Linux 2.6.35-rc2
[linux/fpc-iii.git] / fs / binfmt_flat.c
blobb6ab27ccf214fc8c406a9ef70e91d7930af0eaec
1 /****************************************************************************/
2 /*
3 * linux/fs/binfmt_flat.c
5 * Copyright (C) 2000-2003 David McCullough <davidm@snapgear.com>
6 * Copyright (C) 2002 Greg Ungerer <gerg@snapgear.com>
7 * Copyright (C) 2002 SnapGear, by Paul Dale <pauli@snapgear.com>
8 * Copyright (C) 2000, 2001 Lineo, by David McCullough <davidm@lineo.com>
9 * based heavily on:
11 * linux/fs/binfmt_aout.c:
12 * Copyright (C) 1991, 1992, 1996 Linus Torvalds
13 * linux/fs/binfmt_flat.c for 2.0 kernel
14 * Copyright (C) 1998 Kenneth Albanowski <kjahds@kjahds.com>
15 * JAN/99 -- coded full program relocation (gerg@snapgear.com)
18 #include <linux/module.h>
19 #include <linux/kernel.h>
20 #include <linux/sched.h>
21 #include <linux/mm.h>
22 #include <linux/mman.h>
23 #include <linux/errno.h>
24 #include <linux/signal.h>
25 #include <linux/string.h>
26 #include <linux/fs.h>
27 #include <linux/file.h>
28 #include <linux/stat.h>
29 #include <linux/fcntl.h>
30 #include <linux/ptrace.h>
31 #include <linux/user.h>
32 #include <linux/slab.h>
33 #include <linux/binfmts.h>
34 #include <linux/personality.h>
35 #include <linux/init.h>
36 #include <linux/flat.h>
37 #include <linux/syscalls.h>
39 #include <asm/byteorder.h>
40 #include <asm/system.h>
41 #include <asm/uaccess.h>
42 #include <asm/unaligned.h>
43 #include <asm/cacheflush.h>
44 #include <asm/page.h>
46 /****************************************************************************/
48 #if 0
49 #define DEBUG 1
50 #endif
52 #ifdef DEBUG
53 #define DBG_FLT(a...) printk(a)
54 #else
55 #define DBG_FLT(a...)
56 #endif
59 * User data (data section and bss) needs to be aligned.
60 * We pick 0x20 here because it is the max value elf2flt has always
61 * used in producing FLAT files, and because it seems to be large
62 * enough to make all the gcc alignment related tests happy.
64 #define FLAT_DATA_ALIGN (0x20)
67 * User data (stack) also needs to be aligned.
68 * Here we can be a bit looser than the data sections since this
69 * needs to only meet arch ABI requirements.
71 #ifdef ARCH_SLAB_MINALIGN
72 #define FLAT_STACK_ALIGN (ARCH_SLAB_MINALIGN)
73 #else
74 #define FLAT_STACK_ALIGN (sizeof(void *))
75 #endif
77 #define RELOC_FAILED 0xff00ff01 /* Relocation incorrect somewhere */
78 #define UNLOADED_LIB 0x7ff000ff /* Placeholder for unused library */
80 struct lib_info {
81 struct {
82 unsigned long start_code; /* Start of text segment */
83 unsigned long start_data; /* Start of data segment */
84 unsigned long start_brk; /* End of data segment */
85 unsigned long text_len; /* Length of text segment */
86 unsigned long entry; /* Start address for this module */
87 unsigned long build_date; /* When this one was compiled */
88 short loaded; /* Has this library been loaded? */
89 } lib_list[MAX_SHARED_LIBS];
92 #ifdef CONFIG_BINFMT_SHARED_FLAT
93 static int load_flat_shared_library(int id, struct lib_info *p);
94 #endif
96 static int load_flat_binary(struct linux_binprm *, struct pt_regs * regs);
97 static int flat_core_dump(struct coredump_params *cprm);
99 static struct linux_binfmt flat_format = {
100 .module = THIS_MODULE,
101 .load_binary = load_flat_binary,
102 .core_dump = flat_core_dump,
103 .min_coredump = PAGE_SIZE
106 /****************************************************************************/
108 * Routine writes a core dump image in the current directory.
109 * Currently only a stub-function.
