Linux 2.6.35-rc2
[linux/fpc-iii.git] / fs / btrfs / ordered-data.c
blobe56c72bc5adddcdb4338b573a2f7cbc05e2b4a37
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/slab.h>
20 #include <linux/blkdev.h>
21 #include <linux/writeback.h>
22 #include <linux/pagevec.h>
23 #include "ctree.h"
24 #include "transaction.h"
25 #include "btrfs_inode.h"
26 #include "extent_io.h"
28 static u64 entry_end(struct btrfs_ordered_extent *entry)
30 if (entry->file_offset + entry->len < entry->file_offset)
31 return (u64)-1;
32 return entry->file_offset + entry->len;
35 /* returns NULL if the insertion worked, or it returns the node it did find
36 * in the tree
38 static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
39 struct rb_node *node)
41 struct rb_node **p = &root->rb_node;
42 struct rb_node *parent = NULL;
43 struct btrfs_ordered_extent *entry;
45 while (*p) {
46 parent = *p;
47 entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
49 if (file_offset < entry->file_offset)
50 p = &(*p)->rb_left;
51 else if (file_offset >= entry_end(entry))
52 p = &(*p)->rb_right;
53 else
54 return parent;
57 rb_link_node(node, parent, p);
58 rb_insert_color(node, root);
59 return NULL;
63 * look for a given offset in the tree, and if it can't be found return the
64 * first lesser offset
66 static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
67 struct rb_node **prev_ret)
69 struct rb_node *n = root->rb_node;
70 struct rb_node *prev = NULL;
71 struct rb_node *test;
72 struct btrfs_ordered_extent *entry;
73 struct btrfs_ordered_extent *prev_entry = NULL;
75 while (n) {
76 entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
77 prev = n;
78 prev_entry = entry;
80 if (file_offset < entry->file_offset)
81 n = n->rb_left;
82 else if (file_offset >= entry_end(entry))
83 n = n->rb_right;
84 else
85 return n;
87 if (!prev_ret)
88 return NULL;
90 while (prev && file_offset >= entry_end(prev_entry)) {
91 test = rb_next(prev);
92 if (!test)
93 break;
94 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
95 rb_node);
96 if (file_offset < entry_end(prev_entry))
97 break;
99 prev = test;
101 if (prev)
102 prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
103 rb_node);
104 while (prev && file_offset < entry_end(prev_entry)) {
105 test = rb_prev(prev);
106 if (!test)
107 break;
108 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
109 rb_node);
110 prev = test;
112 *prev_ret = prev;
113 return NULL;
117 * helper to check if a given offset is inside a given entry
119 static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset)
121 if (file_offset < entry->file_offset ||
122 entry->file_offset + entry->len <= file_offset)
123 return 0;
124 return 1;
127 static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
128 u64 len)
130 if (file_offset + len <= entry->file_offset ||
131 entry->file_offset + entry->len <= file_offset)
132 return 0;
133 return 1;
137 * look find the first ordered struct that has this offset, otherwise
138 * the first one less than this offset
140 static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
141 u64 file_offset)
143 struct rb_root *root = &tree->tree;
144 struct rb_node *prev;
145 struct rb_node *ret;
146 struct btrfs_ordered_extent *entry;
148 if (tree->last) {
149 entry = rb_entry(tree->last, struct btrfs_ordered_extent,
150 rb_node);
151 if (offset_in_entry(entry, file_offset))
152 return tree->last;
154 ret = __tree_search(root, file_offset, &prev);
155 if (!ret)
156 ret = prev;
157 if (ret)
158 tree->last = ret;
159 return ret;
162 /* allocate and add a new ordered_extent into the per-inode tree.
163 * file_offset is the logical offset in the file
165 * start is the disk block number of an extent already reserved in the
166 * extent allocation tree
168 * len is the length of the extent
170 * The tree is given a single reference on the ordered extent that was
171 * inserted.
173 static int __btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
174 u64 start, u64 len, u64 disk_len,
175 int type, int dio)
177 struct btrfs_ordered_inode_tree *tree;
178 struct rb_node *node;
179 struct btrfs_ordered_extent *entry;
181 tree = &BTRFS_I(inode)->ordered_tree;
182 entry = kzalloc(sizeof(*entry), GFP_NOFS);
183 if (!entry)
184 return -ENOMEM;
186 entry->file_offset = file_offset;
187 entry->start = start;
188 entry->len = len;
189 entry->disk_len = disk_len;
190 entry->bytes_left = len;
191 entry->inode = inode;
192 if (type != BTRFS_ORDERED_IO_DONE && type != BTRFS_ORDERED_COMPLETE)
193 set_bit(type, &entry->flags);
195 if (dio)
196 set_bit(BTRFS_ORDERED_DIRECT, &entry->flags);
198 /* one ref for the tree */
199 atomic_set(&entry->refs, 1);
200 init_waitqueue_head(&entry->wait);
201 INIT_LIST_HEAD(&entry->list);
202 INIT_LIST_HEAD(&entry->root_extent_list);
204 spin_lock(&tree->lock);
205 node = tree_insert(&tree->tree, file_offset,
206 &entry->rb_node);
207 BUG_ON(node);
208 spin_unlock(&tree->lock);
210 spin_lock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock);
211 list_add_tail(&entry->root_extent_list,
212 &BTRFS_I(inode)->root->fs_info->ordered_extents);
213 spin_unlock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock);
215 BUG_ON(node);
216 return 0;
219 int btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
220 u64 start, u64 len, u64 disk_len, int type)
222 return __btrfs_add_ordered_extent(inode, file_offset, start, len,
223 disk_len, type, 0);
226 int btrfs_add_ordered_extent_dio(struct inode *inode, u64 file_offset,
227 u64 start, u64 len, u64 disk_len, int type)
229 return __btrfs_add_ordered_extent(inode, file_offset, start, len,
230 disk_len, type, 1);
234 * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
235 * when an ordered extent is finished. If the list covers more than one
236 * ordered extent, it is split across multiples.
238 int btrfs_add_ordered_sum(struct inode *inode,
239 struct btrfs_ordered_extent *entry,
240 struct btrfs_ordered_sum *sum)
242 struct btrfs_ordered_inode_tree *tree;
244 tree = &BTRFS_I(inode)->ordered_tree;
245 spin_lock(&tree->lock);
246 list_add_tail(&sum->list, &entry->list);
247 spin_unlock(&tree->lock);
248 return 0;
252 * this is used to account for finished IO across a given range
253 * of the file. The IO should not span ordered extents. If
254 * a given ordered_extent is completely done, 1 is returned, otherwise
255 * 0.
257 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
258 * to make sure this function only returns 1 once for a given ordered extent.
260 int btrfs_dec_test_ordered_pending(struct inode *inode,
261 struct btrfs_ordered_extent **cached,
262 u64 file_offset, u64 io_size)
264 struct btrfs_ordered_inode_tree *tree;
265 struct rb_node *node;
266 struct btrfs_ordered_extent *entry = NULL;
267 int ret;
269 tree = &BTRFS_I(inode)->ordered_tree;
270 spin_lock(&tree->lock);
271 node = tree_search(tree, file_offset);
272 if (!node) {
273 ret = 1;
274 goto out;
277 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
278 if (!offset_in_entry(entry, file_offset)) {
279 ret = 1;
280 goto out;
283 if (io_size > entry->bytes_left) {
284 printk(KERN_CRIT "bad ordered accounting left %llu size %llu\n",
285 (unsigned long long)entry->bytes_left,
286 (unsigned long long)io_size);
288 entry->bytes_left -= io_size;
289 if (entry->bytes_left == 0)
290 ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
291 else
292 ret = 1;
293 out:
294 if (!ret && cached && entry) {
295 *cached = entry;
296 atomic_inc(&entry->refs);
298 spin_unlock(&tree->lock);
299 return ret == 0;
303 * used to drop a reference on an ordered extent. This will free
304 * the extent if the last reference is dropped
306 int btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
308 struct list_head *cur;
309 struct btrfs_ordered_sum *sum;
311 if (atomic_dec_and_test(&entry->refs)) {
312 while (!list_empty(&entry->list)) {
313 cur = entry->list.next;
314 sum = list_entry(cur, struct btrfs_ordered_sum, list);
315 list_del(&sum->list);
316 kfree(sum);
318 kfree(entry);
320 return 0;
324 * remove an ordered extent from the tree. No references are dropped
325 * and you must wake_up entry->wait. You must hold the tree lock
326 * while you call this function.
