2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
26 #include "xfs_trans.h"
27 #include "xfs_dmapi.h"
28 #include "xfs_mount.h"
29 #include "xfs_bmap_btree.h"
30 #include "xfs_alloc_btree.h"
31 #include "xfs_ialloc_btree.h"
32 #include "xfs_alloc.h"
33 #include "xfs_btree.h"
34 #include "xfs_attr_sf.h"
35 #include "xfs_dir2_sf.h"
36 #include "xfs_dinode.h"
37 #include "xfs_inode.h"
38 #include "xfs_inode_item.h"
40 #include "xfs_error.h"
42 #include "xfs_vnodeops.h"
43 #include "xfs_da_btree.h"
44 #include "xfs_ioctl.h"
45 #include "xfs_trace.h"
47 #include <linux/dcache.h>
49 static const struct vm_operations_struct xfs_file_vm_ops
;
54 * xfs_iozero clears the specified range of buffer supplied,
55 * and marks all the affected blocks as valid and modified. If
56 * an affected block is not allocated, it will be allocated. If
57 * an affected block is not completely overwritten, and is not
58 * valid before the operation, it will be read from disk before
59 * being partially zeroed.
63 struct xfs_inode
*ip
, /* inode */
64 loff_t pos
, /* offset in file */
65 size_t count
) /* size of data to zero */
68 struct address_space
*mapping
;
71 mapping
= VFS_I(ip
)->i_mapping
;
73 unsigned offset
, bytes
;
76 offset
= (pos
& (PAGE_CACHE_SIZE
-1)); /* Within page */
77 bytes
= PAGE_CACHE_SIZE
- offset
;
81 status
= pagecache_write_begin(NULL
, mapping
, pos
, bytes
,
82 AOP_FLAG_UNINTERRUPTIBLE
,
87 zero_user(page
, offset
, bytes
);
89 status
= pagecache_write_end(NULL
, mapping
, pos
, bytes
, bytes
,
91 WARN_ON(status
<= 0); /* can't return less than zero! */
105 struct inode
*inode
= file
->f_mapping
->host
;
106 struct xfs_inode
*ip
= XFS_I(inode
);
107 struct xfs_trans
*tp
;
111 xfs_itrace_entry(ip
);
113 if (XFS_FORCED_SHUTDOWN(ip
->i_mount
))
114 return -XFS_ERROR(EIO
);
116 xfs_iflags_clear(ip
, XFS_ITRUNCATED
);
121 * We always need to make sure that the required inode state is safe on
122 * disk. The inode might be clean but we still might need to force the
123 * log because of committed transactions that haven't hit the disk yet.
124 * Likewise, there could be unflushed non-transactional changes to the
125 * inode core that have to go to disk and this requires us to issue
126 * a synchronous transaction to capture these changes correctly.
128 * This code relies on the assumption that if the i_update_core field
129 * of the inode is clear and the inode is unpinned then it is clean
130 * and no action is required.
132 xfs_ilock(ip
, XFS_ILOCK_SHARED
);
135 * First check if the VFS inode is marked dirty. All the dirtying
136 * of non-transactional updates no goes through mark_inode_dirty*,
137 * which allows us to distinguish beteeen pure timestamp updates
138 * and i_size updates which need to be caught for fdatasync.
139 * After that also theck for the dirty state in the XFS inode, which
140 * might gets cleared when the inode gets written out via the AIL
141 * or xfs_iflush_cluster.
143 if (((inode
->i_state
& I_DIRTY_DATASYNC
) ||
144 ((inode
->i_state
& I_DIRTY_SYNC
) && !datasync
)) &&
147 * Kick off a transaction to log the inode core to get the
148 * updates. The sync transaction will also force the log.
150 xfs_iunlock(ip
, XFS_ILOCK_SHARED
);
151 tp
= xfs_trans_alloc(ip
->i_mount
, XFS_TRANS_FSYNC_TS
);
152 error
= xfs_trans_reserve(tp
, 0,
153 XFS_FSYNC_TS_LOG_RES(ip
->i_mount
), 0, 0, 0);
155 xfs_trans_cancel(tp
, 0);
158 xfs_ilock(ip
, XFS_ILOCK_EXCL
);
161 * Note - it's possible that we might have pushed ourselves out
162 * of the way during trans_reserve which would flush the inode.
