1 #include <linux/bitops.h>
2 #include <linux/slab.h>
5 #include <linux/pagemap.h>
6 #include <linux/page-flags.h>
7 #include <linux/module.h>
8 #include <linux/spinlock.h>
9 #include <linux/blkdev.h>
10 #include <linux/swap.h>
11 #include <linux/writeback.h>
12 #include <linux/pagevec.h>
13 #include "extent_io.h"
14 #include "extent_map.h"
17 #include "btrfs_inode.h"
19 static struct kmem_cache
*extent_state_cache
;
20 static struct kmem_cache
*extent_buffer_cache
;
22 static LIST_HEAD(buffers
);
23 static LIST_HEAD(states
);
27 static DEFINE_SPINLOCK(leak_lock
);
30 #define BUFFER_LRU_MAX 64
35 struct rb_node rb_node
;
38 struct extent_page_data
{
40 struct extent_io_tree
*tree
;
41 get_extent_t
*get_extent
;
43 /* tells writepage not to lock the state bits for this range
44 * it still does the unlocking
46 unsigned int extent_locked
:1;
48 /* tells the submit_bio code to use a WRITE_SYNC */
49 unsigned int sync_io
:1;
52 int __init
extent_io_init(void)
54 extent_state_cache
= kmem_cache_create("extent_state",
55 sizeof(struct extent_state
), 0,
56 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
, NULL
);
57 if (!extent_state_cache
)
60 extent_buffer_cache
= kmem_cache_create("extent_buffers",
61 sizeof(struct extent_buffer
), 0,
62 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
, NULL
);
63 if (!extent_buffer_cache
)
64 goto free_state_cache
;
68 kmem_cache_destroy(extent_state_cache
);
72 void extent_io_exit(void)
74 struct extent_state
*state
;
75 struct extent_buffer
*eb
;
77 while (!list_empty(&states
)) {
78 state
= list_entry(states
.next
, struct extent_state
, leak_list
);
79 printk(KERN_ERR
"btrfs state leak: start %llu end %llu "
80 "state %lu in tree %p refs %d\n",
81 (unsigned long long)state
->start
,
82 (unsigned long long)state
->end
,
83 state
->state
, state
->tree
, atomic_read(&state
->refs
));
84 list_del(&state
->leak_list
);
85 kmem_cache_free(extent_state_cache
, state
);
89 while (!list_empty(&buffers
)) {
90 eb
= list_entry(buffers
.next
, struct extent_buffer
, leak_list
);
91 printk(KERN_ERR
"btrfs buffer leak start %llu len %lu "
92 "refs %d\n", (unsigned long long)eb
->start
,
93 eb
->len
, atomic_read(&eb
->refs
));
94 list_del(&eb
->leak_list
);
95 kmem_cache_free(extent_buffer_cache
, eb
);
97 if (extent_state_cache
)
98 kmem_cache_destroy(extent_state_cache
);
99 if (extent_buffer_cache
)
100 kmem_cache_destroy(extent_buffer_cache
);
103 void extent_io_tree_init(struct extent_io_tree
*tree
,
104 struct address_space
*mapping
, gfp_t mask
)
106 tree
->state
= RB_ROOT
;
107 tree
->buffer
= RB_ROOT
;
109 tree
->dirty_bytes
= 0;
110 spin_lock_init(&tree
->lock
);
111 spin_lock_init(&tree
->buffer_lock
);
112 tree
->mapping
= mapping
;
115 static struct extent_state
*alloc_extent_state(gfp_t mask
)
117 struct extent_state
*state
;
122 state
= kmem_cache_alloc(extent_state_cache
, mask
);
129 spin_lock_irqsave(&leak_lock
, flags
);
130 list_add(&state
->leak_list
, &states
);
131 spin_unlock_irqrestore(&leak_lock
, flags
);
133 atomic_set(&state
->refs
, 1);
134 init_waitqueue_head(&state
->wq
);
138 void free_extent_state(struct extent_state
*state
)
142 if (atomic_dec_and_test(&state
->refs
)) {
146 WARN_ON(state
->tree
);
148 spin_lock_irqsave(&leak_lock
, flags
);
149 list_del(&state
->leak_list
);
150 spin_unlock_irqrestore(&leak_lock
, flags
);
152 kmem_cache_free(extent_state_cache
, state
);
156 static struct rb_node
*tree_insert(struct rb_root
*root
, u64 offset
,
157 struct rb_node
*node
)
159 struct rb_node
**p
= &root
->rb_node
;
160 struct rb_node
*parent
= NULL
;
161 struct tree_entry
*entry
;
165 entry
= rb_entry(parent
, struct tree_entry
, rb_node
);
167 if (offset
< entry
->start
)
169 else if (offset
> entry
->end
)
175 entry
= rb_entry(node
, struct tree_entry
, rb_node
);
176 rb_link_node(node
, parent
, p
);
177 rb_insert_color(node
, root
);
181 static struct rb_node
*__etree_search(struct extent_io_tree
*tree
, u64 offset
,
182 struct rb_node
**prev_ret
,
183 struct rb_node
**next_ret
)
185 struct rb_root
*root
= &tree
->state
;
186 struct rb_node
*n
= root
->rb_node
;
187 struct rb_node
*prev
= NULL
;
188 struct rb_node
*orig_prev
= NULL
;
189 struct tree_entry
*entry
;
190 struct tree_entry
*prev_entry
= NULL
;
193 entry
= rb_entry(n
, struct tree_entry
, rb_node
);
197 if (offset
< entry
->start
)
199 else if (offset
> entry
->end
)
207 while (prev
&& offset
> prev_entry
->end
) {
208 prev
= rb_next(prev
);
209 prev_entry
= rb_entry(prev
, struct tree_entry
, rb_node
);
216 prev_entry
= rb_entry(prev
, struct tree_entry
, rb_node
);
217 while (prev
&& offset
< prev_entry
->start
) {
218 prev
= rb_prev(prev
);
219 prev_entry
= rb_entry(prev
, struct tree_entry
, rb_node
);
226 static inline struct rb_node
*tree_search(struct extent_io_tree
*tree
,
229 struct rb_node
*prev
= NULL
;
232 ret
= __etree_search(tree
, offset
, &prev
, NULL
);
238 static struct extent_buffer
*buffer_tree_insert(struct extent_io_tree
*tree
,
239 u64 offset
, struct rb_node
*node
)
241 struct rb_root
*root
= &tree
->buffer
;
242 struct rb_node
**p
= &root
->rb_node
;
243 struct rb_node
*parent
= NULL
;
244 struct extent_buffer
*eb
;
248 eb
= rb_entry(parent
, struct extent_buffer
, rb_node
);
250 if (offset
< eb
->start
)
252 else if (offset
> eb
->start
)
258 rb_link_node(node
, parent
, p
);
259 rb_insert_color(node
, root
);
263 static struct extent_buffer
*buffer_search(struct extent_io_tree
*tree
,
266 struct rb_root
*root
= &tree
->buffer
;
267 struct rb_node
*n
= root
->rb_node
;
268 struct extent_buffer
*eb
;
271 eb
= rb_entry(n
, struct extent_buffer
, rb_node
);
272 if (offset
< eb
->start
)
274 else if (offset
> eb
->start
)
282 static void merge_cb(struct extent_io_tree
*tree
, struct extent_state
*new,
283 struct extent_state
*other
)
285 if (tree
->ops
&& tree
->ops
->merge_extent_hook
)
286 tree
->ops
->merge_extent_hook(tree
->mapping
->host
, new,
291 * utility function to look for merge candidates inside a given range.
292 * Any extents with matching state are merged together into a single
293 * extent in the tree. Extents with EXTENT_IO in their state field
294 * are not merged because the end_io handlers need to be able to do
295 * operations on them without sleeping (or doing allocations/splits).
297 * This should be called with the tree lock held.
299 static int merge_state(struct extent_io_tree
*tree
,
300 struct extent_state
*state
)
302 struct extent_state
*other
;
303 struct rb_node
*other_node
;
305 if (state
->state
& (EXTENT_IOBITS
| EXTENT_BOUNDARY
))
308 other_node
= rb_prev(&state
->rb_node
);
310 other
= rb_entry(other_node
, struct extent_state
, rb_node
);
311 if (other
->end
== state
->start
- 1 &&
312 other
->state
== state
->state
) {
313 merge_cb(tree
, state
, other
);
314 state
->start
= other
->start
;
316 rb_erase(&other
->rb_node
, &tree
->state
);
317 free_extent_state(other
);
320 other_node
= rb_next(&state
->rb_node
);
322 other
= rb_entry(other_node
, struct extent_state
, rb_node
);
323 if (other
->start
== state
->end
+ 1 &&
324 other
->state
== state
->state
) {
325 merge_cb(tree
, state
, other
);
326 other
->start
= state
->start
;
328 rb_erase(&state
->rb_node
, &tree
->state
);
329 free_extent_state(state
);
337 static int set_state_cb(struct extent_io_tree
*tree
,
338 struct extent_state
*state
, int *bits
)
340 if (tree
->ops
&& tree
->ops
->set_bit_hook
) {
341 return tree
->ops
->set_bit_hook(tree
->mapping
->host
,
348 static void clear_state_cb(struct extent_io_tree
*tree
,
349 struct extent_state
*state
, int *bits
)
351 if (tree
->ops
&& tree
->ops
->clear_bit_hook
)
352 tree
->ops
->clear_bit_hook(tree
->mapping
->host
, state
, bits
);
356 * insert an extent_state struct into the tree. 'bits' are set on the
357 * struct before it is inserted.
359 * This may return -EEXIST if the extent is already there, in which case the
360 * state struct is freed.
362 * The tree lock is not taken internally. This is a utility function and
363 * probably isn't what you want to call (see set/clear_extent_bit).
365 static int insert_state(struct extent_io_tree
*tree
,
366 struct extent_state
*state
, u64 start
, u64 end
,
369 struct rb_node
*node
;
370 int bits_to_set
= *bits
& ~EXTENT_CTLBITS
;
374 printk(KERN_ERR
"btrfs end < start %llu %llu\n",
375 (unsigned long long)end
,
376 (unsigned long long)start
);
379 state
->start
= start
;
381 ret
= set_state_cb(tree
, state
, bits
);
385 if (bits_to_set
& EXTENT_DIRTY
)
386 tree
->dirty_bytes
+= end
- start
+ 1;
387 state
->state
|= bits_to_set
;
388 node
= tree_insert(&tree
->state
, end
, &state
->rb_node
);
390 struct extent_state
*found
;
391 found
= rb_entry(node
, struct extent_state
, rb_node
);
392 printk(KERN_ERR
"btrfs found node %llu %llu on insert of "
393 "%llu %llu\n", (unsigned long long)found
->start
,
394 (unsigned long long)found
->end
,
395 (unsigned long long)start
, (unsigned long long)end
);
396 free_extent_state(state
);
400 merge_state(tree
, state
);
404 static int split_cb(struct extent_io_tree
*tree
, struct extent_state
*orig
,
407 if (tree
->ops
&& tree
->ops
->split_extent_hook
)
408 return tree
->ops
->split_extent_hook(tree
->mapping
->host
,
414 * split a given extent state struct in two, inserting the preallocated
415 * struct 'prealloc' as the newly created second half. 'split' indicates an
416 * offset inside 'orig' where it should be split.
419 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
420 * are two extent state structs in the tree:
421 * prealloc: [orig->start, split - 1]
422 * orig: [ split, orig->end ]
424 * The tree locks are not taken by this function. They need to be held
427 static int split_state(struct extent_io_tree
*tree
, struct extent_state
*orig
,
428 struct extent_state
*prealloc
, u64 split
)
430 struct rb_node
*node
;
432 split_cb(tree
, orig
, split
);
434 prealloc
->start
= orig
->start
;
435 prealloc
->end
= split
- 1;
436 prealloc
->state
= orig
->state
;
439 node
= tree_insert(&tree
->state
, prealloc
->end
, &prealloc
->rb_node
);
441 free_extent_state(prealloc
);
444 prealloc
->tree
= tree
;
449 * utility function to clear some bits in an extent state struct.
450 * it will optionally wake up any one waiting on this state (wake == 1), or
451 * forcibly remove the state from the tree (delete == 1).
453 * If no bits are set on the state struct after clearing things, the
454 * struct is freed and removed from the tree
456 static int clear_state_bit(struct extent_io_tree
*tree
,
457 struct extent_state
*state
,
460 int bits_to_clear
= *bits
& ~EXTENT_CTLBITS
;
461 int ret
= state
->state
& bits_to_clear
;
463 if ((bits_to_clear
& EXTENT_DIRTY
) && (state
->state
& EXTENT_DIRTY
)) {
464 u64 range
= state
->end
- state
->start
+ 1;
465 WARN_ON(range
> tree
->dirty_bytes
);
466 tree
->dirty_bytes
-= range
;
468 clear_state_cb(tree
, state
, bits
);
469 state
->state
&= ~bits_to_clear
;
472 if (state
->state
== 0) {
474 rb_erase(&state
->rb_node
, &tree
->state
);
476 free_extent_state(state
);
481 merge_state(tree
, state
);
487 * clear some bits on a range in the tree. This may require splitting
488 * or inserting elements in the tree, so the gfp mask is used to
489 * indicate which allocations or sleeping are allowed.
491 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
492 * the given range from the tree regardless of state (ie for truncate).
494 * the range [start, end] is inclusive.
496 * This takes the tree lock, and returns < 0 on error, > 0 if any of the
497 * bits were already set, or zero if none of the bits were already set.
