /* buf must be at least sizeof(tsk->comm) in size */
1050 strncpy(buf
, tsk
->comm
, sizeof(tsk
->comm
));
1054 EXPORT_SYMBOL_GPL(get_task_comm
);
1056 void set_task_comm(struct task_struct
*tsk
, char *buf
)
1061 * Threads may access current->comm without holding
1062 * the task lock, so write the string carefully.
1063 * Readers without a lock may see incomplete new
1064 * names but are safe from non-terminating string reads.
1066 memset(tsk
->comm
, 0, TASK_COMM_LEN
);
1068 strlcpy(tsk
->comm
, buf
, sizeof(tsk
->comm
));
1070 perf_event_comm(tsk
);
1073 int flush_old_exec(struct linux_binprm
* bprm
)
1078 * Make sure we have a private signal table and that
1079 * we are unassociated from the previous thread group.
1081 retval
= de_thread(current
);
1085 set_mm_exe_file(bprm
->mm
, bprm
->file
);
1088 * Release all of the old mmap stuff
1090 acct_arg_size(bprm
, 0);
1091 retval
= exec_mmap(bprm
->mm
);
1095 bprm
->mm
= NULL
; /* We're using it now */
1099 ~(PF_RANDOMIZE
| PF_KTHREAD
| PF_NOFREEZE
| PF_FREEZER_NOSIG
);
1101 current
->personality
&= ~bprm
->per_clear
;
1108 EXPORT_SYMBOL(flush_old_exec
);
1110 void would_dump(struct linux_binprm
*bprm
, struct file
*file
)
1112 if (inode_permission(file
->f_path
.dentry
->d_inode
, MAY_READ
) < 0)
1113 bprm
->interp_flags
|= BINPRM_FLAGS_ENFORCE_NONDUMP
;
1115 EXPORT_SYMBOL(would_dump
);
1117 void setup_new_exec(struct linux_binprm
* bprm
)
1121 char tcomm
[sizeof(current
->comm
)];
1123 arch_pick_mmap_layout(current
->mm
);
1125 /* This is the point of no return */
1126 current
->sas_ss_sp
= current
->sas_ss_size
= 0;
1128 if (current_euid() == current_uid() && current_egid() == current_gid())
1129 set_dumpable(current
->mm
, 1);
1131 set_dumpable(current
->mm
, suid_dumpable
);
1133 name
= bprm
->filename
;
1135 /* Copies the binary name from after last slash */
1136 for (i
=0; (ch
= *(name
++)) != '\0';) {
1138 i
= 0; /* overwrite what we wrote */
1140 if (i
< (sizeof(tcomm
) - 1))
1144 set_task_comm(current
, tcomm
);
1146 /* Set the new mm task size. We have to do that late because it may
1147 * depend on TIF_32BIT which is only updated in flush_thread() on
1148 * some architectures like powerpc
1150 current
->mm
->task_size
= TASK_SIZE
;
1152 /* install the new credentials */
1153 if (bprm
->cred
->uid
!= current_euid() ||
1154 bprm
->cred
->gid
!= current_egid()) {
1155 current
->pdeath_signal
= 0;
1157 would_dump(bprm
, bprm
->file
);
1158 if (bprm
->interp_flags
& BINPRM_FLAGS_ENFORCE_NONDUMP
)
1159 set_dumpable(current
->mm
, suid_dumpable
);
1162 /* An exec changes our domain. We are no longer part of the thread
1165 current
->self_exec_id
++;
1167 flush_signal_handlers(current
, 0);
1168 flush_old_files(current
->files
);
1170 EXPORT_SYMBOL(setup_new_exec
);
1173 * Prepare credentials and lock ->cred_guard_mutex.
1174 * install_exec_creds() commits the new creds and drops the lock.