163 * But there's no guarantee that the inode buffer has actually
164 * gone out yet (it's delwri). Plus the buffer could be pinned
165 * anyway if it's part of an inode in another recent
166 * transaction. So we play it safe and fire off the
167 * transaction anyway.
169 xfs_trans_ijoin(tp
, ip
, XFS_ILOCK_EXCL
);
170 xfs_trans_ihold(tp
, ip
);
171 xfs_trans_log_inode(tp
, ip
, XFS_ILOG_CORE
);
172 xfs_trans_set_sync(tp
);
173 error
= _xfs_trans_commit(tp
, 0, &log_flushed
);
175 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
178 * Timestamps/size haven't changed since last inode flush or
179 * inode transaction commit. That means either nothing got
180 * written or a transaction committed which caught the updates.
181 * If the latter happened and the transaction hasn't hit the
182 * disk yet, the inode will be still be pinned. If it is,
185 if (xfs_ipincount(ip
)) {
186 error
= _xfs_log_force_lsn(ip
->i_mount
,
187 ip
->i_itemp
->ili_last_lsn
,
188 XFS_LOG_SYNC
, &log_flushed
);
190 xfs_iunlock(ip
, XFS_ILOCK_SHARED
);
193 if (ip
->i_mount
->m_flags
& XFS_MOUNT_BARRIER
) {
195 * If the log write didn't issue an ordered tag we need
196 * to flush the disk cache for the data device now.
199 xfs_blkdev_issue_flush(ip
->i_mount
->m_ddev_targp
);
202 * If this inode is on the RT dev we need to flush that
205 if (XFS_IS_REALTIME_INODE(ip
))
206 xfs_blkdev_issue_flush(ip
->i_mount
->m_rtdev_targp
);
215 const struct iovec
*iovp
,
216 unsigned long nr_segs
,
219 struct file
*file
= iocb
->ki_filp
;
220 struct inode
*inode
= file
->f_mapping
->host
;
221 struct xfs_inode
*ip
= XFS_I(inode
);
222 struct xfs_mount
*mp
= ip
->i_mount
;
229 XFS_STATS_INC(xs_read_calls
);
231 BUG_ON(iocb
->ki_pos
!= pos
);
233 if (unlikely(file
->f_flags
& O_DIRECT
))
234 ioflags
|= IO_ISDIRECT
;
235 if (file
->f_mode
& FMODE_NOCMTIME
)
238 /* START copy & waste from filemap.c */
239 for (seg
= 0; seg
< nr_segs
; seg
++) {
240 const struct iovec
*iv
= &iovp
[seg
];
243 * If any segment has a negative length, or the cumulative
244 * length ever wraps negative then return -EINVAL.
247 if (unlikely((ssize_t
)(size
|iv
->iov_len
) < 0))
248 return XFS_ERROR(-EINVAL
);
250 /* END copy & waste from filemap.c */
252 if (unlikely(ioflags
& IO_ISDIRECT
)) {
253 xfs_buftarg_t
*target
=
254 XFS_IS_REALTIME_INODE(ip
) ?