499 int clear_extent_bit(struct extent_io_tree
*tree
, u64 start
, u64 end
,
500 int bits
, int wake
, int delete,
501 struct extent_state
**cached_state
,
504 struct extent_state
*state
;
505 struct extent_state
*cached
;
506 struct extent_state
*prealloc
= NULL
;
507 struct rb_node
*next_node
;
508 struct rb_node
*node
;
515 bits
|= ~EXTENT_CTLBITS
;
516 bits
|= EXTENT_FIRST_DELALLOC
;
518 if (bits
& (EXTENT_IOBITS
| EXTENT_BOUNDARY
))
521 if (!prealloc
&& (mask
& __GFP_WAIT
)) {
522 prealloc
= alloc_extent_state(mask
);
527 spin_lock(&tree
->lock
);
529 cached
= *cached_state
;
532 *cached_state
= NULL
;
536 if (cached
&& cached
->tree
&& cached
->start
== start
) {
538 atomic_dec(&cached
->refs
);
543 free_extent_state(cached
);
546 * this search will find the extents that end after
549 node
= tree_search(tree
, start
);
552 state
= rb_entry(node
, struct extent_state
, rb_node
);
554 if (state
->start
> end
)
556 WARN_ON(state
->end
< start
);
557 last_end
= state
->end
;
560 * | ---- desired range ---- |
562 * | ------------- state -------------- |
564 * We need to split the extent we found, and may flip
565 * bits on second half.
567 * If the extent we found extends past our range, we
568 * just split and search again. It'll get split again
569 * the next time though.
571 * If the extent we found is inside our range, we clear
572 * the desired bit on it.
575 if (state
->start
< start
) {
577 prealloc
= alloc_extent_state(GFP_ATOMIC
);
578 err
= split_state(tree
, state
, prealloc
, start
);
579 BUG_ON(err
== -EEXIST
);
583 if (state
->end
<= end
) {
584 set
|= clear_state_bit(tree
, state
, &bits
, wake
);
585 if (last_end
== (u64
)-1)
587 start
= last_end
+ 1;
592 * | ---- desired range ---- |
594 * We need to split the extent, and clear the bit
597 if (state
->start
<= end
&& state
->end
> end
) {
599 prealloc
= alloc_extent_state(GFP_ATOMIC
);
600 err
= split_state(tree
, state
, prealloc
, end
+ 1);
601 BUG_ON(err
== -EEXIST
);
605 set
|= clear_state_bit(tree
, prealloc
, &bits
, wake
);
611 if (state
->end
< end
&& prealloc
&& !need_resched())
612 next_node
= rb_next(&state
->rb_node
);
616 set
|= clear_state_bit(tree
, state
, &bits
, wake
);
617 if (last_end
== (u64
)-1)
619 start
= last_end
+ 1;
620 if (start
<= end
&& next_node
) {
621 state
= rb_entry(next_node
, struct extent_state
,
623 if (state
->start
== start
)
629 spin_unlock(&tree
->lock
);
631 free_extent_state(prealloc
);
638 spin_unlock(&tree
->lock
);
639 if (mask
& __GFP_WAIT
)
644 static int wait_on_state(struct extent_io_tree
*tree
,
645 struct extent_state
*state
)
646 __releases(tree
->lock
)
647 __acquires(tree
->lock
)
650 prepare_to_wait(&state
->wq
, &wait
, TASK_UNINTERRUPTIBLE
);
651 spin_unlock(&tree
->lock
);
653 spin_lock(&tree
->lock
);
654 finish_wait(&state
->wq
, &wait
);
659 * waits for one or more bits to clear on a range in the state tree.
660 * The range [start, end] is inclusive.
661 * The tree lock is taken by this function
663 int wait_extent_bit(struct extent_io_tree
*tree
, u64 start
, u64 end
, int bits
)
665 struct extent_state
*state
;
666 struct rb_node
*node
;
668 spin_lock(&tree
->lock
);
672 * this search will find all the extents that end after
675 node
= tree_search(tree
, start
);
679 state
= rb_entry(node
, struct extent_state
, rb_node
);
681 if (state
->start
> end
)
684 if (state
->state
& bits
) {
685 start
= state
->start
;
686 atomic_inc(&state
->refs
);
687 wait_on_state(tree
, state
);
688 free_extent_state(state
);
691 start
= state
->end
+ 1;
696 if (need_resched()) {
697 spin_unlock(&tree
->lock
);
699 spin_lock(&tree
->lock
);
703 spin_unlock(&tree
->lock
);
707 static int set_state_bits(struct extent_io_tree
*tree
,
708 struct extent_state
*state
,
712 int bits_to_set
= *bits
& ~EXTENT_CTLBITS
;
714 ret
= set_state_cb(tree
, state
, bits
);
717 if ((bits_to_set
& EXTENT_DIRTY
) && !(state
->state
& EXTENT_DIRTY
)) {
718 u64 range
= state
->end
- state
->start
+ 1;
719 tree
->dirty_bytes
+= range
;
721 state
->state
|= bits_to_set
;
726 static void cache_state(struct extent_state
*state
,
727 struct extent_state
**cached_ptr
)
729 if (cached_ptr
&& !(*cached_ptr
)) {
730 if (state
->state
& (EXTENT_IOBITS
| EXTENT_BOUNDARY
)) {
732 atomic_inc(&state
->refs
);
738 * set some bits on a range in the tree. This may require allocations or
739 * sleeping, so the gfp mask is used to indicate what is allowed.
741 * If any of the exclusive bits are set, this will fail with -EEXIST if some
742 * part of the range already has the desired bits set. The start of the
743 * existing range is returned in failed_start in this case.
745 * [start, end] is inclusive This takes the tree lock.
748 int set_extent_bit(struct extent_io_tree
*tree
, u64 start
, u64 end
,
749 int bits
, int exclusive_bits
, u64
*failed_start
,
750 struct extent_state
**cached_state
, gfp_t mask
)
752 struct extent_state
*state
;
753 struct extent_state
*prealloc
= NULL
;
754 struct rb_node
*node
;
759 bits
|= EXTENT_FIRST_DELALLOC
;
761 if (!prealloc
&& (mask
& __GFP_WAIT
)) {
762 prealloc
= alloc_extent_state(mask
);
767 spin_lock(&tree
->lock
);
768 if (cached_state
&& *cached_state
) {
769 state
= *cached_state
;
770 if (state
->start
== start
&& state
->tree
) {
771 node
= &state
->rb_node
;
776 * this search will find all the extents that end after
779 node
= tree_search(tree
, start
);
781 err
= insert_state(tree
, prealloc
, start
, end
, &bits
);
783 BUG_ON(err
== -EEXIST
);
786 state
= rb_entry(node
, struct extent_state
, rb_node
);
788 last_start
= state
->start
;
789 last_end
= state
->end
;
792 * | ---- desired range ---- |
795 * Just lock what we found and keep going
797 if (state
->start
== start
&& state
->end
<= end
) {
798 struct rb_node
*next_node
;
799 if (state
->state
& exclusive_bits
) {
800 *failed_start
= state
->start
;
805 err
= set_state_bits(tree
, state
, &bits
);
809 cache_state(state
, cached_state
);
810 merge_state(tree
, state
);
811 if (last_end
== (u64
)-1)
814 start
= last_end
+ 1;
815 if (start
< end
&& prealloc
&& !need_resched()) {
816 next_node
= rb_next(node
);
818 state
= rb_entry(next_node
, struct extent_state
,
820 if (state
->start
== start
)
828 * | ---- desired range ---- |
831 * | ------------- state -------------- |
833 * We need to split the extent we found, and may flip bits on
836 * If the extent we found extends past our
837 * range, we just split and search again. It'll get split
838 * again the next time though.
840 * If the extent we found is inside our range, we set the
843 if (state
->start
< start
) {
844 if (state
->state
& exclusive_bits
) {
845 *failed_start
= start
;
849 err
= split_state(tree
, state
, prealloc
, start
);
850 BUG_ON(err
== -EEXIST
);
854 if (state
->end
<= end
) {
855 err
= set_state_bits(tree
, state
, &bits
);
858 cache_state(state
, cached_state
);
859 merge_state(tree
, state
);
860 if (last_end
== (u64
)-1)
862 start
= last_end
+ 1;
867 * | ---- desired range ---- |
868 * | state | or | state |
870 * There's a hole, we need to insert something in it and
871 * ignore the extent we found.
873 if (state
->start
> start
) {
875 if (end
< last_start
)
878 this_end
= last_start
- 1;
879 err
= insert_state(tree
, prealloc
, start
, this_end
,
881 BUG_ON(err
== -EEXIST
);
886 cache_state(prealloc
, cached_state
);
888 start
= this_end
+ 1;
892 * | ---- desired range ---- |
894 * We need to split the extent, and set the bit
897 if (state
->start
<= end
&& state
->end
> end
) {
898 if (state
->state
& exclusive_bits
) {
899 *failed_start
= start
;
903 err
= split_state(tree
, state
, prealloc
, end
+ 1);
904 BUG_ON(err
== -EEXIST
);
906 err
= set_state_bits(tree
, prealloc
, &bits
);
911 cache_state(prealloc
, cached_state
);
912 merge_state(tree
, prealloc
);
920 spin_unlock(&tree
->lock
);
922 free_extent_state(prealloc
);
929 spin_unlock(&tree
->lock
);
930 if (mask
& __GFP_WAIT
)
935 /* wrappers around set/clear extent bit */
936 int set_extent_dirty(struct extent_io_tree
*tree
, u64 start
, u64 end
,
939 return set_extent_bit(tree
, start
, end
, EXTENT_DIRTY
, 0, NULL
,
943 int set_extent_bits(struct extent_io_tree
*tree
, u64 start
, u64 end
,
944 int bits
, gfp_t mask
)
946 return set_extent_bit(tree
, start
, end
, bits
, 0, NULL
,
950 int clear_extent_bits(struct extent_io_tree
*tree
, u64 start
, u64 end
,
951 int bits
, gfp_t mask
)
953 return clear_extent_bit(tree
, start
, end
, bits
, 0, 0, NULL
, mask
);
956 int set_extent_delalloc(struct extent_io_tree
*tree
, u64 start
, u64 end
,
957 struct extent_state
**cached_state
, gfp_t mask
)
959 return set_extent_bit(tree
, start
, end
,
960 EXTENT_DELALLOC
| EXTENT_DIRTY
| EXTENT_UPTODATE
,
961 0, NULL
, cached_state
, mask
);
964 int clear_extent_dirty(struct extent_io_tree
*tree
, u64 start
, u64 end
,
967 return clear_extent_bit(tree
, start
, end
,
968 EXTENT_DIRTY
| EXTENT_DELALLOC
|
969 EXTENT_DO_ACCOUNTING
, 0, 0, NULL
, mask
);
972 int set_extent_new(struct extent_io_tree
*tree
, u64 start
, u64 end
,
975 return set_extent_bit(tree
, start
, end
, EXTENT_NEW
, 0, NULL
,
979 static int clear_extent_new(struct extent_io_tree
*tree
, u64 start
, u64 end
,
982 return clear_extent_bit(tree
, start
, end
, EXTENT_NEW
, 0, 0,
986 int set_extent_uptodate(struct extent_io_tree
*tree
, u64 start
, u64 end
,
989 return set_extent_bit(tree
, start
, end
, EXTENT_UPTODATE
, 0, NULL
,
993 static int clear_extent_uptodate(struct extent_io_tree
*tree
, u64 start
,
994 u64 end
, struct extent_state
**cached_state
,
997 return clear_extent_bit(tree
, start
, end
, EXTENT_UPTODATE
, 0, 0,
1001 int wait_on_extent_writeback(struct extent_io_tree
*tree
, u64 start
, u64 end
)
1003 return wait_extent_bit(tree
, start
, end
, EXTENT_WRITEBACK
);
1007 * either insert or lock state struct between start and end use mask to tell
1008 * us if waiting is desired.
1010 int lock_extent_bits(struct extent_io_tree
*tree
, u64 start
, u64 end
,
1011 int bits
, struct extent_state
**cached_state
, gfp_t mask
)
1016 err
= set_extent_bit(tree
, start
, end
, EXTENT_LOCKED
| bits
,
1017 EXTENT_LOCKED
, &failed_start
,
1018 cached_state
, mask
);
1019 if (err
== -EEXIST
&& (mask
& __GFP_WAIT
)) {
1020 wait_extent_bit(tree
, failed_start
, end
, EXTENT_LOCKED
);
1021 start
= failed_start
;
1025 WARN_ON(start
> end
);
1030 int lock_extent(struct extent_io_tree
*tree
, u64 start
, u64 end
, gfp_t mask
)
1032 return lock_extent_bits(tree
, start
, end
, 0, NULL
, mask
);
1035 int try_lock_extent(struct extent_io_tree
*tree
, u64 start
, u64 end
,
1041 err
= set_extent_bit(tree
, start
, end
, EXTENT_LOCKED
, EXTENT_LOCKED
,
1042 &failed_start
, NULL
, mask
);
1043 if (err
== -EEXIST
) {
1044 if (failed_start
> start
)
1045 clear_extent_bit(tree
, start
, failed_start
- 1,
1046 EXTENT_LOCKED
, 1, 0, NULL
, mask
);
1052 int unlock_extent_cached(struct extent_io_tree
*tree
, u64 start
, u64 end
,
1053 struct extent_state
**cached
, gfp_t mask
)
1055 return clear_extent_bit(tree
, start
, end
, EXTENT_LOCKED
, 1, 0, cached
,
1059 int unlock_extent(struct extent_io_tree
*tree
, u64 start
, u64 end
,
1062 return clear_extent_bit(tree
, start
, end
, EXTENT_LOCKED
, 1, 0, NULL
,
1067 * helper function to set pages and extents in the tree dirty
1069 int set_range_dirty(struct extent_io_tree
*tree
, u64 start
, u64 end
)
1071 unsigned long index
= start
>> PAGE_CACHE_SHIFT
;
1072 unsigned long end_index
= end
>> PAGE_CACHE_SHIFT
;
1075 while (index
<= end_index
) {
1076 page
= find_get_page(tree
->mapping
, index
);
1078 __set_page_dirty_nobuffers(page
);
1079 page_cache_release(page
);
1086 * helper function to set both pages and extents in the tree writeback
1088 static int set_range_writeback(struct extent_io_tree
*tree
, u64 start
, u64 end
)
1090 unsigned long index
= start
>> PAGE_CACHE_SHIFT
;
1091 unsigned long end_index
= end
>> PAGE_CACHE_SHIFT
;
1094 while (index
<= end_index
) {
1095 page
= find_get_page(tree
->mapping
, index
);
1097 set_page_writeback(page
);
1098 page_cache_release(page
);
1105 * find the first offset in the io tree with 'bits' set. zero is
1106 * returned if we find something, and *start_ret and *end_ret are
1107 * set to reflect the state struct that was found.