112 static int flat_core_dump(struct coredump_params *cprm)
114 printk("Process %s:%d received signr %d and should have core dumped\n",
115 current->comm, current->pid, (int) cprm->signr);
116 return(1);
119 /****************************************************************************/
121 * create_flat_tables() parses the env- and arg-strings in new user
122 * memory and creates the pointer tables from them, and puts their
123 * addresses on the "stack", returning the new stack pointer value.
126 static unsigned long create_flat_tables(
127 unsigned long pp,
128 struct linux_binprm * bprm)
130 unsigned long *argv,*envp;
131 unsigned long * sp;
132 char * p = (char*)pp;
133 int argc = bprm->argc;
134 int envc = bprm->envc;
135 char uninitialized_var(dummy);
137 sp = (unsigned long *)p;
138 sp -= (envc + argc + 2) + 1 + (flat_argvp_envp_on_stack() ? 2 : 0);
139 sp = (unsigned long *) ((unsigned long)sp & -FLAT_STACK_ALIGN);
140 argv = sp + 1 + (flat_argvp_envp_on_stack() ? 2 : 0);
141 envp = argv + (argc + 1);
143 if (flat_argvp_envp_on_stack()) {
144 put_user((unsigned long) envp, sp + 2);
145 put_user((unsigned long) argv, sp + 1);
148 put_user(argc, sp);
149 current->mm->arg_start = (unsigned long) p;
150 while (argc-->0) {
151 put_user((unsigned long) p, argv++);
152 do {
153 get_user(dummy, p); p++;
154 } while (dummy);
156 put_user((unsigned long) NULL, argv);
157 current->mm->arg_end = current->mm->env_start = (unsigned long) p;
158 while (envc-->0) {
159 put_user((unsigned long)p, envp); envp++;
160 do {
161 get_user(dummy, p); p++;
162 } while (dummy);
164 put_user((unsigned long) NULL, envp);
165 current->mm->env_end = (unsigned long) p;
166 return (unsigned long)sp;
169 /****************************************************************************/
171 #ifdef CONFIG_BINFMT_ZFLAT
173 #include <linux/zlib.h>
175 #define LBUFSIZE 4000
177 /* gzip flag byte */
178 #define ASCII_FLAG 0x01 /* bit 0 set: file probably ASCII text */
179 #define CONTINUATION 0x02 /* bit 1 set: continuation of multi-part gzip file */
180 #define EXTRA_FIELD 0x04 /* bit 2 set: extra field present */
181 #define ORIG_NAME 0x08 /* bit 3 set: original file name present */
182 #define COMMENT 0x10 /* bit 4 set: file comment present */
183 #define ENCRYPTED 0x20 /* bit 5 set: file is encrypted */
184 #define RESERVED 0xC0 /* bit 6,7: reserved */
186 static int decompress_exec(
187 struct linux_binprm *bprm,
188 unsigned long offset,
189 char *dst,
190 long len,
191 int fd)
193 unsigned char *buf;
194 z_stream strm;
195 loff_t fpos;
196 int ret, retval;
198 DBG_FLT("decompress_exec(offset=%x,buf=%x,len=%x)\n",(int)offset, (int)dst, (int)len);
200 memset(&strm, 0, sizeof(strm));
201 strm.workspace = kmalloc(zlib_inflate_workspacesize(), GFP_KERNEL);
202 if (strm.workspace == NULL) {
203 DBG_FLT("binfmt_flat: no memory for decompress workspace\n");
204 return -ENOMEM;
206 buf = kmalloc(LBUFSIZE, GFP_KERNEL);
207 if (buf == NULL) {
208 DBG_FLT("binfmt_flat: no memory for read buffer\n");
209 retval = -ENOMEM;
210 goto out_free;
213 /* Read in first chunk of data and parse gzip header. */
214 fpos = offset;
215 ret = bprm->file->f_op->read(bprm->file, buf, LBUFSIZE, &fpos);
217 strm.next_in = buf;
218 strm.avail_in = ret;
219 strm.total_in = 0;
221 retval = -ENOEXEC;