255 mp
->m_rtdev_targp
: mp
->m_ddev_targp
;
256 if ((iocb
->ki_pos
& target
->bt_smask
) ||
257 (size
& target
->bt_smask
)) {
258 if (iocb
->ki_pos
== ip
->i_size
)
260 return -XFS_ERROR(EINVAL
);
264 n
= XFS_MAXIOFFSET(mp
) - iocb
->ki_pos
;
265 if (n
<= 0 || size
== 0)
271 if (XFS_FORCED_SHUTDOWN(mp
))
274 if (unlikely(ioflags
& IO_ISDIRECT
))
275 mutex_lock(&inode
->i_mutex
);
276 xfs_ilock(ip
, XFS_IOLOCK_SHARED
);
278 if (DM_EVENT_ENABLED(ip
, DM_EVENT_READ
) && !(ioflags
& IO_INVIS
)) {
279 int dmflags
= FILP_DELAY_FLAG(file
) | DM_SEM_FLAG_RD(ioflags
);
280 int iolock
= XFS_IOLOCK_SHARED
;
282 ret
= -XFS_SEND_DATA(mp
, DM_EVENT_READ
, ip
, iocb
->ki_pos
, size
,
285 xfs_iunlock(ip
, XFS_IOLOCK_SHARED
);
286 if (unlikely(ioflags
& IO_ISDIRECT
))
287 mutex_unlock(&inode
->i_mutex
);
292 if (unlikely(ioflags
& IO_ISDIRECT
)) {
293 if (inode
->i_mapping
->nrpages
) {
294 ret
= -xfs_flushinval_pages(ip
,
295 (iocb
->ki_pos
& PAGE_CACHE_MASK
),
296 -1, FI_REMAPF_LOCKED
);
298 mutex_unlock(&inode
->i_mutex
);
300 xfs_iunlock(ip
, XFS_IOLOCK_SHARED
);
305 trace_xfs_file_read(ip
, size
, iocb
->ki_pos
, ioflags
);
307 ret
= generic_file_aio_read(iocb
, iovp
, nr_segs
, iocb
->ki_pos
);
309 XFS_STATS_ADD(xs_read_bytes
, ret
);
311 xfs_iunlock(ip
, XFS_IOLOCK_SHARED
);
316 xfs_file_splice_read(
319 struct pipe_inode_info
*pipe
,
323 struct xfs_inode
*ip
= XFS_I(infilp
->f_mapping
->host
);
324 struct xfs_mount
*mp
= ip
->i_mount
;
328 XFS_STATS_INC(xs_read_calls
);
330 if (infilp
->f_mode
& FMODE_NOCMTIME
)
333 if (XFS_FORCED_SHUTDOWN(ip
->i_mount
))
336 xfs_ilock(ip
, XFS_IOLOCK_SHARED
);
338 if (DM_EVENT_ENABLED(ip
, DM_EVENT_READ
) && !(ioflags
& IO_INVIS
)) {
339 int iolock
= XFS_IOLOCK_SHARED
;
342 error
= XFS_SEND_DATA(mp
, DM_EVENT_READ
, ip
, *ppos
, count
,
343 FILP_DELAY_FLAG(infilp
), &iolock
);
345 xfs_iunlock(ip
, XFS_IOLOCK_SHARED
);
350 trace_xfs_file_splice_read(ip
, count
, *ppos
, ioflags
);
352 ret
= generic_file_splice_read(infilp
, ppos
, pipe
, count
, flags
);
354 XFS_STATS_ADD(xs_read_bytes
, ret
);
356 xfs_iunlock(ip
, XFS_IOLOCK_SHARED
);
361 xfs_file_splice_write(
362 struct pipe_inode_info
*pipe
,
363 struct file
*outfilp
,
368 struct inode
*inode
= outfilp
->f_mapping
->host
;
369 struct xfs_inode
*ip
= XFS_I(inode
);
370 struct xfs_mount
*mp
= ip
->i_mount
;
371 xfs_fsize_t isize
, new_size
;
375 XFS_STATS_INC(xs_write_calls
);
377 if (outfilp
->f_mode
& FMODE_NOCMTIME
)
380 if (XFS_FORCED_SHUTDOWN(ip
->i_mount
))
383 xfs_ilock(ip
, XFS_IOLOCK_EXCL
);
385 if (DM_EVENT_ENABLED(ip
, DM_EVENT_WRITE
) && !(ioflags
& IO_INVIS
)) {
386 int iolock
= XFS_IOLOCK_EXCL
;
389 error
= XFS_SEND_DATA(mp
, DM_EVENT_WRITE
, ip
, *ppos
, count
,
390 FILP_DELAY_FLAG(outfilp
), &iolock
);
392 xfs_iunlock(ip
, XFS_IOLOCK_EXCL
);
397 new_size
= *ppos
+ count
;
399 xfs_ilock(ip
, XFS_ILOCK_EXCL
);
400 if (new_size
> ip
->i_size
)
401 ip
->i_new_size
= new_size
;
402 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
404 trace_xfs_file_splice_write(ip
, count
, *ppos
, ioflags
);
