2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
20 #include "xfs_types.h"
24 #include "xfs_trans.h"
28 #include "xfs_dmapi.h"
29 #include "xfs_mount.h"
30 #include "xfs_bmap_btree.h"
31 #include "xfs_alloc_btree.h"
32 #include "xfs_ialloc_btree.h"
33 #include "xfs_btree.h"
34 #include "xfs_dir2_sf.h"
35 #include "xfs_attr_sf.h"
36 #include "xfs_inode.h"
37 #include "xfs_dinode.h"
38 #include "xfs_error.h"
39 #include "xfs_mru_cache.h"
40 #include "xfs_filestream.h"
41 #include "xfs_vnodeops.h"
42 #include "xfs_utils.h"
43 #include "xfs_buf_item.h"
44 #include "xfs_inode_item.h"
46 #include "xfs_quota.h"
47 #include "xfs_trace.h"
49 #include <linux/kthread.h>
50 #include <linux/freezer.h>
56 struct xfs_perag
*pag
,
57 uint32_t *first_index
,
64 * use a gang lookup to find the next inode in the tree
65 * as the tree is sparse and a gang lookup walks to find
66 * the number of objects requested.
68 if (tag
== XFS_ICI_NO_TAG
) {
69 nr_found
= radix_tree_gang_lookup(&pag
->pag_ici_root
,
70 (void **)&ip
, *first_index
, 1);
72 nr_found
= radix_tree_gang_lookup_tag(&pag
->pag_ici_root
,
73 (void **)&ip
, *first_index
, 1, tag
);
79 * Update the index for the next lookup. Catch overflows
80 * into the next AG range which can occur if we have inodes
81 * in the last block of the AG and we are currently
82 * pointing to the last inode.
84 *first_index
= XFS_INO_TO_AGINO(mp
, ip
->i_ino
+ 1);
85 if (*first_index
< XFS_INO_TO_AGINO(mp
, ip
->i_ino
))
93 struct xfs_perag
*pag
,
94 int (*execute
)(struct xfs_inode
*ip
,
95 struct xfs_perag
*pag
, int flags
),
101 uint32_t first_index
;
113 write_lock(&pag
->pag_ici_lock
);
115 read_lock(&pag
->pag_ici_lock
);
116 ip
= xfs_inode_ag_lookup(mp
, pag
, &first_index
, tag
);
119 write_unlock(&pag
->pag_ici_lock
);
121 read_unlock(&pag
->pag_ici_lock
);
125 /* execute releases pag->pag_ici_lock */
126 error
= execute(ip
, pag
, flags
);
127 if (error
== EAGAIN
) {
134 /* bail out if the filesystem is corrupted. */
135 if (error
== EFSCORRUPTED
)
138 } while ((*nr_to_scan
)--);
148 xfs_inode_ag_iterator(
149 struct xfs_mount
*mp
,
150 int (*execute
)(struct xfs_inode
*ip
,
151 struct xfs_perag
*pag
, int flags
),
162 nr
= nr_to_scan
? *nr_to_scan
: INT_MAX
;
163 for (ag
= 0; ag
< mp
->m_sb
.sb_agcount
; ag
++) {
164 struct xfs_perag
*pag
;
166 pag
= xfs_perag_get(mp
, ag
);
167 error
= xfs_inode_ag_walk(mp
, pag
, execute
, flags
, tag
,
172 if (error
== EFSCORRUPTED
)
180 return XFS_ERROR(last_error
);
183 /* must be called with pag_ici_lock held and releases it */
185 xfs_sync_inode_valid(
186 struct xfs_inode
*ip
,
187 struct xfs_perag
*pag
)
189 struct inode
*inode
= VFS_I(ip
);
190 int error
= EFSCORRUPTED
;
192 /* nothing to sync during shutdown */
193 if (XFS_FORCED_SHUTDOWN(ip
->i_mount
))
196 /* avoid new or reclaimable inodes. Leave for reclaim code to flush */
198 if (xfs_iflags_test(ip
, XFS_INEW
| XFS_IRECLAIMABLE
| XFS_IRECLAIM
))
201 /* If we can't grab the inode, it must on it's way to reclaim. */
205 if (is_bad_inode(inode
)) {
213 read_unlock(&pag
->pag_ici_lock
);
219 struct xfs_inode
*ip
,
220 struct xfs_perag
*pag
,
223 struct inode
*inode
= VFS_I(ip
);
224 struct address_space
*mapping
= inode
->i_mapping
;
227 error
= xfs_sync_inode_valid(ip
, pag
);
231 if (!mapping_tagged(mapping
, PAGECACHE_TAG_DIRTY
))
234 if (!xfs_ilock_nowait(ip
, XFS_IOLOCK_SHARED
)) {
235 if (flags
& SYNC_TRYLOCK
)
237 xfs_ilock(ip
, XFS_IOLOCK_SHARED
);
240 error
= xfs_flush_pages(ip
, 0, -1, (flags
& SYNC_WAIT
) ?