1109 * If nothing was found, 1 is returned, < 0 on error
1111 int find_first_extent_bit(struct extent_io_tree
*tree
, u64 start
,
1112 u64
*start_ret
, u64
*end_ret
, int bits
)
1114 struct rb_node
*node
;
1115 struct extent_state
*state
;
1118 spin_lock(&tree
->lock
);
1120 * this search will find all the extents that end after
1123 node
= tree_search(tree
, start
);
1128 state
= rb_entry(node
, struct extent_state
, rb_node
);
1129 if (state
->end
>= start
&& (state
->state
& bits
)) {
1130 *start_ret
= state
->start
;
1131 *end_ret
= state
->end
;
1135 node
= rb_next(node
);
1140 spin_unlock(&tree
->lock
);
1144 /* find the first state struct with 'bits' set after 'start', and
1145 * return it. tree->lock must be held. NULL will returned if
1146 * nothing was found after 'start'
1148 struct extent_state
*find_first_extent_bit_state(struct extent_io_tree
*tree
,
1149 u64 start
, int bits
)
1151 struct rb_node
*node
;
1152 struct extent_state
*state
;
1155 * this search will find all the extents that end after
1158 node
= tree_search(tree
, start
);
1163 state
= rb_entry(node
, struct extent_state
, rb_node
);
1164 if (state
->end
>= start
&& (state
->state
& bits
))
1167 node
= rb_next(node
);
1176 * find a contiguous range of bytes in the file marked as delalloc, not
1177 * more than 'max_bytes'. start and end are used to return the range,
1179 * 1 is returned if we find something, 0 if nothing was in the tree
1181 static noinline u64
find_delalloc_range(struct extent_io_tree
*tree
,
1182 u64
*start
, u64
*end
, u64 max_bytes
,
1183 struct extent_state
**cached_state
)
1185 struct rb_node
*node
;
1186 struct extent_state
*state
;
1187 u64 cur_start
= *start
;
1189 u64 total_bytes
= 0;
1191 spin_lock(&tree
->lock
);
1194 * this search will find all the extents that end after
1197 node
= tree_search(tree
, cur_start
);
1205 state
= rb_entry(node
, struct extent_state
, rb_node
);
1206 if (found
&& (state
->start
!= cur_start
||
1207 (state
->state
& EXTENT_BOUNDARY
))) {
1210 if (!(state
->state
& EXTENT_DELALLOC
)) {
1216 *start
= state
->start
;
1217 *cached_state
= state
;
1218 atomic_inc(&state
->refs
);
1222 cur_start
= state
->end
+ 1;
1223 node
= rb_next(node
);
1226 total_bytes
+= state
->end
- state
->start
+ 1;
1227 if (total_bytes
>= max_bytes
)
1231 spin_unlock(&tree
->lock
);
1235 static noinline
int __unlock_for_delalloc(struct inode
*inode
,
1236 struct page
*locked_page
,
1240 struct page
*pages
[16];
1241 unsigned long index
= start
>> PAGE_CACHE_SHIFT
;
1242 unsigned long end_index
= end
>> PAGE_CACHE_SHIFT
;
1243 unsigned long nr_pages
= end_index
- index
+ 1;
1246 if (index
== locked_page
->index
&& end_index
== index
)
1249 while (nr_pages
> 0) {
1250 ret
= find_get_pages_contig(inode
->i_mapping
, index
,
1251 min_t(unsigned long, nr_pages
,
1252 ARRAY_SIZE(pages
)), pages
);
1253 for (i
= 0; i
< ret
; i
++) {
1254 if (pages
[i
] != locked_page
)
1255 unlock_page(pages
[i
]);
1256 page_cache_release(pages
[i
]);
1265 static noinline
int lock_delalloc_pages(struct inode
*inode
,
1266 struct page
*locked_page
,
1270 unsigned long index
= delalloc_start
>> PAGE_CACHE_SHIFT
;
1271 unsigned long start_index
= index
;
1272 unsigned long end_index
= delalloc_end
>> PAGE_CACHE_SHIFT
;
1273 unsigned long pages_locked
= 0;
1274 struct page
*pages
[16];
1275 unsigned long nrpages
;
1279 /* the caller is responsible for locking the start index */
1280 if (index
== locked_page
->index
&& index
== end_index
)
1283 /* skip the page at the start index */
1284 nrpages
= end_index
- index
+ 1;
1285 while (nrpages
> 0) {
1286 ret
= find_get_pages_contig(inode
->i_mapping
, index
,
1287 min_t(unsigned long,
1288 nrpages
, ARRAY_SIZE(pages
)), pages
);
1293 /* now we have an array of pages, lock them all */
1294 for (i
= 0; i
< ret
; i
++) {
1296 * the caller is taking responsibility for
1299 if (pages
[i
] != locked_page
) {
1300 lock_page(pages
[i
]);
1301 if (!PageDirty(pages
[i
]) ||
1302 pages
[i
]->mapping
!= inode
->i_mapping
) {
1304 unlock_page(pages
[i
]);
1305 page_cache_release(pages
[i
]);
1309 page_cache_release(pages
[i
]);
1318 if (ret
&& pages_locked
) {
1319 __unlock_for_delalloc(inode
, locked_page
,
1321 ((u64
)(start_index
+ pages_locked
- 1)) <<
1328 * find a contiguous range of bytes in the file marked as delalloc, not
1329 * more than 'max_bytes'. start and end are used to return the range,
1331 * 1 is returned if we find something, 0 if nothing was in the tree
1333 static noinline u64
find_lock_delalloc_range(struct inode
*inode
,
1334 struct extent_io_tree
*tree
,
1335 struct page
*locked_page
,
1336 u64
*start
, u64
*end
,
1342 struct extent_state
*cached_state
= NULL
;
1347 /* step one, find a bunch of delalloc bytes starting at start */
1348 delalloc_start
= *start
;
1350 found
= find_delalloc_range(tree
, &delalloc_start
, &delalloc_end
,
1351 max_bytes
, &cached_state
);
1352 if (!found
|| delalloc_end
<= *start
) {
1353 *start
= delalloc_start
;
1354 *end
= delalloc_end
;
1355 free_extent_state(cached_state
);
1360 * start comes from the offset of locked_page. We have to lock
1361 * pages in order, so we can't process delalloc bytes before
1364 if (delalloc_start
< *start
)
1365 delalloc_start
= *start
;
1368 * make sure to limit the number of pages we try to lock down
1371 if (delalloc_end
+ 1 - delalloc_start
> max_bytes
&& loops
)
1372 delalloc_end
= delalloc_start
+ PAGE_CACHE_SIZE
- 1;
1374 /* step two, lock all the pages after the page that has start */
1375 ret
= lock_delalloc_pages(inode
, locked_page
,
1376 delalloc_start
, delalloc_end
);
1377 if (ret
== -EAGAIN
) {
1378 /* some of the pages are gone, lets avoid looping by
1379 * shortening the size of the delalloc range we're searching
1381 free_extent_state(cached_state
);
1383 unsigned long offset
= (*start
) & (PAGE_CACHE_SIZE
- 1);
1384 max_bytes
= PAGE_CACHE_SIZE
- offset
;
1394 /* step three, lock the state bits for the whole range */
1395 lock_extent_bits(tree
, delalloc_start
, delalloc_end
,
1396 0, &cached_state
, GFP_NOFS
);
1398 /* then test to make sure it is all still delalloc */
1399 ret
= test_range_bit(tree
, delalloc_start
, delalloc_end
,
1400 EXTENT_DELALLOC
, 1, cached_state
);
1402 unlock_extent_cached(tree
, delalloc_start
, delalloc_end
,
1403 &cached_state
, GFP_NOFS
);
1404 __unlock_for_delalloc(inode
, locked_page
,
1405 delalloc_start
, delalloc_end
);
1409 free_extent_state(cached_state
);
1410 *start
= delalloc_start
;
1411 *end
= delalloc_end
;
1416 int extent_clear_unlock_delalloc(struct inode
*inode
,
1417 struct extent_io_tree
*tree
,
1418 u64 start
, u64 end
, struct page
*locked_page
,
1422 struct page
*pages
[16];
1423 unsigned long index
= start
>> PAGE_CACHE_SHIFT
;
1424 unsigned long end_index
= end
>> PAGE_CACHE_SHIFT
;
1425 unsigned long nr_pages
= end_index
- index
+ 1;
1429 if (op
& EXTENT_CLEAR_UNLOCK
)
1430 clear_bits
|= EXTENT_LOCKED
;
1431 if (op
& EXTENT_CLEAR_DIRTY
)
1432 clear_bits
|= EXTENT_DIRTY
;
1434 if (op
& EXTENT_CLEAR_DELALLOC
)
1435 clear_bits
|= EXTENT_DELALLOC
;
1437 clear_extent_bit(tree
, start
, end
, clear_bits
, 1, 0, NULL
, GFP_NOFS
);
1438 if (!(op
& (EXTENT_CLEAR_UNLOCK_PAGE
| EXTENT_CLEAR_DIRTY
|
1439 EXTENT_SET_WRITEBACK
| EXTENT_END_WRITEBACK
|
1440 EXTENT_SET_PRIVATE2
)))
1443 while (nr_pages
> 0) {
1444 ret
= find_get_pages_contig(inode
->i_mapping
, index
,
1445 min_t(unsigned long,
1446 nr_pages
, ARRAY_SIZE(pages
)), pages
);
1447 for (i
= 0; i
< ret
; i
++) {
1449 if (op
& EXTENT_SET_PRIVATE2
)
1450 SetPagePrivate2(pages
[i
]);
1452 if (pages
[i
] == locked_page
) {
1453 page_cache_release(pages
[i
]);
1456 if (op
& EXTENT_CLEAR_DIRTY
)
1457 clear_page_dirty_for_io(pages
[i
]);
1458 if (op
& EXTENT_SET_WRITEBACK
)
1459 set_page_writeback(pages
[i
]);
1460 if (op
& EXTENT_END_WRITEBACK
)
1461 end_page_writeback(pages
[i
]);
1462 if (op
& EXTENT_CLEAR_UNLOCK_PAGE
)
1463 unlock_page(pages
[i
]);
1464 page_cache_release(pages
[i
]);
1474 * count the number of bytes in the tree that have a given bit(s)
1475 * set. This can be fairly slow, except for EXTENT_DIRTY which is
1476 * cached. The total number found is returned.
1478 u64
count_range_bits(struct extent_io_tree
*tree
,
1479 u64
*start
, u64 search_end
, u64 max_bytes
,
1482 struct rb_node
*node
;
1483 struct extent_state
*state
;
1484 u64 cur_start
= *start
;
1485 u64 total_bytes
= 0;
1488 if (search_end
<= cur_start
) {
1493 spin_lock(&tree
->lock
);
1494 if (cur_start
== 0 && bits
== EXTENT_DIRTY
) {
1495 total_bytes
= tree
->dirty_bytes
;
1499 * this search will find all the extents that end after
1502 node
= tree_search(tree
, cur_start
);
1507 state
= rb_entry(node
, struct extent_state
, rb_node
);
1508 if (state
->start
> search_end
)
1510 if (state
->end
>= cur_start
&& (state
->state
& bits
)) {
1511 total_bytes
+= min(search_end
, state
->end
) + 1 -
1512 max(cur_start
, state
->start
);
1513 if (total_bytes
>= max_bytes
)
1516 *start
= state
->start
;
1520 node
= rb_next(node
);
1525 spin_unlock(&tree
->lock
);
1530 * set the private field for a given byte offset in the tree. If there isn't
1531 * an extent_state there already, this does nothing.
1533 int set_state_private(struct extent_io_tree
*tree
, u64 start
, u64
private)
1535 struct rb_node
*node
;
1536 struct extent_state
*state
;
1539 spin_lock(&tree
->lock
);
1541 * this search will find all the extents that end after
1544 node
= tree_search(tree
, start
);
1549 state
= rb_entry(node
, struct extent_state
, rb_node
);
1550 if (state
->start
!= start
) {
1554 state
->private = private;
1556 spin_unlock(&tree
->lock
);
1560 int get_state_private(struct extent_io_tree
*tree
, u64 start
, u64
*private)
1562 struct rb_node
*node
;
1563 struct extent_state
*state
;
1566 spin_lock(&tree
->lock
);
1568 * this search will find all the extents that end after
1571 node
= tree_search(tree
, start
);
1576 state
= rb_entry(node
, struct extent_state
, rb_node
);
1577 if (state
->start
!= start
) {
1581 *private = state
->private;
1583 spin_unlock(&tree
->lock
);
1588 * searches a range in the state tree for a given mask.