223 /* Check minimum size -- gzip header */
224 if (ret < 10) {
225 DBG_FLT("binfmt_flat: file too small?\n");
226 goto out_free_buf;
229 /* Check gzip magic number */
230 if ((buf[0] != 037) || ((buf[1] != 0213) && (buf[1] != 0236))) {
231 DBG_FLT("binfmt_flat: unknown compression magic?\n");
232 goto out_free_buf;
235 /* Check gzip method */
236 if (buf[2] != 8) {
237 DBG_FLT("binfmt_flat: unknown compression method?\n");
238 goto out_free_buf;
240 /* Check gzip flags */
241 if ((buf[3] & ENCRYPTED) || (buf[3] & CONTINUATION) ||
242 (buf[3] & RESERVED)) {
243 DBG_FLT("binfmt_flat: unknown flags?\n");
244 goto out_free_buf;
247 ret = 10;
248 if (buf[3] & EXTRA_FIELD) {
249 ret += 2 + buf[10] + (buf[11] << 8);
250 if (unlikely(LBUFSIZE <= ret)) {
251 DBG_FLT("binfmt_flat: buffer overflow (EXTRA)?\n");
252 goto out_free_buf;
255 if (buf[3] & ORIG_NAME) {
256 while (ret < LBUFSIZE && buf[ret++] != 0)
258 if (unlikely(LBUFSIZE == ret)) {
259 DBG_FLT("binfmt_flat: buffer overflow (ORIG_NAME)?\n");
260 goto out_free_buf;
263 if (buf[3] & COMMENT) {
264 while (ret < LBUFSIZE && buf[ret++] != 0)
266 if (unlikely(LBUFSIZE == ret)) {
267 DBG_FLT("binfmt_flat: buffer overflow (COMMENT)?\n");
268 goto out_free_buf;
272 strm.next_in += ret;
273 strm.avail_in -= ret;
275 strm.next_out = dst;
276 strm.avail_out = len;
277 strm.total_out = 0;
279 if (zlib_inflateInit2(&strm, -MAX_WBITS) != Z_OK) {
280 DBG_FLT("binfmt_flat: zlib init failed?\n");
281 goto out_free_buf;
284 while ((ret = zlib_inflate(&strm, Z_NO_FLUSH)) == Z_OK) {
285 ret = bprm->file->f_op->read(bprm->file, buf, LBUFSIZE, &fpos);
286 if (ret <= 0)
287 break;
288 len -= ret;
290 strm.next_in = buf;
291 strm.avail_in = ret;
292 strm.total_in = 0;
295 if (ret < 0) {
296 DBG_FLT("binfmt_flat: decompression failed (%d), %s\n",
297 ret, strm.msg);
298 goto out_zlib;
301 retval = 0;
302 out_zlib:
303 zlib_inflateEnd(&strm);
304 out_free_buf:
305 kfree(buf);
306 out_free:
307 kfree(strm.workspace);
308 return retval;
311 #endif /* CONFIG_BINFMT_ZFLAT */
313 /****************************************************************************/
315 static unsigned long
316 calc_reloc(unsigned long r, struct lib_info *p, int curid, int internalp)
318 unsigned long addr;
319 int id;
320 unsigned long start_brk;
321 unsigned long start_data;
322 unsigned long text_len;
323 unsigned long start_code;
325 #ifdef CONFIG_BINFMT_SHARED_FLAT
326 if (r == 0)
327 id = curid; /* Relocs of 0 are always self referring */
328 else {
329 id = (r >> 24) & 0xff; /* Find ID for this reloc */
330 r &= 0x00ffffff; /* Trim ID off here */
332 if (id >= MAX_SHARED_LIBS) {
333 printk("BINFMT_FLAT: reference 0x%x to shared library %d",
334 (unsigned) r, id);
335 goto failed;
337 if (curid != id) {
338 if (internalp) {
339 printk("BINFMT_FLAT: reloc address 0x%x not in same module "
340 "(%d != %d)", (unsigned) r, curid, id);
341 goto failed;
342 } else if ( ! p->lib_list[id].loaded &&
343 IS_ERR_VALUE(load_flat_shared_library(id, p))) {
344 printk("BINFMT_FLAT: failed to load library %d", id);
345 goto failed;
347 /* Check versioning information (i.e. time stamps) */
348 if (p->lib_list[id].build_date && p->lib_list[curid].build_date &&
349 p->lib_list[curid].build_date < p->lib_list[id].build_date) {