241 0 : XBF_ASYNC
, FI_NONE
);
242 xfs_iunlock(ip
, XFS_IOLOCK_SHARED
);
245 if (flags
& SYNC_WAIT
)
253 struct xfs_inode
*ip
,
254 struct xfs_perag
*pag
,
259 error
= xfs_sync_inode_valid(ip
, pag
);
263 xfs_ilock(ip
, XFS_ILOCK_SHARED
);
264 if (xfs_inode_clean(ip
))
266 if (!xfs_iflock_nowait(ip
)) {
267 if (!(flags
& SYNC_WAIT
))
272 if (xfs_inode_clean(ip
)) {
277 error
= xfs_iflush(ip
, flags
);
280 xfs_iunlock(ip
, XFS_ILOCK_SHARED
);
286 * Write out pagecache data for the whole filesystem.
290 struct xfs_mount
*mp
,
295 ASSERT((flags
& ~(SYNC_TRYLOCK
|SYNC_WAIT
)) == 0);
297 error
= xfs_inode_ag_iterator(mp
, xfs_sync_inode_data
, flags
,
298 XFS_ICI_NO_TAG
, 0, NULL
);
300 return XFS_ERROR(error
);
302 xfs_log_force(mp
, (flags
& SYNC_WAIT
) ? XFS_LOG_SYNC
: 0);
307 * Write out inode metadata (attributes) for the whole filesystem.
311 struct xfs_mount
*mp
,
314 ASSERT((flags
& ~SYNC_WAIT
) == 0);
316 return xfs_inode_ag_iterator(mp
, xfs_sync_inode_attr
, flags
,
317 XFS_ICI_NO_TAG
, 0, NULL
);
321 xfs_commit_dummy_trans(
322 struct xfs_mount
*mp
,
325 struct xfs_inode
*ip
= mp
->m_rootip
;
326 struct xfs_trans
*tp
;
330 * Put a dummy transaction in the log to tell recovery
331 * that all others are OK.
333 tp
= xfs_trans_alloc(mp
, XFS_TRANS_DUMMY1
);
334 error
= xfs_trans_reserve(tp
, 0, XFS_ICHANGE_LOG_RES(mp
), 0, 0, 0);
336 xfs_trans_cancel(tp
, 0);
340 xfs_ilock(ip
, XFS_ILOCK_EXCL
);
342 xfs_trans_ijoin(tp
, ip
, XFS_ILOCK_EXCL
);
343 xfs_trans_ihold(tp
, ip
);
344 xfs_trans_log_inode(tp
, ip
, XFS_ILOG_CORE
);
345 error
= xfs_trans_commit(tp
, 0);
346 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
348 /* the log force ensures this transaction is pushed to disk */
349 xfs_log_force(mp
, (flags
& SYNC_WAIT
) ? XFS_LOG_SYNC
: 0);
355 struct xfs_mount
*mp
)
360 * If the buffer is pinned then push on the log so we won't get stuck
361 * waiting in the write for someone, maybe ourselves, to flush the log.
363 * Even though we just pushed the log above, we did not have the
364 * superblock buffer locked at that point so it can become pinned in
365 * between there and here.