1589 * If 'filled' == 1, this returns 1 only if every extent in the tree
1590 * has the bits set. Otherwise, 1 is returned if any bit in the
1591 * range is found set.
1593 int test_range_bit(struct extent_io_tree
*tree
, u64 start
, u64 end
,
1594 int bits
, int filled
, struct extent_state
*cached
)
1596 struct extent_state
*state
= NULL
;
1597 struct rb_node
*node
;
1600 spin_lock(&tree
->lock
);
1601 if (cached
&& cached
->tree
&& cached
->start
== start
)
1602 node
= &cached
->rb_node
;
1604 node
= tree_search(tree
, start
);
1605 while (node
&& start
<= end
) {
1606 state
= rb_entry(node
, struct extent_state
, rb_node
);
1608 if (filled
&& state
->start
> start
) {
1613 if (state
->start
> end
)
1616 if (state
->state
& bits
) {
1620 } else if (filled
) {
1625 if (state
->end
== (u64
)-1)
1628 start
= state
->end
+ 1;
1631 node
= rb_next(node
);
1638 spin_unlock(&tree
->lock
);
1643 * helper function to set a given page up to date if all the
1644 * extents in the tree for that page are up to date
1646 static int check_page_uptodate(struct extent_io_tree
*tree
,
1649 u64 start
= (u64
)page
->index
<< PAGE_CACHE_SHIFT
;
1650 u64 end
= start
+ PAGE_CACHE_SIZE
- 1;
1651 if (test_range_bit(tree
, start
, end
, EXTENT_UPTODATE
, 1, NULL
))
1652 SetPageUptodate(page
);
1657 * helper function to unlock a page if all the extents in the tree
1658 * for that page are unlocked
1660 static int check_page_locked(struct extent_io_tree
*tree
,
1663 u64 start
= (u64
)page
->index
<< PAGE_CACHE_SHIFT
;
1664 u64 end
= start
+ PAGE_CACHE_SIZE
- 1;
1665 if (!test_range_bit(tree
, start
, end
, EXTENT_LOCKED
, 0, NULL
))
1671 * helper function to end page writeback if all the extents
1672 * in the tree for that page are done with writeback
1674 static int check_page_writeback(struct extent_io_tree
*tree
,
1677 end_page_writeback(page
);
1681 /* lots and lots of room for performance fixes in the end_bio funcs */
1684 * after a writepage IO is done, we need to:
1685 * clear the uptodate bits on error
1686 * clear the writeback bits in the extent tree for this IO
1687 * end_page_writeback if the page has no more pending IO
1689 * Scheduling is not allowed, so the extent state tree is expected
1690 * to have one and only one object corresponding to this IO.
1692 static void end_bio_extent_writepage(struct bio
*bio
, int err
)
1694 int uptodate
= err
== 0;
1695 struct bio_vec
*bvec
= bio
->bi_io_vec
+ bio
->bi_vcnt
- 1;
1696 struct extent_io_tree
*tree
;
1703 struct page
*page
= bvec
->bv_page
;
1704 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
1706 start
= ((u64
)page
->index
<< PAGE_CACHE_SHIFT
) +
1708 end
= start
+ bvec
->bv_len
- 1;
1710 if (bvec
->bv_offset
== 0 && bvec
->bv_len
== PAGE_CACHE_SIZE
)
1715 if (--bvec
>= bio
->bi_io_vec
)
1716 prefetchw(&bvec
->bv_page
->flags
);
1717 if (tree
->ops
&& tree
->ops
->writepage_end_io_hook
) {
1718 ret
= tree
->ops
->writepage_end_io_hook(page
, start
,
1719 end
, NULL
, uptodate
);
1724 if (!uptodate
&& tree
->ops
&&
1725 tree
->ops
->writepage_io_failed_hook
) {
1726 ret
= tree
->ops
->writepage_io_failed_hook(bio
, page
,
1729 uptodate
= (err
== 0);
1735 clear_extent_uptodate(tree
, start
, end
, NULL
, GFP_NOFS
);
1736 ClearPageUptodate(page
);
1741 end_page_writeback(page
);
1743 check_page_writeback(tree
, page
);
1744 } while (bvec
>= bio
->bi_io_vec
);
1750 * after a readpage IO is done, we need to:
1751 * clear the uptodate bits on error
1752 * set the uptodate bits if things worked
1753 * set the page up to date if all extents in the tree are uptodate
1754 * clear the lock bit in the extent tree
1755 * unlock the page if there are no other extents locked for it
1757 * Scheduling is not allowed, so the extent state tree is expected
1758 * to have one and only one object corresponding to this IO.
1760 static void end_bio_extent_readpage(struct bio
*bio
, int err
)
1762 int uptodate
= test_bit(BIO_UPTODATE
, &bio
->bi_flags
);
1763 struct bio_vec
*bvec_end
= bio
->bi_io_vec
+ bio
->bi_vcnt
- 1;
1764 struct bio_vec
*bvec
= bio
->bi_io_vec
;
1765 struct extent_io_tree
*tree
;
1775 struct page
*page
= bvec
->bv_page
;
1776 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
1778 start
= ((u64
)page
->index
<< PAGE_CACHE_SHIFT
) +
1780 end
= start
+ bvec
->bv_len
- 1;
1782 if (bvec
->bv_offset
== 0 && bvec
->bv_len
== PAGE_CACHE_SIZE
)
1787 if (++bvec
<= bvec_end
)
1788 prefetchw(&bvec
->bv_page
->flags
);
1790 if (uptodate
&& tree
->ops
&& tree
->ops
->readpage_end_io_hook
) {
1791 ret
= tree
->ops
->readpage_end_io_hook(page
, start
, end
,
1796 if (!uptodate
&& tree
->ops
&&
1797 tree
->ops
->readpage_io_failed_hook
) {
1798 ret
= tree
->ops
->readpage_io_failed_hook(bio
, page
,
1802 test_bit(BIO_UPTODATE
, &bio
->bi_flags
);
1810 set_extent_uptodate(tree
, start
, end
,
1813 unlock_extent(tree
, start
, end
, GFP_ATOMIC
);
1817 SetPageUptodate(page
);
1819 ClearPageUptodate(page
);
1825 check_page_uptodate(tree
, page
);
1827 ClearPageUptodate(page
);
1830 check_page_locked(tree
, page
);
1832 } while (bvec
<= bvec_end
);
1838 * IO done from prepare_write is pretty simple, we just unlock
1839 * the structs in the extent tree when done, and set the uptodate bits
1842 static void end_bio_extent_preparewrite(struct bio
*bio
, int err
)
1844 const int uptodate
= test_bit(BIO_UPTODATE
, &bio
->bi_flags
);
1845 struct bio_vec
*bvec
= bio
->bi_io_vec
+ bio
->bi_vcnt
- 1;
1846 struct extent_io_tree
*tree
;
1851 struct page
*page
= bvec
->bv_page
;
1852 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
1854 start
= ((u64
)page
->index
<< PAGE_CACHE_SHIFT
) +
1856 end
= start
+ bvec
->bv_len
- 1;
1858 if (--bvec
>= bio
->bi_io_vec
)
1859 prefetchw(&bvec
->bv_page
->flags
);
1862 set_extent_uptodate(tree
, start
, end
, GFP_ATOMIC
);
1864 ClearPageUptodate(page
);
1868 unlock_extent(tree
, start
, end
, GFP_ATOMIC
);
1870 } while (bvec
>= bio
->bi_io_vec
);
1876 extent_bio_alloc(struct block_device
*bdev
, u64 first_sector
, int nr_vecs
,
1881 bio
= bio_alloc(gfp_flags
, nr_vecs
);
1883 if (bio
== NULL
&& (current
->flags
& PF_MEMALLOC
)) {
1884 while (!bio
&& (nr_vecs
/= 2))
1885 bio
= bio_alloc(gfp_flags
, nr_vecs
);
1890 bio
->bi_bdev
= bdev
;
1891 bio
->bi_sector
= first_sector
;
1896 static int submit_one_bio(int rw
, struct bio
*bio
, int mirror_num
,
1897 unsigned long bio_flags
)
1900 struct bio_vec
*bvec
= bio
->bi_io_vec
+ bio
->bi_vcnt
- 1;
1901 struct page
*page
= bvec
->bv_page
;
1902 struct extent_io_tree
*tree
= bio
->bi_private
;
1906 start
= ((u64
)page
->index
<< PAGE_CACHE_SHIFT
) + bvec
->bv_offset
;
1907 end
= start
+ bvec
->bv_len
- 1;
1909 bio
->bi_private
= NULL
;
1913 if (tree
->ops
&& tree
->ops
->submit_bio_hook
)
1914 tree
->ops
->submit_bio_hook(page
->mapping
->host
, rw
, bio
,
1915 mirror_num
, bio_flags
, start
);
1917 submit_bio(rw
, bio
);
1918 if (bio_flagged(bio
, BIO_EOPNOTSUPP
))
1924 static int submit_extent_page(int rw
, struct extent_io_tree
*tree
,
1925 struct page
*page
, sector_t sector
,
1926 size_t size
, unsigned long offset
,
1927 struct block_device
*bdev
,
1928 struct bio
**bio_ret
,
1929 unsigned long max_pages
,
1930 bio_end_io_t end_io_func
,
1932 unsigned long prev_bio_flags
,
1933 unsigned long bio_flags
)
1939 int this_compressed
= bio_flags
& EXTENT_BIO_COMPRESSED
;
1940 int old_compressed
= prev_bio_flags
& EXTENT_BIO_COMPRESSED
;
1941 size_t page_size
= min_t(size_t, size
, PAGE_CACHE_SIZE
);
1943 if (bio_ret
&& *bio_ret
) {
1946 contig
= bio
->bi_sector
== sector
;
1948 contig
= bio
->bi_sector
+ (bio
->bi_size
>> 9) ==
1951 if (prev_bio_flags
!= bio_flags
|| !contig
||
1952 (tree
->ops
&& tree
->ops
->merge_bio_hook
&&
1953 tree
->ops
->merge_bio_hook(page
, offset
, page_size
, bio
,
1955 bio_add_page(bio
, page
, page_size
, offset
) < page_size
) {
1956 ret
= submit_one_bio(rw
, bio
, mirror_num
,
1963 if (this_compressed
)
1966 nr
= bio_get_nr_vecs(bdev
);
1968 bio
= extent_bio_alloc(bdev
, sector
, nr
, GFP_NOFS
| __GFP_HIGH
);
1970 bio_add_page(bio
, page
, page_size
, offset
);
1971 bio
->bi_end_io
= end_io_func
;
1972 bio
->bi_private
= tree
;
1977 ret
= submit_one_bio(rw
, bio
, mirror_num
, bio_flags
);
1982 void set_page_extent_mapped(struct page
*page
)
1984 if (!PagePrivate(page
)) {
1985 SetPagePrivate(page
);
1986 page_cache_get(page
);
1987 set_page_private(page
, EXTENT_PAGE_PRIVATE
);
1991 static void set_page_extent_head(struct page
*page
, unsigned long len
)
1993 set_page_private(page
, EXTENT_PAGE_PRIVATE_FIRST_PAGE
| len
<< 2);
1997 * basic readpage implementation. Locked extent state structs are inserted
1998 * into the tree that are removed when the IO is done (by the end_io
2001 static int __extent_read_full_page(struct extent_io_tree
*tree
,
2003 get_extent_t
*get_extent
,
2004 struct bio
**bio
, int mirror_num
,
2005 unsigned long *bio_flags
)
2007 struct inode
*inode
= page
->mapping
->host
;
2008 u64 start
= (u64
)page
->index
<< PAGE_CACHE_SHIFT
;
2009 u64 page_end
= start
+ PAGE_CACHE_SIZE
- 1;
2013 u64 last_byte
= i_size_read(inode
);
2017 struct extent_map
*em
;
2018 struct block_device
*bdev
;
2019 struct btrfs_ordered_extent
*ordered
;
2022 size_t page_offset
= 0;
2024 size_t disk_io_size
;
2025 size_t blocksize
= inode
->i_sb
->s_blocksize
;
2026 unsigned long this_bio_flag
= 0;
2028 set_page_extent_mapped(page
);
2032 lock_extent(tree
, start
, end
, GFP_NOFS
);
2033 ordered
= btrfs_lookup_ordered_extent(inode
, start
);
2036 unlock_extent(tree
, start
, end
, GFP_NOFS
);
2037 btrfs_start_ordered_extent(inode
, ordered
, 1);
2038 btrfs_put_ordered_extent(ordered
);
2041 if (page
->index
== last_byte
>> PAGE_CACHE_SHIFT
) {
2043 size_t zero_offset
= last_byte
& (PAGE_CACHE_SIZE
- 1);
2046 iosize
= PAGE_CACHE_SIZE
- zero_offset
;
2047 userpage
= kmap_atomic(page
, KM_USER0
);
2048 memset(userpage
+ zero_offset
, 0, iosize
);
2049 flush_dcache_page(page
);
2050 kunmap_atomic(userpage
, KM_USER0
);
2053 while (cur
<= end
) {
2054 if (cur
>= last_byte
) {
2056 iosize
= PAGE_CACHE_SIZE
- page_offset
;
2057 userpage
= kmap_atomic(page
, KM_USER0
);
2058 memset(userpage
+ page_offset
, 0, iosize
);
2059 flush_dcache_page(page
);
2060 kunmap_atomic(userpage
, KM_USER0
);
2061 set_extent_uptodate(tree
, cur
, cur
+ iosize
- 1,
2063 unlock_extent(tree
, cur
, cur
+ iosize
- 1, GFP_NOFS
);
2066 em
= get_extent(inode
, page
, page_offset
, cur
,
2068 if (IS_ERR(em
) || !em
) {
2070 unlock_extent(tree
, cur
, end
, GFP_NOFS
);
2073 extent_offset
= cur
- em
->start
;
2074 BUG_ON(extent_map_end(em
) <= cur
);