406 ret
= generic_file_splice_write(pipe
, outfilp
, ppos
, count
, flags
);
408 XFS_STATS_ADD(xs_write_bytes
, ret
);
410 isize
= i_size_read(inode
);
411 if (unlikely(ret
< 0 && ret
!= -EFAULT
&& *ppos
> isize
))
414 if (*ppos
> ip
->i_size
) {
415 xfs_ilock(ip
, XFS_ILOCK_EXCL
);
416 if (*ppos
> ip
->i_size
)
418 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
421 if (ip
->i_new_size
) {
422 xfs_ilock(ip
, XFS_ILOCK_EXCL
);
424 if (ip
->i_d
.di_size
> ip
->i_size
)
425 ip
->i_d
.di_size
= ip
->i_size
;
426 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
428 xfs_iunlock(ip
, XFS_IOLOCK_EXCL
);
433 * This routine is called to handle zeroing any space in the last
434 * block of the file that is beyond the EOF. We do this since the
435 * size is being increased without writing anything to that block
436 * and we don't want anyone to read the garbage on the disk.
438 STATIC
int /* error (positive) */
444 xfs_fileoff_t last_fsb
;
445 xfs_mount_t
*mp
= ip
->i_mount
;
450 xfs_bmbt_irec_t imap
;
452 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_EXCL
));
454 zero_offset
= XFS_B_FSB_OFFSET(mp
, isize
);
455 if (zero_offset
== 0) {
457 * There are no extra bytes in the last block on disk to
463 last_fsb
= XFS_B_TO_FSBT(mp
, isize
);
465 error
= xfs_bmapi(NULL
, ip
, last_fsb
, 1, 0, NULL
, 0, &imap
,
466 &nimaps
, NULL
, NULL
);
472 * If the block underlying isize is just a hole, then there
473 * is nothing to zero.
475 if (imap
.br_startblock
== HOLESTARTBLOCK
) {
479 * Zero the part of the last block beyond the EOF, and write it
480 * out sync. We need to drop the ilock while we do this so we
481 * don't deadlock when the buffer cache calls back to us.
483 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
485 zero_len
= mp
->m_sb
.sb_blocksize
- zero_offset
;
486 if (isize
+ zero_len
> offset
)
487 zero_len
= offset
- isize
;
488 error
= xfs_iozero(ip
, isize
, zero_len
);
490 xfs_ilock(ip
, XFS_ILOCK_EXCL
);
496 * Zero any on disk space between the current EOF and the new,
497 * larger EOF. This handles the normal case of zeroing the remainder
498 * of the last block in the file and the unusual case of zeroing blocks
499 * out beyond the size of the file. This second case only happens
500 * with fixed size extents and when the system crashes before the inode
501 * size was updated but after blocks were allocated. If fill is set,
502 * then any holes in the range are filled and zeroed. If not, the holes
503 * are left alone as holes.
506 int /* error (positive) */
509 xfs_off_t offset
, /* starting I/O offset */
510 xfs_fsize_t isize
) /* current inode size */
512 xfs_mount_t
*mp
= ip
->i_mount
;
513 xfs_fileoff_t start_zero_fsb
;
514 xfs_fileoff_t end_zero_fsb
;
515 xfs_fileoff_t zero_count_fsb
;
516 xfs_fileoff_t last_fsb
;
517 xfs_fileoff_t zero_off
;
518 xfs_fsize_t zero_len
;
521 xfs_bmbt_irec_t imap
;
523 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_EXCL
|XFS_IOLOCK_EXCL
));
524 ASSERT(offset
> isize
);
527 * First handle zeroing the block on which isize resides.