367 bp
= xfs_getsb(mp
, 0);
368 if (XFS_BUF_ISPINNED(bp
))
369 xfs_log_force(mp
, 0);
371 return xfs_bwrite(mp
, bp
);
375 * When remounting a filesystem read-only or freezing the filesystem, we have
376 * two phases to execute. This first phase is syncing the data before we
377 * quiesce the filesystem, and the second is flushing all the inodes out after
378 * we've waited for all the transactions created by the first phase to
379 * complete. The second phase ensures that the inodes are written to their
380 * location on disk rather than just existing in transactions in the log. This
381 * means after a quiesce there is no log replay required to write the inodes to
382 * disk (this is the main difference between a sync and a quiesce).
385 * First stage of freeze - no writers will make progress now we are here,
386 * so we flush delwri and delalloc buffers here, then wait for all I/O to
387 * complete. Data is frozen at that point. Metadata is not frozen,
388 * transactions can still occur here so don't bother flushing the buftarg
389 * because it'll just get dirty again.
393 struct xfs_mount
*mp
)
395 int error
, error2
= 0;
397 /* push non-blocking */
398 xfs_sync_data(mp
, 0);
399 xfs_qm_sync(mp
, SYNC_TRYLOCK
);
401 /* push and block till complete */
402 xfs_sync_data(mp
, SYNC_WAIT
);
403 xfs_qm_sync(mp
, SYNC_WAIT
);
405 /* write superblock and hoover up shutdown errors */
406 error
= xfs_sync_fsdata(mp
);
408 /* make sure all delwri buffers are written out */
409 xfs_flush_buftarg(mp
->m_ddev_targp
, 1);
411 /* mark the log as covered if needed */
412 if (xfs_log_need_covered(mp
))
413 error2
= xfs_commit_dummy_trans(mp
, SYNC_WAIT
);
415 /* flush data-only devices */
416 if (mp
->m_rtdev_targp
)
417 XFS_bflush(mp
->m_rtdev_targp
);
419 return error
? error
: error2
;
424 struct xfs_mount
*mp
)
426 int count
= 0, pincount
;
428 xfs_reclaim_inodes(mp
, 0);
429 xfs_flush_buftarg(mp
->m_ddev_targp
, 0);
432 * This loop must run at least twice. The first instance of the loop
433 * will flush most meta data but that will generate more meta data
434 * (typically directory updates). Which then must be flushed and
435 * logged before we can write the unmount record. We also so sync
436 * reclaim of inodes to catch any that the above delwri flush skipped.
439 xfs_reclaim_inodes(mp
, SYNC_WAIT
);
440 xfs_sync_attr(mp
, SYNC_WAIT
);
441 pincount
= xfs_flush_buftarg(mp
->m_ddev_targp
, 1);
450 * Second stage of a quiesce. The data is already synced, now we have to take
451 * care of the metadata. New transactions are already blocked, so we need to
452 * wait for any remaining transactions to drain out before proceding.
456 struct xfs_mount
*mp
)
460 /* wait for all modifications to complete */
461 while (atomic_read(&mp
->m_active_trans
) > 0)
464 /* flush inodes and push all remaining buffers out to disk */
468 * Just warn here till VFS can correctly support
469 * read-only remount without racing.
471 WARN_ON(atomic_read(&mp
->m_active_trans
) != 0);
473 /* Push the superblock and write an unmount record */
474 error
= xfs_log_sbcount(mp
, 1);
476 xfs_fs_cmn_err(CE_WARN
, mp
,
477 "xfs_attr_quiesce: failed to log sb changes. "
478 "Frozen image may not be consistent.");
479 xfs_log_unmount_write(mp
);
480 xfs_unmountfs_writesb(mp
);
484 * Enqueue a work item to be picked up by the vfs xfssyncd thread.
485 * Doing this has two advantages:
486 * - It saves on stack space, which is tight in certain situations
487 * - It can be used (with care) as a mechanism to avoid deadlocks.
488 * Flushing while allocating in a full filesystem requires both.
491 xfs_syncd_queue_work(
492 struct xfs_mount
*mp
,
494 void (*syncer
)(struct xfs_mount
*, void *),
495 struct completion
*completion
)
497 struct xfs_sync_work
*work
;
499 work
= kmem_alloc(sizeof(struct xfs_sync_work
), KM_SLEEP
);
500 INIT_LIST_HEAD(&work
->w_list
);
501 work
->w_syncer
= syncer
;
504 work
->w_completion
= completion
;
505 spin_lock(&mp
->m_sync_lock
);
506 list_add_tail(&work
->w_list
, &mp
->m_sync_list
);
507 spin_unlock(&mp
->m_sync_lock
);
508 wake_up_process(mp
->m_sync_task
);
512 * Flush delayed allocate data, attempting to free up reserved space
513 * from existing allocations. At this point a new allocation attempt
514 * has failed with ENOSPC and we are in the process of scratching our
515 * heads, looking about for more room...
