KVM: x86: drop duplicate kvm_flush_remote_tlb calls
[linux/fpc-iii.git] / mm / mlock.c
blob45eb650b9654ed09bebe3b4de3c203442538792d
1 /*
2 * linux/mm/mlock.c
4 * (C) Copyright 1995 Linus Torvalds
5 * (C) Copyright 2002 Christoph Hellwig
6 */
8 #include <linux/capability.h>
9 #include <linux/mman.h>
10 #include <linux/mm.h>
11 #include <linux/swap.h>
12 #include <linux/swapops.h>
13 #include <linux/pagemap.h>
14 #include <linux/mempolicy.h>
15 #include <linux/syscalls.h>
16 #include <linux/sched.h>
17 #include <linux/module.h>
18 #include <linux/rmap.h>
19 #include <linux/mmzone.h>
20 #include <linux/hugetlb.h>
22 #include "internal.h"
24 int can_do_mlock(void)
26 if (capable(CAP_IPC_LOCK))
27 return 1;
28 if (current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur != 0)
29 return 1;
30 return 0;
32 EXPORT_SYMBOL(can_do_mlock);
35 * Mlocked pages are marked with PageMlocked() flag for efficient testing
36 * in vmscan and, possibly, the fault path; and to support semi-accurate
37 * statistics.
39 * An mlocked page [PageMlocked(page)] is unevictable. As such, it will
40 * be placed on the LRU "unevictable" list, rather than the [in]active lists.
41 * The unevictable list is an LRU sibling list to the [in]active lists.
42 * PageUnevictable is set to indicate the unevictable state.
44 * When lazy mlocking via vmscan, it is important to ensure that the
45 * vma's VM_LOCKED status is not concurrently being modified, otherwise we
46 * may have mlocked a page that is being munlocked. So lazy mlock must take
47 * the mmap_sem for read, and verify that the vma really is locked
48 * (see mm/rmap.c).
52 * LRU accounting for clear_page_mlock()
54 void __clear_page_mlock(struct page *page)
56 VM_BUG_ON(!PageLocked(page));
58 if (!page->mapping) { /* truncated ? */
59 return;
62 dec_zone_page_state(page, NR_MLOCK);
63 count_vm_event(UNEVICTABLE_PGCLEARED);
64 if (!isolate_lru_page(page)) {
65 putback_lru_page(page);
66 } else {
68 * We lost the race. the page already moved to evictable list.
70 if (PageUnevictable(page))
71 count_vm_event(UNEVICTABLE_PGSTRANDED);
76 * Mark page as mlocked if not already.
77 * If page on LRU, isolate and putback to move to unevictable list.
79 void mlock_vma_page(struct page *page)
81 BUG_ON(!PageLocked(page));
83 if (!TestSetPageMlocked(page)) {
84 inc_zone_page_state(page, NR_MLOCK);
85 count_vm_event(UNEVICTABLE_PGMLOCKED);
86 if (!isolate_lru_page(page))
87 putback_lru_page(page);
92 * called from munlock()/munmap() path with page supposedly on the LRU.
94 * Note: unlike mlock_vma_page(), we can't just clear the PageMlocked
95 * [in try_to_munlock()] and then attempt to isolate the page. We must
96 * isolate the page to keep others from messing with its unevictable
97 * and mlocked state while trying to munlock. However, we pre-clear the
98 * mlocked state anyway as we might lose the isolation race and we might
99 * not get another chance to clear PageMlocked. If we successfully
100 * isolate the page and try_to_munlock() detects other VM_LOCKED vmas
101 * mapping the page, it will restore the PageMlocked state, unless the page
102 * is mapped in a non-linear vma. So, we go ahead and SetPageMlocked(),
103 * perhaps redundantly.
104 * If we lose the isolation race, and the page is mapped by other VM_LOCKED
105 * vmas, we'll detect this in vmscan--via try_to_munlock() or try_to_unmap()
106 * either of which will restore the PageMlocked state by calling
107 * mlock_vma_page() above, if it can grab the vma's mmap sem.