528 * We only zero a part of that block so it is handled specially.
530 error
= xfs_zero_last_block(ip
, offset
, isize
);
532 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_EXCL
|XFS_IOLOCK_EXCL
));
537 * Calculate the range between the new size and the old
538 * where blocks needing to be zeroed may exist. To get the
539 * block where the last byte in the file currently resides,
540 * we need to subtract one from the size and truncate back
541 * to a block boundary. We subtract 1 in case the size is
542 * exactly on a block boundary.
544 last_fsb
= isize
? XFS_B_TO_FSBT(mp
, isize
- 1) : (xfs_fileoff_t
)-1;
545 start_zero_fsb
= XFS_B_TO_FSB(mp
, (xfs_ufsize_t
)isize
);
546 end_zero_fsb
= XFS_B_TO_FSBT(mp
, offset
- 1);
547 ASSERT((xfs_sfiloff_t
)last_fsb
< (xfs_sfiloff_t
)start_zero_fsb
);
548 if (last_fsb
== end_zero_fsb
) {
550 * The size was only incremented on its last block.
551 * We took care of that above, so just return.
556 ASSERT(start_zero_fsb
<= end_zero_fsb
);
557 while (start_zero_fsb
<= end_zero_fsb
) {
559 zero_count_fsb
= end_zero_fsb
- start_zero_fsb
+ 1;
560 error
= xfs_bmapi(NULL
, ip
, start_zero_fsb
, zero_count_fsb
,
561 0, NULL
, 0, &imap
, &nimaps
, NULL
, NULL
);
563 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_EXCL
|XFS_IOLOCK_EXCL
));
568 if (imap
.br_state
== XFS_EXT_UNWRITTEN
||
569 imap
.br_startblock
== HOLESTARTBLOCK
) {
571 * This loop handles initializing pages that were
572 * partially initialized by the code below this
573 * loop. It basically zeroes the part of the page
574 * that sits on a hole and sets the page as P_HOLE
575 * and calls remapf if it is a mapped file.
577 start_zero_fsb
= imap
.br_startoff
+ imap
.br_blockcount
;
578 ASSERT(start_zero_fsb
<= (end_zero_fsb
+ 1));
583 * There are blocks we need to zero.
584 * Drop the inode lock while we're doing the I/O.
585 * We'll still have the iolock to protect us.
587 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
589 zero_off
= XFS_FSB_TO_B(mp
, start_zero_fsb
);
590 zero_len
= XFS_FSB_TO_B(mp
, imap
.br_blockcount
);
592 if ((zero_off
+ zero_len
) > offset
)
593 zero_len
= offset
- zero_off
;
595 error
= xfs_iozero(ip
, zero_off
, zero_len
);
600 start_zero_fsb
= imap
.br_startoff
+ imap
.br_blockcount
;
601 ASSERT(start_zero_fsb
<= (end_zero_fsb
+ 1));
603 xfs_ilock(ip
, XFS_ILOCK_EXCL
);
609 xfs_ilock(ip
, XFS_ILOCK_EXCL
);
617 const struct iovec
*iovp
,
618 unsigned long nr_segs
,
621 struct file
*file
= iocb
->ki_filp
;
622 struct address_space
*mapping
= file
->f_mapping
;
623 struct inode
*inode
= mapping
->host
;
624 struct xfs_inode
*ip
= XFS_I(inode
);
625 struct xfs_mount
*mp
= ip
->i_mount
;
626 ssize_t ret
= 0, error
= 0;
628 xfs_fsize_t isize
, new_size
;
631 size_t ocount
= 0, count
;
634 XFS_STATS_INC(xs_write_calls
);
636 BUG_ON(iocb
->ki_pos
!= pos
);
638 if (unlikely(file
->f_flags
& O_DIRECT
))
639 ioflags
|= IO_ISDIRECT
;
640 if (file
->f_mode
& FMODE_NOCMTIME
)
643 error
= generic_segment_checks(iovp
, &nr_segs
, &ocount
, VERIFY_READ
);
651 xfs_wait_for_freeze(mp
, SB_FREEZE_WRITE
);
653 if (XFS_FORCED_SHUTDOWN(mp
))
657 if (ioflags
& IO_ISDIRECT
) {
658 iolock
= XFS_IOLOCK_SHARED
;
661 iolock
= XFS_IOLOCK_EXCL
;
663 mutex_lock(&inode