2077 if (test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
))
2078 this_bio_flag
= EXTENT_BIO_COMPRESSED
;
2080 iosize
= min(extent_map_end(em
) - cur
, end
- cur
+ 1);
2081 cur_end
= min(extent_map_end(em
) - 1, end
);
2082 iosize
= (iosize
+ blocksize
- 1) & ~((u64
)blocksize
- 1);
2083 if (this_bio_flag
& EXTENT_BIO_COMPRESSED
) {
2084 disk_io_size
= em
->block_len
;
2085 sector
= em
->block_start
>> 9;
2087 sector
= (em
->block_start
+ extent_offset
) >> 9;
2088 disk_io_size
= iosize
;
2091 block_start
= em
->block_start
;
2092 if (test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
))
2093 block_start
= EXTENT_MAP_HOLE
;
2094 free_extent_map(em
);
2097 /* we've found a hole, just zero and go on */
2098 if (block_start
== EXTENT_MAP_HOLE
) {
2100 userpage
= kmap_atomic(page
, KM_USER0
);
2101 memset(userpage
+ page_offset
, 0, iosize
);
2102 flush_dcache_page(page
);
2103 kunmap_atomic(userpage
, KM_USER0
);
2105 set_extent_uptodate(tree
, cur
, cur
+ iosize
- 1,
2107 unlock_extent(tree
, cur
, cur
+ iosize
- 1, GFP_NOFS
);
2109 page_offset
+= iosize
;
2112 /* the get_extent function already copied into the page */
2113 if (test_range_bit(tree
, cur
, cur_end
,
2114 EXTENT_UPTODATE
, 1, NULL
)) {
2115 check_page_uptodate(tree
, page
);
2116 unlock_extent(tree
, cur
, cur
+ iosize
- 1, GFP_NOFS
);
2118 page_offset
+= iosize
;
2121 /* we have an inline extent but it didn't get marked up
2122 * to date. Error out
2124 if (block_start
== EXTENT_MAP_INLINE
) {
2126 unlock_extent(tree
, cur
, cur
+ iosize
- 1, GFP_NOFS
);
2128 page_offset
+= iosize
;
2133 if (tree
->ops
&& tree
->ops
->readpage_io_hook
) {
2134 ret
= tree
->ops
->readpage_io_hook(page
, cur
,
2138 unsigned long pnr
= (last_byte
>> PAGE_CACHE_SHIFT
) + 1;
2140 ret
= submit_extent_page(READ
, tree
, page
,
2141 sector
, disk_io_size
, page_offset
,
2143 end_bio_extent_readpage
, mirror_num
,
2147 *bio_flags
= this_bio_flag
;
2152 page_offset
+= iosize
;
2155 if (!PageError(page
))
2156 SetPageUptodate(page
);
2162 int extent_read_full_page(struct extent_io_tree
*tree
, struct page
*page
,
2163 get_extent_t
*get_extent
)
2165 struct bio
*bio
= NULL
;
2166 unsigned long bio_flags
= 0;
2169 ret
= __extent_read_full_page(tree
, page
, get_extent
, &bio
, 0,
2172 submit_one_bio(READ
, bio
, 0, bio_flags
);
2176 static noinline
void update_nr_written(struct page
*page
,
2177 struct writeback_control
*wbc
,
2178 unsigned long nr_written
)
2180 wbc
->nr_to_write
-= nr_written
;
2181 if (wbc
->range_cyclic
|| (wbc
->nr_to_write
> 0 &&
2182 wbc
->range_start
== 0 && wbc
->range_end
== LLONG_MAX
))
2183 page
->mapping
->writeback_index
= page
->index
+ nr_written
;
2187 * the writepage semantics are similar to regular writepage. extent
2188 * records are inserted to lock ranges in the tree, and as dirty areas
2189 * are found, they are marked writeback. Then the lock bits are removed
2190 * and the end_io handler clears the writeback ranges
2192 static int __extent_writepage(struct page
*page
, struct writeback_control
*wbc
,
2195 struct inode
*inode
= page
->mapping
->host
;
2196 struct extent_page_data
*epd
= data
;
2197 struct extent_io_tree
*tree
= epd
->tree
;
2198 u64 start
= (u64
)page
->index
<< PAGE_CACHE_SHIFT
;
2200 u64 page_end
= start
+ PAGE_CACHE_SIZE
- 1;
2204 u64 last_byte
= i_size_read(inode
);
2209 struct extent_state
*cached_state
= NULL
;
2210 struct extent_map
*em
;
2211 struct block_device
*bdev
;
2214 size_t pg_offset
= 0;
2216 loff_t i_size
= i_size_read(inode
);
2217 unsigned long end_index
= i_size
>> PAGE_CACHE_SHIFT
;
2223 unsigned long nr_written
= 0;
2225 if (wbc
->sync_mode
== WB_SYNC_ALL
)
2226 write_flags
= WRITE_SYNC_PLUG
;
2228 write_flags
= WRITE
;
2230 WARN_ON(!PageLocked(page
));
2231 pg_offset
= i_size
& (PAGE_CACHE_SIZE
- 1);
2232 if (page
->index
> end_index
||
2233 (page
->index
== end_index
&& !pg_offset
)) {
2234 page
->mapping
->a_ops
->invalidatepage(page
, 0);
2239 if (page
->index
== end_index
) {
2242 userpage
= kmap_atomic(page
, KM_USER0
);
2243 memset(userpage
+ pg_offset
, 0,
2244 PAGE_CACHE_SIZE
- pg_offset
);
2245 kunmap_atomic(userpage
, KM_USER0
);
2246 flush_dcache_page(page
);
2250 set_page_extent_mapped(page
);
2252 delalloc_start
= start
;
2255 if (!epd
->extent_locked
) {
2256 u64 delalloc_to_write
= 0;
2258 * make sure the wbc mapping index is at least updated
2261 update_nr_written(page
, wbc
, 0);
2263 while (delalloc_end
< page_end
) {
2264 nr_delalloc
= find_lock_delalloc_range(inode
, tree
,
2269 if (nr_delalloc
== 0) {
2270 delalloc_start
= delalloc_end
+ 1;
2273 tree
->ops
->fill_delalloc(inode
, page
, delalloc_start
,
2274 delalloc_end
, &page_started
,
2277 * delalloc_end is already one less than the total
2278 * length, so we don't subtract one from
2281 delalloc_to_write
+= (delalloc_end
- delalloc_start
+
2284 delalloc_start
= delalloc_end
+ 1;
2286 if (wbc
->nr_to_write
< delalloc_to_write
) {
2289 if (delalloc_to_write
< thresh
* 2)
2290 thresh
= delalloc_to_write
;
2291 wbc
->nr_to_write
= min_t(u64
, delalloc_to_write
,
2295 /* did the fill delalloc function already unlock and start
2301 * we've unlocked the page, so we can't update
2302 * the mapping's writeback index, just update
2305 wbc
->nr_to_write
-= nr_written
;
2309 if (tree
->ops
&& tree
->ops
->writepage_start_hook
) {
2310 ret
= tree
->ops
->writepage_start_hook(page
, start
,
2312 if (ret
== -EAGAIN
) {
2313 redirty_page_for_writepage(wbc
, page
);
2314 update_nr_written(page
, wbc
, nr_written
);
2322 * we don't want to touch the inode after unlocking the page,
2323 * so we update the mapping writeback index now
2325 update_nr_written(page
, wbc
, nr_written
+ 1);
2328 if (last_byte
<= start
) {
2329 if (tree
->ops
&& tree
->ops
->writepage_end_io_hook
)
2330 tree
->ops
->writepage_end_io_hook(page
, start
,
2332 unlock_start
= page_end
+ 1;
2336 blocksize
= inode
->i_sb
->s_blocksize
;
2338 while (cur
<= end
) {
2339 if (cur
>= last_byte
) {
2340 if (tree
->ops
&& tree
->ops
->writepage_end_io_hook
)
2341 tree
->ops
->writepage_end_io_hook(page
, cur
,
2343 unlock_start
= page_end
+ 1;
2346 em
= epd
->get_extent(inode
, page
, pg_offset
, cur
,
2348 if (IS_ERR(em
) || !em
) {
2353 extent_offset
= cur
- em
->start
;
2354 BUG_ON(extent_map_end(em
) <= cur
);
2356 iosize
= min(extent_map_end(em
) - cur
, end
- cur
+ 1);
2357 iosize
= (iosize
+ blocksize
- 1) & ~((u64
)blocksize
- 1);
2358 sector
= (em
->block_start
+ extent_offset
) >> 9;
2360 block_start
= em
->block_start
;
2361 compressed
= test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
);
2362 free_extent_map(em
);
2366 * compressed and inline extents are written through other
2369 if (compressed
|| block_start
== EXTENT_MAP_HOLE
||
2370 block_start
== EXTENT_MAP_INLINE
) {
2372 * end_io notification does not happen here for
2373 * compressed extents
2375 if (!compressed
&& tree
->ops
&&
2376 tree
->ops
->writepage_end_io_hook
)
2377 tree
->ops
->writepage_end_io_hook(page
, cur
,
2380 else if (compressed
) {
2381 /* we don't want to end_page_writeback on
2382 * a compressed extent. this happens
2389 pg_offset
+= iosize
;
2393 /* leave this out until we have a page_mkwrite call */
2394 if (0 && !test_range_bit(tree
, cur
, cur
+ iosize
- 1,
2395 EXTENT_DIRTY
, 0, NULL
)) {
2397 pg_offset
+= iosize
;
2401 if (tree
->ops
&& tree
->ops
->writepage_io_hook
) {
2402 ret
= tree
->ops
->writepage_io_hook(page
, cur
,
2410 unsigned long max_nr
= end_index
+ 1;
2412 set_range_writeback(tree
, cur
, cur
+ iosize
- 1);
2413 if (!PageWriteback(page
)) {
2414 printk(KERN_ERR
"btrfs warning page %lu not "
2415 "writeback, cur %llu end %llu\n",
2416 page
->index
, (unsigned long long)cur
,
2417 (unsigned long long)end
);
2420 ret
= submit_extent_page(write_flags
, tree
, page
,
2421 sector
, iosize
, pg_offset
,
2422 bdev
, &epd
->bio
, max_nr
,
2423 end_bio_extent_writepage
,
2429 pg_offset
+= iosize
;
2434 /* make sure the mapping tag for page dirty gets cleared */
2435 set_page_writeback(page
);
2436 end_page_writeback(page
);
2442 /* drop our reference on any cached states */
2443 free_extent_state(cached_state
);
2448 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
2449 * @mapping: address space structure to write
2450 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2451 * @writepage: function called for each page
2452 * @data: data passed to writepage function
2454 * If a page is already under I/O, write_cache_pages() skips it, even
2455 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
2456 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
2457 * and msync() need to guarantee that all the data which was dirty at the time
2458 * the call was made get new I/O started against them. If wbc->sync_mode is
2459 * WB_SYNC_ALL then we were called for data integrity and we must wait for
2460 * existing IO to complete.
2462 static int extent_write_cache_pages(struct extent_io_tree
*tree
,
2463 struct address_space
*mapping
,
2464 struct writeback_control
*wbc
,
2465 writepage_t writepage
, void *data
,
2466 void (*flush_fn
)(void *))
2470 int nr_to_write_done
= 0;
2471 struct pagevec pvec
;
2474 pgoff_t end
; /* Inclusive */
2476 int range_whole
= 0;
2478 pagevec_init(&pvec
, 0);
2479 if (wbc
->range_cyclic
) {
2480 index
= mapping
->writeback_index
; /* Start from prev offset */
2483 index
= wbc
->range_start
>> PAGE_CACHE_SHIFT
;
2484 end
= wbc
->range_end
>> PAGE_CACHE_SHIFT
;
2485 if (wbc
->range_start
== 0 && wbc
->range_end
== LLONG_MAX
)
2490 while (!done
&& !nr_to_write_done
&& (index
<= end
) &&
2491 (nr_pages
= pagevec_lookup_tag(&pvec
, mapping
, &index
,
2492 PAGECACHE_TAG_DIRTY
, min(end
- index
,
2493 (pgoff_t
)PAGEVEC_SIZE
-1) + 1))) {
2497 for (i
= 0; i
< nr_pages
; i
++) {
2498 struct page
*page
= pvec
.pages
[i
];
2501 * At this point we hold neither mapping->tree_lock nor
2502 * lock on the page itself: the page may be truncated or
2503 * invalidated (changing page->mapping to NULL), or even
2504 * swizzled back from swapper_space to tmpfs file
2507 if (tree
->ops
&& tree
->ops
->write_cache_pages_lock_hook
)
2508 tree
->ops
->write_cache_pages_lock_hook(page
);
2512 if (unlikely(page
->mapping
!= mapping
)) {
2517 if (!wbc
->range_cyclic
&& page
->index
> end
) {
2523 if (wbc
->sync_mode
!= WB_SYNC_NONE
) {
2524 if (PageWriteback(page
))
2526 wait_on_page_writeback(page
);
2529 if (PageWriteback(page
) ||
2530 !clear_page_dirty_for_io(page
)) {
2535 ret
= (*writepage
)(page
, wbc
, data
);
2537 if (unlikely(ret
== AOP_WRITEPAGE_ACTIVATE
)) {
2545 * the filesystem may choose to bump up nr_to_write.