109 static void munlock_vma_page(struct page *page)
111 BUG_ON(!PageLocked(page));
113 if (TestClearPageMlocked(page)) {
114 dec_zone_page_state(page, NR_MLOCK);
115 if (!isolate_lru_page(page)) {
116 int ret = try_to_munlock(page);
118 * did try_to_unlock() succeed or punt?
120 if (ret == SWAP_SUCCESS || ret == SWAP_AGAIN)
121 count_vm_event(UNEVICTABLE_PGMUNLOCKED);
123 putback_lru_page(page);
124 } else {
126 * We lost the race. let try_to_unmap() deal
127 * with it. At least we get the page state and
128 * mlock stats right. However, page is still on
129 * the noreclaim list. We'll fix that up when
130 * the page is eventually freed or we scan the
131 * noreclaim list.
133 if (PageUnevictable(page))
134 count_vm_event(UNEVICTABLE_PGSTRANDED);
135 else
136 count_vm_event(UNEVICTABLE_PGMUNLOCKED);
142 * __mlock_vma_pages_range() - mlock/munlock a range of pages in the vma.
143 * @vma: target vma
144 * @start: start address
145 * @end: end address
146 * @mlock: 0 indicate munlock, otherwise mlock.
148 * If @mlock == 0, unlock an mlocked range;
149 * else mlock the range of pages. This takes care of making the pages present ,
150 * too.
152 * return 0 on success, negative error code on error.
154 * vma->vm_mm->mmap_sem must be held for at least read.
156 static long __mlock_vma_pages_range(struct vm_area_struct *vma,
157 unsigned long start, unsigned long end,
158 int mlock)
160 struct mm_struct *mm = vma->vm_mm;
161 unsigned long addr = start;
162 struct page *pages[16]; /* 16 gives a reasonable batch */
163 int nr_pages = (end - start) / PAGE_SIZE;
164 int ret = 0;
165 int gup_flags = 0;
167 VM_BUG_ON(start & ~PAGE_MASK);
168 VM_BUG_ON(end & ~PAGE_MASK);
169 VM_BUG_ON(start < vma->vm_start);
170 VM_BUG_ON(end > vma->vm_end);
171 VM_BUG_ON((!rwsem_is_locked(&mm->mmap_sem)) &&
172 (atomic_read(&mm->mm_users) != 0));
175 * mlock: don't page populate if vma has PROT_NONE permission.
176 * munlock: always do munlock although the vma has PROT_NONE
177 * permission, or SIGKILL is pending.
179 if (!mlock)
180 gup_flags |= GUP_FLAGS_IGNORE_VMA_PERMISSIONS |
181 GUP_FLAGS_IGNORE_SIGKILL;
183 if (vma->vm_flags & VM_WRITE)
184 gup_flags |= GUP_FLAGS_WRITE;
186 while (nr_pages > 0) {
187 int i;
189 cond_resched();
192 * get_user_pages makes pages present if we are
193 * setting mlock. and this extra reference count will
194 * disable migration of this page. However, page may
195 * still be truncated out from under us.
197 ret = __get_user_pages(current, mm, addr,
198 min_t(int, nr_pages, ARRAY_SIZE(pages)),
199 gup_flags, pages, NULL);
201 * This can happen for, e.g., VM_NONLINEAR regions before
202 * a page has been allocated and mapped at a given offset,
203 * or for addresses that map beyond end of a file.
204 * We'll mlock the the pages if/when they get faulted in.
206 if (ret < 0)
207 break;
208 if (ret == 0) {
210 * We know the vma is there, so the only time
211 * we cannot get a single page should be an
212 * error (ret < 0) case.
214 WARN_ON(1);
215 break;
218 lru_add_drain(); /* push cached pages to LRU */
220 for (i = 0; i < ret; i++) {
221 struct page *page = pages[i];
223 lock_page(page);
225 * Because we lock page here and migration is blocked
226 * by the elevated reference, we need only check for
227 * page truncation (file-cache only).
229 if (page->mapping) {
230 if (mlock)
231 mlock_vma_page(page);
232 else
233 munlock_vma_page(page);
235 unlock_page(page);
236 put_page(page); /* ref from get_user_pages() */
239 * here we assume that get_user_pages() has given us
240 * a list of virtually contiguous pages.