1175 * Or, if exec fails before, free_bprm() should release ->cred and
1178 int prepare_bprm_creds(struct linux_binprm
*bprm
)
1180 if (mutex_lock_interruptible(¤t
->signal
->cred_guard_mutex
))
1181 return -ERESTARTNOINTR
;
1183 bprm
->cred
= prepare_exec_creds();
1184 if (likely(bprm
->cred
))
1187 mutex_unlock(¤t
->signal
->cred_guard_mutex
);
1191 void free_bprm(struct linux_binprm
*bprm
)
1193 free_arg_pages(bprm
);
1195 mutex_unlock(¤t
->signal
->cred_guard_mutex
);
1196 abort_creds(bprm
->cred
);
1198 /* If a binfmt changed the interp, free it. */
1199 if (bprm
->interp
!= bprm
->filename
)
1200 kfree(bprm
->interp
);
1204 int bprm_change_interp(char *interp
, struct linux_binprm
*bprm
)
1206 /* If a binfmt changed the interp, free it first. */
1207 if (bprm
->interp
!= bprm
->filename
)
1208 kfree(bprm
->interp
);
1209 bprm
->interp
= kstrdup(interp
, GFP_KERNEL
);
1214 EXPORT_SYMBOL(bprm_change_interp
);
1217 * install the new credentials for this executable
1219 void install_exec_creds(struct linux_binprm
*bprm
)
1221 security_bprm_committing_creds(bprm
);
1223 commit_creds(bprm
->cred
);
1227 * Disable monitoring for regular users
1228 * when executing setuid binaries. Must
1229 * wait until new credentials are committed
1230 * by commit_creds() above
1232 if (get_dumpable(current
->mm
) != SUID_DUMP_USER
)
1233 perf_event_exit_task(current
);
1235 * cred_guard_mutex must be held at least to this point to prevent
1236 * ptrace_attach() from altering our determination of the task's
1237 * credentials; any time after this it may be unlocked.
1239 security_bprm_committed_creds(bprm
);
1240 mutex_unlock(¤t
->signal
->cred_guard_mutex
);
1242 EXPORT_SYMBOL(install_exec_creds
);
1245 * determine how safe it is to execute the proposed program
1246 * - the caller must hold ->cred_guard_mutex to protect against
1249 int check_unsafe_exec(struct linux_binprm
*bprm
)
1251 struct task_struct
*p
= current
, *t
;
1256 if (p
->ptrace
& PT_PTRACE_CAP
)
1257 bprm
->unsafe
|= LSM_UNSAFE_PTRACE_CAP
;
1259 bprm
->unsafe
|= LSM_UNSAFE_PTRACE
;
1263 spin_lock(&p
->fs
->lock
);
1265 for (t
= next_thread(p
); t
!= p
; t
= next_thread(t
)) {
1271 if (p
->fs
->users
> n_fs
) {
1272 bprm
->unsafe
|= LSM_UNSAFE_SHARE
;
1275 if (!p
->fs
->in_exec
) {
1280 spin_unlock(&p
->fs
->lock
);
1286 * Fill the binprm structure from the inode.
1287 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1289 * This may be called multiple times for binary chains (scripts for example).
1291 int prepare_binprm(struct linux_binprm
*bprm
)
1294 struct inode
* inode
= bprm
->file
->f_path
.dentry
->d_inode
;
1297 mode
= inode
->i_mode
;
1298 if (bprm
->file
->f_op
== NULL
)
1301 /* clear any previous set[ug]id data from a previous binary */
1302 bprm
->cred
->euid
= current_euid();
1303 bprm
->cred
->egid
= current_egid();
1305 if (!(bprm
->file
->f_path
.mnt
->mnt_flags
& MNT_NOSUID
)) {
1307 if (mode
& S_ISUID
) {
1308 bprm
->per_clear
|= PER_CLEAR_ON_SETID
;
1309 bprm
->cred
->euid
= inode
->i_uid
;
1314 * If setgid is set but no group execute bit then this
1315 * is a candidate for mandatory locking, not a setgid
1318 if ((mode
& (S_ISGID
| S_IXGRP
)) == (S_ISGID
| S_IXGRP
)) {
1319 bprm
->per_clear
|= PER_CLEAR_ON_SETID
;
1320 bprm
->cred
->egid
= inode
->i_gid
;
1324 /* fill in binprm security blob */
1325 retval
= security_bprm_set_creds(bprm
);
1328 bprm
->cred_prepared
= 1;
1330 memset(bprm
->buf
, 0, BINPRM_BUF_SIZE
);
1331 return kernel_read(bprm
->file
, 0, bprm
->buf
, BINPRM_BUF_SIZE
);
1334 EXPORT_SYMBOL(prepare_binprm
);
1337 * Arguments are '\0' separated strings found at the location bprm->p
1338 * points to; chop off the first by relocating brpm->p to right after
1339 * the first '\0' encountered.