2546 * We have to make sure to honor the new nr_to_write
2549 nr_to_write_done
= wbc
->nr_to_write
<= 0;
2551 pagevec_release(&pvec
);
2554 if (!scanned
&& !done
) {
2556 * We hit the last page and there is more work to be done: wrap
2557 * back to the start of the file
2566 static void flush_epd_write_bio(struct extent_page_data
*epd
)
2570 submit_one_bio(WRITE_SYNC
, epd
->bio
, 0, 0);
2572 submit_one_bio(WRITE
, epd
->bio
, 0, 0);
2577 static noinline
void flush_write_bio(void *data
)
2579 struct extent_page_data
*epd
= data
;
2580 flush_epd_write_bio(epd
);
2583 int extent_write_full_page(struct extent_io_tree
*tree
, struct page
*page
,
2584 get_extent_t
*get_extent
,
2585 struct writeback_control
*wbc
)
2588 struct address_space
*mapping
= page
->mapping
;
2589 struct extent_page_data epd
= {
2592 .get_extent
= get_extent
,
2594 .sync_io
= wbc
->sync_mode
== WB_SYNC_ALL
,
2596 struct writeback_control wbc_writepages
= {
2598 .sync_mode
= wbc
->sync_mode
,
2599 .older_than_this
= NULL
,
2601 .range_start
= page_offset(page
) + PAGE_CACHE_SIZE
,
2602 .range_end
= (loff_t
)-1,
2605 ret
= __extent_writepage(page
, wbc
, &epd
);
2607 extent_write_cache_pages(tree
, mapping
, &wbc_writepages
,
2608 __extent_writepage
, &epd
, flush_write_bio
);
2609 flush_epd_write_bio(&epd
);
2613 int extent_write_locked_range(struct extent_io_tree
*tree
, struct inode
*inode
,
2614 u64 start
, u64 end
, get_extent_t
*get_extent
,
2618 struct address_space
*mapping
= inode
->i_mapping
;
2620 unsigned long nr_pages
= (end
- start
+ PAGE_CACHE_SIZE
) >>
2623 struct extent_page_data epd
= {
2626 .get_extent
= get_extent
,
2628 .sync_io
= mode
== WB_SYNC_ALL
,
2630 struct writeback_control wbc_writepages
= {
2631 .bdi
= inode
->i_mapping
->backing_dev_info
,
2633 .older_than_this
= NULL
,
2634 .nr_to_write
= nr_pages
* 2,
2635 .range_start
= start
,
2636 .range_end
= end
+ 1,
2639 while (start
<= end
) {
2640 page
= find_get_page(mapping
, start
>> PAGE_CACHE_SHIFT
);
2641 if (clear_page_dirty_for_io(page
))
2642 ret
= __extent_writepage(page
, &wbc_writepages
, &epd
);
2644 if (tree
->ops
&& tree
->ops
->writepage_end_io_hook
)
2645 tree
->ops
->writepage_end_io_hook(page
, start
,
2646 start
+ PAGE_CACHE_SIZE
- 1,
2650 page_cache_release(page
);
2651 start
+= PAGE_CACHE_SIZE
;
2654 flush_epd_write_bio(&epd
);
2658 int extent_writepages(struct extent_io_tree
*tree
,
2659 struct address_space
*mapping
,
2660 get_extent_t
*get_extent
,
2661 struct writeback_control
*wbc
)
2664 struct extent_page_data epd
= {
2667 .get_extent
= get_extent
,
2669 .sync_io
= wbc
->sync_mode
== WB_SYNC_ALL
,
2672 ret
= extent_write_cache_pages(tree
, mapping
, wbc
,
2673 __extent_writepage
, &epd
,
2675 flush_epd_write_bio(&epd
);
2679 int extent_readpages(struct extent_io_tree
*tree
,
2680 struct address_space
*mapping
,
2681 struct list_head
*pages
, unsigned nr_pages
,
2682 get_extent_t get_extent
)
2684 struct bio
*bio
= NULL
;
2686 unsigned long bio_flags
= 0;
2688 for (page_idx
= 0; page_idx
< nr_pages
; page_idx
++) {
2689 struct page
*page
= list_entry(pages
->prev
, struct page
, lru
);
2691 prefetchw(&page
->flags
);
2692 list_del(&page
->lru
);
2693 if (!add_to_page_cache_lru(page
, mapping
,
2694 page
->index
, GFP_KERNEL
)) {
2695 __extent_read_full_page(tree
, page
, get_extent
,
2696 &bio
, 0, &bio_flags
);
2698 page_cache_release(page
);
2700 BUG_ON(!list_empty(pages
));
2702 submit_one_bio(READ
, bio
, 0, bio_flags
);
2707 * basic invalidatepage code, this waits on any locked or writeback
2708 * ranges corresponding to the page, and then deletes any extent state
2709 * records from the tree
2711 int extent_invalidatepage(struct extent_io_tree
*tree
,
2712 struct page
*page
, unsigned long offset
)
2714 struct extent_state
*cached_state
= NULL
;
2715 u64 start
= ((u64
)page
->index
<< PAGE_CACHE_SHIFT
);
2716 u64 end
= start
+ PAGE_CACHE_SIZE
- 1;
2717 size_t blocksize
= page
->mapping
->host
->i_sb
->s_blocksize
;
2719 start
+= (offset
+ blocksize
- 1) & ~(blocksize
- 1);
2723 lock_extent_bits(tree
, start
, end
, 0, &cached_state
, GFP_NOFS
);
2724 wait_on_page_writeback(page
);
2725 clear_extent_bit(tree
, start
, end
,
2726 EXTENT_LOCKED
| EXTENT_DIRTY
| EXTENT_DELALLOC
|
2727 EXTENT_DO_ACCOUNTING
,
2728 1, 1, &cached_state
, GFP_NOFS
);
2733 * simple commit_write call, set_range_dirty is used to mark both
2734 * the pages and the extent records as dirty
2736 int extent_commit_write(struct extent_io_tree
*tree
,
2737 struct inode
*inode
, struct page
*page
,
2738 unsigned from
, unsigned to
)
2740 loff_t pos
= ((loff_t
)page
->index
<< PAGE_CACHE_SHIFT
) + to
;
2742 set_page_extent_mapped(page
);
2743 set_page_dirty(page
);
2745 if (pos
> inode
->i_size
) {
2746 i_size_write(inode
, pos
);
2747 mark_inode_dirty(inode
);
2752 int extent_prepare_write(struct extent_io_tree
*tree
,
2753 struct inode
*inode
, struct page
*page
,
2754 unsigned from
, unsigned to
, get_extent_t
*get_extent
)
2756 u64 page_start
= (u64
)page
->index
<< PAGE_CACHE_SHIFT
;
2757 u64 page_end
= page_start
+ PAGE_CACHE_SIZE
- 1;
2759 u64 orig_block_start
;
2762 struct extent_map
*em
;
2763 unsigned blocksize
= 1 << inode
->i_blkbits
;
2764 size_t page_offset
= 0;
2765 size_t block_off_start
;
2766 size_t block_off_end
;
2772 set_page_extent_mapped(page
);
2774 block_start
= (page_start
+ from
) & ~((u64
)blocksize
- 1);
2775 block_end
= (page_start
+ to
- 1) | (blocksize
- 1);
2776 orig_block_start
= block_start
;
2778 lock_extent(tree
, page_start
, page_end
, GFP_NOFS
);
2779 while (block_start
<= block_end
) {
2780 em
= get_extent(inode
, page
, page_offset
, block_start
,
2781 block_end
- block_start
+ 1, 1);
2782 if (IS_ERR(em
) || !em
)
2785 cur_end
= min(block_end
, extent_map_end(em
) - 1);
2786 block_off_start
= block_start
& (PAGE_CACHE_SIZE
- 1);
2787 block_off_end
= block_off_start
+ blocksize
;
2788 isnew
= clear_extent_new(tree
, block_start
, cur_end
, GFP_NOFS
);
2790 if (!PageUptodate(page
) && isnew
&&
2791 (block_off_end
> to
|| block_off_start
< from
)) {
2794 kaddr
= kmap_atomic(page
, KM_USER0
);
2795 if (block_off_end
> to
)
2796 memset(kaddr
+ to
, 0, block_off_end
- to
);
2797 if (block_off_start
< from
)
2798 memset(kaddr
+ block_off_start
, 0,
2799 from
- block_off_start
);
2800 flush_dcache_page(page
);
2801 kunmap_atomic(kaddr
, KM_USER0
);
2803 if ((em
->block_start
!= EXTENT_MAP_HOLE
&&
2804 em
->block_start
!= EXTENT_MAP_INLINE
) &&
2805 !isnew
&& !PageUptodate(page
) &&
2806 (block_off_end
> to
|| block_off_start
< from
) &&
2807 !test_range_bit(tree
, block_start
, cur_end
,
2808 EXTENT_UPTODATE
, 1, NULL
)) {
2810 u64 extent_offset
= block_start
- em
->start
;
2812 sector
= (em
->block_start
+ extent_offset
) >> 9;
2813 iosize
= (cur_end
- block_start
+ blocksize
) &
2814 ~((u64
)blocksize
- 1);
2816 * we've already got the extent locked, but we
2817 * need to split the state such that our end_bio
2818 * handler can clear the lock.
2820 set_extent_bit(tree
, block_start
,
2821 block_start
+ iosize
- 1,
2822 EXTENT_LOCKED
, 0, NULL
, NULL
, GFP_NOFS
);
2823 ret
= submit_extent_page(READ
, tree
, page
,
2824 sector
, iosize
, page_offset
, em
->bdev
,
2826 end_bio_extent_preparewrite
, 0,
2829 block_start
= block_start
+ iosize
;
2831 set_extent_uptodate(tree
, block_start
, cur_end
,
2833 unlock_extent(tree
, block_start
, cur_end
, GFP_NOFS
);
2834 block_start
= cur_end
+ 1;
2836 page_offset
= block_start
& (PAGE_CACHE_SIZE
- 1);
2837 free_extent_map(em
);
2840 wait_extent_bit(tree
, orig_block_start
,
2841 block_end
, EXTENT_LOCKED
);
2843 check_page_uptodate(tree
, page
);
2845 /* FIXME, zero out newly allocated blocks on error */
2850 * a helper for releasepage, this tests for areas of the page that
2851 * are locked or under IO and drops the related state bits if it is safe
2854 int try_release_extent_state(struct extent_map_tree
*map
,
2855 struct extent_io_tree
*tree
, struct page
*page
,
2858 u64 start
= (u64
)page
->index
<< PAGE_CACHE_SHIFT
;
2859 u64 end
= start
+ PAGE_CACHE_SIZE
- 1;
2862 if (test_range_bit(tree
, start
, end
,
2863 EXTENT_IOBITS
, 0, NULL
))
2866 if ((mask
& GFP_NOFS
) == GFP_NOFS
)
2869 * at this point we can safely clear everything except the
2870 * locked bit and the nodatasum bit
2872 clear_extent_bit(tree
, start
, end
,
2873 ~(EXTENT_LOCKED
| EXTENT_NODATASUM
),
2880 * a helper for releasepage. As long as there are no locked extents
2881 * in the range corresponding to the page, both state records and extent
2882 * map records are removed
2884 int try_release_extent_mapping(struct extent_map_tree
*map
,
2885 struct extent_io_tree
*tree
, struct page
*page
,
2888 struct extent_map
*em
;
2889 u64 start
= (u64
)page
->index
<< PAGE_CACHE_SHIFT
;
2890 u64 end
= start
+ PAGE_CACHE_SIZE
- 1;
2892 if ((mask
& __GFP_WAIT
) &&
2893 page
->mapping
->host
->i_size
> 16 * 1024 * 1024) {
2895 while (start
<= end
) {
2896 len
= end
- start
+ 1;
2897 write_lock(&map
->lock
);
2898 em
= lookup_extent_mapping(map
, start
, len
);
2899 if (!em
|| IS_ERR(em
)) {
2900 write_unlock(&map
->lock
);
2903 if (test_bit(EXTENT_FLAG_PINNED
, &em
->flags
) ||
2904 em
->start
!= start
) {
2905 write_unlock(&map
->lock
);
2906 free_extent_map(em
);
2909 if (!test_range_bit(tree
, em
->start
,
2910 extent_map_end(em
) - 1,
2911 EXTENT_LOCKED
| EXTENT_WRITEBACK
,
2913 remove_extent_mapping(map
, em
);
2914 /* once for the rb tree */
2915 free_extent_map(em
);
2917 start
= extent_map_end(em
);
2918 write_unlock(&map
->lock
);
2921 free_extent_map(em
);
2924 return try_release_extent_state(map
, tree
, page
, mask
);
2927 sector_t
extent_bmap(struct address_space
*mapping
, sector_t iblock
,
2928 get_extent_t
*get_extent
)
2930 struct inode
*inode
= mapping
->host
;
2931 struct extent_state
*cached_state
= NULL
;
2932 u64 start
= iblock
<< inode
->i_blkbits
;
2933 sector_t sector
= 0;
2934 size_t blksize
= (1 << inode
->i_blkbits
);
2935 struct extent_map
*em
;
2937 lock_extent_bits(&BTRFS_I(inode
)->io_tree
, start
, start
+ blksize
- 1,
2938 0, &cached_state
, GFP_NOFS
);
2939 em
= get_extent(inode
, NULL
, 0, start
, blksize
, 0);
2940 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, start
,
2941 start
+ blksize
- 1, &cached_state
, GFP_NOFS
);
2942 if (!em
|| IS_ERR(em
))
2945 if (em
->block_start
> EXTENT_MAP_LAST_BYTE
)
2948 sector
= (em
->block_start
+ start
- em
->start
) >> inode
->i_blkbits
;
2950 free_extent_map(em
);
2954 int extent_fiemap(struct inode
*inode
, struct fiemap_extent_info
*fieinfo
,
2955 __u64 start
, __u64 len
, get_extent_t
*get_extent
)
2959 u64 max
= start
+ len
;
2962 struct extent_map
*em
= NULL
;
2963 struct extent_state
*cached_state
= NULL
;
2965 u64 em_start
= 0, em_len
= 0;
2966 unsigned long emflags
;
2972 lock_extent_bits(&BTRFS_I(inode
)->io_tree
, start
, start
+ len
, 0,
2973 &cached_state
, GFP_NOFS
);
2974 em
= get_extent(inode
, NULL
, 0, off
, max
- off
, 0);
2982 off
= em
->start
+ em
->len
;
2986 em_start
= em
->start
;
2992 if (em
->block_start
== EXTENT_MAP_LAST_BYTE
) {
2994 flags
|= FIEMAP_EXTENT_LAST
;
2995 } else if (em
->block_start
== EXTENT_MAP_HOLE
) {
2996 flags
|= FIEMAP_EXTENT_UNWRITTEN
;
2997 } else if (em
->block_start
== EXTENT_MAP_INLINE
) {
2998 flags
|= (FIEMAP_EXTENT_DATA_INLINE
|
2999 FIEMAP_EXTENT_NOT_ALIGNED
);
3000 } else if (em
->block_start
== EXTENT_MAP_DELALLOC
) {
3001 flags
|= (FIEMAP_EXTENT_DELALLOC
|
3002 FIEMAP_EXTENT_UNKNOWN
);
3004 disko
= em
->block_start
;
3006 if (test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
))
3007 flags
|= FIEMAP_EXTENT_ENCODED
;
3009 emflags
= em
->flags
;
3010 free_extent_map(em
);
3014 em
= get_extent(inode
, NULL
, 0, off
, max
- off
, 0);
3021 emflags
= em
->flags
;
3023 if (test_bit(EXTENT_FLAG_VACANCY
, &emflags
)) {
3024 flags
|= FIEMAP_EXTENT_LAST
;
3028 ret
= fiemap_fill_next_extent(fieinfo
, em_start
, disko
,
3034 free_extent_map(em
);
3036 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, start
, start
+ len
,
3037 &cached_state
, GFP_NOFS
);
3041 static inline struct page
*extent_buffer_page(struct extent_buffer
*eb
,
3045 struct address_space
*mapping
;
3048 return eb
->first_page
;
3049 i
+= eb
->start
>> PAGE_CACHE_SHIFT
;
3050 mapping
= eb
->first_page
->mapping
;
3055 * extent_buffer_page is only called after pinning the page
3056 * by increasing the reference count. So we know the page must
3057 * be in the radix tree.