->i_mutex
);
666 xfs_ilock(ip
, XFS_ILOCK_EXCL
|iolock
);
669 error
= -generic_write_checks(file
, &pos
, &count
,
670 S_ISBLK(inode
->i_mode
));
672 xfs_iunlock(ip
, XFS_ILOCK_EXCL
|iolock
);
673 goto out_unlock_mutex
;
676 if ((DM_EVENT_ENABLED(ip
, DM_EVENT_WRITE
) &&
677 !(ioflags
& IO_INVIS
) && !eventsent
)) {
678 int dmflags
= FILP_DELAY_FLAG(file
);
681 dmflags
|= DM_FLAGS_IMUX
;
683 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
684 error
= XFS_SEND_DATA(ip
->i_mount
, DM_EVENT_WRITE
, ip
,
685 pos
, count
, dmflags
, &iolock
);
687 goto out_unlock_internal
;
689 xfs_ilock(ip
, XFS_ILOCK_EXCL
);
693 * The iolock was dropped and reacquired in XFS_SEND_DATA
694 * so we have to recheck the size when appending.
695 * We will only "goto start;" once, since having sent the
696 * event prevents another call to XFS_SEND_DATA, which is
697 * what allows the size to change in the first place.
699 if ((file
->f_flags
& O_APPEND
) && pos
!= ip
->i_size
)
703 if (ioflags
& IO_ISDIRECT
) {
704 xfs_buftarg_t
*target
=
705 XFS_IS_REALTIME_INODE(ip
) ?
706 mp
->m_rtdev_targp
: mp
->m_ddev_targp
;
708 if ((pos
& target
->bt_smask
) || (count
& target
->bt_smask
)) {
709 xfs_iunlock(ip
, XFS_ILOCK_EXCL
|iolock
);
710 return XFS_ERROR(-EINVAL
);
713 if (!need_i_mutex
&& (mapping
->nrpages
|| pos
> ip
->i_size
)) {
714 xfs_iunlock(ip
, XFS_ILOCK_EXCL
|iolock
);
715 iolock
= XFS_IOLOCK_EXCL
;
717 mutex_lock(&inode
->i_mutex
);
718 xfs_ilock(ip
, XFS_ILOCK_EXCL
|iolock
);
723 new_size
= pos
+ count
;
724 if (new_size
> ip
->i_size
)
725 ip
->i_new_size
= new_size
;
727 if (likely(!(ioflags
& IO_INVIS
)))
728 file_update_time(file
);
731 * If the offset is beyond the size of the file, we have a couple
732 * of things to do. First, if there is already space allocated
733 * we need to either create holes or zero the disk or ...
735 * If there is a page where the previous size lands, we need
736 * to zero it out up to the new size.
739 if (pos
> ip
->i_size
) {
740 error
= xfs_zero_eof(ip
, pos
, ip
->i_size
);
742 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
743 goto out_unlock_internal
;
746 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
749 * If we're writing the file then make sure to clear the
750 * setuid and setgid bits if the process is not being run
751 * by root. This keeps people from modifying setuid and
754 error
= -file_remove_suid(file
);
756 goto out_unlock_internal
;
758 /* We can write back this queue in page reclaim */
759 current
->backing_dev_info
= mapping
->backing_dev_info
;
761 if ((ioflags
& IO_ISDIRECT
)) {
762 if (mapping
->nrpages
) {
763 WARN_ON(need_i_mutex
== 0);
764 error
= xfs_flushinval_pages(ip
,
765 (pos
& PAGE_CACHE_MASK
),
766 -1, FI_REMAPF_LOCKED
);
768 goto out_unlock_internal
;
772 /* demote the lock now the cached pages are gone */
773 xfs_ilock_demote(ip
, XFS_IOLOCK_EXCL
);
774 mutex_unlock(&inode
->i_mutex
);
776 iolock
= XFS_IOLOCK_SHARED
;
780 trace_xfs_file_direct_write(ip
, count
, iocb
->ki_pos
, ioflags
);
781 ret
= generic_file_direct_write(iocb
, iovp
,
782 &nr_segs
, pos
, &iocb
->ki_pos
, count
, ocount
);
785 * direct-io write to a hole: fall through to buffered I/O
786 * for completing the rest of the request.