328 static int __btrfs_remove_ordered_extent(struct inode *inode,
329 struct btrfs_ordered_extent *entry)
331 struct btrfs_ordered_inode_tree *tree;
332 struct btrfs_root *root = BTRFS_I(inode)->root;
333 struct rb_node *node;
335 tree = &BTRFS_I(inode)->ordered_tree;
336 node = &entry->rb_node;
337 rb_erase(node, &tree->tree);
338 tree->last = NULL;
339 set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
341 spin_lock(&root->fs_info->ordered_extent_lock);
342 list_del_init(&entry->root_extent_list);
345 * we have no more ordered extents for this inode and
346 * no dirty pages. We can safely remove it from the
347 * list of ordered extents
349 if (RB_EMPTY_ROOT(&tree->tree) &&
350 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
351 list_del_init(&BTRFS_I(inode)->ordered_operations);
353 spin_unlock(&root->fs_info->ordered_extent_lock);
355 return 0;
359 * remove an ordered extent from the tree. No references are dropped
360 * but any waiters are woken.
362 int btrfs_remove_ordered_extent(struct inode *inode,
363 struct btrfs_ordered_extent *entry)
365 struct btrfs_ordered_inode_tree *tree;
366 int ret;
368 tree = &BTRFS_I(inode)->ordered_tree;
369 spin_lock(&tree->lock);
370 ret = __btrfs_remove_ordered_extent(inode, entry);
371 spin_unlock(&tree->lock);
372 wake_up(&entry->wait);
374 return ret;
378 * wait for all the ordered extents in a root. This is done when balancing
379 * space between drives.
381 int btrfs_wait_ordered_extents(struct btrfs_root *root,
382 int nocow_only, int delay_iput)
384 struct list_head splice;
385 struct list_head *cur;
386 struct btrfs_ordered_extent *ordered;
387 struct inode *inode;
389 INIT_LIST_HEAD(&splice);
391 spin_lock(&root->fs_info->ordered_extent_lock);
392 list_splice_init(&root->fs_info->ordered_extents, &splice);
393 while (!list_empty(&splice)) {
394 cur = splice.next;
395 ordered = list_entry(cur, struct btrfs_ordered_extent,
396 root_extent_list);
397 if (nocow_only &&
398 !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags) &&
399 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags)) {
400 list_move(&ordered->root_extent_list,
401 &root->fs_info->ordered_extents);
402 cond_resched_lock(&root->fs_info->ordered_extent_lock);
403 continue;
406 list_del_init(&ordered->root_extent_list);
407 atomic_inc(&ordered->refs);
410 * the inode may be getting freed (in sys_unlink path).
412 inode = igrab(ordered->inode);
414 spin_unlock(&root->fs_info->ordered_extent_lock);
416 if (inode) {
417 btrfs_start_ordered_extent(inode, ordered, 1);
418 btrfs_put_ordered_extent(ordered);
419 if (delay_iput)
420 btrfs_add_delayed_iput(inode);
421 else
422 iput(inode);
423 } else {
424 btrfs_put_ordered_extent(ordered);
427 spin_lock(&root->fs_info->ordered_extent_lock);
429 spin_unlock(&root->fs_info->ordered_extent_lock);
430 return 0;
434 * this is used during transaction commit to write all the inodes
435 * added to the ordered operation list. These files must be fully on
436 * disk before the transaction commits.
438 * we have two modes here, one is to just start the IO via filemap_flush
439 * and the other is to wait for all the io. When we wait, we have an
440 * extra check to make sure the ordered operation list really is empty
441 * before we return
443 int btrfs_run_ordered_operations(struct btrfs_root *root, int wait)
445 struct btrfs_inode *btrfs_inode;
446 struct inode *inode;
447 struct list_head splice;
449 INIT_LIST_HEAD(&splice);
451 mutex_lock(&root->fs_info->ordered_operations_mutex);
452 spin_lock(&root->fs_info->ordered_extent_lock);
453 again:
454 list_splice_init(&root->fs_info->ordered_operations, &splice);
456 while (!list_empty(&splice)) {
457 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
458 ordered_operations);
460 inode = &btrfs_inode->vfs_inode;
462 list_del_init(&btrfs_inode->ordered_operations);
465 * the inode may be getting freed (in sys_unlink path).
467 inode = igrab(inode);
469 if (!wait && inode) {
470 list_add_tail(&BTRFS_I(inode)->ordered_operations,
471 &root->fs_info->ordered_operations);
473 spin_unlock(&root->fs_info->ordered_extent_lock);
475 if (inode) {
476 if (wait)
477 btrfs_wait_ordered_range(inode, 0, (u64)-1);
478 else
479 filemap_flush(inode->i_mapping);
480 btrfs_add_delayed_iput(inode);
483 cond_resched();
484 spin_lock(&root->fs_info->ordered_extent_lock);
486 if (wait && !list_empty(&root->fs_info->ordered_operations))
487 goto again;
489 spin_unlock(&root->fs_info->ordered_extent_lock);
490 mutex_unlock(&root->fs_info->ordered_operations_mutex);
492 return 0;
496 * Used to start IO or wait for a given ordered extent to finish.
498 * If wait is one, this effectively waits on page writeback for all the pages
499 * in the extent, and it waits on the io completion code to insert
500 * metadata into the btree corresponding to the extent
502 void btrfs_start_ordered_extent(struct inode *inode,
503 struct btrfs_ordered_extent *entry,
504 int wait)
506 u64 start = entry->file_offset;
507 u64 end = start + entry->len - 1;
510 * pages in the range can be dirty, clean or writeback. We
511 * start IO on any dirty ones so the wait doesn't stall waiting
512 * for pdflush to find them
514 if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
515 filemap_fdatawrite_range(inode->i_mapping, start, end);
516 if (wait) {
517 wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE,
518 &entry->flags));
523 * Used to wait on ordered extents across a large range of bytes.
525 int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
527 u64 end;
528 u64 orig_end;
529 u64 wait_end;
530 struct btrfs_ordered_extent *ordered;
531 int found;
533 if (start + len < start) {
534 orig_end = INT_LIMIT(loff_t);
535 } else {
536 orig_end = start + len - 1;
537 if (orig_end > INT_LIMIT(loff_t))
538 orig_end = INT_LIMIT(loff_t);
540 wait_end = orig_end;
541 again:
542 /* start IO across the range first to instantiate any delalloc
543 * extents
545 filemap_fdatawrite_range(inode->i_mapping, start, orig_end);
547 /* The compression code will leave pages locked but return from
548 * writepage without setting the page writeback. Starting again
549 * with WB_SYNC_ALL will end up waiting for the IO to actually start.
551 filemap_fdatawrite_range(inode->i_mapping, start, orig_end);
553 filemap_fdatawait_range(inode->i_mapping, start, orig_end);
555 end = orig_end;
556 found = 0;
557 while (1) {
558 ordered = btrfs_lookup_first_ordered_extent(inode, end);
559 if (!ordered)
560 break;
561 if (ordered->file_offset > orig_end) {
562 btrfs_put_ordered_extent(ordered);
563 break;
565 if (ordered->file_offset + ordered->len < start) {
566 btrfs_put_ordered_extent(ordered);
567 break;
569 found++;
570 btrfs_start_ordered_extent(inode, ordered, 1);
571 end = ordered->file_offset;
572 btrfs_put_ordered_extent(ordered);
573 if (end == 0 || end == start)
574 break;
575 end--;
577 if (found || test_range_bit(&BTRFS_I(inode)->io_tree, start, orig_end,
578 EXTENT_DELALLOC, 0, NULL)) {
579 schedule_timeout(1);
580 goto again;
582 return 0;
586 * find an ordered extent corresponding to file_offset. return NULL if
587 * nothing is found, otherwise take a reference on the extent and return it
589 struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct inode *inode,
590 u64 file_offset)
592 struct btrfs_ordered_inode_tree *tree;
593 struct rb_node *node;
594 struct btrfs_ordered_extent *entry = NULL;
596 tree = &BTRFS_I(inode)->ordered_tree;
597 spin_lock(&tree->lock);
598 node = tree_search(tree, file_offset);
599 if (!node)
600 goto out;
602 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
603 if (!offset_in_entry(entry, file_offset))
604 entry = NULL;
605 if (entry)
606 atomic_inc(&entry->refs);
607 out:
608 spin_unlock(&tree->lock);
609 return entry;
612 /* Since the DIO code tries to lock a wide area we need to look for any ordered
613 * extents that exist in the range, rather than just the start of the range.