3060 p
= radix_tree_lookup(&mapping
->page_tree
, i
);
3066 static inline unsigned long num_extent_pages(u64 start
, u64 len
)
3068 return ((start
+ len
+ PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
) -
3069 (start
>> PAGE_CACHE_SHIFT
);
3072 static struct extent_buffer
*__alloc_extent_buffer(struct extent_io_tree
*tree
,
3077 struct extent_buffer
*eb
= NULL
;
3079 unsigned long flags
;
3082 eb
= kmem_cache_zalloc(extent_buffer_cache
, mask
);
3085 spin_lock_init(&eb
->lock
);
3086 init_waitqueue_head(&eb
->lock_wq
);
3089 spin_lock_irqsave(&leak_lock
, flags
);
3090 list_add(&eb
->leak_list
, &buffers
);
3091 spin_unlock_irqrestore(&leak_lock
, flags
);
3093 atomic_set(&eb
->refs
, 1);
3098 static void __free_extent_buffer(struct extent_buffer
*eb
)
3101 unsigned long flags
;
3102 spin_lock_irqsave(&leak_lock
, flags
);
3103 list_del(&eb
->leak_list
);
3104 spin_unlock_irqrestore(&leak_lock
, flags
);
3106 kmem_cache_free(extent_buffer_cache
, eb
);
3109 struct extent_buffer
*alloc_extent_buffer(struct extent_io_tree
*tree
,
3110 u64 start
, unsigned long len
,
3114 unsigned long num_pages
= num_extent_pages(start
, len
);
3116 unsigned long index
= start
>> PAGE_CACHE_SHIFT
;
3117 struct extent_buffer
*eb
;
3118 struct extent_buffer
*exists
= NULL
;
3120 struct address_space
*mapping
= tree
->mapping
;
3123 spin_lock(&tree
->buffer_lock
);
3124 eb
= buffer_search(tree
, start
);
3126 atomic_inc(&eb
->refs
);
3127 spin_unlock(&tree
->buffer_lock
);
3128 mark_page_accessed(eb
->first_page
);
3131 spin_unlock(&tree
->buffer_lock
);
3133 eb
= __alloc_extent_buffer(tree
, start
, len
, mask
);
3138 eb
->first_page
= page0
;
3141 page_cache_get(page0
);
3142 mark_page_accessed(page0
);
3143 set_page_extent_mapped(page0
);
3144 set_page_extent_head(page0
, len
);
3145 uptodate
= PageUptodate(page0
);
3149 for (; i
< num_pages
; i
++, index
++) {
3150 p
= find_or_create_page(mapping
, index
, mask
| __GFP_HIGHMEM
);
3155 set_page_extent_mapped(p
);
3156 mark_page_accessed(p
);
3159 set_page_extent_head(p
, len
);
3161 set_page_private(p
, EXTENT_PAGE_PRIVATE
);
3163 if (!PageUptodate(p
))
3168 set_bit(EXTENT_BUFFER_UPTODATE
, &eb
->bflags
);
3170 spin_lock(&tree
->buffer_lock
);
3171 exists
= buffer_tree_insert(tree
, start
, &eb
->rb_node
);
3173 /* add one reference for the caller */
3174 atomic_inc(&exists
->refs
);
3175 spin_unlock(&tree
->buffer_lock
);
3178 /* add one reference for the tree */
3179 atomic_inc(&eb
->refs
);
3180 spin_unlock(&tree
->buffer_lock
);
3184 if (!atomic_dec_and_test(&eb
->refs
))
3186 for (index
= 1; index
< i
; index
++)
3187 page_cache_release(extent_buffer_page(eb
, index
));
3188 page_cache_release(extent_buffer_page(eb
, 0));
3189 __free_extent_buffer(eb
);
3193 struct extent_buffer
*find_extent_buffer(struct extent_io_tree
*tree
,
3194 u64 start
, unsigned long len
,
3197 struct extent_buffer
*eb
;
3199 spin_lock(&tree
->buffer_lock
);
3200 eb
= buffer_search(tree
, start
);
3202 atomic_inc(&eb
->refs
);
3203 spin_unlock(&tree
->buffer_lock
);
3206 mark_page_accessed(eb
->first_page
);
3211 void free_extent_buffer(struct extent_buffer
*eb
)
3216 if (!atomic_dec_and_test(&eb
->refs
))
3222 int clear_extent_buffer_dirty(struct extent_io_tree
*tree
,
3223 struct extent_buffer
*eb
)
3226 unsigned long num_pages
;
3229 num_pages
= num_extent_pages(eb
->start
, eb
->len
);
3231 for (i
= 0; i
< num_pages
; i
++) {
3232 page
= extent_buffer_page(eb
, i
);
3233 if (!PageDirty(page
))
3238 set_page_extent_head(page
, eb
->len
);
3240 set_page_private(page
, EXTENT_PAGE_PRIVATE
);
3242 clear_page_dirty_for_io(page
);
3243 spin_lock_irq(&page
->mapping
->tree_lock
);
3244 if (!PageDirty(page
)) {
3245 radix_tree_tag_clear(&page
->mapping
->page_tree
,
3247 PAGECACHE_TAG_DIRTY
);
3249 spin_unlock_irq(&page
->mapping
->tree_lock
);
3255 int wait_on_extent_buffer_writeback(struct extent_io_tree
*tree
,
3256 struct extent_buffer
*eb
)
3258 return wait_on_extent_writeback(tree
, eb
->start
,
3259 eb
->start
+ eb
->len
- 1);
3262 int set_extent_buffer_dirty(struct extent_io_tree
*tree
,
3263 struct extent_buffer
*eb
)
3266 unsigned long num_pages
;
3269 was_dirty
= test_and_set_bit(EXTENT_BUFFER_DIRTY
, &eb
->bflags
);
3270 num_pages
= num_extent_pages(eb
->start
, eb
->len
);
3271 for (i
= 0; i
< num_pages
; i
++)
3272 __set_page_dirty_nobuffers(extent_buffer_page(eb
, i
));
3276 int clear_extent_buffer_uptodate(struct extent_io_tree
*tree
,
3277 struct extent_buffer
*eb
,
3278 struct extent_state
**cached_state
)
3282 unsigned long num_pages
;
3284 num_pages
= num_extent_pages(eb
->start
, eb
->len
);
3285 clear_bit(EXTENT_BUFFER_UPTODATE
, &eb
->bflags
);
3287 clear_extent_uptodate(tree
, eb
->start
, eb
->start
+ eb
->len
- 1,
3288 cached_state
, GFP_NOFS
);
3289 for (i
= 0; i
< num_pages
; i
++) {
3290 page
= extent_buffer_page(eb
, i
);
3292 ClearPageUptodate(page
);
3297 int set_extent_buffer_uptodate(struct extent_io_tree
*tree
,
3298 struct extent_buffer
*eb
)
3302 unsigned long num_pages
;
3304 num_pages
= num_extent_pages(eb
->start
, eb
->len
);
3306 set_extent_uptodate(tree
, eb
->start
, eb
->start
+ eb
->len
- 1,
3308 for (i
= 0; i
< num_pages
; i
++) {
3309 page
= extent_buffer_page(eb
, i
);
3310 if ((i
== 0 && (eb
->start
& (PAGE_CACHE_SIZE
- 1))) ||
3311 ((i
== num_pages
- 1) &&
3312 ((eb
->start
+ eb
->len
) & (PAGE_CACHE_SIZE
- 1)))) {
3313 check_page_uptodate(tree
, page
);
3316 SetPageUptodate(page
);
3321 int extent_range_uptodate(struct extent_io_tree
*tree
,
3326 int pg_uptodate
= 1;
3328 unsigned long index
;
3330 ret
= test_range_bit(tree
, start
, end
, EXTENT_UPTODATE
, 1, NULL
);
3333 while (start
<= end
) {
3334 index
= start
>> PAGE_CACHE_SHIFT
;
3335 page
= find_get_page(tree
->mapping
, index
);
3336 uptodate
= PageUptodate(page
);
3337 page_cache_release(page
);
3342 start
+= PAGE_CACHE_SIZE
;
3347 int extent_buffer_uptodate(struct extent_io_tree
*tree
,
3348 struct extent_buffer
*eb
,
3349 struct extent_state
*cached_state
)
3352 unsigned long num_pages
;
3355 int pg_uptodate
= 1;
3357 if (test_bit(EXTENT_BUFFER_UPTODATE
, &eb
->bflags
))
3360 ret
= test_range_bit(tree
, eb
->start
, eb
->start
+ eb
->len
- 1,
3361 EXTENT_UPTODATE
, 1, cached_state
);
3365 num_pages
= num_extent_pages(eb
->start
, eb
->len
);
3366 for (i
= 0; i
< num_pages
; i
++) {
3367 page
= extent_buffer_page(eb
, i
);
3368 if (!PageUptodate(page
)) {
3376 int read_extent_buffer_pages(struct extent_io_tree
*tree
,
3377 struct extent_buffer
*eb
,
3378 u64 start
, int wait
,
3379 get_extent_t
*get_extent
, int mirror_num
)
3382 unsigned long start_i
;
3386 int locked_pages
= 0;
3387 int all_uptodate
= 1;
3388 int inc_all_pages
= 0;
3389 unsigned long num_pages
;
3390 struct bio
*bio
= NULL
;
3391 unsigned long bio_flags
= 0;
3393 if (test_bit(EXTENT_BUFFER_UPTODATE
, &eb
->bflags
))
3396 if (test_range_bit(tree
, eb
->start
, eb
->start
+ eb
->len
- 1,
3397 EXTENT_UPTODATE
, 1, NULL
)) {
3402 WARN_ON(start
< eb
->start
);
3403 start_i
= (start
>> PAGE_CACHE_SHIFT
) -
3404 (eb
->start
>> PAGE_CACHE_SHIFT
);
3409 num_pages
= num_extent_pages(eb
->start
, eb
->len
);
3410 for (i
= start_i
; i
< num_pages
; i
++) {
3411 page
= extent_buffer_page(eb
, i
);
3413 if (!trylock_page(page
))
3419 if (!PageUptodate(page
))
3424 set_bit(EXTENT_BUFFER_UPTODATE
, &eb
->bflags
);
3428 for (i
= start_i
; i
< num_pages
; i
++) {
3429 page
= extent_buffer_page(eb
, i
);
3431 page_cache_get(page
);
3432 if (!PageUptodate(page
)) {
3435 ClearPageError(page
);
3436 err
= __extent_read_full_page(tree
, page
,
3438 mirror_num
, &bio_flags
);
3447 submit_one_bio(READ
, bio
, mirror_num
, bio_flags
);
3452 for (i
= start_i
; i
< num_pages
; i
++) {
3453 page
= extent_buffer_page(eb
, i
);
3454 wait_on_page_locked(page
);
3455 if (!PageUptodate(page
))
3460 set_bit(EXTENT_BUFFER_UPTODATE
, &eb
->bflags
);
3465 while (locked_pages
> 0) {
3466 page
= extent_buffer_page(eb
, i
);
3474 void read_extent_buffer(struct extent_buffer
*eb
, void *dstv
,
3475 unsigned long start
,
3482 char *dst
= (char *)dstv
;
3483 size_t start_offset
= eb
->start
& ((u64
)PAGE_CACHE_SIZE
- 1);
3484 unsigned long i
= (start_offset
+ start
) >> PAGE_CACHE_SHIFT
;
3486 WARN_ON(start
> eb
->len
);
3487 WARN_ON(start
+ len
> eb
->start
+ eb
->len
);
3489 offset
= (start_offset
+ start
) & ((unsigned long)PAGE_CACHE_SIZE
- 1);
3492 page
= extent_buffer_page(eb
, i
);
3494 cur
= min(len
, (PAGE_CACHE_SIZE
- offset
));
3495 kaddr
= kmap_atomic(page
, KM_USER1
);
3496 memcpy(dst
, kaddr
+ offset
, cur
);
3497 kunmap_atomic(kaddr
, KM_USER1
);
3506 int map_private_extent_buffer(struct extent_buffer
*eb