350 printk("BINFMT_FLAT: library %d is younger than %d", id, curid);
351 goto failed;
354 #else
355 id = 0;
356 #endif
358 start_brk = p->lib_list[id].start_brk;
359 start_data = p->lib_list[id].start_data;
360 start_code = p->lib_list[id].start_code;
361 text_len = p->lib_list[id].text_len;
363 if (!flat_reloc_valid(r, start_brk - start_data + text_len)) {
364 printk("BINFMT_FLAT: reloc outside program 0x%x (0 - 0x%x/0x%x)",
365 (int) r,(int)(start_brk-start_data+text_len),(int)text_len);
366 goto failed;
369 if (r < text_len) /* In text segment */
370 addr = r + start_code;
371 else /* In data segment */
372 addr = r - text_len + start_data;
374 /* Range checked already above so doing the range tests is redundant...*/
375 return(addr);
377 failed:
378 printk(", killing %s!\n", current->comm);
379 send_sig(SIGSEGV, current, 0);
381 return RELOC_FAILED;
384 /****************************************************************************/
386 void old_reloc(unsigned long rl)
388 #ifdef DEBUG
389 char *segment[] = { "TEXT", "DATA", "BSS", "*UNKNOWN*" };
390 #endif
391 flat_v2_reloc_t r;
392 unsigned long *ptr;
394 r.value = rl;
395 #if defined(CONFIG_COLDFIRE)
396 ptr = (unsigned long *) (current->mm->start_code + r.reloc.offset);
397 #else
398 ptr = (unsigned long *) (current->mm->start_data + r.reloc.offset);
399 #endif
401 #ifdef DEBUG
402 printk("Relocation of variable at DATASEG+%x "
403 "(address %p, currently %x) into segment %s\n",
404 r.reloc.offset, ptr, (int)*ptr, segment[r.reloc.type]);
405 #endif
407 switch (r.reloc.type) {
408 case OLD_FLAT_RELOC_TYPE_TEXT:
409 *ptr += current->mm->start_code;
410 break;
411 case OLD_FLAT_RELOC_TYPE_DATA:
412 *ptr += current->mm->start_data;
413 break;
414 case OLD_FLAT_RELOC_TYPE_BSS:
415 *ptr += current->mm->end_data;
416 break;
417 default:
418 printk("BINFMT_FLAT: Unknown relocation type=%x\n", r.reloc.type);
419 break;
422 #ifdef DEBUG
423 printk("Relocation became %x\n", (int)*ptr);
424 #endif
427 /****************************************************************************/
429 static int load_flat_file(struct linux_binprm * bprm,
430 struct lib_info *libinfo, int id, unsigned long *extra_stack)
432 struct flat_hdr * hdr;
433 unsigned long textpos = 0, datapos = 0, result;
434 unsigned long realdatastart = 0;
435 unsigned long text_len, data_len, bss_len, stack_len, flags;
436 unsigned long len, memp = 0;
437 unsigned long memp_size, extra, rlim;
438 unsigned long *reloc = 0, *rp;
439 struct inode *inode;
440 int i, rev, relocs = 0;
441 loff_t fpos;
442 unsigned long start_code, end_code;
443 int ret;
445 hdr = ((struct flat_hdr *) bprm->buf); /* exec-header */
446 inode = bprm->file->f_path.dentry->d_inode;
448 text_len = ntohl(hdr->data_start);
449 data_len = ntohl(hdr->data_end) - ntohl(hdr->data_start);
450 bss_len = ntohl(hdr->bss_end) - ntohl(hdr->data_end);
451 stack_len = ntohl(hdr->stack_size);
452 if (extra_stack) {
453 stack_len += *extra_stack;
454 *extra_stack = stack_len;
456 relocs = ntohl(hdr->reloc_count);
457 flags = ntohl(hdr->flags);
458 rev = ntohl(hdr->rev);
460 if (strncmp(hdr->magic, "bFLT", 4)) {
462 * Previously, here was a printk to tell people
463 * "BINFMT_FLAT: bad header magic".
464 * But for the kernel which also use ELF FD-PIC format, this
465 * error message is confusing.
