Linux 2.6.35-rc2
[linux/fpc-iii.git] / fs / nfs / dir.c
blob782b431ef91c9f521f18d5eeba5a33fbceb5b612
1 /*
2 * linux/fs/nfs/dir.c
4 * Copyright (C) 1992 Rick Sladkey
6 * nfs directory handling functions
8 * 10 Apr 1996 Added silly rename for unlink --okir
9 * 28 Sep 1996 Improved directory cache --okir
10 * 23 Aug 1997 Claus Heine claus@momo.math.rwth-aachen.de
11 * Re-implemented silly rename for unlink, newly implemented
12 * silly rename for nfs_rename() following the suggestions
13 * of Olaf Kirch (okir) found in this file.
14 * Following Linus comments on my original hack, this version
15 * depends only on the dcache stuff and doesn't touch the inode
16 * layer (iput() and friends).
17 * 6 Jun 1999 Cache readdir lookups in the page cache. -DaveM
20 #include <linux/time.h>
21 #include <linux/errno.h>
22 #include <linux/stat.h>
23 #include <linux/fcntl.h>
24 #include <linux/string.h>
25 #include <linux/kernel.h>
26 #include <linux/slab.h>
27 #include <linux/mm.h>
28 #include <linux/sunrpc/clnt.h>
29 #include <linux/nfs_fs.h>
30 #include <linux/nfs_mount.h>
31 #include <linux/pagemap.h>
32 #include <linux/pagevec.h>
33 #include <linux/namei.h>
34 #include <linux/mount.h>
35 #include <linux/sched.h>
37 #include "nfs4_fs.h"
38 #include "delegation.h"
39 #include "iostat.h"
40 #include "internal.h"
42 /* #define NFS_DEBUG_VERBOSE 1 */
44 static int nfs_opendir(struct inode *, struct file *);
45 static int nfs_readdir(struct file *, void *, filldir_t);
46 static struct dentry *nfs_lookup(struct inode *, struct dentry *, struct nameidata *);
47 static int nfs_create(struct inode *, struct dentry *, int, struct nameidata *);
48 static int nfs_mkdir(struct inode *, struct dentry *, int);
49 static int nfs_rmdir(struct inode *, struct dentry *);
50 static int nfs_unlink(struct inode *, struct dentry *);
51 static int nfs_symlink(struct inode *, struct dentry *, const char *);
52 static int nfs_link(struct dentry *, struct inode *, struct dentry *);
53 static int nfs_mknod(struct inode *, struct dentry *, int, dev_t);
54 static int nfs_rename(struct inode *, struct dentry *,
55 struct inode *, struct dentry *);
56 static int nfs_fsync_dir(struct file *, int);
57 static loff_t nfs_llseek_dir(struct file *, loff_t, int);
59 const struct file_operations nfs_dir_operations = {
60 .llseek = nfs_llseek_dir,
61 .read = generic_read_dir,
62 .readdir = nfs_readdir,
63 .open = nfs_opendir,
64 .release = nfs_release,
65 .fsync = nfs_fsync_dir,
68 const struct inode_operations nfs_dir_inode_operations = {
69 .create = nfs_create,
70 .lookup = nfs_lookup,
71 .link = nfs_link,
72 .unlink = nfs_unlink,
73 .symlink = nfs_symlink,
74 .mkdir = nfs_mkdir,
75 .rmdir = nfs_rmdir,
76 .mknod = nfs_mknod,
77 .rename = nfs_rename,
78 .permission = nfs_permission,
79 .getattr = nfs_getattr,
80 .setattr = nfs_setattr,
83 #ifdef CONFIG_NFS_V3
84 const struct inode_operations nfs3_dir_inode_operations = {
85 .create = nfs_create,
86 .lookup = nfs_lookup,
87 .link = nfs_link,
88 .unlink = nfs_unlink,
89 .symlink = nfs_symlink,
90 .mkdir = nfs_mkdir,
91 .rmdir = nfs_rmdir,
92 .mknod = nfs_mknod,
93 .rename = nfs_rename,
94 .permission = nfs_permission,
95 .getattr = nfs_getattr,
96 .setattr = nfs_setattr,
97 .listxattr = nfs3_listxattr,
98 .getxattr = nfs3_getxattr,
99 .setxattr = nfs3_setxattr,
100 .removexattr = nfs3_removexattr,
102 #endif /* CONFIG_NFS_V3 */
104 #ifdef CONFIG_NFS_V4
106 static struct dentry *nfs_atomic_lookup(struct inode *, struct dentry *, struct nameidata *);
107 const struct inode_operations nfs4_dir_inode_operations = {
108 .create = nfs_create,
109 .lookup = nfs_atomic_lookup,
110 .link = nfs_link,
111 .unlink = nfs_unlink,
112 .symlink = nfs_symlink,
113 .mkdir = nfs_mkdir,
114 .rmdir = nfs_rmdir,
115 .mknod = nfs_mknod,
116 .rename = nfs_rename,
117 .permission = nfs_permission,
118 .getattr = nfs_getattr,
119 .setattr = nfs_setattr,
120 .getxattr = nfs4_getxattr,
121 .setxattr = nfs4_setxattr,
122 .listxattr = nfs4_listxattr,
125 #endif /* CONFIG_NFS_V4 */
128 * Open file
130 static int
131 nfs_opendir(struct inode *inode, struct file *filp)
133 int res;
135 dfprintk(FILE, "NFS: open dir(%s/%s)\n",
136 filp->f_path.dentry->d_parent->d_name.name,
137 filp->f_path.dentry->d_name.name);
139 nfs_inc_stats(inode, NFSIOS_VFSOPEN);
141 /* Call generic open code in order to cache credentials */
142 res = nfs_open(inode, filp);
143 return res;
146 typedef __be32 * (*decode_dirent_t)(__be32 *, struct nfs_entry *, int);
147 typedef struct {
148 struct file *file;
149 struct page *page;
150 unsigned long page_index;
151 __be32 *ptr;
152 u64 *dir_cookie;
153 loff_t current_index;
154 struct nfs_entry *entry;
155 decode_dirent_t decode;
156 int plus;
157 unsigned long timestamp;
158 unsigned long gencount;
159 int timestamp_valid;
160 } nfs_readdir_descriptor_t;
162 /* Now we cache directories properly, by stuffing the dirent
163 * data directly in the page cache.
165 * Inode invalidation due to refresh etc. takes care of
166 * _everything_, no sloppy entry flushing logic, no extraneous
167 * copying, network direct to page cache, the way it was meant
168 * to be.
170 * NOTE: Dirent information verification is done always by the
171 * page-in of the RPC reply, nowhere else, this simplies
172 * things substantially.
174 static
175 int nfs_readdir_filler(nfs_readdir_descriptor_t *desc, struct page *page)
177 struct file *file = desc->file;
178 struct inode *inode = file->f_path.dentry->d_inode;
179 struct rpc_cred *cred = nfs_file_cred(file);
180 unsigned long timestamp, gencount;
181 int error;
183 dfprintk(DIRCACHE, "NFS: %s: reading cookie %Lu into page %lu\n",
184 __func__, (long long)desc->entry->cookie,
185 page->index);
187 again:
188 timestamp = jiffies;
189 gencount = nfs_inc_attr_generation_counter();
190 error = NFS_PROTO(inode)->readdir(file->f_path.dentry, cred, desc->entry->cookie, page,
191 NFS_SERVER(inode)->dtsize, desc->plus);
192 if (error < 0) {
193 /* We requested READDIRPLUS, but the server doesn't grok it */
194 if (error == -ENOTSUPP && desc->plus) {
195 NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
196 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
197 desc->plus = 0;
198 goto again;
200 goto error;
202 desc->timestamp = timestamp;
203 desc->gencount = gencount;
204 desc->timestamp_valid = 1;
205 SetPageUptodate(page);
206 /* Ensure consistent page alignment of the data.
207 * Note: assumes we have exclusive access to this mapping either
208 * through inode->i_mutex or some other mechanism.