788 if (ret
>= 0 && ret
!= count
) {
789 XFS_STATS_ADD(xs_write_bytes
, ret
);
794 ioflags
&= ~IO_ISDIRECT
;
795 xfs_iunlock(ip
, iolock
);
803 trace_xfs_file_buffered_write(ip
, count
, iocb
->ki_pos
, ioflags
);
804 ret2
= generic_file_buffered_write(iocb
, iovp
, nr_segs
,
805 pos
, &iocb
->ki_pos
, count
, ret
);
807 * if we just got an ENOSPC, flush the inode now we
808 * aren't holding any page locks and retry *once*
810 if (ret2
== -ENOSPC
&& !enospc
) {
811 error
= xfs_flush_pages(ip
, 0, -1, 0, FI_NONE
);
813 goto out_unlock_internal
;
820 current
->backing_dev_info
= NULL
;
822 isize
= i_size_read(inode
);
823 if (unlikely(ret
< 0 && ret
!= -EFAULT
&& iocb
->ki_pos
> isize
))
824 iocb
->ki_pos
= isize
;
826 if (iocb
->ki_pos
> ip
->i_size
) {
827 xfs_ilock(ip
, XFS_ILOCK_EXCL
);
828 if (iocb
->ki_pos
> ip
->i_size
)
829 ip
->i_size
= iocb
->ki_pos
;
830 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
833 if (ret
== -ENOSPC
&&
834 DM_EVENT_ENABLED(ip
, DM_EVENT_NOSPACE
) && !(ioflags
& IO_INVIS
)) {
835 xfs_iunlock(ip
, iolock
);
837 mutex_unlock(&inode
->i_mutex
);
838 error
= XFS_SEND_NAMESP(ip
->i_mount
, DM_EVENT_NOSPACE
, ip
,
839 DM_RIGHT_NULL
, ip
, DM_RIGHT_NULL
, NULL
, NULL
,
840 0, 0, 0); /* Delay flag intentionally unused */
842 mutex_lock(&inode
->i_mutex
);
843 xfs_ilock(ip
, iolock
);
845 goto out_unlock_internal
;
851 goto out_unlock_internal
;
853 XFS_STATS_ADD(xs_write_bytes
, ret
);
855 /* Handle various SYNC-type writes */
856 if ((file
->f_flags
& O_DSYNC
) || IS_SYNC(inode
)) {
857 loff_t end
= pos
+ ret
- 1;
860 xfs_iunlock(ip
, iolock
);
862 mutex_unlock(&inode
->i_mutex
);
864 error2
= filemap_write_and_wait_range(mapping
, pos
, end
);
868 mutex_lock(&inode
->i_mutex
);
869 xfs_ilock(ip
, iolock
);
871 error2
= -xfs_file_fsync(file
,
872 (file
->f_flags
& __O_SYNC
) ? 0 : 1);
878 if (ip
->i_new_size
) {
879 xfs_ilock(ip
, XFS_ILOCK_EXCL
);
882 * If this was a direct or synchronous I/O that failed (such
883 * as ENOSPC) then part of the I/O may have been written to
884 * disk before the error occured. In this case the on-disk
885 * file size may have been adjusted beyond the in-memory file
886 * size and now needs to be truncated back.