615 struct btrfs_ordered_extent *btrfs_lookup_ordered_range(struct inode *inode,
616 u64 file_offset,
617 u64 len)
619 struct btrfs_ordered_inode_tree *tree;
620 struct rb_node *node;
621 struct btrfs_ordered_extent *entry = NULL;
623 tree = &BTRFS_I(inode)->ordered_tree;
624 spin_lock(&tree->lock);
625 node = tree_search(tree, file_offset);
626 if (!node) {
627 node = tree_search(tree, file_offset + len);
628 if (!node)
629 goto out;
632 while (1) {
633 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
634 if (range_overlaps(entry, file_offset, len))
635 break;
637 if (entry->file_offset >= file_offset + len) {
638 entry = NULL;
639 break;
641 entry = NULL;
642 node = rb_next(node);
643 if (!node)
644 break;
646 out:
647 if (entry)
648 atomic_inc(&entry->refs);
649 spin_unlock(&tree->lock);
650 return entry;
654 * lookup and return any extent before 'file_offset'. NULL is returned
655 * if none is found
657 struct btrfs_ordered_extent *
658 btrfs_lookup_first_ordered_extent(struct inode *inode, u64 file_offset)
660 struct btrfs_ordered_inode_tree *tree;
661 struct rb_node *node;
662 struct btrfs_ordered_extent *entry = NULL;
664 tree = &BTRFS_I(inode)->ordered_tree;
665 spin_lock(&tree->lock);
666 node = tree_search(tree, file_offset);
667 if (!node)
668 goto out;
670 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
671 atomic_inc(&entry->refs);
672 out:
673 spin_unlock(&tree->lock);
674 return entry;
678 * After an extent is done, call this to conditionally update the on disk
679 * i_size. i_size is updated to cover any fully written part of the file.
681 int btrfs_ordered_update_i_size(struct inode *inode, u64 offset,
682 struct btrfs_ordered_extent *ordered)
684 struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
685 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
686 u64 disk_i_size;
687 u64 new_i_size;
688 u64 i_size_test;
689 u64 i_size = i_size_read(inode);
690 struct rb_node *node;
691 struct rb_node *prev = NULL;
692 struct btrfs_ordered_extent *test;
693 int ret = 1;
695 if (ordered)
696 offset = entry_end(ordered);
697 else
698 offset = ALIGN(offset, BTRFS_I(inode)->root->sectorsize);
700 spin_lock(&tree->lock);
701 disk_i_size = BTRFS_I(inode)->disk_i_size;
703 /* truncate file */
704 if (disk_i_size > i_size) {
705 BTRFS_I(inode)->disk_i_size = i_size;
706 ret = 0;
707 goto out;
711 * if the disk i_size is already at the inode->i_size, or
712 * this ordered extent is inside the disk i_size, we're done
714 if (disk_i_size == i_size || offset <= disk_i_size) {
715 goto out;
719 * we can't update the disk_isize if there are delalloc bytes
720 * between disk_i_size and this ordered extent
722 if (test_range_bit(io_tree, disk_i_size, offset - 1,
723 EXTENT_DELALLOC, 0, NULL)) {
724 goto out;
727 * walk backward from this ordered extent to disk_i_size.
728 * if we find an ordered extent then we can't update disk i_size
729 * yet
731 if (ordered) {
732 node = rb_prev(&ordered->rb_node);
733 } else {
734 prev = tree_search(tree, offset);
736 * we insert file extents without involving ordered struct,
737 * so there should be no ordered struct cover this offset
739 if (prev) {
740 test = rb_entry(prev, struct btrfs_ordered_extent,
741 rb_node);
742 BUG_ON(offset_in_entry(test, offset));
744 node = prev;
746 while (node) {
747 test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
748 if (test->file_offset + test->len <= disk_i_size)
749 break;
750 if (test->file_offset >= i_size)
751 break;
752 if (test->file_offset >= disk_i_size)
753 goto out;
754 node = rb_prev(node);
756 new_i_size = min_t(u64, offset, i_size);
759 * at this point, we know we can safely update i_size to at least
760 * the offset from this ordered extent. But, we need to
761 * walk forward and see if ios from higher up in the file have
762 * finished.