210 if (invalidate_inode_pages2_range(inode->i_mapping, page->index + 1, -1) < 0) {
211 /* Should never happen */
212 nfs_zap_mapping(inode, inode->i_mapping);
214 unlock_page(page);
215 return 0;
216 error:
217 unlock_page(page);
218 return -EIO;
221 static inline
222 int dir_decode(nfs_readdir_descriptor_t *desc)
224 __be32 *p = desc->ptr;
225 p = desc->decode(p, desc->entry, desc->plus);
226 if (IS_ERR(p))
227 return PTR_ERR(p);
228 desc->ptr = p;
229 if (desc->timestamp_valid) {
230 desc->entry->fattr->time_start = desc->timestamp;
231 desc->entry->fattr->gencount = desc->gencount;
232 } else
233 desc->entry->fattr->valid &= ~NFS_ATTR_FATTR;
234 return 0;
237 static inline
238 void dir_page_release(nfs_readdir_descriptor_t *desc)
240 kunmap(desc->page);
241 page_cache_release(desc->page);
242 desc->page = NULL;
243 desc->ptr = NULL;
247 * Given a pointer to a buffer that has already been filled by a call
248 * to readdir, find the next entry with cookie '*desc->dir_cookie'.
250 * If the end of the buffer has been reached, return -EAGAIN, if not,
251 * return the offset within the buffer of the next entry to be
252 * read.
254 static inline
255 int find_dirent(nfs_readdir_descriptor_t *desc)
257 struct nfs_entry *entry = desc->entry;
258 int loop_count = 0,
259 status;
261 while((status = dir_decode(desc)) == 0) {
262 dfprintk(DIRCACHE, "NFS: %s: examining cookie %Lu\n",
263 __func__, (unsigned long long)entry->cookie);
264 if (entry->prev_cookie == *desc->dir_cookie)
265 break;
266 if (loop_count++ > 200) {
267 loop_count = 0;
268 schedule();
271 return status;
275 * Given a pointer to a buffer that has already been filled by a call
276 * to readdir, find the entry at offset 'desc->file->f_pos'.
278 * If the end of the buffer has been reached, return -EAGAIN, if not,
279 * return the offset within the buffer of the next entry to be
280 * read.
282 static inline
283 int find_dirent_index(nfs_readdir_descriptor_t *desc)
285 struct nfs_entry *entry = desc->entry;
286 int loop_count = 0,
287 status;
289 for(;;) {
290 status = dir_decode(desc);
291 if (status)
292 break;
294 dfprintk(DIRCACHE, "NFS: found cookie %Lu at index %Ld\n",
295 (unsigned long long)entry->cookie, desc->current_index);
297 if (desc->file->f_pos == desc->current_index) {
298 *desc->dir_cookie = entry->cookie;
299 break;
301 desc->current_index++;
302 if (loop_count++ > 200) {
303 loop_count = 0;
304 schedule();
307 return status;
311 * Find the given page, and call find_dirent() or find_dirent_index in
312 * order to try to return the next entry.
314 static inline
315 int find_dirent_page(nfs_readdir_descriptor_t *desc)
317 struct inode *inode = desc->file->f_path.dentry->d_inode;
318 struct page *page;
319 int status;
321 dfprintk(DIRCACHE, "NFS: %s: searching page %ld for target %Lu\n",
322 __func__, desc->page_index,
323 (long long) *desc->dir_cookie);
325 /* If we find the page in the page_cache, we cannot be sure
326 * how fresh the data is, so we will ignore readdir_plus attributes.
328 desc->timestamp_valid = 0;
329 page = read_cache_page(inode->i_mapping, desc->page_index,
330 (filler_t *)nfs_readdir_filler, desc);
331 if (IS_ERR(page)) {
332 status = PTR_ERR(page);
333 goto out;
336 /* NOTE: Someone else may have changed the READDIRPLUS flag */
337 desc->page = page;
338 desc->ptr = kmap(page); /* matching kunmap in nfs_do_filldir */
339 if (*desc->dir_cookie != 0)
340 status = find_dirent(desc);
341 else
342 status = find_dirent_index(desc);
343 if (status < 0)
344 dir_page_release(desc);
345 out:
346 dfprintk(DIRCACHE, "NFS: %s: returns %d\n", __func__, status);
347 return status;
351 * Recurse through the page cache pages, and return a
352 * filled nfs_entry structure of the next directory entry if possible.
354 * The target for the search is '*desc->dir_cookie' if non-0,
355 * 'desc->file->f_pos' otherwise
357 static inline
358 int readdir_search_pagecache(nfs_readdir_descriptor_t *desc)
360 int loop_count = 0;
361 int res;
363 /* Always search-by-index from the beginning of the cache */
364 if (*desc->dir_cookie == 0) {
365 dfprintk(DIRCACHE, "NFS: readdir_search_pagecache() searching for offset %Ld\n",
366 (long long)desc->file->f_pos);
367 desc->page_index = 0;
368 desc->entry->cookie = desc->entry->prev_cookie = 0;
369 desc->entry->eof = 0;
370 desc->current_index = 0;
371 } else
372 dfprintk(DIRCACHE, "NFS: readdir_search_pagecache() searching for cookie %Lu\n",
373 (unsigned long long)*desc->dir_cookie);
375 for (;;) {
376 res = find_dirent_page(desc);
377 if (res != -EAGAIN)
378 break;
379 /* Align to beginning of next page */
380 desc->page_index ++;
381 if (loop_count++ > 200) {
382 loop_count = 0;
383 schedule();
387 dfprintk(DIRCACHE, "NFS: %s: returns %d\n", __func__, res);
388 return res;
391 static inline unsigned int dt_type(struct inode *inode)
393 return (inode->i_mode >> 12) & 15;
396 static struct dentry *nfs_readdir_lookup(nfs_readdir_descriptor_t *desc);
399 * Once we've found the start of the dirent within a page: fill 'er up...
401 static
402 int nfs_do_filldir(nfs_readdir_descriptor_t *desc, void *dirent,
403 filldir_t filldir)
405 struct file *file = desc->file;
406 struct nfs_entry *entry = desc->entry;
407 struct dentry *dentry = NULL;
408 u64 fileid;
409 int loop_count = 0,
410 res;
412 dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling starting @ cookie %Lu\n",
413 (unsigned long long)entry->cookie);
415 for(;;) {
416 unsigned d_type = DT_UNKNOWN;
417 /* Note: entry->prev_cookie contains the cookie for
418 * retrieving the current dirent on the server */
419 fileid = entry->ino;
421 /* Get a dentry if we have one */
422 if (dentry != NULL)
423 dput(dentry);
424 dentry = nfs_readdir_lookup(desc);
426 /* Use readdirplus info */
427 if (dentry != NULL && dentry->d_inode != NULL) {
428 d_type = dt_type(dentry->d_inode);
429 fileid = NFS_FILEID(dentry->d_inode);
432 res = filldir(dirent, entry->name, entry->len,
433 file->f_pos, nfs_compat_user_ino64(fileid),
434 d_type);
435 if (res < 0)
436 break;
437 file->f_pos++;
438 *desc->dir_cookie = entry->cookie;
439 if (dir_decode(desc) != 0) {
440 desc->page_index ++;
441 break;
443 if (loop_count++ > 200) {
444 loop_count = 0;
445 schedule();
448 dir_page_release(desc);
449 if (dentry != NULL)
450 dput(dentry);
451 dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n",
452 (unsigned long long)*desc->dir_cookie, res);
453 return res;
457 * If we cannot find a cookie in our cache, we suspect that this is
458 * because it points to a deleted file, so we ask the server to return
459 * whatever it thinks is the next entry. We then feed this to filldir.
460 * If all goes well, we should then be able to find our way round the
461 * cache on the next call to readdir_search_pagecache();
463 * NOTE: we cannot add the anonymous page to the pagecache because
464 * the data it contains might not be page aligned. Besides,
465 * we should already have a complete representation of the
466 * directory in the page cache by the time we get here.