518 xfs_flush_inodes_work(
519 struct xfs_mount
*mp
,
522 struct inode
*inode
= arg
;
523 xfs_sync_data(mp
, SYNC_TRYLOCK
);
524 xfs_sync_data(mp
, SYNC_TRYLOCK
| SYNC_WAIT
);
532 struct inode
*inode
= VFS_I(ip
);
533 DECLARE_COMPLETION_ONSTACK(completion
);
536 xfs_syncd_queue_work(ip
->i_mount
, inode
, xfs_flush_inodes_work
, &completion
);
537 wait_for_completion(&completion
);
538 xfs_log_force(ip
->i_mount
, XFS_LOG_SYNC
);
542 * Every sync period we need to unpin all items, reclaim inodes and sync
543 * disk quotas. We might need to cover the log to indicate that the
544 * filesystem is idle.
548 struct xfs_mount
*mp
,
553 if (!(mp
->m_flags
& XFS_MOUNT_RDONLY
)) {
554 xfs_log_force(mp
, 0);
555 xfs_reclaim_inodes(mp
, 0);
556 /* dgc: errors ignored here */
557 error
= xfs_qm_sync(mp
, SYNC_TRYLOCK
);
558 if (xfs_log_need_covered(mp
))
559 error
= xfs_commit_dummy_trans(mp
, 0);
562 wake_up(&mp
->m_wait_single_sync_task
);
569 struct xfs_mount
*mp
= arg
;
571 xfs_sync_work_t
*work
, *n
;
575 timeleft
= xfs_syncd_centisecs
* msecs_to_jiffies(10);
577 if (list_empty(&mp
->m_sync_list
))
578 timeleft
= schedule_timeout_interruptible(timeleft
);
581 if (kthread_should_stop() && list_empty(&mp
->m_sync_list
))
584 spin_lock(&mp
->m_sync_lock
);
586 * We can get woken by laptop mode, to do a sync -
587 * that's the (only!) case where the list would be
588 * empty with time remaining.
590 if (!timeleft
|| list_empty(&mp
->m_sync_list
)) {
592 timeleft
= xfs_syncd_centisecs
*
593 msecs_to_jiffies(10);
594 INIT_LIST_HEAD(&mp
->m_sync_work
.w_list
);
595 list_add_tail(&mp
->m_sync_work
.w_list
,
598 list_splice_init(&mp
->m_sync_list
, &tmp
);
599 spin_unlock(&mp
->m_sync_lock
);
601 list_for_each_entry_safe(work
, n
, &tmp
, w_list
) {
602 (*work
->w_syncer
)(mp
, work
->w_data
);
603 list_del(&work
->w_list
);
604 if (work
== &mp
->m_sync_work
)
606 if (work
->w_completion
)
607 complete(work
->w_completion
);
617 struct xfs_mount
*mp
)
619 mp
->m_sync_work
.w_syncer
= xfs_sync_worker
;
620 mp
->m_sync_work
.w_mount
= mp
;
621 mp
->m_sync_work
.w_completion
= NULL
;
622 mp
->m_sync_task
= kthread_run(xfssyncd
, mp
, "xfssyncd/%s", mp
->m_fsname
);
623 if (IS_ERR(mp
->m_sync_task
))
624 return -PTR_ERR(mp
->m_sync_task
);
630 struct xfs_mount
*mp
)
632 kthread_stop(mp
->m_sync_task
);
636 __xfs_inode_set_reclaim_tag(
637 struct xfs_perag
*pag
,
638 struct xfs_inode
*ip
)
640 radix_tree_tag_set(&pag
->pag_ici_root
,
641 XFS_INO_TO_AGINO(ip
->i_mount
, ip
->i_ino
),
642 XFS_ICI_RECLAIM_TAG
);
643 pag
->pag_ici_reclaimable
++;
647 * We set the inode flag atomically with the radix tree tag.