1341 int remove_arg_zero(struct linux_binprm
*bprm
)
1344 unsigned long offset
;
1352 offset
= bprm
->p
& ~PAGE_MASK
;
1353 page
= get_arg_page(bprm
, bprm
->p
, 0);
1358 kaddr
= kmap_atomic(page
, KM_USER0
);
1360 for (; offset
< PAGE_SIZE
&& kaddr
[offset
];
1361 offset
++, bprm
->p
++)
1364 kunmap_atomic(kaddr
, KM_USER0
);
1367 if (offset
== PAGE_SIZE
)
1368 free_arg_page(bprm
, (bprm
->p
>> PAGE_SHIFT
) - 1);
1369 } while (offset
== PAGE_SIZE
);
1378 EXPORT_SYMBOL(remove_arg_zero
);
1381 * cycle the list of binary formats handler, until one recognizes the image
1383 int search_binary_handler(struct linux_binprm
*bprm
,struct pt_regs
*regs
)
1385 unsigned int depth
= bprm
->recursion_depth
;
1387 struct linux_binfmt
*fmt
;
1390 /* This allows 4 levels of binfmt rewrites before failing hard. */
1394 retval
= security_bprm_check(bprm
);
1398 retval
= audit_bprm(bprm
);
1402 /* Need to fetch pid before load_binary changes it */
1404 old_pid
= task_pid_nr_ns(current
, task_active_pid_ns(current
->parent
));
1408 for (try=0; try<2; try++) {
1409 read_lock(&binfmt_lock
);
1410 list_for_each_entry(fmt
, &formats
, lh
) {
1411 int (*fn
)(struct linux_binprm
*, struct pt_regs
*) = fmt
->load_binary
;
1414 if (!try_module_get(fmt
->module
))
1416 read_unlock(&binfmt_lock
);
1417 bprm
->recursion_depth
= depth
+ 1;
1418 retval
= fn(bprm
, regs
);
1419 bprm
->recursion_depth
= depth
;
1422 ptrace_event(PTRACE_EVENT_EXEC
,
1425 allow_write_access(bprm
->file
);
1429 current
->did_exec
= 1;
1430 proc_exec_connector(current
);
1433 read_lock(&binfmt_lock
);
1435 if (retval
!= -ENOEXEC
|| bprm
->mm
== NULL
)
1438 read_unlock(&binfmt_lock
);
1442 read_unlock(&binfmt_lock
);
1443 #ifdef CONFIG_MODULES
1444 if (retval
!= -ENOEXEC
|| bprm
->mm
== NULL
) {
1447 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1448 if (printable(bprm
->buf
[0]) &&
1449 printable(bprm
->buf
[1]) &&
1450 printable(bprm
->buf
[2]) &&
1451 printable(bprm
->buf
[3]))
1452 break; /* -ENOEXEC */
1454 break; /* -ENOEXEC */
1455 request_module("binfmt-%04x", *(unsigned short *)(&bprm
->buf
[2]));
1464 EXPORT_SYMBOL(search_binary_handler
);
1467 * sys_execve() executes a new program.
1469 static int do_execve_common(const char *filename
,
1470 struct user_arg_ptr argv
,
1471 struct user_arg_ptr envp
,
1472 struct pt_regs
*regs
)
1474 struct linux_binprm
*bprm
;
1476 struct files_struct
*displaced
;
1479 const struct cred
*cred
= current_cred();
1482 * We move the actual failure in case of RLIMIT_NPROC excess from
1483 * set*uid() to execve() because too many poorly written programs
1484 * don't check setuid() return code. Here we additionally recheck
1485 * whether NPROC limit is still exceeded.