466 * because a lot of people do not manage to produce good
468 ret = -ENOEXEC;
469 goto err;
472 if (flags & FLAT_FLAG_KTRACE)
473 printk("BINFMT_FLAT: Loading file: %s\n", bprm->filename);
475 if (rev != FLAT_VERSION && rev != OLD_FLAT_VERSION) {
476 printk("BINFMT_FLAT: bad flat file version 0x%x (supported "
477 "0x%lx and 0x%lx)\n",
478 rev, FLAT_VERSION, OLD_FLAT_VERSION);
479 ret = -ENOEXEC;
480 goto err;
483 /* Don't allow old format executables to use shared libraries */
484 if (rev == OLD_FLAT_VERSION && id != 0) {
485 printk("BINFMT_FLAT: shared libraries are not available before rev 0x%x\n",
486 (int) FLAT_VERSION);
487 ret = -ENOEXEC;
488 goto err;
492 * fix up the flags for the older format, there were all kinds
493 * of endian hacks, this only works for the simple cases
495 if (rev == OLD_FLAT_VERSION && flat_old_ram_flag(flags))
496 flags = FLAT_FLAG_RAM;
498 #ifndef CONFIG_BINFMT_ZFLAT
499 if (flags & (FLAT_FLAG_GZIP|FLAT_FLAG_GZDATA)) {
500 printk("Support for ZFLAT executables is not enabled.\n");
501 ret = -ENOEXEC;
502 goto err;
504 #endif
507 * Check initial limits. This avoids letting people circumvent
508 * size limits imposed on them by creating programs with large
509 * arrays in the data or bss.
511 rlim = rlimit(RLIMIT_DATA);
512 if (rlim >= RLIM_INFINITY)
513 rlim = ~0;
514 if (data_len + bss_len > rlim) {
515 ret = -ENOMEM;
516 goto err;
519 /* Flush all traces of the currently running executable */
520 if (id == 0) {
521 result = flush_old_exec(bprm);
522 if (result) {
523 ret = result;
524 goto err;
527 /* OK, This is the point of no return */
528 set_personality(PER_LINUX_32BIT);
529 setup_new_exec(bprm);
533 * calculate the extra space we need to map in
535 extra = max_t(unsigned long, bss_len + stack_len,
536 relocs * sizeof(unsigned long));
539 * there are a couple of cases here, the separate code/data
540 * case, and then the fully copied to RAM case which lumps
541 * it all together.
543 if ((flags & (FLAT_FLAG_RAM|FLAT_FLAG_GZIP)) == 0) {
545 * this should give us a ROM ptr, but if it doesn't we don't
546 * really care
548 DBG_FLT("BINFMT_FLAT: ROM mapping of file (we hope)\n");
550 down_write(&current->mm->mmap_sem);
551 textpos = do_mmap(bprm->file, 0, text_len, PROT_READ|PROT_EXEC,
552 MAP_PRIVATE|MAP_EXECUTABLE, 0);
553 up_write(&current->mm->mmap_sem);
554 if (!textpos || IS_ERR_VALUE(textpos)) {
555 if (!textpos)
556 textpos = (unsigned long) -ENOMEM;
557 printk("Unable to mmap process text, errno %d\n", (int)-textpos);
558 ret = textpos;
559 goto err;
562 len = data_len + extra + MAX_SHARED_LIBS * sizeof(unsigned long);
563 len = PAGE_ALIGN(len);
564 down_write(&current->mm->mmap_sem);
565 realdatastart = do_mmap(0, 0, len,
566 PROT_READ|PROT_WRITE|PROT_EXEC, MAP_PRIVATE, 0);
567 up_write(&current->mm->mmap_sem);
569 if (realdatastart == 0 || IS_ERR_VALUE(realdatastart)) {
570 if (!realdatastart)
571 realdatastart = (unsigned long) -ENOMEM;
572 printk("Unable to allocate RAM for process data, errno %d\n",
573 (int)-realdatastart);
574 do_munmap(current->mm, textpos, text_len);
575 ret = realdatastart;
576 goto err;
578 datapos = ALIGN(realdatastart +
579 MAX_SHARED_LIBS * sizeof(unsigned long),
580 FLAT_DATA_ALIGN);
582 DBG_FLT("BINFMT_FLAT: Allocated data+bss+stack (%d bytes): %x\n",
583 (int)(data_len + bss_len + stack_len), (int)datapos);
585 fpos = ntohl(hdr->data_start);
586 #ifdef CONFIG_BINFMT_ZFLAT
587 if (flags & FLAT_FLAG_GZDATA) {