888 if (ip
->i_d
.di_size
> ip
->i_size
)
889 ip
->i_d
.di_size
= ip
->i_size
;
890 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
892 xfs_iunlock(ip
, iolock
);
895 mutex_unlock(&inode
->i_mutex
);
904 if (!(file
->f_flags
& O_LARGEFILE
) && i_size_read(inode
) > MAX_NON_LFS
)
906 if (XFS_FORCED_SHUTDOWN(XFS_M(inode
->i_sb
)))
916 struct xfs_inode
*ip
= XFS_I(inode
);
920 error
= xfs_file_open(inode
, file
);
925 * If there are any blocks, read-ahead block 0 as we're almost
926 * certain to have the next operation be a read there.
928 mode
= xfs_ilock_map_shared(ip
);
929 if (ip
->i_d
.di_nextents
> 0)
930 xfs_da_reada_buf(NULL
, ip
, 0, XFS_DATA_FORK
);
931 xfs_iunlock(ip
, mode
);
940 return -xfs_release(XFS_I(inode
));
949 struct inode
*inode
= filp
->f_path
.dentry
->d_inode
;
950 xfs_inode_t
*ip
= XFS_I(inode
);
955 * The Linux API doesn't pass down the total size of the buffer
956 * we read into down to the filesystem. With the filldir concept
957 * it's not needed for correct information, but the XFS dir2 leaf
958 * code wants an estimate of the buffer size to calculate it's
959 * readahead window and size the buffers used for mapping to
962 * Try to give it an estimate that's good enough, maybe at some
963 * point we can change the ->readdir prototype to include the
964 * buffer size. For now we use the current glibc buffer size.
966 bufsize
= (size_t)min_t(loff_t
, 32768, ip
->i_d
.di_size
);
968 error
= xfs_readdir(ip
, dirent
, bufsize
,
969 (xfs_off_t
*)&filp
->f_pos
, filldir
);
978 struct vm_area_struct
*vma
)
980 vma
->vm_ops
= &xfs_file_vm_ops
;
981 vma
->vm_flags
|= VM_CAN_NONLINEAR
;
988 * mmap()d file has taken write protection fault and is being made
989 * writable. We can set the page state up correctly for a writable
990 * page, which means we can do correct delalloc accounting (ENOSPC
991 * checking!) and unwritten extent mapping.
995 struct vm_area_struct
*vma
,
996 struct vm_fault
*vmf
)
998 return block_page_mkwrite(vma
, vmf
, xfs_get_blocks
);
1001 const struct file_operations xfs_file_operations
= {
1002 .llseek
= generic_file_llseek
,
1003 .read
= do_sync_read
,
1004 .write
= do_sync_write
,
1005 .aio_read
= xfs_file_aio_read
,
1006 .aio_write
= xfs_file_aio_write
,
1007 .splice_read
= xfs_file_splice_read
,
1008 .splice_write
= xfs_file_splice_write
,
1009 .unlocked_ioctl
= xfs_file_ioctl
,
1010 #ifdef CONFIG_COMPAT
1011 .compat_ioctl
= xfs_file_compat_ioctl
,
1013 .mmap
= xfs_file_mmap
,
1014 .open
= xfs_file_open
,
1015 .release
= xfs_file_release
,
1016 .fsync
= xfs_file_fsync
,
1017 #ifdef HAVE_FOP_OPEN_EXEC
1018 .open_exec
= xfs_file_open_exec
,
1022 const struct file_operations xfs_dir_file_operations
= {
1023 .open
= xfs_dir_open
,
1024 .read
= generic_read_dir
,
1025 .readdir
= xfs_file_readdir
,
1026 .llseek
= generic_file_llseek
,
1027 .unlocked_ioctl
= xfs_file_ioctl
,
1028 #ifdef CONFIG_COMPAT
1029 .compat_ioctl
= xfs_file_compat_ioctl
,
1031 .fsync
= xfs_file_fsync
,
1034 static const struct vm_operations_struct xfs_file_vm_ops
= {
1035 .fault
= filemap_fault
,
1036 .page_mkwrite
= xfs_vm_page_mkwrite
,