468 static inline
469 int uncached_readdir(nfs_readdir_descriptor_t *desc, void *dirent,
470 filldir_t filldir)
472 struct file *file = desc->file;
473 struct inode *inode = file->f_path.dentry->d_inode;
474 struct rpc_cred *cred = nfs_file_cred(file);
475 struct page *page = NULL;
476 int status;
477 unsigned long timestamp, gencount;
479 dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n",
480 (unsigned long long)*desc->dir_cookie);
482 page = alloc_page(GFP_HIGHUSER);
483 if (!page) {
484 status = -ENOMEM;
485 goto out;
487 timestamp = jiffies;
488 gencount = nfs_inc_attr_generation_counter();
489 status = NFS_PROTO(inode)->readdir(file->f_path.dentry, cred,
490 *desc->dir_cookie, page,
491 NFS_SERVER(inode)->dtsize,
492 desc->plus);
493 desc->page = page;
494 desc->ptr = kmap(page); /* matching kunmap in nfs_do_filldir */
495 if (status >= 0) {
496 desc->timestamp = timestamp;
497 desc->gencount = gencount;
498 desc->timestamp_valid = 1;
499 if ((status = dir_decode(desc)) == 0)
500 desc->entry->prev_cookie = *desc->dir_cookie;
501 } else
502 status = -EIO;
503 if (status < 0)
504 goto out_release;
506 status = nfs_do_filldir(desc, dirent, filldir);
508 /* Reset read descriptor so it searches the page cache from
509 * the start upon the next call to readdir_search_pagecache() */
510 desc->page_index = 0;
511 desc->entry->cookie = desc->entry->prev_cookie = 0;
512 desc->entry->eof = 0;
513 out:
514 dfprintk(DIRCACHE, "NFS: %s: returns %d\n",
515 __func__, status);
516 return status;
517 out_release:
518 dir_page_release(desc);
519 goto out;
522 /* The file offset position represents the dirent entry number. A
523 last cookie cache takes care of the common case of reading the
524 whole directory.
526 static int nfs_readdir(struct file *filp, void *dirent, filldir_t filldir)
528 struct dentry *dentry = filp->f_path.dentry;
529 struct inode *inode = dentry->d_inode;
530 nfs_readdir_descriptor_t my_desc,
531 *desc = &my_desc;
532 struct nfs_entry my_entry;
533 int res = -ENOMEM;
535 dfprintk(FILE, "NFS: readdir(%s/%s) starting at cookie %llu\n",
536 dentry->d_parent->d_name.name, dentry->d_name.name,
537 (long long)filp->f_pos);
538 nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
541 * filp->f_pos points to the dirent entry number.
542 * *desc->dir_cookie has the cookie for the next entry. We have
543 * to either find the entry with the appropriate number or
544 * revalidate the cookie.
546 memset(desc, 0, sizeof(*desc));
548 desc->file = filp;
549 desc->dir_cookie = &nfs_file_open_context(filp)->dir_cookie;
550 desc->decode = NFS_PROTO(inode)->decode_dirent;
551 desc->plus = NFS_USE_READDIRPLUS(inode);
553 my_entry.cookie = my_entry.prev_cookie = 0;
554 my_entry.eof = 0;
555 my_entry.fh = nfs_alloc_fhandle();
556 my_entry.fattr = nfs_alloc_fattr();
557 if (my_entry.fh == NULL || my_entry.fattr == NULL)
558 goto out_alloc_failed;
560 desc->entry = &my_entry;
562 nfs_block_sillyrename(dentry);
563 res = nfs_revalidate_mapping(inode, filp->f_mapping);
564 if (res < 0)
565 goto out;
567 while(!desc->entry->eof) {
568 res = readdir_search_pagecache(desc);
570 if (res == -EBADCOOKIE) {
571 /* This means either end of directory */
572 if (*desc->dir_cookie && desc->entry->cookie != *desc->dir_cookie) {
573 /* Or that the server has 'lost' a cookie */
574 res = uncached_readdir(desc, dirent, filldir);
575 if (res >= 0)
576 continue;
578 res = 0;
579 break;
581 if (res == -ETOOSMALL && desc->plus) {
582 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
583 nfs_zap_caches(inode);
584 desc->plus = 0;
585 desc->entry->eof = 0;
586 continue;
588 if (res < 0)
589 break;
591 res = nfs_do_filldir(desc, dirent, filldir);
592 if (res < 0) {
593 res = 0;
594 break;
597 out:
598 nfs_unblock_sillyrename(dentry);
599 if (res > 0)
600 res = 0;
601 out_alloc_failed:
602 nfs_free_fattr(my_entry.fattr);
603 nfs_free_fhandle(my_entry.fh);
604 dfprintk(FILE, "NFS: readdir(%s/%s) returns %d\n",
605 dentry->d_parent->d_name.name, dentry->d_name.name,
606 res);
607 return res;
610 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int origin)
612 struct dentry *dentry = filp->f_path.dentry;
613 struct inode *inode = dentry->d_inode;
615 dfprintk(FILE, "NFS: llseek dir(%s/%s, %lld, %d)\n",
616 dentry->d_parent->d_name.name,
617 dentry->d_name.name,
618 offset, origin);
620 mutex_lock(&inode->i_mutex);
621 switch (origin) {
622 case 1:
623 offset += filp->f_pos;
624 case 0:
625 if (offset >= 0)
626 break;
627 default:
628 offset = -EINVAL;
629 goto out;
631 if (offset != filp->f_pos) {
632 filp->f_pos = offset;
633 nfs_file_open_context(filp)->dir_cookie = 0;
635 out:
636 mutex_unlock(&inode->i_mutex);
637 return offset;
641 * All directory operations under NFS are synchronous, so fsync()
642 * is a dummy operation.
644 static int nfs_fsync_dir(struct file *filp, int datasync)
646 struct dentry *dentry = filp->f_path.dentry;
648 dfprintk(FILE, "NFS: fsync dir(%s/%s) datasync %d\n",
649 dentry->d_parent->d_name.name, dentry->d_name.name,
650 datasync);
652 nfs_inc_stats(dentry->d_inode, NFSIOS_VFSFSYNC);
653 return 0;
657 * nfs_force_lookup_revalidate - Mark the directory as having changed
658 * @dir - pointer to directory inode
660 * This forces the revalidation code in nfs_lookup_revalidate() to do a
661 * full lookup on all child dentries of 'dir' whenever a change occurs
662 * on the server that might have invalidated our dcache.
664 * The caller should be holding dir->i_lock
666 void nfs_force_lookup_revalidate(struct inode *dir)
668 NFS_I(dir)->cache_change_attribute++;
672 * A check for whether or not the parent directory has changed.
673 * In the case it has, we assume that the dentries are untrustworthy
674 * and may need to be looked up again.
676 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry)
678 if (IS_ROOT(dentry))
679 return 1;
680 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
681 return 0;
682 if (!nfs_verify_change_attribute(dir, dentry->d_time))
683 return 0;
684 /* Revalidate nfsi->cache_change_attribute before we declare a match */
685 if (nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
686 return 0;
687 if (!nfs_verify_change_attribute(dir, dentry->d_time))
688 return 0;
689 return 1;
693 * Return the intent data that applies to this particular path component
695 * Note that the current set of intents only apply to the very last
696 * component of the path.
697 * We check for this using LOOKUP_CONTINUE and LOOKUP_PARENT.
699 static inline unsigned int nfs_lookup_check_intent(struct nameidata *nd, unsigned int mask)
701 if (nd->flags & (LOOKUP_CONTINUE|LOOKUP_PARENT))
702 return 0;
703 return nd->flags & mask;
707 * Use intent information to check whether or not we're going to do
708 * an O_EXCL create using this path component.
710 static int nfs_is_exclusive_create(struct inode *dir, struct nameidata *nd)
712 if (NFS_PROTO(dir)->version == 2)
713 return 0;
714 return nd && nfs_lookup_check_intent(nd, LOOKUP_EXCL);
718 * Inode and filehandle revalidation for lookups.
720 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
721 * or if the intent information indicates that we're about to open this
722 * particular file and the "nocto" mount flag is not set.
725 static inline
726 int nfs_lookup_verify_inode(struct inode *inode, struct nameidata *nd)
728 struct nfs_server *server = NFS_SERVER(inode);
730 if (test_bit(NFS_INO_MOUNTPOINT, &NFS_I(inode)->flags))
731 return 0;
732 if (nd != NULL) {
733 /* VFS wants an on-the-wire revalidation */
734 if (nd->flags & LOOKUP_REVAL)
735 goto out_force;
736 /* This is an open(2) */
737 if (nfs_lookup_check_intent(nd, LOOKUP_OPEN) != 0 &&
738 !(server->flags & NFS_MOUNT_NOCTO) &&
739 (S_ISREG(inode->i_mode) ||
740 S_ISDIR(inode->i_mode)))
741 goto out_force;
742 return 0;
744 return nfs_revalidate_inode(server, inode);
745 out_force:
746 return __nfs_revalidate_inode(server, inode);
750 * We judge how long we want to trust negative
751 * dentries by looking at the parent inode mtime.