648 * Once we get tag lookups on the radix tree, this inode flag
652 xfs_inode_set_reclaim_tag(
655 struct xfs_mount
*mp
= ip
->i_mount
;
656 struct xfs_perag
*pag
;
658 pag
= xfs_perag_get(mp
, XFS_INO_TO_AGNO(mp
, ip
->i_ino
));
659 write_lock(&pag
->pag_ici_lock
);
660 spin_lock(&ip
->i_flags_lock
);
661 __xfs_inode_set_reclaim_tag(pag
, ip
);
662 __xfs_iflags_set(ip
, XFS_IRECLAIMABLE
);
663 spin_unlock(&ip
->i_flags_lock
);
664 write_unlock(&pag
->pag_ici_lock
);
669 __xfs_inode_clear_reclaim_tag(
674 radix_tree_tag_clear(&pag
->pag_ici_root
,
675 XFS_INO_TO_AGINO(mp
, ip
->i_ino
), XFS_ICI_RECLAIM_TAG
);
676 pag
->pag_ici_reclaimable
--;
680 * Inodes in different states need to be treated differently, and the return
681 * value of xfs_iflush is not sufficient to get this right. The following table
682 * lists the inode states and the reclaim actions necessary for non-blocking
686 * inode state iflush ret required action
687 * --------------- ---------- ---------------
689 * shutdown EIO unpin and reclaim
690 * clean, unpinned 0 reclaim
691 * stale, unpinned 0 reclaim
692 * clean, pinned(*) 0 requeue
693 * stale, pinned EAGAIN requeue
694 * dirty, delwri ok 0 requeue
695 * dirty, delwri blocked EAGAIN requeue
696 * dirty, sync flush 0 reclaim
698 * (*) dgc: I don't think the clean, pinned state is possible but it gets
699 * handled anyway given the order of checks implemented.
701 * As can be seen from the table, the return value of xfs_iflush() is not
702 * sufficient to correctly decide the reclaim action here. The checks in
703 * xfs_iflush() might look like duplicates, but they are not.
705 * Also, because we get the flush lock first, we know that any inode that has
706 * been flushed delwri has had the flush completed by the time we check that
707 * the inode is clean. The clean inode check needs to be done before flushing
708 * the inode delwri otherwise we would loop forever requeuing clean inodes as
709 * we cannot tell apart a successful delwri flush and a clean inode from the
710 * return value of xfs_iflush().
712 * Note that because the inode is flushed delayed write by background
713 * writeback, the flush lock may already be held here and waiting on it can
714 * result in very long latencies. Hence for sync reclaims, where we wait on the
715 * flush lock, the caller should push out delayed write inodes first before
716 * trying to reclaim them to minimise the amount of time spent waiting. For
717 * background relaim, we just requeue the inode for the next pass.
719 * Hence the order of actions after gaining the locks should be:
721 * shutdown => unpin and reclaim
722 * pinned, delwri => requeue
723 * pinned, sync => unpin
726 * dirty, delwri => flush and requeue
727 * dirty, sync => flush, wait and reclaim
731 struct xfs_inode
*ip
,
732 struct xfs_perag
*pag
,
738 * The radix tree lock here protects a thread in xfs_iget from racing
739 * with us starting reclaim on the inode. Once we have the
740 * XFS_IRECLAIM flag set it will not touch us.