, unsigned long start
,
3507 unsigned long min_len
, char **token
, char **map
,
3508 unsigned long *map_start
,
3509 unsigned long *map_len
, int km
)
3511 size_t offset
= start
& (PAGE_CACHE_SIZE
- 1);
3514 size_t start_offset
= eb
->start
& ((u64
)PAGE_CACHE_SIZE
- 1);
3515 unsigned long i
= (start_offset
+ start
) >> PAGE_CACHE_SHIFT
;
3516 unsigned long end_i
= (start_offset
+ start
+ min_len
- 1) >>
3523 offset
= start_offset
;
3527 *map_start
= ((u64
)i
<< PAGE_CACHE_SHIFT
) - start_offset
;
3530 if (start
+ min_len
> eb
->len
) {
3531 printk(KERN_ERR
"btrfs bad mapping eb start %llu len %lu, "
3532 "wanted %lu %lu\n", (unsigned long long)eb
->start
,
3533 eb
->len
, start
, min_len
);
3537 p
= extent_buffer_page(eb
, i
);
3538 kaddr
= kmap_atomic(p
, km
);
3540 *map
= kaddr
+ offset
;
3541 *map_len
= PAGE_CACHE_SIZE
- offset
;
3545 int map_extent_buffer(struct extent_buffer
*eb
, unsigned long start
,
3546 unsigned long min_len
,
3547 char **token
, char **map
,
3548 unsigned long *map_start
,
3549 unsigned long *map_len
, int km
)
3553 if (eb
->map_token
) {
3554 unmap_extent_buffer(eb
, eb
->map_token
, km
);
3555 eb
->map_token
= NULL
;
3558 err
= map_private_extent_buffer(eb
, start
, min_len
, token
, map
,
3559 map_start
, map_len
, km
);
3561 eb
->map_token
= *token
;
3563 eb
->map_start
= *map_start
;
3564 eb
->map_len
= *map_len
;
3569 void unmap_extent_buffer(struct extent_buffer
*eb
, char *token
, int km
)
3571 kunmap_atomic(token
, km
);
3574 int memcmp_extent_buffer(struct extent_buffer
*eb
, const void *ptrv
,
3575 unsigned long start
,
3582 char *ptr
= (char *)ptrv
;
3583 size_t start_offset
= eb
->start
& ((u64
)PAGE_CACHE_SIZE
- 1);
3584 unsigned long i
= (start_offset
+ start
) >> PAGE_CACHE_SHIFT
;
3587 WARN_ON(start
> eb
->len
);
3588 WARN_ON(start
+ len
> eb
->start
+ eb
->len
);
3590 offset
= (start_offset
+ start
) & ((unsigned long)PAGE_CACHE_SIZE
- 1);
3593 page
= extent_buffer_page(eb
, i
);
3595 cur
= min(len
, (PAGE_CACHE_SIZE
- offset
));
3597 kaddr
= kmap_atomic(page
, KM_USER0
);
3598 ret
= memcmp(ptr
, kaddr
+ offset
, cur
);
3599 kunmap_atomic(kaddr
, KM_USER0
);
3611 void write_extent_buffer(struct extent_buffer
*eb
, const void *srcv
,
3612 unsigned long start
, unsigned long len
)
3618 char *src
= (char *)srcv
;
3619 size_t start_offset
= eb
->start
& ((u64
)PAGE_CACHE_SIZE
- 1);
3620 unsigned long i
= (start_offset
+ start
) >> PAGE_CACHE_SHIFT
;
3622 WARN_ON(start
> eb
->len
);
3623 WARN_ON(start
+ len
> eb
->start
+ eb
->len
);
3625 offset
= (start_offset
+ start
) & ((unsigned long)PAGE_CACHE_SIZE
- 1);
3628 page
= extent_buffer_page(eb
, i
);
3629 WARN_ON(!PageUptodate(page
));
3631 cur
= min(len
, PAGE_CACHE_SIZE
- offset
);
3632 kaddr
= kmap_atomic(page
, KM_USER1
);
3633 memcpy(kaddr
+ offset
, src
, cur
);
3634 kunmap_atomic(kaddr
, KM_USER1
);
3643 void memset_extent_buffer(struct extent_buffer
*eb
, char c
,
3644 unsigned long start
, unsigned long len
)
3650 size_t start_offset
= eb
->start
& ((u64
)PAGE_CACHE_SIZE
- 1);
3651 unsigned long i
= (start_offset
+ start
) >> PAGE_CACHE_SHIFT
;
3653 WARN_ON(start
> eb
->len
);
3654 WARN_ON(start
+ len
> eb
->start
+ eb
->len
);
3656 offset
= (start_offset
+ start
) & ((unsigned long)PAGE_CACHE_SIZE
- 1);
3659 page
= extent_buffer_page(eb
, i
);
3660 WARN_ON(!PageUptodate(page
));
3662 cur
= min(len
, PAGE_CACHE_SIZE
- offset
);
3663 kaddr
= kmap_atomic(page
, KM_USER0
);
3664 memset(kaddr
+ offset
, c
, cur
);
3665 kunmap_atomic(kaddr
, KM_USER0
);
3673 void copy_extent_buffer(struct extent_buffer
*dst
, struct extent_buffer
*src
,
3674 unsigned long dst_offset
, unsigned long src_offset
,
3677 u64 dst_len
= dst
->len
;
3682 size_t start_offset
= dst
->start
& ((u64
)PAGE_CACHE_SIZE
- 1);
3683 unsigned long i
= (start_offset
+ dst_offset
) >> PAGE_CACHE_SHIFT
;
3685 WARN_ON(src
->len
!= dst_len
);
3687 offset
= (start_offset
+ dst_offset
) &
3688 ((unsigned long)PAGE_CACHE_SIZE
- 1);
3691 page
= extent_buffer_page(dst
, i
);
3692 WARN_ON(!PageUptodate(page
));
3694 cur
= min(len
, (unsigned long)(PAGE_CACHE_SIZE
- offset
));
3696 kaddr
= kmap_atomic(page
, KM_USER0
);
3697 read_extent_buffer(src
, kaddr
+ offset
, src_offset
, cur
);
3698 kunmap_atomic(kaddr
, KM_USER0
);
3707 static void move_pages(struct page
*dst_page
, struct page
*src_page
,
3708 unsigned long dst_off
, unsigned long src_off
,
3711 char *dst_kaddr
= kmap_atomic(dst_page
, KM_USER0
);
3712 if (dst_page
== src_page
) {
3713 memmove(dst_kaddr
+ dst_off
, dst_kaddr
+ src_off
, len
);
3715 char *src_kaddr
= kmap_atomic(src_page
, KM_USER1
);
3716 char *p
= dst_kaddr
+ dst_off
+ len
;
3717 char *s
= src_kaddr
+ src_off
+ len
;
3722 kunmap_atomic(src_kaddr
, KM_USER1
);
3724 kunmap_atomic(dst_kaddr
, KM_USER0
);
3727 static void copy_pages(struct page
*dst_page
, struct page
*src_page
,
3728 unsigned long dst_off
, unsigned long src_off
,
3731 char *dst_kaddr
= kmap_atomic(dst_page
, KM_USER0
);
3734 if (dst_page
!= src_page
)
3735 src_kaddr
= kmap_atomic(src_page
, KM_USER1
);
3737 src_kaddr
= dst_kaddr
;
3739 memcpy(dst_kaddr
+ dst_off
, src_kaddr
+ src_off
, len
);
3740 kunmap_atomic(dst_kaddr
, KM_USER0
);
3741 if (dst_page
!= src_page
)
3742 kunmap_atomic(src_kaddr
, KM_USER1
);
3745 void memcpy_extent_buffer(struct extent_buffer
*dst
, unsigned long dst_offset
,
3746 unsigned long src_offset
, unsigned long len
)
3749 size_t dst_off_in_page
;
3750 size_t src_off_in_page
;
3751 size_t start_offset
= dst
->start
& ((u64
)PAGE_CACHE_SIZE
- 1);
3752 unsigned long dst_i
;
3753 unsigned long src_i
;
3755 if (src_offset
+ len
> dst
->len
) {
3756 printk(KERN_ERR
"btrfs memmove bogus src_offset %lu move "
3757 "len %lu dst len %lu\n", src_offset
, len
, dst
->len
);
3760 if (dst_offset
+ len
> dst
->len
) {
3761 printk(KERN_ERR
"btrfs memmove bogus dst_offset %lu move "
3762 "len %lu dst len %lu\n", dst_offset
, len
, dst
->len
);
3767 dst_off_in_page
= (start_offset
+ dst_offset
) &
3768 ((unsigned long)PAGE_CACHE_SIZE
- 1);
3769 src_off_in_page
= (start_offset
+ src_offset
) &
3770 ((unsigned long)PAGE_CACHE_SIZE
- 1);
3772 dst_i
= (start_offset
+ dst_offset
) >> PAGE_CACHE_SHIFT
;
3773 src_i
= (start_offset
+ src_offset
) >> PAGE_CACHE_SHIFT
;
3775 cur
= min(len
, (unsigned long)(PAGE_CACHE_SIZE
-
3777 cur
= min_t(unsigned long, cur
,
3778 (unsigned long)(PAGE_CACHE_SIZE
- dst_off_in_page
));
3780 copy_pages(extent_buffer_page(dst
, dst_i
),
3781 extent_buffer_page(dst
, src_i
),
3782 dst_off_in_page
, src_off_in_page
, cur
);
3790 void memmove_extent_buffer(struct extent_buffer
*dst
, unsigned long dst_offset
,
3791 unsigned long src_offset
, unsigned long len
)
3794 size_t dst_off_in_page
;
3795 size_t src_off_in_page
;
3796 unsigned long dst_end
= dst_offset
+ len
- 1;
3797 unsigned long src_end
= src_offset
+ len
- 1;
3798 size_t start_offset
= dst
->start
& ((u64
)PAGE_CACHE_SIZE
- 1);
3799 unsigned long dst_i
;
3800 unsigned long src_i
;
3802 if (src_offset
+ len
> dst
->len
) {
3803 printk(KERN_ERR
"btrfs memmove bogus src_offset %lu move "
3804 "len %lu len %lu\n", src_offset
, len
, dst
->len
);
3807 if (dst_offset
+ len
> dst
->len
) {
3808 printk(KERN_ERR
"btrfs memmove bogus dst_offset %lu move "
3809 "len %lu len %lu\n", dst_offset
, len
, dst
->len
);
3812 if (dst_offset
< src_offset
) {
3813 memcpy_extent_buffer(dst
, dst_offset
, src_offset
, len
);
3817 dst_i
= (start_offset
+ dst_end
) >> PAGE_CACHE_SHIFT
;
3818 src_i
= (start_offset
+ src_end
) >> PAGE_CACHE_SHIFT
;
3820 dst_off_in_page
= (start_offset
+ dst_end
) &
3821 ((unsigned long)PAGE_CACHE_SIZE
- 1);
3822 src_off_in_page
= (start_offset
+ src_end
) &
3823 ((unsigned long)PAGE_CACHE_SIZE
- 1);
3825 cur
= min_t(unsigned long, len
, src_off_in_page
+ 1);
3826 cur
= min(cur
, dst_off_in_page
+ 1);
3827 move_pages(extent_buffer_page(dst
, dst_i
),
3828 extent_buffer_page(dst
, src_i
),
3829 dst_off_in_page
- cur
+ 1,
3830 src_off_in_page
- cur
+ 1, cur
);
3838 int try_release_extent_buffer(struct extent_io_tree
*tree
, struct page
*page
)
3840 u64 start
= page_offset(page
);
3841 struct extent_buffer
*eb
;
3844 unsigned long num_pages
;
3846 spin_lock(&tree
->buffer_lock
);
3847 eb
= buffer_search(tree
, start
);
3851 if (atomic_read(&eb
->refs
) > 1) {
3855 if (test_bit(EXTENT_BUFFER_DIRTY
, &eb
->bflags
)) {
3859 /* at this point we can safely release the extent buffer */
3860 num_pages
= num_extent_pages(eb
->start
, eb
->len
);
3861 for (i
= 0; i
< num_pages
; i
++)
3862 page_cache_release(extent_buffer_page(eb
, i
));
3863 rb_erase(&eb
->rb_node
, &tree
->buffer
);
3864 __free_extent_buffer(eb
);
3866 spin_unlock(&tree
->buffer_lock
);