753 * If parent mtime has changed, we revalidate, else we wait for a
754 * period corresponding to the parent's attribute cache timeout value.
756 static inline
757 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
758 struct nameidata *nd)
760 /* Don't revalidate a negative dentry if we're creating a new file */
761 if (nd != NULL && nfs_lookup_check_intent(nd, LOOKUP_CREATE) != 0)
762 return 0;
763 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
764 return 1;
765 return !nfs_check_verifier(dir, dentry);
769 * This is called every time the dcache has a lookup hit,
770 * and we should check whether we can really trust that
771 * lookup.
773 * NOTE! The hit can be a negative hit too, don't assume
774 * we have an inode!
776 * If the parent directory is seen to have changed, we throw out the
777 * cached dentry and do a new lookup.
779 static int nfs_lookup_revalidate(struct dentry * dentry, struct nameidata *nd)
781 struct inode *dir;
782 struct inode *inode;
783 struct dentry *parent;
784 struct nfs_fh *fhandle = NULL;
785 struct nfs_fattr *fattr = NULL;
786 int error;
788 parent = dget_parent(dentry);
789 dir = parent->d_inode;
790 nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
791 inode = dentry->d_inode;
793 if (!inode) {
794 if (nfs_neg_need_reval(dir, dentry, nd))
795 goto out_bad;
796 goto out_valid;
799 if (is_bad_inode(inode)) {
800 dfprintk(LOOKUPCACHE, "%s: %s/%s has dud inode\n",
801 __func__, dentry->d_parent->d_name.name,
802 dentry->d_name.name);
803 goto out_bad;
806 if (nfs_have_delegation(inode, FMODE_READ))
807 goto out_set_verifier;
809 /* Force a full look up iff the parent directory has changed */
810 if (!nfs_is_exclusive_create(dir, nd) && nfs_check_verifier(dir, dentry)) {
811 if (nfs_lookup_verify_inode(inode, nd))
812 goto out_zap_parent;
813 goto out_valid;
816 if (NFS_STALE(inode))
817 goto out_bad;
819 error = -ENOMEM;
820 fhandle = nfs_alloc_fhandle();
821 fattr = nfs_alloc_fattr();
822 if (fhandle == NULL || fattr == NULL)
823 goto out_error;
825 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr);
826 if (error)
827 goto out_bad;
828 if (nfs_compare_fh(NFS_FH(inode), fhandle))
829 goto out_bad;
830 if ((error = nfs_refresh_inode(inode, fattr)) != 0)
831 goto out_bad;
833 nfs_free_fattr(fattr);
834 nfs_free_fhandle(fhandle);
835 out_set_verifier:
836 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
837 out_valid:
838 dput(parent);
839 dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is valid\n",
840 __func__, dentry->d_parent->d_name.name,
841 dentry->d_name.name);
842 return 1;
843 out_zap_parent:
844 nfs_zap_caches(dir);
845 out_bad:
846 nfs_mark_for_revalidate(dir);
847 if (inode && S_ISDIR(inode->i_mode)) {
848 /* Purge readdir caches. */
849 nfs_zap_caches(inode);
850 /* If we have submounts, don't unhash ! */
851 if (have_submounts(dentry))
852 goto out_valid;
853 if (dentry->d_flags & DCACHE_DISCONNECTED)
854 goto out_valid;
855 shrink_dcache_parent(dentry);
857 d_drop(dentry);
858 nfs_free_fattr(fattr);
859 nfs_free_fhandle(fhandle);
860 dput(parent);
861 dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is invalid\n",
862 __func__, dentry->d_parent->d_name.name,
863 dentry->d_name.name);
864 return 0;
865 out_error:
866 nfs_free_fattr(fattr);
867 nfs_free_fhandle(fhandle);
868 dput(parent);
869 dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) lookup returned error %d\n",
870 __func__, dentry->d_parent->d_name.name,
871 dentry->d_name.name, error);
872 return error;
876 * This is called from dput() when d_count is going to 0.
878 static int nfs_dentry_delete(struct dentry *dentry)
880 dfprintk(VFS, "NFS: dentry_delete(%s/%s, %x)\n",
881 dentry->d_parent->d_name.name, dentry->d_name.name,
882 dentry->d_flags);
884 /* Unhash any dentry with a stale inode */
885 if (dentry->d_inode != NULL && NFS_STALE(dentry->d_inode))
886 return 1;
888 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
889 /* Unhash it, so that ->d_iput() would be called */
890 return 1;
892 if (!(dentry->d_sb->s_flags & MS_ACTIVE)) {
893 /* Unhash it, so that ancestors of killed async unlink
894 * files will be cleaned up during umount */
895 return 1;
897 return 0;
901 static void nfs_drop_nlink(struct inode *inode)
903 spin_lock(&inode->i_lock);
904 if (inode->i_nlink > 0)
905 drop_nlink(inode);
906 spin_unlock(&inode->i_lock);
910 * Called when the dentry loses inode.
911 * We use it to clean up silly-renamed files.
913 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
915 if (S_ISDIR(inode->i_mode))
916 /* drop any readdir cache as it could easily be old */
917 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA;
919 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
920 drop_nlink(inode);
921 nfs_complete_unlink(dentry, inode);
923 iput(inode);
926 const struct dentry_operations nfs_dentry_operations = {
927 .d_revalidate = nfs_lookup_revalidate,
928 .d_delete = nfs_dentry_delete,
929 .d_iput = nfs_dentry_iput,
932 static struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
934 struct dentry *res;
935 struct dentry *parent;
936 struct inode *inode = NULL;
937 struct nfs_fh *fhandle = NULL;
938 struct nfs_fattr *fattr = NULL;
939 int error;
941 dfprintk(VFS, "NFS: lookup(%s/%s)\n",
942 dentry->d_parent->d_name.name, dentry->d_name.name);
943 nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
945 res = ERR_PTR(-ENAMETOOLONG);
946 if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
947 goto out;
949 dentry->d_op = NFS_PROTO(dir)->dentry_ops;
952 * If we're doing an exclusive create, optimize away the lookup
953 * but don't hash the dentry.