1487 if ((current
->flags
& PF_NPROC_EXCEEDED
) &&
1488 atomic_read(&cred
->user
->processes
) > rlimit(RLIMIT_NPROC
)) {
1493 /* We're below the limit (still or again), so we don't want to make
1494 * further execve() calls fail. */
1495 current
->flags
&= ~PF_NPROC_EXCEEDED
;
1497 retval
= unshare_files(&displaced
);
1502 bprm
= kzalloc(sizeof(*bprm
), GFP_KERNEL
);
1506 retval
= prepare_bprm_creds(bprm
);
1510 retval
= check_unsafe_exec(bprm
);
1513 clear_in_exec
= retval
;
1514 current
->in_execve
= 1;
1516 file
= open_exec(filename
);
1517 retval
= PTR_ERR(file
);
1524 bprm
->filename
= filename
;
1525 bprm
->interp
= filename
;
1527 retval
= bprm_mm_init(bprm
);
1531 bprm
->argc
= count(argv
, MAX_ARG_STRINGS
);
1532 if ((retval
= bprm
->argc
) < 0)
1535 bprm
->envc
= count(envp
, MAX_ARG_STRINGS
);
1536 if ((retval
= bprm
->envc
) < 0)
1539 retval
= prepare_binprm(bprm
);
1543 retval
= copy_strings_kernel(1, &bprm
->filename
, bprm
);
1547 bprm
->exec
= bprm
->p
;
1548 retval
= copy_strings(bprm
->envc
, envp
, bprm
);
1552 retval
= copy_strings(bprm
->argc
, argv
, bprm
);
1556 retval
= search_binary_handler(bprm
,regs
);
1560 /* execve succeeded */
1561 current
->fs
->in_exec
= 0;
1562 current
->in_execve
= 0;
1563 acct_update_integrals(current
);
1566 put_files_struct(displaced
);
1571 acct_arg_size(bprm
, 0);
1577 allow_write_access(bprm
->file
);
1583 current
->fs
->in_exec
= 0;
1584 current
->in_execve
= 0;
1591 reset_files_struct(displaced
);
1596 int do_execve(const char *filename
,
1597 const char __user
*const __user
*__argv
,
1598 const char __user
*const __user
*__envp
,
1599 struct pt_regs
*regs
)
1601 struct user_arg_ptr argv
= { .ptr
.native
= __argv
};
1602 struct user_arg_ptr envp
= { .ptr
.native
= __envp
};
1603 return do_execve_common(filename
, argv
, envp
, regs
);
1606 #ifdef CONFIG_COMPAT
1607 int compat_do_execve(char *filename
,
1608 compat_uptr_t __user
*__argv
,
1609 compat_uptr_t __user
*__envp
,
1610 struct pt_regs
*regs
)
1612 struct user_arg_ptr argv
= {
1614 .ptr
.compat
= __argv
,
1616 struct user_arg_ptr envp
= {
1618 .ptr
.compat
= __envp
,
1620 return do_execve_common(filename
, argv
, envp
, regs
);
1624 void set_binfmt(struct linux_binfmt
*new)
1626 struct mm_struct
*mm
= current
->mm
;
1629 module_put(mm
->binfmt
->module
);
1633 __module_get(new->module
);
1636 EXPORT_SYMBOL(set_binfmt
);
1638 static int expand_corename(struct core_name
*cn
)
1640 char *old_corename
= cn
->corename
;
1642 cn
->size
= CORENAME_MAX_SIZE
* atomic_inc_return(&call_count
);
1643 cn
->corename
= krealloc(old_corename
, cn
->size
, GFP_KERNEL
);
1645 if (!cn
->corename
) {
1646 kfree(old_corename
);
1653 static int cn_printf(struct core_name
*cn
, const char *fmt
, ...)
1661 need
= vsnprintf(NULL
, 0, fmt
, arg
);
1664 if (likely(need
< cn
->size
- cn
->used
- 1))
1667 ret
= expand_corename(cn
);
1672 cur
= cn
->corename
+ cn
->used
;
1674 vsnprintf(cur
, need
+ 1, fmt
, arg
);
1683 static void cn_escape(char *str
)
1690 static int cn_print_exe_file(struct core_name
*cn
)
1692 struct file
*exe_file
;
1693 char *pathbuf
, *path
;
1696 exe_file
= get_mm_exe_file(current
->mm
);
1698 char *commstart
= cn
->corename
+ cn
->used
;
1699 ret
= cn_printf(cn
, "%s (path unknown)", current
->comm
);
1700 cn_escape(commstart
);
1704 pathbuf
= kmalloc(PATH_MAX
, GFP_TEMPORARY
);
1710 path
= d_path(&exe_file
->f_path
, pathbuf
, PATH_MAX
);
1712 ret
= PTR_ERR(path
);
1718 ret
= cn_printf(cn
, "%s", path
);
1727 /* format_corename will inspect the pattern parameter, and output a
1728 * name into corename, which must have space for at least
1729 * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
1731 static int format_corename(struct core_name
*cn
, long signr
)
1733 const struct cred
*cred
= current_cred();
1734 const char *pat_ptr
= core_pattern
;
1735 int ispipe
= (*pat_ptr
== '|');
1736 int pid_in_pattern
= 0;
1739 cn
->size
= CORENAME_MAX_SIZE
* atomic_read(&call_count
);
1740 cn
->corename
= kmalloc(cn
->size
, GFP_KERNEL
);
1746 /* Repeat as long as we have more pattern to process and more output
1749 if (*pat_ptr
!= '%') {
1752 err
= cn_printf(cn
, "%c", *pat_ptr
++);
1754 switch (*++pat_ptr
) {
1755 /* single % at the end, drop that */
1758 /* Double percent, output one percent */
1760 err
= cn_printf(cn
, "%c", '%');
1765 err
= cn_printf(cn
, "%d",
1766 task_tgid_vnr(current
));
1770 err
= cn_printf(cn
, "%d", cred
->uid
);
1774 err
= cn_printf(cn
, "%d", cred
->gid
);
1776 /* signal that caused the coredump */
1778 err
= cn_printf(cn
, "%ld", signr
);
1780 /* UNIX time of coredump */
1783 do_gettimeofday(&tv
);
1784 err
= cn_printf(cn
, "%lu", tv
.tv_sec
);
1789 char *namestart
= cn
->corename
+ cn
->used
;
1790 down_read(&uts_sem
);
1791 err
= cn_printf(cn
, "%s",
1792 utsname()->nodename
);
1794 cn_escape(namestart
);
1799 char *commstart
= cn
->corename
+ cn
->used
;
1800 err
= cn_printf(cn
, "%s", current
->comm
);
1801 cn_escape(commstart
);
1805 err
= cn_print_exe_file(cn
);
1807 /* core limit size */
1809 err
= cn_printf(cn
, "%lu",
1810 rlimit(RLIMIT_CORE
));
1822 /* Backward compatibility with core_uses_pid:
1824 * If core_pattern does not include a %p (as is the default)
1825 * and core_uses_pid is set, then .%pid will be appended to
1826 * the filename. Do not do this for piped commands. */
1827 if (!ispipe
&& !pid_in_pattern
&& core_uses_pid
) {
1828 err
= cn_printf(cn
, ".%d", task_tgid_vnr(current
));
1836 static int zap_process(struct task_struct
*start
, int exit_code
)
1838 struct task_struct
*t
;
1841 start
->signal
->flags
= SIGNAL_GROUP_EXIT
;
1842 start
->signal
->group_exit_code
= exit_code
;
1843 start
->signal
->group_stop_count
= 0;
1847 task_clear_jobctl_pending(t
, JOBCTL_PENDING_MASK
);
1848 if (t
!= current
&& t
->mm
) {
1849 sigaddset(&t
->pending
.signal
, SIGKILL
);
1850 signal_wake_up(t
, 1);
1853 } while_each_thread(start
, t
);
1858 static inline int zap_threads(struct task_struct
*tsk
, struct mm_struct
*mm
,
1859 struct core_state
*core_state
, int exit_code
)
1861 struct task_struct
*g
, *p
;
1862 unsigned long flags
;
1865 spin_lock_irq(&tsk
->sighand
->siglock
);
1866 if (!signal_group_exit(tsk
->signal
)) {
1867 mm
->core_state
= core_state
;
1868 nr
= zap_process(tsk
, exit_code
);
1870 spin_unlock_irq(&tsk
->sighand
->siglock
);
1871 if (unlikely(nr
< 0))
1874 if (atomic_read(&mm
->mm_users
) == nr
+ 1)
1877 * We should find and kill all tasks which use this mm, and we should
1878 * count them correctly into ->nr_threads. We don't take tasklist
1879 * lock, but this is safe wrt:
1882 * None of sub-threads can fork after zap_process(leader). All
1883 * processes which were created before this point should be
1884 * visible to zap_threads() because copy_process() adds the new
1885 * process to the tail of init_task.tasks list, and lock/unlock
1886 * of ->siglock provides a memory barrier.