742 spin_lock(&ip
->i_flags_lock
);
743 ASSERT_ALWAYS(__xfs_iflags_test(ip
, XFS_IRECLAIMABLE
));
744 if (__xfs_iflags_test(ip
, XFS_IRECLAIM
)) {
745 /* ignore as it is already under reclaim */
746 spin_unlock(&ip
->i_flags_lock
);
747 write_unlock(&pag
->pag_ici_lock
);
750 __xfs_iflags_set(ip
, XFS_IRECLAIM
);
751 spin_unlock(&ip
->i_flags_lock
);
752 write_unlock(&pag
->pag_ici_lock
);
754 xfs_ilock(ip
, XFS_ILOCK_EXCL
);
755 if (!xfs_iflock_nowait(ip
)) {
756 if (!(sync_mode
& SYNC_WAIT
))
761 if (is_bad_inode(VFS_I(ip
)))
763 if (XFS_FORCED_SHUTDOWN(ip
->i_mount
)) {
767 if (xfs_ipincount(ip
)) {
768 if (!(sync_mode
& SYNC_WAIT
)) {
774 if (xfs_iflags_test(ip
, XFS_ISTALE
))
776 if (xfs_inode_clean(ip
))
779 /* Now we have an inode that needs flushing */
780 error
= xfs_iflush(ip
, sync_mode
);
781 if (sync_mode
& SYNC_WAIT
) {
787 * When we have to flush an inode but don't have SYNC_WAIT set, we
788 * flush the inode out using a delwri buffer and wait for the next
789 * call into reclaim to find it in a clean state instead of waiting for
790 * it now. We also don't return errors here - if the error is transient
791 * then the next reclaim pass will flush the inode, and if the error
792 * is permanent then the next sync reclaim will reclaim the inode and
795 if (error
&& error
!= EAGAIN
&& !XFS_FORCED_SHUTDOWN(ip
->i_mount
)) {
796 xfs_fs_cmn_err(CE_WARN
, ip
->i_mount
,
797 "inode 0x%llx background reclaim flush failed with %d",
798 (long long)ip
->i_ino
, error
);
801 xfs_iflags_clear(ip
, XFS_IRECLAIM
);
802 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
804 * We could return EAGAIN here to make reclaim rescan the inode tree in
805 * a short while. However, this just burns CPU time scanning the tree
806 * waiting for IO to complete and xfssyncd never goes back to the idle
807 * state. Instead, return 0 to let the next scheduled background reclaim
808 * attempt to reclaim the inode again.
814 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
825 return xfs_inode_ag_iterator(mp
, xfs_reclaim_inode
, mode
,
826 XFS_ICI_RECLAIM_TAG
, 1, NULL
);
830 * Shrinker infrastructure.
832 * This is all far more complex than it needs to be. It adds a global list of
833 * mounts because the shrinkers can only call a global context. We need to make
834 * the shrinkers pass a context to avoid the need for global state.
836 static LIST_HEAD(xfs_mount_list
);
837 static struct rw_semaphore xfs_mount_list_lock
;
840 xfs_reclaim_inode_shrink(
844 struct xfs_mount
*mp
;
845 struct xfs_perag
*pag
;
850 if (!(gfp_mask
& __GFP_FS
))
853 down_read(&xfs_mount_list_lock
);
854 list_for_each_entry(mp
, &xfs_mount_list
, m_mplist
) {
855 xfs_inode_ag_iterator(mp
, xfs_reclaim_inode
, 0,
856 XFS_ICI_RECLAIM_TAG
, 1, &nr_to_scan
);
860 up_read(&xfs_mount_list_lock
);
863 down_read(&xfs_mount_list_lock
);
864 list_for_each_entry(mp
, &xfs_mount_list
, m_mplist
) {
865 for (ag
= 0; ag
< mp
->m_sb
.sb_agcount
; ag
++) {
866 pag
= xfs_perag_get(mp
, ag
);
867 reclaimable
+= pag
->pag_ici_reclaimable
;
871 up_read(&xfs_mount_list_lock
);
875 static struct shrinker xfs_inode_shrinker
= {
876 .shrink
= xfs_reclaim_inode_shrink
,
877 .seeks
= DEFAULT_SEEKS
,
881 xfs_inode_shrinker_init(void)
883 init_rwsem(&xfs_mount_list_lock
);
884 register_shrinker(&xfs_inode_shrinker
);
888 xfs_inode_shrinker_destroy(void)
890 ASSERT(list_empty(&xfs_mount_list
));
891 unregister_shrinker(&xfs_inode_shrinker
);
895 xfs_inode_shrinker_register(
896 struct xfs_mount
*mp
)
898 down_write(&xfs_mount_list_lock
);
899 list_add_tail(&mp
->m_mplist
, &xfs_mount_list
);
900 up_write(&xfs_mount_list_lock
);
904 xfs_inode_shrinker_unregister(
905 struct xfs_mount
*mp
)
907 down_write(&xfs_mount_list_lock
);
908 list_del(&mp
->m_mplist
);
909 up_write(&xfs_mount_list_lock
);