955 if (nfs_is_exclusive_create(dir, nd)) {
956 d_instantiate(dentry, NULL);
957 res = NULL;
958 goto out;
961 res = ERR_PTR(-ENOMEM);
962 fhandle = nfs_alloc_fhandle();
963 fattr = nfs_alloc_fattr();
964 if (fhandle == NULL || fattr == NULL)
965 goto out;
967 parent = dentry->d_parent;
968 /* Protect against concurrent sillydeletes */
969 nfs_block_sillyrename(parent);
970 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr);
971 if (error == -ENOENT)
972 goto no_entry;
973 if (error < 0) {
974 res = ERR_PTR(error);
975 goto out_unblock_sillyrename;
977 inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
978 res = (struct dentry *)inode;
979 if (IS_ERR(res))
980 goto out_unblock_sillyrename;
982 no_entry:
983 res = d_materialise_unique(dentry, inode);
984 if (res != NULL) {
985 if (IS_ERR(res))
986 goto out_unblock_sillyrename;
987 dentry = res;
989 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
990 out_unblock_sillyrename:
991 nfs_unblock_sillyrename(parent);
992 out:
993 nfs_free_fattr(fattr);
994 nfs_free_fhandle(fhandle);
995 return res;
998 #ifdef CONFIG_NFS_V4
999 static int nfs_open_revalidate(struct dentry *, struct nameidata *);
1001 const struct dentry_operations nfs4_dentry_operations = {
1002 .d_revalidate = nfs_open_revalidate,
1003 .d_delete = nfs_dentry_delete,
1004 .d_iput = nfs_dentry_iput,
1008 * Use intent information to determine whether we need to substitute
1009 * the NFSv4-style stateful OPEN for the LOOKUP call
1011 static int is_atomic_open(struct nameidata *nd)
1013 if (nd == NULL || nfs_lookup_check_intent(nd, LOOKUP_OPEN) == 0)
1014 return 0;
1015 /* NFS does not (yet) have a stateful open for directories */
1016 if (nd->flags & LOOKUP_DIRECTORY)
1017 return 0;
1018 /* Are we trying to write to a read only partition? */
1019 if (__mnt_is_readonly(nd->path.mnt) &&
1020 (nd->intent.open.flags & (O_CREAT|O_TRUNC|FMODE_WRITE)))
1021 return 0;
1022 return 1;
1025 static struct dentry *nfs_atomic_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd)
1027 struct dentry *res = NULL;
1028 int error;
1030 dfprintk(VFS, "NFS: atomic_lookup(%s/%ld), %s\n",
1031 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1033 /* Check that we are indeed trying to open this file */
1034 if (!is_atomic_open(nd))
1035 goto no_open;
1037 if (dentry->d_name.len > NFS_SERVER(dir)->namelen) {
1038 res = ERR_PTR(-ENAMETOOLONG);
1039 goto out;
1041 dentry->d_op = NFS_PROTO(dir)->dentry_ops;
1043 /* Let vfs_create() deal with O_EXCL. Instantiate, but don't hash
1044 * the dentry. */
1045 if (nd->flags & LOOKUP_EXCL) {
1046 d_instantiate(dentry, NULL);
1047 goto out;
1050 /* Open the file on the server */
1051 res = nfs4_atomic_open(dir, dentry, nd);
1052 if (IS_ERR(res)) {
1053 error = PTR_ERR(res);
1054 switch (error) {
1055 /* Make a negative dentry */
1056 case -ENOENT:
1057 res = NULL;
1058 goto out;
1059 /* This turned out not to be a regular file */
1060 case -EISDIR:
1061 case -ENOTDIR:
1062 goto no_open;
1063 case -ELOOP:
1064 if (!(nd->intent.open.flags & O_NOFOLLOW))
1065 goto no_open;
1066 /* case -EINVAL: */
1067 default:
1068 goto out;
1070 } else if (res != NULL)
1071 dentry = res;
1072 out:
1073 return res;
1074 no_open:
1075 return nfs_lookup(dir, dentry, nd);
1078 static int nfs_open_revalidate(struct dentry *dentry, struct nameidata *nd)
1080 struct dentry *parent = NULL;
1081 struct inode *inode = dentry->d_inode;
1082 struct inode *dir;
1083 int openflags, ret = 0;
1085 if (!is_atomic_open(nd) || d_mountpoint(dentry))
1086 goto no_open;
1087 parent = dget_parent(dentry);
1088 dir = parent->d_inode;
1089 /* We can't create new files in nfs_open_revalidate(), so we
1090 * optimize away revalidation of negative dentries.
1092 if (inode == NULL) {
1093 if (!nfs_neg_need_reval(dir, dentry, nd))
1094 ret = 1;
1095 goto out;
1098 /* NFS only supports OPEN on regular files */
1099 if (!S_ISREG(inode->i_mode))
1100 goto no_open_dput;
1101 openflags = nd->intent.open.flags;
1102 /* We cannot do exclusive creation on a positive dentry */
1103 if ((openflags & (O_CREAT|O_EXCL)) == (O_CREAT|O_EXCL))
1104 goto no_open_dput;
1105 /* We can't create new files, or truncate existing ones here */
1106 openflags &= ~(O_CREAT|O_TRUNC);
1109 * Note: we're not holding inode->i_mutex and so may be racing with
1110 * operations that change the directory. We therefore save the
1111 * change attribute *before* we do the RPC call.
1113 ret = nfs4_open_revalidate(dir, dentry, openflags, nd);
1114 out:
1115 dput(parent);
1116 if (!ret)
1117 d_drop(dentry);
1118 return ret;
1119 no_open_dput:
1120 dput(parent);
1121 no_open:
1122 return nfs_lookup_revalidate(dentry, nd);
1124 #endif /* CONFIG_NFSV4 */
1126 static struct dentry *nfs_readdir_lookup(nfs_readdir_descriptor_t *desc)
1128 struct dentry *parent = desc->file->f_path.dentry;
1129 struct inode *dir = parent->d_inode;
1130 struct nfs_entry *entry = desc->entry;
1131 struct dentry *dentry, *alias;
1132 struct qstr name = {
1133 .name = entry->name,
1134 .len = entry->len,
1136 struct inode *inode;
1137 unsigned long verf = nfs_save_change_attribute(dir);
1139 switch (name.len) {
1140 case 2:
1141 if (name.name[0] == '.' && name.name[1] == '.')
1142 return dget_parent(parent);
1143 break;
1144 case 1:
1145 if (name.name[0] == '.')
1146 return dget(parent);
1149 spin_lock(&dir->i_lock);
1150 if (NFS_I(dir)->cache_validity & NFS_INO_INVALID_DATA) {
1151 spin_unlock(&dir->i_lock);
1152 return NULL;
1154 spin_unlock(&dir->i_lock);
1156 name.hash = full_name_hash(name.name, name.len);
1157 dentry = d_lookup(parent, &name);
1158 if (dentry != NULL) {
1159 /* Is this a positive dentry that matches the readdir info? */
1160 if (dentry->d_inode != NULL &&
1161 (NFS_FILEID(dentry->d_inode) == entry->ino ||
1162 d_mountpoint(dentry))) {
1163 if (!desc->plus || entry->fh->size == 0)
1164 return dentry;
1165 if (nfs_compare_fh(NFS_FH(dentry->d_inode),
1166 entry->fh) == 0)
1167 goto out_renew;
1169 /* No, so d_drop to allow one to be created */
1170 d_drop(dentry);
1171 dput(dentry);
1173 if (!desc->plus || !(entry->fattr->valid & NFS_ATTR_FATTR))
1174 return NULL;
1175 if (name.len > NFS_SERVER(dir)->namelen)
1176 return NULL;
1177 /* Note: caller is already holding the dir->i_mutex! */
1178 dentry = d_alloc(parent, &name);
1179 if (dentry == NULL)
1180 return NULL;
1181 dentry->d_op = NFS_PROTO(dir)->dentry_ops;
1182 inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr);
1183 if (IS_ERR(inode)) {
1184 dput(dentry);
1185 return NULL;
1188 alias = d_materialise_unique(dentry, inode);
1189 if (alias != NULL) {
1190 dput(dentry);
1191 if (IS_ERR(alias))
1192 return NULL;
1193 dentry = alias;
1196 out_renew:
1197 nfs_set_verifier(dentry, verf);
1198 return dentry;
1202 * Code common to create, mkdir, and mknod.
1204 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
1205 struct nfs_fattr *fattr)
1207 struct dentry *parent = dget_parent(dentry);
1208 struct inode *dir = parent->d_inode;
1209 struct inode *inode;
1210 int error = -EACCES;
1212 d_drop(dentry);
1214 /* We may have been initialized further down */
1215 if (dentry->d_inode)
1216 goto out;
1217 if (fhandle->size == 0) {
1218 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr);
1219 if (error)
1220 goto out_error;
1222 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1223 if (!(fattr->valid & NFS_ATTR_FATTR)) {
1224 struct nfs_server *server = NFS_SB(dentry->d_sb);
1225 error = server->nfs_client->rpc_ops->getattr(server, fhandle, fattr);
1226 if (error < 0)
1227 goto out_error;
1229 inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
1230 error = PTR_ERR(inode);
1231 if (IS_ERR(inode))
1232 goto out_error;
1233 d_add(dentry, inode);
1234 out:
1235 dput(parent);
1236 return 0;
1237 out_error:
1238 nfs_mark_for_revalidate(dir);
1239 dput(parent);
1240 return error;
1244 * Following a failed create operation, we drop the dentry rather
1245 * than retain a negative dentry. This avoids a problem in the event
1246 * that the operation succeeded on the server, but an error in the
1247 * reply path made it appear to have failed.