1889 * The caller holds mm->mmap_sem. This means that the task which
1890 * uses this mm can't pass exit_mm(), so it can't exit or clear
1894 * It does list_replace_rcu(&leader->tasks, ¤t->tasks),
1895 * we must see either old or new leader, this does not matter.
1896 * However, it can change p->sighand, so lock_task_sighand(p)
1897 * must be used. Since p->mm != NULL and we hold ->mmap_sem
1900 * Note also that "g" can be the old leader with ->mm == NULL
1901 * and already unhashed and thus removed from ->thread_group.
1902 * This is OK, __unhash_process()->list_del_rcu() does not
1903 * clear the ->next pointer, we will find the new leader via
1907 for_each_process(g
) {
1908 if (g
== tsk
->group_leader
)
1910 if (g
->flags
& PF_KTHREAD
)
1915 if (unlikely(p
->mm
== mm
)) {
1916 lock_task_sighand(p
, &flags
);
1917 nr
+= zap_process(p
, exit_code
);
1918 unlock_task_sighand(p
, &flags
);
1922 } while_each_thread(g
, p
);
1926 atomic_set(&core_state
->nr_threads
, nr
);
1930 static int coredump_wait(int exit_code
, struct core_state
*core_state
)
1932 struct task_struct
*tsk
= current
;
1933 struct mm_struct
*mm
= tsk
->mm
;
1934 struct completion
*vfork_done
;
1935 int core_waiters
= -EBUSY
;
1937 init_completion(&core_state
->startup
);
1938 core_state
->dumper
.task
= tsk
;
1939 core_state
->dumper
.next
= NULL
;
1941 down_write(&mm
->mmap_sem
);
1942 if (!mm
->core_state
)
1943 core_waiters
= zap_threads(tsk
, mm
, core_state
, exit_code
);
1944 up_write(&mm
->mmap_sem
);
1946 if (unlikely(core_waiters
< 0))
1950 * Make sure nobody is waiting for us to release the VM,
1951 * otherwise we can deadlock when we wait on each other
1953 vfork_done
= tsk
->vfork_done
;
1955 tsk
->vfork_done
= NULL
;
1956 complete(vfork_done
);
1960 wait_for_completion(&core_state
->startup
);
1962 return core_waiters
;
1965 static void coredump_finish(struct mm_struct
*mm
)
1967 struct core_thread
*curr
, *next
;
1968 struct task_struct
*task
;
1970 next
= mm
->core_state
->dumper
.next
;
1971 while ((curr
= next
) != NULL
) {
1975 * see exit_mm(), curr->task must not see
1976 * ->task == NULL before we read ->next.
1980 wake_up_process(task
);
1983 mm
->core_state
= NULL
;
1987 * set_dumpable converts traditional three-value dumpable to two flags and
1988 * stores them into mm->flags. It modifies lower two bits of mm->flags, but
1989 * these bits are not changed atomically. So get_dumpable can observe the
1990 * intermediate state. To avoid doing unexpected behavior, get get_dumpable
1991 * return either old dumpable or new one by paying attention to the order of
1992 * modifying the bits.
1994 * dumpable | mm->flags (binary)
1995 * old new | initial interim final
1996 * ---------+-----------------------
2004 * (*) get_dumpable regards interim value of 10 as 11.