588 result = decompress_exec(bprm, fpos, (char *) datapos,
589 data_len + (relocs * sizeof(unsigned long)), 0);
590 } else
591 #endif
593 result = bprm->file->f_op->read(bprm->file, (char *) datapos,
594 data_len + (relocs * sizeof(unsigned long)), &fpos);
596 if (IS_ERR_VALUE(result)) {
597 printk("Unable to read data+bss, errno %d\n", (int)-result);
598 do_munmap(current->mm, textpos, text_len);
599 do_munmap(current->mm, realdatastart, len);
600 ret = result;
601 goto err;
604 reloc = (unsigned long *) (datapos+(ntohl(hdr->reloc_start)-text_len));
605 memp = realdatastart;
606 memp_size = len;
607 } else {
609 len = text_len + data_len + extra + MAX_SHARED_LIBS * sizeof(unsigned long);
610 len = PAGE_ALIGN(len);
611 down_write(&current->mm->mmap_sem);
612 textpos = do_mmap(0, 0, len,
613 PROT_READ | PROT_EXEC | PROT_WRITE, MAP_PRIVATE, 0);
614 up_write(&current->mm->mmap_sem);
616 if (!textpos || IS_ERR_VALUE(textpos)) {
617 if (!textpos)
618 textpos = (unsigned long) -ENOMEM;
619 printk("Unable to allocate RAM for process text/data, errno %d\n",
620 (int)-textpos);
621 ret = textpos;
622 goto err;
625 realdatastart = textpos + ntohl(hdr->data_start);
626 datapos = ALIGN(realdatastart +
627 MAX_SHARED_LIBS * sizeof(unsigned long),
628 FLAT_DATA_ALIGN);
630 reloc = (unsigned long *)
631 (datapos + (ntohl(hdr->reloc_start) - text_len));
632 memp = textpos;
633 memp_size = len;
634 #ifdef CONFIG_BINFMT_ZFLAT
636 * load it all in and treat it like a RAM load from now on
638 if (flags & FLAT_FLAG_GZIP) {
639 result = decompress_exec(bprm, sizeof (struct flat_hdr),
640 (((char *) textpos) + sizeof (struct flat_hdr)),
641 (text_len + data_len + (relocs * sizeof(unsigned long))
642 - sizeof (struct flat_hdr)),
644 memmove((void *) datapos, (void *) realdatastart,
645 data_len + (relocs * sizeof(unsigned long)));
646 } else if (flags & FLAT_FLAG_GZDATA) {
647 fpos = 0;
648 result = bprm->file->f_op->read(bprm->file,
649 (char *) textpos, text_len, &fpos);
650 if (!IS_ERR_VALUE(result))
651 result = decompress_exec(bprm, text_len, (char *) datapos,
652 data_len + (relocs * sizeof(unsigned long)), 0);
654 else
655 #endif
657 fpos = 0;
658 result = bprm->file->f_op->read(bprm->file,
659 (char *) textpos, text_len, &fpos);
660 if (!IS_ERR_VALUE(result)) {
661 fpos = ntohl(hdr->data_start);
662 result = bprm->file->f_op->read(bprm->file, (char *) datapos,
663 data_len + (relocs * sizeof(unsigned long)), &fpos);
666 if (IS_ERR_VALUE(result)) {
667 printk("Unable to read code+data+bss, errno %d\n",(int)-result);
668 do_munmap(current->mm, textpos, text_len + data_len + extra +
669 MAX_SHARED_LIBS * sizeof(unsigned long));
670 ret = result;
671 goto err;
675 if (flags & FLAT_FLAG_KTRACE)
676 printk("Mapping is %x, Entry point is %x, data_start is %x\n",
677 (int)textpos, 0x00ffffff&ntohl(hdr->entry), ntohl(hdr->data_start));
679 /* The main program needs a little extra setup in the task structure */
680 start_code = textpos + sizeof (struct flat_hdr);
681 end_code = textpos + text_len;
682 if (id == 0) {
683 current->mm->start_code = start_code;
684 current->mm->end_code = end_code;
685 current->mm->start_data = datapos;
686 current->mm->end_data = datapos + data_len;
688 * set up the brk stuff, uses any slack left in data/bss/stack
689 * allocation. We put the brk after the bss (between the bss
690 * and stack) like other platforms.
691 * Userspace code relies on the stack pointer starting out at
692 * an address right at the end of a page.