1249 static int nfs_create(struct inode *dir, struct dentry *dentry, int mode,
1250 struct nameidata *nd)
1252 struct iattr attr;
1253 int error;
1254 int open_flags = 0;
1256 dfprintk(VFS, "NFS: create(%s/%ld), %s\n",
1257 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1259 attr.ia_mode = mode;
1260 attr.ia_valid = ATTR_MODE;
1262 if ((nd->flags & LOOKUP_CREATE) != 0)
1263 open_flags = nd->intent.open.flags;
1265 error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags, nd);
1266 if (error != 0)
1267 goto out_err;
1268 return 0;
1269 out_err:
1270 d_drop(dentry);
1271 return error;
1275 * See comments for nfs_proc_create regarding failed operations.
1277 static int
1278 nfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t rdev)
1280 struct iattr attr;
1281 int status;
1283 dfprintk(VFS, "NFS: mknod(%s/%ld), %s\n",
1284 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1286 if (!new_valid_dev(rdev))
1287 return -EINVAL;
1289 attr.ia_mode = mode;
1290 attr.ia_valid = ATTR_MODE;
1292 status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
1293 if (status != 0)
1294 goto out_err;
1295 return 0;
1296 out_err:
1297 d_drop(dentry);
1298 return status;
1302 * See comments for nfs_proc_create regarding failed operations.
1304 static int nfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1306 struct iattr attr;
1307 int error;
1309 dfprintk(VFS, "NFS: mkdir(%s/%ld), %s\n",
1310 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1312 attr.ia_valid = ATTR_MODE;
1313 attr.ia_mode = mode | S_IFDIR;
1315 error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
1316 if (error != 0)
1317 goto out_err;
1318 return 0;
1319 out_err:
1320 d_drop(dentry);
1321 return error;
1324 static void nfs_dentry_handle_enoent(struct dentry *dentry)
1326 if (dentry->d_inode != NULL && !d_unhashed(dentry))
1327 d_delete(dentry);
1330 static int nfs_rmdir(struct inode *dir, struct dentry *dentry)
1332 int error;
1334 dfprintk(VFS, "NFS: rmdir(%s/%ld), %s\n",
1335 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1337 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1338 /* Ensure the VFS deletes this inode */
1339 if (error == 0 && dentry->d_inode != NULL)
1340 clear_nlink(dentry->d_inode);
1341 else if (error == -ENOENT)
1342 nfs_dentry_handle_enoent(dentry);
1344 return error;
1347 static int nfs_sillyrename(struct inode *dir, struct dentry *dentry)
1349 static unsigned int sillycounter;
1350 const int fileidsize = sizeof(NFS_FILEID(dentry->d_inode))*2;
1351 const int countersize = sizeof(sillycounter)*2;
1352 const int slen = sizeof(".nfs")+fileidsize+countersize-1;
1353 char silly[slen+1];
1354 struct qstr qsilly;
1355 struct dentry *sdentry;
1356 int error = -EIO;
1358 dfprintk(VFS, "NFS: silly-rename(%s/%s, ct=%d)\n",
1359 dentry->d_parent->d_name.name, dentry->d_name.name,
1360 atomic_read(&dentry->d_count));
1361 nfs_inc_stats(dir, NFSIOS_SILLYRENAME);
1364 * We don't allow a dentry to be silly-renamed twice.
1366 error = -EBUSY;
1367 if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1368 goto out;
1370 sprintf(silly, ".nfs%*.*Lx",
1371 fileidsize, fileidsize,
1372 (unsigned long long)NFS_FILEID(dentry->d_inode));
1374 /* Return delegation in anticipation of the rename */
1375 nfs_inode_return_delegation(dentry->d_inode);
1377 sdentry = NULL;
1378 do {
1379 char *suffix = silly + slen - countersize;
1381 dput(sdentry);
1382 sillycounter++;
1383 sprintf(suffix, "%*.*x", countersize, countersize, sillycounter);
1385 dfprintk(VFS, "NFS: trying to rename %s to %s\n",
1386 dentry->d_name.name, silly);
1388 sdentry = lookup_one_len(silly, dentry->d_parent, slen);
1390 * N.B. Better to return EBUSY here ... it could be
1391 * dangerous to delete the file while it's in use.
1393 if (IS_ERR(sdentry))
1394 goto out;
1395 } while(sdentry->d_inode != NULL); /* need negative lookup */
1397 qsilly.name = silly;
1398 qsilly.len = strlen(silly);
1399 if (dentry->d_inode) {
1400 error = NFS_PROTO(dir)->rename(dir, &dentry->d_name,
1401 dir, &qsilly);
1402 nfs_mark_for_revalidate(dentry->d_inode);
1403 } else
1404 error = NFS_PROTO(dir)->rename(dir, &dentry->d_name,
1405 dir, &qsilly);
1406 if (!error) {
1407 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1408 d_move(dentry, sdentry);
1409 error = nfs_async_unlink(dir, dentry);
1410 /* If we return 0 we don't unlink */
1412 dput(sdentry);
1413 out:
1414 return error;
1418 * Remove a file after making sure there are no pending writes,
1419 * and after checking that the file has only one user.
1421 * We invalidate the attribute cache and free the inode prior to the operation
1422 * to avoid possible races if the server reuses the inode.
1424 static int nfs_safe_remove(struct dentry *dentry)
1426 struct inode *dir = dentry->d_parent->d_inode;
1427 struct inode *inode = dentry->d_inode;
1428 int error = -EBUSY;
1430 dfprintk(VFS, "NFS: safe_remove(%s/%s)\n",
1431 dentry->d_parent->d_name.name, dentry->d_name.name);
1433 /* If the dentry was sillyrenamed, we simply call d_delete() */
1434 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1435 error = 0;
1436 goto out;
1439 if (inode != NULL) {
1440 nfs_inode_return_delegation(inode);
1441 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1442 /* The VFS may want to delete this inode */
1443 if (error == 0)
1444 nfs_drop_nlink(inode);
1445 nfs_mark_for_revalidate(inode);
1446 } else
1447 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1448 if (error == -ENOENT)
1449 nfs_dentry_handle_enoent(dentry);
1450 out:
1451 return error;
1454 /* We do silly rename. In case sillyrename() returns -EBUSY, the inode
1455 * belongs to an active ".nfs..." file and we return -EBUSY.
1457 * If sillyrename() returns 0, we do nothing, otherwise we unlink.
1459 static int nfs_unlink(struct inode *dir, struct dentry *dentry)
1461 int error;
1462 int need_rehash = 0;
1464 dfprintk(VFS, "NFS: unlink(%s/%ld, %s)\n", dir->i_sb->s_id,
1465 dir->i_ino, dentry->d_name.name);
1467 spin_lock(&dcache_lock);
1468 spin_lock(&dentry->d_lock);
1469 if (atomic_read(&dentry->d_count) > 1) {
1470 spin_unlock(&dentry->d_lock);
1471 spin_unlock(&dcache_lock);
1472 /* Start asynchronous writeout of the inode */
1473 write_inode_now(dentry->d_inode, 0);
1474 error = nfs_sillyrename(dir, dentry);
1475 return error;
1477 if (!d_unhashed(dentry)) {
1478 __d_drop(dentry);
1479 need_rehash = 1;
1481 spin_unlock(&dentry->d_lock);
1482 spin_unlock(&dcache_lock);
1483 error = nfs_safe_remove(dentry);
1484 if (!error || error == -ENOENT) {
1485 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1486 } else if (need_rehash)
1487 d_rehash(dentry);
1488 return error;
1492 * To create a symbolic link, most file systems instantiate a new inode,
1493 * add a page to it containing the path, then write it out to the disk
1494 * using prepare_write/commit_write.
1496 * Unfortunately the NFS client can't create the in-core inode first
1497 * because it needs a file handle to create an in-core inode (see
1498 * fs/nfs/inode.c:nfs_fhget). We only have a file handle *after* the
1499 * symlink request has completed on the server.
1501 * So instead we allocate a raw page, copy the symname into it, then do
1502 * the SYMLINK request with the page as the buffer. If it succeeds, we
1503 * now have a new file handle and can instantiate an in-core NFS inode
1504 * and move the raw page into its mapping.