2006 void set_dumpable(struct mm_struct
*mm
, int value
)
2010 clear_bit(MMF_DUMPABLE
, &mm
->flags
);
2012 clear_bit(MMF_DUMP_SECURELY
, &mm
->flags
);
2015 set_bit(MMF_DUMPABLE
, &mm
->flags
);
2017 clear_bit(MMF_DUMP_SECURELY
, &mm
->flags
);
2020 set_bit(MMF_DUMP_SECURELY
, &mm
->flags
);
2022 set_bit(MMF_DUMPABLE
, &mm
->flags
);
2027 static int __get_dumpable(unsigned long mm_flags
)
2031 ret
= mm_flags
& MMF_DUMPABLE_MASK
;
2032 return (ret
>= 2) ? 2 : ret
;
2036 * This returns the actual value of the suid_dumpable flag. For things
2037 * that are using this for checking for privilege transitions, it must
2038 * test against SUID_DUMP_USER rather than treating it as a boolean
2041 int get_dumpable(struct mm_struct
*mm
)
2043 return __get_dumpable(mm
->flags
);
2046 static void wait_for_dump_helpers(struct file
*file
)
2048 struct pipe_inode_info
*pipe
;
2050 pipe
= file
->f_path
.dentry
->d_inode
->i_pipe
;
2056 while ((pipe
->readers
> 1) && (!signal_pending(current
))) {
2057 wake_up_interruptible_sync(&pipe
->wait
);
2058 kill_fasync(&pipe
->fasync_readers
, SIGIO
, POLL_IN
);
2071 * helper function to customize the process used
2072 * to collect the core in userspace. Specifically
2073 * it sets up a pipe and installs it as fd 0 (stdin)
2074 * for the process. Returns 0 on success, or
2075 * PTR_ERR on failure.
2076 * Note that it also sets the core limit to 1. This
2077 * is a special value that we use to trap recursive
2080 static int umh_pipe_setup(struct subprocess_info
*info
, struct cred
*new)
2082 struct file
*rp
, *wp
;
2083 struct fdtable
*fdt
;
2084 struct coredump_params
*cp
= (struct coredump_params
*)info
->data
;
2085 struct files_struct
*cf
= current
->files
;
2087 wp
= create_write_pipe(0);
2091 rp
= create_read_pipe(wp
, 0);
2093 free_write_pipe(wp
);
2101 spin_lock(&cf
->file_lock
);
2102 fdt
= files_fdtable(cf
);
2103 FD_SET(0, fdt
->open_fds
);
2104 FD_CLR(0, fdt
->close_on_exec
);
2105 spin_unlock(&cf
->file_lock
);
2107 /* and disallow core files too */
2108 current
->signal
->rlim
[RLIMIT_CORE
] = (struct rlimit
){1, 1};
2113 void do_coredump(long signr
, int exit_code
, struct pt_regs
*regs
)
2115 struct core_state core_state
;
2116 struct core_name cn
;
2117 struct mm_struct
*mm
= current
->mm
;
2118 struct linux_binfmt
* binfmt
;
2119 const struct cred
*old_cred
;
2124 static atomic_t core_dump_count
= ATOMIC_INIT(0);
2125 struct coredump_params cprm
= {
2128 .limit
= rlimit(RLIMIT_CORE
),
2130 * We must use the same mm->flags while dumping core to avoid
2131 * inconsistency of bit flags, since this flag is not protected
2134 .mm_flags
= mm
->flags
,
2137 audit_core_dumps(signr
);
2139 binfmt
= mm
->binfmt
;
2140 if (!binfmt
|| !binfmt
->core_dump
)
2142 if (!__get_dumpable(cprm
.mm_flags
))
2145 cred
= prepare_creds();
2149 * We cannot trust fsuid as being the "true" uid of the
2150 * process nor do we know its entire history. We only know it
2151 * was tainted so we dump it as root in mode 2.
2153 if (__get_dumpable(cprm
.mm_flags
) == 2) {
2154 /* Setuid core dump mode */
2155 flag
= O_EXCL
; /* Stop rewrite attacks */
2156 cred
->fsuid
= 0; /* Dump root private */
2159 retval
= coredump_wait(exit_code
, &core_state
);
2163 old_cred
= override_creds(cred
);
2166 * Clear any false indication of pending signals that might
2167 * be seen by the filesystem code called to write the core file.
2169 clear_thread_flag(TIF_SIGPENDING
);
2171 ispipe
= format_corename(&cn
, signr
);
2178 printk(KERN_WARNING
"format_corename failed\n");
2179 printk(KERN_WARNING
"Aborting core\n");
2183 if (cprm
.limit
== 1) {
2185 * Normally core limits are irrelevant to pipes, since
2186 * we're not writing to the file system, but we use
2187 * cprm.limit of 1 here as a speacial value. Any
2188 * non-1 limit gets set to RLIM_INFINITY below, but
2189 * a limit of 0 skips the dump. This is a consistent
2190 * way to catch recursive crashes. We can still crash
2191 * if the core_pattern binary sets RLIM_CORE = !1
2192 * but it runs as root, and can do lots of stupid things
2193 * Note that we use task_tgid_vnr here to grab the pid
2194 * of the process group leader. That way we get the
2195 * right pid if a thread in a multi-threaded
2196 * core_pattern process dies.
2199 "Process %d(%s) has RLIMIT_CORE set to 1\n",
2200 task_tgid_vnr(current
), current
->comm
);
2201 printk(KERN_WARNING
"Aborting core\n");
2204 cprm
.limit
= RLIM_INFINITY
;
2206 dump_count
= atomic_inc_return(&core_dump_count
);
2207 if (core_pipe_limit
&& (core_pipe_limit
< dump_count
)) {
2208 printk(KERN_WARNING
"Pid %d(%s) over core_pipe_limit\n",
2209 task_tgid_vnr(current
), current
->comm
);
2210 printk(KERN_WARNING
"Skipping core dump\n");
2211 goto fail_dropcount
;
2214 helper_argv
= argv_split(GFP_KERNEL
, cn
.corename
+1, NULL
);
2216 printk(KERN_WARNING
"%s failed to allocate memory\n",
2218 goto fail_dropcount
;
2221 retval
= call_usermodehelper_fns(helper_argv
[0], helper_argv
,
2222 NULL
, UMH_WAIT_EXEC
, umh_pipe_setup
,
2224 argv_free(helper_argv
);
2226 printk(KERN_INFO
"Core dump to %s pipe failed\n",
2231 struct inode
*inode
;
2233 if (cprm
.limit
< binfmt
->min_coredump
)
2236 cprm
.file
= filp_open(cn
.corename
,
2237 O_CREAT
| 2 | O_NOFOLLOW
| O_LARGEFILE
| flag
,
2239 if (IS_ERR(cprm
.file
))
2242 inode
= cprm
.file
->f_path
.dentry
->d_inode
;
2243 if (inode
->i_nlink
> 1)
2245 if (d_unhashed(cprm
.file
->f_path
.dentry
))
2248 * AK: actually i see no reason to not allow this for named
2249 * pipes etc, but keep the previous behaviour for now.
2251 if (!S_ISREG(inode
->i_mode
))
2254 * Dont allow local users get cute and trick others to coredump
2255 * into their pre-created files.
2257 if (inode
->i_uid
!= current_fsuid())
2259 if (!cprm
.file
->f_op
|| !cprm
.file
->f_op
->write
)
2261 if (do_truncate(cprm
.file
->f_path
.dentry
, 0, 0, cprm
.file
))
2265 retval
= binfmt
->core_dump(&cprm
);
2267 current
->signal
->group_exit_code
|= 0x80;
2269 if (ispipe
&& core_pipe_limit
)
2270 wait_for_dump_helpers(cprm
.file
);
2273 filp_close(cprm
.file
, NULL
);
2276 atomic_dec(&core_dump_count
);
2280 coredump_finish(mm
);
2281 revert_creds(old_cred
);
2289 * Core dumping helper functions. These are the only things you should
2290 * do on a core-file: use only these functions to write out all the
2293 int dump_write(struct file
*file
, const void *addr
, int nr
)
2295 return access_ok(VERIFY_READ
, addr
, nr
) && file
->f_op
->write(file
, addr
, nr
, &file
->f_pos
) == nr
;
2297 EXPORT_SYMBOL(dump_write
);
2299 int dump_seek(struct file
*file
, loff_t off
)
2303 if (file
->f_op
->llseek
&& file
->f_op
->llseek
!= no_llseek
) {
2304 if (file
->f_op
->llseek(file
, off
, SEEK_CUR
) < 0)
2307 char *buf
= (char *)get_zeroed_page(GFP_KERNEL
);
2312 unsigned long n
= off
;
2316 if (!dump_write(file
, buf
, n
)) {
2322 free_page((unsigned long)buf
);
2326 EXPORT_SYMBOL(dump_seek
);