694 current->mm->start_brk = datapos + data_len + bss_len;
695 current->mm->brk = (current->mm->start_brk + 3) & ~3;
696 current->mm->context.end_brk = memp + memp_size - stack_len;
699 if (flags & FLAT_FLAG_KTRACE)
700 printk("%s %s: TEXT=%x-%x DATA=%x-%x BSS=%x-%x\n",
701 id ? "Lib" : "Load", bprm->filename,
702 (int) start_code, (int) end_code,
703 (int) datapos,
704 (int) (datapos + data_len),
705 (int) (datapos + data_len),
706 (int) (((datapos + data_len + bss_len) + 3) & ~3));
708 text_len -= sizeof(struct flat_hdr); /* the real code len */
710 /* Store the current module values into the global library structure */
711 libinfo->lib_list[id].start_code = start_code;
712 libinfo->lib_list[id].start_data = datapos;
713 libinfo->lib_list[id].start_brk = datapos + data_len + bss_len;
714 libinfo->lib_list[id].text_len = text_len;
715 libinfo->lib_list[id].loaded = 1;
716 libinfo->lib_list[id].entry = (0x00ffffff & ntohl(hdr->entry)) + textpos;
717 libinfo->lib_list[id].build_date = ntohl(hdr->build_date);
720 * We just load the allocations into some temporary memory to
721 * help simplify all this mumbo jumbo
723 * We've got two different sections of relocation entries.
724 * The first is the GOT which resides at the begining of the data segment
725 * and is terminated with a -1. This one can be relocated in place.
726 * The second is the extra relocation entries tacked after the image's
727 * data segment. These require a little more processing as the entry is
728 * really an offset into the image which contains an offset into the
729 * image.
731 if (flags & FLAT_FLAG_GOTPIC) {
732 for (rp = (unsigned long *)datapos; *rp != 0xffffffff; rp++) {
733 unsigned long addr;
734 if (*rp) {
735 addr = calc_reloc(*rp, libinfo, id, 0);
736 if (addr == RELOC_FAILED) {
737 ret = -ENOEXEC;
738 goto err;
740 *rp = addr;
746 * Now run through the relocation entries.
747 * We've got to be careful here as C++ produces relocatable zero
748 * entries in the constructor and destructor tables which are then
749 * tested for being not zero (which will always occur unless we're
750 * based from address zero). This causes an endless loop as __start
751 * is at zero. The solution used is to not relocate zero addresses.
752 * This has the negative side effect of not allowing a global data
753 * reference to be statically initialised to _stext (I've moved
754 * __start to address 4 so that is okay).
756 if (rev > OLD_FLAT_VERSION) {
757 unsigned long persistent = 0;
758 for (i=0; i < relocs; i++) {
759 unsigned long addr, relval;
761 /* Get the address of the pointer to be
762 relocated (of course, the address has to be
763 relocated first). */
764 relval = ntohl(reloc[i]);
765 if (flat_set_persistent (relval, &persistent))
766 continue;
767 addr = flat_get_relocate_addr(relval);
768 rp = (unsigned long *) calc_reloc(addr, libinfo, id, 1);
769 if (rp == (unsigned long *)RELOC_FAILED) {
770 ret = -ENOEXEC;
771 goto err;
774 /* Get the pointer's value. */
775 addr = flat_get_addr_from_rp(rp, relval, flags,
776 &persistent);
777 if (addr != 0) {
779 * Do the relocation. PIC relocs in the data section are
780 * already in target order
782 if ((flags & FLAT_FLAG_GOTPIC) == 0)
783 addr = ntohl(addr);
784 addr = calc_reloc(addr, libinfo, id, 0);
785 if (addr == RELOC_FAILED) {
786 ret = -ENOEXEC;
787 goto err;
790 /* Write back the relocated pointer. */
791 flat_put_addr_at_rp(rp, addr, relval);
794 } else {
795 for (i=0; i < relocs; i++)
796 old_reloc(ntohl(reloc[i]));
799 flush_icache_range(start_code, end_code);
801 /* zero the BSS, BRK and stack areas */
802 memset((void*)(datapos + data_len), 0, bss_len +
803 (memp + memp_size - stack_len - /* end brk */
804 libinfo->lib_list[id].start_brk) + /* start brk */
805 stack_len);
807 return 0;
808 err:
809 return ret;
813 /****************************************************************************/
814 #ifdef CONFIG_BINFMT_SHARED_FLAT
817 * Load a shared library into memory. The library gets its own data
818 * segment (including bss) but not argv/argc/environ.
821 static int load_flat_shared_library(int id, struct lib_info *libs)
823 struct linux_binprm bprm;
824 int res;
825 char buf[16];
827 /* Create the file name */
828 sprintf(buf, "/lib/lib%d.so", id);
830 /* Open the file up */
831 bprm.filename = buf;
832 bprm.file = open_exec(bprm.filename);
833 res = PTR_ERR(bprm.file);
834 if (IS_ERR(bprm.file))
835 return res;
837 bprm.cred = prepare_exec_creds();
838 res = -ENOMEM;
839 if (!bprm.cred)
840 goto out;
842 res = prepare_binprm(&bprm);
844 if (!IS_ERR_VALUE(res))
845 res = load_flat_file(&bprm, libs, id, NULL);
847 abort_creds(bprm.cred);
849 out:
850 allow_write_access(bprm.file);
851 fput(bprm.file);
853 return(res);
856 #endif /* CONFIG_BINFMT_SHARED_FLAT */
857 /****************************************************************************/
860 * These are the functions used to load flat style executables and shared
861 * libraries. There is no binary dependent code anywhere else.
864 static int load_flat_binary(struct linux_binprm * bprm, struct pt_regs * regs)
866 struct lib_info libinfo;
867 unsigned long p = bprm->p;
868 unsigned long stack_len;
869 unsigned long start_addr;
870 unsigned long *sp;
871 int res;
872 int i, j;
874 memset(&libinfo, 0, sizeof(libinfo));
876 * We have to add the size of our arguments to our stack size
877 * otherwise it's too easy for users to create stack overflows
878 * by passing in a huge argument list. And yes, we have to be
879 * pedantic and include space for the argv/envp array as it may have
880 * a lot of entries.
882 #define TOP_OF_ARGS (PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *))
883 stack_len = TOP_OF_ARGS - bprm->p; /* the strings */
884 stack_len += (bprm->argc + 1) * sizeof(char *); /* the argv array */
885 stack_len += (bprm->envc + 1) * sizeof(char *); /* the envp array */
886 stack_len += FLAT_STACK_ALIGN - 1; /* reserve for upcoming alignment */
888 res = load_flat_file(bprm, &libinfo, 0, &stack_len);
889 if (IS_ERR_VALUE(res))
890 return res;
892 /* Update data segment pointers for all libraries */
893 for (i=0; i<MAX_SHARED_LIBS; i++)
894 if (libinfo.lib_list[i].loaded)
895 for (j=0; j<MAX_SHARED_LIBS; j++)
896 (-(j+1))[(unsigned long *)(libinfo.lib_list[i].start_data)] =
897 (libinfo.lib_list[j].loaded)?
898 libinfo.lib_list[j].start_data:UNLOADED_LIB;
900 install_exec_creds(bprm);
901 current->flags &= ~PF_FORKNOEXEC;
903 set_binfmt(&flat_format);
905 p = ((current->mm->context.end_brk + stack_len + 3) & ~3) - 4;
906 DBG_FLT("p=%x\n", (int)p);
908 /* copy the arg pages onto the stack, this could be more efficient :-) */
909 for (i = TOP_OF_ARGS - 1; i >= bprm->p; i--)
910 * (char *) --p =
911 ((char *) page_address(bprm->page[i/PAGE_SIZE]))[i % PAGE_SIZE];
913 sp = (unsigned long *) create_flat_tables(p, bprm);
915 /* Fake some return addresses to ensure the call chain will
916 * initialise library in order for us. We are required to call
917 * lib 1 first, then 2, ... and finally the main program (id 0).
919 start_addr = libinfo.lib_list[0].entry;
921 #ifdef CONFIG_BINFMT_SHARED_FLAT
922 for (i = MAX_SHARED_LIBS-1; i>0; i--) {
923 if (libinfo.lib_list[i].loaded) {
924 /* Push previos first to call address */
925 --sp; put_user(start_addr, sp);
926 start_addr = libinfo.lib_list[i].entry;
929 #endif
931 /* Stash our initial stack pointer into the mm structure */
932 current->mm->start_stack = (unsigned long )sp;
934 #ifdef FLAT_PLAT_INIT
935 FLAT_PLAT_INIT(regs);
936 #endif
937 DBG_FLT("start_thread(regs=0x%x, entry=0x%x, start_stack=0x%x)\n",
938 (int)regs, (int)start_addr, (int)current->mm->start_stack);
940 start_thread(regs, start_addr, current->mm->start_stack);
942 return 0;
945 /****************************************************************************/
947 static int __init init_flat_binfmt(void)
949 return register_binfmt(&flat_format);
952 /****************************************************************************/
954 core_initcall(init_flat_binfmt);
956 /****************************************************************************/