1506 static int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1508 struct pagevec lru_pvec;
1509 struct page *page;
1510 char *kaddr;
1511 struct iattr attr;
1512 unsigned int pathlen = strlen(symname);
1513 int error;
1515 dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s)\n", dir->i_sb->s_id,
1516 dir->i_ino, dentry->d_name.name, symname);
1518 if (pathlen > PAGE_SIZE)
1519 return -ENAMETOOLONG;
1521 attr.ia_mode = S_IFLNK | S_IRWXUGO;
1522 attr.ia_valid = ATTR_MODE;
1524 page = alloc_page(GFP_HIGHUSER);
1525 if (!page)
1526 return -ENOMEM;
1528 kaddr = kmap_atomic(page, KM_USER0);
1529 memcpy(kaddr, symname, pathlen);
1530 if (pathlen < PAGE_SIZE)
1531 memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
1532 kunmap_atomic(kaddr, KM_USER0);
1534 error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
1535 if (error != 0) {
1536 dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s) error %d\n",
1537 dir->i_sb->s_id, dir->i_ino,
1538 dentry->d_name.name, symname, error);
1539 d_drop(dentry);
1540 __free_page(page);
1541 return error;
1545 * No big deal if we can't add this page to the page cache here.
1546 * READLINK will get the missing page from the server if needed.
1548 pagevec_init(&lru_pvec, 0);
1549 if (!add_to_page_cache(page, dentry->d_inode->i_mapping, 0,
1550 GFP_KERNEL)) {
1551 pagevec_add(&lru_pvec, page);
1552 pagevec_lru_add_file(&lru_pvec);
1553 SetPageUptodate(page);
1554 unlock_page(page);
1555 } else
1556 __free_page(page);
1558 return 0;
1561 static int
1562 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1564 struct inode *inode = old_dentry->d_inode;
1565 int error;
1567 dfprintk(VFS, "NFS: link(%s/%s -> %s/%s)\n",
1568 old_dentry->d_parent->d_name.name, old_dentry->d_name.name,
1569 dentry->d_parent->d_name.name, dentry->d_name.name);
1571 nfs_inode_return_delegation(inode);
1573 d_drop(dentry);
1574 error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
1575 if (error == 0) {
1576 atomic_inc(&inode->i_count);
1577 d_add(dentry, inode);
1579 return error;
1583 * RENAME
1584 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
1585 * different file handle for the same inode after a rename (e.g. when
1586 * moving to a different directory). A fail-safe method to do so would
1587 * be to look up old_dir/old_name, create a link to new_dir/new_name and
1588 * rename the old file using the sillyrename stuff. This way, the original
1589 * file in old_dir will go away when the last process iput()s the inode.
1591 * FIXED.
1593 * It actually works quite well. One needs to have the possibility for
1594 * at least one ".nfs..." file in each directory the file ever gets
1595 * moved or linked to which happens automagically with the new
1596 * implementation that only depends on the dcache stuff instead of
1597 * using the inode layer
1599 * Unfortunately, things are a little more complicated than indicated
1600 * above. For a cross-directory move, we want to make sure we can get
1601 * rid of the old inode after the operation. This means there must be
1602 * no pending writes (if it's a file), and the use count must be 1.
1603 * If these conditions are met, we can drop the dentries before doing
1604 * the rename.
1606 static int nfs_rename(struct inode *old_dir, struct dentry *old_dentry,
1607 struct inode *new_dir, struct dentry *new_dentry)
1609 struct inode *old_inode = old_dentry->d_inode;
1610 struct inode *new_inode = new_dentry->d_inode;
1611 struct dentry *dentry = NULL, *rehash = NULL;
1612 int error = -EBUSY;
1614 dfprintk(VFS, "NFS: rename(%s/%s -> %s/%s, ct=%d)\n",
1615 old_dentry->d_parent->d_name.name, old_dentry->d_name.name,
1616 new_dentry->d_parent->d_name.name, new_dentry->d_name.name,
1617 atomic_read(&new_dentry->d_count));
1620 * For non-directories, check whether the target is busy and if so,
1621 * make a copy of the dentry and then do a silly-rename. If the
1622 * silly-rename succeeds, the copied dentry is hashed and becomes
1623 * the new target.
1625 if (new_inode && !S_ISDIR(new_inode->i_mode)) {
1627 * To prevent any new references to the target during the
1628 * rename, we unhash the dentry in advance.
1630 if (!d_unhashed(new_dentry)) {
1631 d_drop(new_dentry);
1632 rehash = new_dentry;
1635 if (atomic_read(&new_dentry->d_count) > 2) {
1636 int err;
1638 /* copy the target dentry's name */
1639 dentry = d_alloc(new_dentry->d_parent,
1640 &new_dentry->d_name);
1641 if (!dentry)
1642 goto out;
1644 /* silly-rename the existing target ... */
1645 err = nfs_sillyrename(new_dir, new_dentry);
1646 if (err)
1647 goto out;
1649 new_dentry = dentry;
1650 rehash = NULL;
1651 new_inode = NULL;
1656 * ... prune child dentries and writebacks if needed.
1658 if (atomic_read(&old_dentry->d_count) > 1) {
1659 if (S_ISREG(old_inode->i_mode))
1660 nfs_wb_all(old_inode);
1661 shrink_dcache_parent(old_dentry);
1663 nfs_inode_return_delegation(old_inode);
1665 if (new_inode != NULL)
1666 nfs_inode_return_delegation(new_inode);
1668 error = NFS_PROTO(old_dir)->rename(old_dir, &old_dentry->d_name,
1669 new_dir, &new_dentry->d_name);
1670 nfs_mark_for_revalidate(old_inode);
1671 out:
1672 if (rehash)
1673 d_rehash(rehash);
1674 if (!error) {
1675 if (new_inode != NULL)
1676 nfs_drop_nlink(new_inode);
1677 d_move(old_dentry, new_dentry);
1678 nfs_set_verifier(new_dentry,
1679 nfs_save_change_attribute(new_dir));
1680 } else if (error == -ENOENT)
1681 nfs_dentry_handle_enoent(old_dentry);
1683 /* new dentry created? */
1684 if (dentry)
1685 dput(dentry);
1686 return error;
1689 static DEFINE_SPINLOCK(nfs_access_lru_lock);
1690 static LIST_HEAD(nfs_access_lru_list);
1691 static atomic_long_t nfs_access_nr_entries;
1693 static void nfs_access_free_entry(struct nfs_access_entry *entry)
1695 put_rpccred(entry->cred);
1696 kfree(entry);
1697 smp_mb__before_atomic_dec();
1698 atomic_long_dec(&nfs_access_nr_entries);
1699 smp_mb__after_atomic_dec();
1702 static void nfs_access_free_list(struct list_head *head)
1704 struct nfs_access_entry *cache;
1706 while (!list_empty(head)) {
1707 cache = list_entry(head->next, struct nfs_access_entry, lru);
1708 list_del(&cache->lru);
1709 nfs_access_free_entry(cache);
1713 int nfs_access_cache_shrinker(int nr_to_scan, gfp_t gfp_mask)
1715 LIST_HEAD(head);
1716 struct nfs_inode *nfsi;
1717 struct nfs_access_entry *cache;
1719 if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL)
1720 return (nr_to_scan == 0) ? 0 : -1;
1722 spin_lock(&nfs_access_lru_lock);
1723 list_for_each_entry(nfsi, &nfs_access_lru_list, access_cache_inode_lru) {
1724 struct inode *inode;
1726 if (nr_to_scan-- == 0)
1727 break;
1728 inode = &nfsi->vfs_inode;
1729 spin_lock(&inode->i_lock);
1730 if (list_empty(&nfsi->access_cache_entry_lru))
1731 goto remove_lru_entry;
1732 cache = list_entry(nfsi->access_cache_entry_lru.next,
1733 struct nfs_access_entry, lru);
1734 list_move(&cache->lru, &head);
1735 rb_erase(&cache->rb_node, &nfsi->access_cache);
1736 if (!list_empty(&nfsi->access_cache_entry_lru))
1737 list_move_tail(&nfsi->access_cache_inode_lru,
1738 &nfs_access_lru_list);
1739 else {
1740 remove_lru_entry:
1741 list_del_init(&nfsi->access_cache_inode_lru);
1742 smp_mb__before_clear_bit();
1743 clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
1744 smp_mb__after_clear_bit();