242 addr += PAGE_SIZE; /* for next get_user_pages() */
243 nr_pages--;
245 ret = 0;
248 return ret; /* count entire vma as locked_vm */
252 * convert get_user_pages() return value to posix mlock() error
254 static int __mlock_posix_error_return(long retval)
256 if (retval == -EFAULT)
257 retval = -ENOMEM;
258 else if (retval == -ENOMEM)
259 retval = -EAGAIN;
260 return retval;
264 * mlock_vma_pages_range() - mlock pages in specified vma range.
265 * @vma - the vma containing the specfied address range
266 * @start - starting address in @vma to mlock
267 * @end - end address [+1] in @vma to mlock
269 * For mmap()/mremap()/expansion of mlocked vma.
271 * return 0 on success for "normal" vmas.
273 * return number of pages [> 0] to be removed from locked_vm on success
274 * of "special" vmas.
276 long mlock_vma_pages_range(struct vm_area_struct *vma,
277 unsigned long start, unsigned long end)
279 int nr_pages = (end - start) / PAGE_SIZE;
280 BUG_ON(!(vma->vm_flags & VM_LOCKED));
283 * filter unlockable vmas
285 if (vma->vm_flags & (VM_IO | VM_PFNMAP))
286 goto no_mlock;
288 if (!((vma->vm_flags & (VM_DONTEXPAND | VM_RESERVED)) ||
289 is_vm_hugetlb_page(vma) ||
290 vma == get_gate_vma(current))) {
292 __mlock_vma_pages_range(vma, start, end, 1);
294 /* Hide errors from mmap() and other callers */
295 return 0;
299 * User mapped kernel pages or huge pages:
300 * make these pages present to populate the ptes, but
301 * fall thru' to reset VM_LOCKED--no need to unlock, and
302 * return nr_pages so these don't get counted against task's
303 * locked limit. huge pages are already counted against
304 * locked vm limit.
306 make_pages_present(start, end);
308 no_mlock:
309 vma->vm_flags &= ~VM_LOCKED; /* and don't come back! */
310 return nr_pages; /* error or pages NOT mlocked */
315 * munlock_vma_pages_range() - munlock all pages in the vma range.'
316 * @vma - vma containing range to be munlock()ed.
317 * @start - start address in @vma of the range
318 * @end - end of range in @vma.
320 * For mremap(), munmap() and exit().
322 * Called with @vma VM_LOCKED.
324 * Returns with VM_LOCKED cleared. Callers must be prepared to
325 * deal with this.
327 * We don't save and restore VM_LOCKED here because pages are
328 * still on lru. In unmap path, pages might be scanned by reclaim
329 * and re-mlocked by try_to_{munlock|unmap} before we unmap and
330 * free them. This will result in freeing mlocked pages.
332 void munlock_vma_pages_range(struct vm_area_struct *vma,
333 unsigned long start, unsigned long end)
335 vma->vm_flags &= ~VM_LOCKED;
336 __mlock_vma_pages_range(vma, start, end, 0);
340 * mlock_fixup - handle mlock[all]/munlock[all] requests.
342 * Filters out "special" vmas -- VM_LOCKED never gets set for these, and
343 * munlock is a no-op. However, for some special vmas, we go ahead and
344 * populate the ptes via make_pages_present().
346 * For vmas that pass the filters, merge/split as appropriate.
348 static int mlock_fixup(struct vm_area_struct *vma, struct vm_area_struct **prev,
349 unsigned long start, unsigned long end, unsigned int newflags)
351 struct mm_struct *mm = vma->vm_mm;
352 pgoff_t pgoff;
353 int nr_pages;
354 int ret = 0;
355 int lock = newflags & VM_LOCKED;
357 if (newflags == vma->vm_flags ||
358 (vma->vm_flags & (VM_IO | VM_PFNMAP)))
359 goto out; /* don't set VM_LOCKED, don't count */
361 if ((vma->vm_flags & (VM_DONTEXPAND | VM_RESERVED)) ||
362 is_vm_hugetlb_page(vma) ||
363 vma == get_gate_vma(current)) {
364 if (lock)
365 make_pages_present(start, end);
366 goto out; /* don't set VM_LOCKED, don't count */
369 pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
370 *prev = vma_merge(mm, *prev, start, end, newflags, vma->anon_vma,
371 vma->vm_file, pgoff, vma_policy(vma));
372 if (*prev) {
373 vma = *prev;
374 goto success;
377 if (start != vma->vm_start) {
378 ret = split_vma(mm, vma, start, 1);
379 if (ret)
380 goto out;
383 if (end != vma->vm_end) {
384 ret = split_vma(mm, vma, end, 0);
385 if (ret)
386 goto out;
389 success:
391 * Keep track of amount of locked VM.
393 nr_pages = (end - start) >> PAGE_SHIFT;
394 if (!lock)
395 nr_pages = -nr_pages;
396 mm->locked_vm += nr_pages;
399 * vm_flags is protected by the mmap_sem held in write mode.
400 * It's okay if try_to_unmap_one unmaps a page just after we
401 * set VM_LOCKED, __mlock_vma_pages_range will bring it back.
403 vma->vm_flags = newflags;
405 if (lock) {
406 ret = __mlock_vma_pages_range(vma, start, end, 1);
408 if (ret > 0) {
409 mm->locked_vm -= ret;
410 ret = 0;
411 } else
412 ret = __mlock_posix_error_return(ret); /* translate if needed */
413 } else {
414 __mlock_vma_pages_range(vma, start, end, 0);
417 out:
418 *prev = vma;
419 return ret;
422 static int do_mlock(unsigned long start, size_t len, int on)
424 unsigned long nstart, end, tmp;
425 struct vm_area_struct * vma, * prev;
426 int error;
428 len = PAGE_ALIGN(len);
429 end = start + len;
430 if (end < start)
431 return -EINVAL;
432 if (end == start)
433 return 0;
434 vma = find_vma_prev(current->mm, start, &prev);
435 if (!vma || vma->vm_start > start)
436 return -ENOMEM;
438 if (start > vma->vm_start)
439 prev = vma;
441 for (nstart = start ; ; ) {
442 unsigned int newflags;
444 /* Here we know that vma->vm_start <= nstart < vma->vm_end. */
446 newflags = vma->vm_flags | VM_LOCKED;
447 if (!on)
448 newflags &= ~VM_LOCKED;
450 tmp = vma->vm_end;
451 if (tmp > end)
452 tmp = end;
453 error = mlock_fixup(vma, &prev, nstart, tmp, newflags);
454 if (error)
455 break;
456 nstart = tmp;
457 if (nstart < prev->vm_end)
458 nstart = prev->vm_end;
459 if (nstart >= end)
460 break;
462 vma = prev->vm_next;
463 if (!vma || vma->vm_start != nstart) {
464 error = -ENOMEM;
465 break;
468 return error;
471 SYSCALL_DEFINE2(mlock, unsigned long, start, size_t, len)
473 unsigned long locked;
474 unsigned long lock_limit;
475 int error = -ENOMEM;
477 if (!can_do_mlock())
478 return -EPERM;
480 lru_add_drain_all(); /* flush pagevec */
482 down_write(&current->mm->mmap_sem);
483 len = PAGE_ALIGN(len + (start & ~PAGE_MASK));
484 start &= PAGE_MASK;
486 locked = len >> PAGE_SHIFT;
487 locked += current->mm->locked_vm;
489 lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
490 lock_limit >>= PAGE_SHIFT;
492 /* check against resource limits */
493 if ((locked <= lock_limit) || capable(CAP_IPC_LOCK))
494 error = do_mlock(start, len, 1);
495 up_write(&current->mm->mmap_sem);
496 return error;
499 SYSCALL_DEFINE2(munlock, unsigned long, start, size_t, len)
501 int ret;
503 down_write(&current->mm->mmap_sem);
504 len = PAGE_ALIGN(len + (start & ~PAGE_MASK));
505 start &= PAGE_MASK;
506 ret = do_mlock(start, len, 0);
507 up_write(&current->mm->mmap_sem);
508 return ret;
511 static int do_mlockall(int flags)
513 struct vm_area_struct * vma, * prev = NULL;
514 unsigned int def_flags = 0;
516 if (flags & MCL_FUTURE)
517 def_flags = VM_LOCKED;
518 current->mm->def_flags = def_flags;
519 if (flags == MCL_FUTURE)
520 goto out;
522 for (vma = current->mm->mmap; vma ; vma = prev->vm_next) {
523 unsigned int newflags;
525 newflags = vma->vm_flags | VM_LOCKED;
526 if (!(flags & MCL_CURRENT))
527 newflags &= ~VM_LOCKED;
529 /* Ignore errors */
530 mlock_fixup(vma, &prev, vma->vm_start, vma->vm_end, newflags);
532 out:
533 return 0;
536 SYSCALL_DEFINE1(mlockall, int, flags)
538 unsigned long lock_limit;
539 int ret = -EINVAL;
541 if (!flags || (flags & ~(MCL_CURRENT | MCL_FUTURE)))
542 goto out;
544 ret = -EPERM;
545 if (!can_do_mlock())
546 goto out;
548 lru_add_drain_all(); /* flush pagevec */
550 down_write(&current->mm->mmap_sem);
552 lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
553 lock_limit >>= PAGE_SHIFT;
555 ret = -ENOMEM;
556 if (!(flags & MCL_CURRENT) || (current->mm->total_vm <= lock_limit) ||
557 capable(CAP_IPC_LOCK))
558 ret = do_mlockall(flags);
559 up_write(&current->mm->mmap_sem);
560 out:
561 return ret;
564 SYSCALL_DEFINE0(munlockall)
566 int ret;
568 down_write(&current->mm->mmap_sem);
569 ret = do_mlockall(0);
570 up_write(&current->mm->mmap_sem);
571 return ret;
575 * Objects with different lifetime than processes (SHM_LOCK and SHM_HUGETLB
576 * shm segments) get accounted against the user_struct instead.
578 static DEFINE_SPINLOCK(shmlock_user_lock);
580 int user_shm_lock(size_t size, struct user_struct *user)
582 unsigned long lock_limit, locked;
583 int allowed = 0;
585 locked = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
586 lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
587 if (lock_limit == RLIM_INFINITY)
588 allowed = 1;
589 lock_limit >>= PAGE_SHIFT;
590 spin_lock(&shmlock_user_lock);
591 if (!allowed &&
592 locked + user->locked_shm > lock_limit && !capable(CAP_IPC_LOCK))
593 goto out;
594 get_uid(user);
595 user->locked_shm += locked;
596 allowed = 1;
597 out:
598 spin_unlock(&shmlock_user_lock);
599 return allowed;
602 void user_shm_unlock(size_t size, struct user_struct *user)
604 spin_lock(&shmlock_user_lock);
605 user->locked_shm -= (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
606 spin_unlock(&shmlock_user_lock);
607 free_uid(user);
610 int account_locked_memory(struct mm_struct *mm, struct rlimit *rlim,
611 size_t size)
613 unsigned long lim, vm, pgsz;
614 int error = -ENOMEM;
616 pgsz = PAGE_ALIGN(size) >> PAGE_SHIFT;
618 down_write(&mm->mmap_sem);
620 lim = rlim[RLIMIT_AS].rlim_cur >> PAGE_SHIFT;
621 vm = mm->total_vm + pgsz;
622 if (lim < vm)
623 goto out;
625 lim = rlim[RLIMIT_MEMLOCK].rlim_cur >> PAGE_SHIFT;
626 vm = mm->locked_vm + pgsz;
627 if (lim < vm)
628 goto out;
630 mm->total_vm += pgsz;
631 mm->locked_vm += pgsz;
633 error = 0;
634 out:
635 up_write(&mm->mmap_sem);
636 return error;
639 void refund_locked_memory(struct mm_struct *mm, size_t size)
641 unsigned long pgsz = PAGE_ALIGN(size) >> PAGE_SHIFT;
643 down_write(&mm->mmap_sem);
645 mm->total_vm -= pgsz;
646 mm->locked_vm -= pgsz;
648 up_write(&mm->mmap_sem);