764 if (ordered) {
765 node = rb_next(&ordered->rb_node);
766 } else {
767 if (prev)
768 node = rb_next(prev);
769 else
770 node = rb_first(&tree->tree);
772 i_size_test = 0;
773 if (node) {
775 * do we have an area where IO might have finished
776 * between our ordered extent and the next one.
778 test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
779 if (test->file_offset > offset)
780 i_size_test = test->file_offset;
781 } else {
782 i_size_test = i_size;
786 * i_size_test is the end of a region after this ordered
787 * extent where there are no ordered extents. As long as there
788 * are no delalloc bytes in this area, it is safe to update
789 * disk_i_size to the end of the region.
791 if (i_size_test > offset &&
792 !test_range_bit(io_tree, offset, i_size_test - 1,
793 EXTENT_DELALLOC, 0, NULL)) {
794 new_i_size = min_t(u64, i_size_test, i_size);
796 BTRFS_I(inode)->disk_i_size = new_i_size;
797 ret = 0;
798 out:
800 * we need to remove the ordered extent with the tree lock held
801 * so that other people calling this function don't find our fully
802 * processed ordered entry and skip updating the i_size
804 if (ordered)
805 __btrfs_remove_ordered_extent(inode, ordered);
806 spin_unlock(&tree->lock);
807 if (ordered)
808 wake_up(&ordered->wait);
809 return ret;
813 * search the ordered extents for one corresponding to 'offset' and
814 * try to find a checksum. This is used because we allow pages to
815 * be reclaimed before their checksum is actually put into the btree
817 int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u64 disk_bytenr,
818 u32 *sum)
820 struct btrfs_ordered_sum *ordered_sum;
821 struct btrfs_sector_sum *sector_sums;
822 struct btrfs_ordered_extent *ordered;
823 struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
824 unsigned long num_sectors;
825 unsigned long i;
826 u32 sectorsize = BTRFS_I(inode)->root->sectorsize;
827 int ret = 1;
829 ordered = btrfs_lookup_ordered_extent(inode, offset);
830 if (!ordered)
831 return 1;
833 spin_lock(&tree->lock);
834 list_for_each_entry_reverse(ordered_sum, &ordered->list, list) {
835 if (disk_bytenr >= ordered_sum->bytenr) {
836 num_sectors = ordered_sum->len / sectorsize;
837 sector_sums = ordered_sum->sums;
838 for (i = 0; i < num_sectors; i++) {
839 if (sector_sums[i].bytenr == disk_bytenr) {
840 *sum = sector_sums[i].sum;
841 ret = 0;
842 goto out;
847 out:
848 spin_unlock(&tree->lock);
849 btrfs_put_ordered_extent(ordered);
850 return ret;
855 * add a given inode to the list of inodes that must be fully on
856 * disk before a transaction commit finishes.
858 * This basically gives us the ext3 style data=ordered mode, and it is mostly
859 * used to make sure renamed files are fully on disk.
861 * It is a noop if the inode is already fully on disk.
863 * If trans is not null, we'll do a friendly check for a transaction that
864 * is already flushing things and force the IO down ourselves.
866 int btrfs_add_ordered_operation(struct btrfs_trans_handle *trans,
867 struct btrfs_root *root,
868 struct inode *inode)
870 u64 last_mod;
872 last_mod = max(BTRFS_I(inode)->generation, BTRFS_I(inode)->last_trans);
875 * if this file hasn't been changed since the last transaction
876 * commit, we can safely return without doing anything
878 if (last_mod < root->fs_info->last_trans_committed)
879 return 0;
882 * the transaction is already committing. Just start the IO and
883 * don't bother with all of this list nonsense
885 if (trans && root->fs_info->running_transaction->blocked) {
886 btrfs_wait_ordered_range(inode, 0, (u64)-1);
887 return 0;
890 spin_lock(&root->fs_info->ordered_extent_lock);
891 if (list_empty(&BTRFS_I(inode)->ordered_operations)) {
892 list_add_tail(&BTRFS_I(inode)->ordered_operations,
893 &root->fs_info->ordered_operations);
895 spin_unlock(&root->fs_info->ordered_extent_lock);
897 return 0;