1746 spin_unlock(&inode->i_lock);
1748 spin_unlock(&nfs_access_lru_lock);
1749 nfs_access_free_list(&head);
1750 return (atomic_long_read(&nfs_access_nr_entries) / 100) * sysctl_vfs_cache_pressure;
1753 static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head)
1755 struct rb_root *root_node = &nfsi->access_cache;
1756 struct rb_node *n;
1757 struct nfs_access_entry *entry;
1759 /* Unhook entries from the cache */
1760 while ((n = rb_first(root_node)) != NULL) {
1761 entry = rb_entry(n, struct nfs_access_entry, rb_node);
1762 rb_erase(n, root_node);
1763 list_move(&entry->lru, head);
1765 nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
1768 void nfs_access_zap_cache(struct inode *inode)
1770 LIST_HEAD(head);
1772 if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0)
1773 return;
1774 /* Remove from global LRU init */
1775 spin_lock(&nfs_access_lru_lock);
1776 if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
1777 list_del_init(&NFS_I(inode)->access_cache_inode_lru);
1779 spin_lock(&inode->i_lock);
1780 __nfs_access_zap_cache(NFS_I(inode), &head);
1781 spin_unlock(&inode->i_lock);
1782 spin_unlock(&nfs_access_lru_lock);
1783 nfs_access_free_list(&head);
1786 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, struct rpc_cred *cred)
1788 struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
1789 struct nfs_access_entry *entry;
1791 while (n != NULL) {
1792 entry = rb_entry(n, struct nfs_access_entry, rb_node);
1794 if (cred < entry->cred)
1795 n = n->rb_left;
1796 else if (cred > entry->cred)
1797 n = n->rb_right;
1798 else
1799 return entry;
1801 return NULL;
1804 static int nfs_access_get_cached(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res)
1806 struct nfs_inode *nfsi = NFS_I(inode);
1807 struct nfs_access_entry *cache;
1808 int err = -ENOENT;
1810 spin_lock(&inode->i_lock);
1811 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
1812 goto out_zap;
1813 cache = nfs_access_search_rbtree(inode, cred);
1814 if (cache == NULL)
1815 goto out;
1816 if (!nfs_have_delegated_attributes(inode) &&
1817 !time_in_range_open(jiffies, cache->jiffies, cache->jiffies + nfsi->attrtimeo))
1818 goto out_stale;
1819 res->jiffies = cache->jiffies;
1820 res->cred = cache->cred;
1821 res->mask = cache->mask;
1822 list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
1823 err = 0;
1824 out:
1825 spin_unlock(&inode->i_lock);
1826 return err;
1827 out_stale:
1828 rb_erase(&cache->rb_node, &nfsi->access_cache);
1829 list_del(&cache->lru);
1830 spin_unlock(&inode->i_lock);
1831 nfs_access_free_entry(cache);
1832 return -ENOENT;
1833 out_zap:
1834 spin_unlock(&inode->i_lock);
1835 nfs_access_zap_cache(inode);
1836 return -ENOENT;
1839 static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set)
1841 struct nfs_inode *nfsi = NFS_I(inode);
1842 struct rb_root *root_node = &nfsi->access_cache;
1843 struct rb_node **p = &root_node->rb_node;
1844 struct rb_node *parent = NULL;
1845 struct nfs_access_entry *entry;
1847 spin_lock(&inode->i_lock);
1848 while (*p != NULL) {
1849 parent = *p;
1850 entry = rb_entry(parent, struct nfs_access_entry, rb_node);
1852 if (set->cred < entry->cred)
1853 p = &parent->rb_left;
1854 else if (set->cred > entry->cred)
1855 p = &parent->rb_right;
1856 else
1857 goto found;
1859 rb_link_node(&set->rb_node, parent, p);
1860 rb_insert_color(&set->rb_node, root_node);
1861 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
1862 spin_unlock(&inode->i_lock);
1863 return;
1864 found:
1865 rb_replace_node(parent, &set->rb_node, root_node);
1866 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
1867 list_del(&entry->lru);
1868 spin_unlock(&inode->i_lock);
1869 nfs_access_free_entry(entry);
1872 static void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set)
1874 struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
1875 if (cache == NULL)
1876 return;
1877 RB_CLEAR_NODE(&cache->rb_node);
1878 cache->jiffies = set->jiffies;
1879 cache->cred = get_rpccred(set->cred);
1880 cache->mask = set->mask;
1882 nfs_access_add_rbtree(inode, cache);
1884 /* Update accounting */
1885 smp_mb__before_atomic_inc();
1886 atomic_long_inc(&nfs_access_nr_entries);
1887 smp_mb__after_atomic_inc();
1889 /* Add inode to global LRU list */
1890 if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
1891 spin_lock(&nfs_access_lru_lock);
1892 if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
1893 list_add_tail(&NFS_I(inode)->access_cache_inode_lru,
1894 &nfs_access_lru_list);
1895 spin_unlock(&nfs_access_lru_lock);
1899 static int nfs_do_access(struct inode *inode, struct rpc_cred *cred, int mask)
1901 struct nfs_access_entry cache;
1902 int status;
1904 status = nfs_access_get_cached(inode, cred, &cache);
1905 if (status == 0)
1906 goto out;
1908 /* Be clever: ask server to check for all possible rights */
1909 cache.mask = MAY_EXEC | MAY_WRITE | MAY_READ;
1910 cache.cred = cred;
1911 cache.jiffies = jiffies;
1912 status = NFS_PROTO(inode)->access(inode, &cache);
1913 if (status != 0) {
1914 if (status == -ESTALE) {
1915 nfs_zap_caches(inode);
1916 if (!S_ISDIR(inode->i_mode))
1917 set_bit(NFS_INO_STALE, &NFS_I(inode)->flags);
1919 return status;
1921 nfs_access_add_cache(inode, &cache);
1922 out:
1923 if ((mask & ~cache.mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
1924 return 0;
1925 return -EACCES;
1928 static int nfs_open_permission_mask(int openflags)
1930 int mask = 0;
1932 if (openflags & FMODE_READ)
1933 mask |= MAY_READ;
1934 if (openflags & FMODE_WRITE)
1935 mask |= MAY_WRITE;
1936 if (openflags & FMODE_EXEC)
1937 mask |= MAY_EXEC;
1938 return mask;
1941 int nfs_may_open(struct inode *inode, struct rpc_cred *cred, int openflags)
1943 return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
1946 int nfs_permission(struct inode *inode, int mask)
1948 struct rpc_cred *cred;
1949 int res = 0;
1951 nfs_inc_stats(inode, NFSIOS_VFSACCESS);
1953 if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
1954 goto out;
1955 /* Is this sys_access() ? */
1956 if (mask & MAY_ACCESS)
1957 goto force_lookup;
1959 switch (inode->i_mode & S_IFMT) {
1960 case S_IFLNK:
1961 goto out;
1962 case S_IFREG:
1963 /* NFSv4 has atomic_open... */
1964 if (nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN)
1965 && (mask & MAY_OPEN)
1966 && !(mask & MAY_EXEC))
1967 goto out;
1968 break;
1969 case S_IFDIR:
1971 * Optimize away all write operations, since the server
1972 * will check permissions when we perform the op.
1974 if ((mask & MAY_WRITE) && !(mask & MAY_READ))
1975 goto out;
1978 force_lookup:
1979 if (!NFS_PROTO(inode)->access)
1980 goto out_notsup;
1982 cred = rpc_lookup_cred();
1983 if (!IS_ERR(cred)) {
1984 res = nfs_do_access(inode, cred, mask);
1985 put_rpccred(cred);
1986 } else
1987 res = PTR_ERR(cred);
1988 out:
1989 if (!res && (mask & MAY_EXEC) && !execute_ok(inode))
1990 res = -EACCES;
1992 dfprintk(VFS, "NFS: permission(%s/%ld), mask=0x%x, res=%d\n",
1993 inode->i_sb->s_id, inode->i_ino, mask, res);
1994 return res;
1995 out_notsup:
1996 res = nfs_revalidate_inode(NFS_SERVER(inode), inode);
1997 if (res == 0)
1998 res = generic_permission(inode, mask, NULL);
1999 goto out;
2003 * Local variables:
2004 * version-control: t
2005 * kept-new-versions: 5
2006 * End: