2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
20 #include "xfs_types.h"
24 #include "xfs_trans.h"
28 #include "xfs_dmapi.h"
29 #include "xfs_mount.h"
30 #include "xfs_error.h"
31 #include "xfs_bmap_btree.h"
32 #include "xfs_alloc_btree.h"
33 #include "xfs_ialloc_btree.h"
34 #include "xfs_dir2_sf.h"
35 #include "xfs_attr_sf.h"
36 #include "xfs_dinode.h"
37 #include "xfs_inode.h"
38 #include "xfs_inode_item.h"
39 #include "xfs_alloc.h"
40 #include "xfs_ialloc.h"
41 #include "xfs_log_priv.h"
42 #include "xfs_buf_item.h"
43 #include "xfs_log_recover.h"
44 #include "xfs_extfree_item.h"
45 #include "xfs_trans_priv.h"
46 #include "xfs_quota.h"
48 #include "xfs_utils.h"
49 #include "xfs_trace.h"
51 STATIC
int xlog_find_zeroed(xlog_t
*, xfs_daddr_t
*);
52 STATIC
int xlog_clear_stale_blocks(xlog_t
*, xfs_lsn_t
);
54 STATIC
void xlog_recover_check_summary(xlog_t
*);
56 #define xlog_recover_check_summary(log)
60 * Sector aligned buffer routines for buffer create/read/write/access
64 * Verify the given count of basic blocks is valid number of blocks
65 * to specify for an operation involving the given XFS log buffer.
66 * Returns nonzero if the count is valid, 0 otherwise.
70 xlog_buf_bbcount_valid(
74 return bbcount
> 0 && bbcount
<= log
->l_logBBsize
;
78 * Allocate a buffer to hold log data. The buffer needs to be able
79 * to map to a range of nbblks basic blocks at any valid (basic
80 * block) offset within the log.
87 if (!xlog_buf_bbcount_valid(log
, nbblks
)) {
88 xlog_warn("XFS: Invalid block length (0x%x) given for buffer",
90 XFS_ERROR_REPORT(__func__
, XFS_ERRLEVEL_HIGH
, log
->l_mp
);
95 * We do log I/O in units of log sectors (a power-of-2
96 * multiple of the basic block size), so we round up the
97 * requested size to acommodate the basic blocks required
98 * for complete log sectors.
100 * In addition, the buffer may be used for a non-sector-
101 * aligned block offset, in which case an I/O of the
102 * requested size could extend beyond the end of the
103 * buffer. If the requested size is only 1 basic block it
104 * will never straddle a sector boundary, so this won't be
105 * an issue. Nor will this be a problem if the log I/O is
106 * done in basic blocks (sector size 1). But otherwise we
107 * extend the buffer by one extra log sector to ensure
108 * there's space to accomodate this possiblility.
110 if (nbblks
> 1 && log
->l_sectBBsize
> 1)
111 nbblks
+= log
->l_sectBBsize
;
112 nbblks
= round_up(nbblks
, log
->l_sectBBsize
);
114 return xfs_buf_get_noaddr(BBTOB(nbblks
), log
->l_mp
->m_logdev_targp
);
125 * Return the address of the start of the given block number's data
126 * in a log buffer. The buffer covers a log sector-aligned region.
135 xfs_daddr_t offset
= blk_no
& ((xfs_daddr_t
)log
->l_sectBBsize
- 1);
137 ASSERT(BBTOB(offset
+ nbblks
) <= XFS_BUF_SIZE(bp
));
138 return XFS_BUF_PTR(bp
) + BBTOB(offset
);
143 * nbblks should be uint, but oh well. Just want to catch that 32-bit length.
154 if (!xlog_buf_bbcount_valid(log
, nbblks
)) {
155 xlog_warn("XFS: Invalid block length (0x%x) given for buffer",
157 XFS_ERROR_REPORT(__func__
, XFS_ERRLEVEL_HIGH
, log
->l_mp
);
161 blk_no
= round_down(blk_no
, log
->l_sectBBsize
);
162 nbblks
= round_up(nbblks
, log
->l_sectBBsize
);
165 ASSERT(BBTOB(nbblks
) <= XFS_BUF_SIZE(bp
));
167 XFS_BUF_SET_ADDR(bp
, log
->l_logBBstart
+ blk_no
);
170 XFS_BUF_SET_COUNT(bp
, BBTOB(nbblks
));
171 XFS_BUF_SET_TARGET(bp
, log
->l_mp
->m_logdev_targp
);
173 xfsbdstrat(log
->l_mp
, bp
);
174 error
= xfs_iowait(bp
);
176 xfs_ioerror_alert("xlog_bread", log
->l_mp
,
177 bp
, XFS_BUF_ADDR(bp
));
191 error
= xlog_bread_noalign(log
, blk_no
, nbblks
, bp
);
195 *offset
= xlog_align(log
, blk_no
, nbblks
, bp
);
200 * Write out the buffer at the given block for the given number of blocks.
201 * The buffer is kept locked across the write and is returned locked.
202 * This can only be used for synchronous log writes.
213 if (!xlog_buf_bbcount_valid(log
, nbblks
)) {
214 xlog_warn("XFS: Invalid block length (0x%x) given for buffer",
216 XFS_ERROR_REPORT(__func__
, XFS_ERRLEVEL_HIGH
, log
->l_mp
);
220 blk_no
= round_down(blk_no
, log
->l_sectBBsize
);
221 nbblks
= round_up(nbblks
, log
->l_sectBBsize
);
224 ASSERT(BBTOB(nbblks
) <= XFS_BUF_SIZE(bp
));
226 XFS_BUF_SET_ADDR(bp
, log
->l_logBBstart
+ blk_no
);
227 XFS_BUF_ZEROFLAGS(bp
);
230 XFS_BUF_PSEMA(bp
, PRIBIO
);
231 XFS_BUF_SET_COUNT(bp
, BBTOB(nbblks
));
232 XFS_BUF_SET_TARGET(bp
, log
->l_mp
->m_logdev_targp
);
234 if ((error
= xfs_bwrite(log
->l_mp
, bp
)))
235 xfs_ioerror_alert("xlog_bwrite", log
->l_mp
,
236 bp
, XFS_BUF_ADDR(bp
));
242 * dump debug superblock and log record information
245 xlog_header_check_dump(
247 xlog_rec_header_t
*head
)
249 cmn_err(CE_DEBUG
, "%s: SB : uuid = %pU, fmt = %d\n",
250 __func__
, &mp
->m_sb
.sb_uuid
, XLOG_FMT
);
251 cmn_err(CE_DEBUG
, " log : uuid = %pU, fmt = %d\n",
252 &head
->h_fs_uuid
, be32_to_cpu(head
->h_fmt
));
255 #define xlog_header_check_dump(mp, head)
259 * check log record header for recovery
262 xlog_header_check_recover(
264 xlog_rec_header_t
*head
)
266 ASSERT(be32_to_cpu(head
->h_magicno
) == XLOG_HEADER_MAGIC_NUM
);
269 * IRIX doesn't write the h_fmt field and leaves it zeroed
270 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
271 * a dirty log created in IRIX.
273 if (unlikely(be32_to_cpu(head
->h_fmt
) != XLOG_FMT
)) {
275 "XFS: dirty log written in incompatible format - can't recover");
276 xlog_header_check_dump(mp
, head
);
277 XFS_ERROR_REPORT("xlog_header_check_recover(1)",
278 XFS_ERRLEVEL_HIGH
, mp
);
279 return XFS_ERROR(EFSCORRUPTED
);
280 } else if (unlikely(!uuid_equal(&mp
->m_sb
.sb_uuid
, &head
->h_fs_uuid
))) {
282 "XFS: dirty log entry has mismatched uuid - can't recover");
283 xlog_header_check_dump(mp
, head
);
284 XFS_ERROR_REPORT("xlog_header_check_recover(2)",
285 XFS_ERRLEVEL_HIGH
, mp
);
286 return XFS_ERROR(EFSCORRUPTED
);
292 * read the head block of the log and check the header
295 xlog_header_check_mount(
297 xlog_rec_header_t
*head
)
299 ASSERT(be32_to_cpu(head
->h_magicno
) == XLOG_HEADER_MAGIC_NUM
);
301 if (uuid_is_nil(&head
->h_fs_uuid
)) {
303 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
304 * h_fs_uuid is nil, we assume this log was last mounted
305 * by IRIX and continue.
307 xlog_warn("XFS: nil uuid in log - IRIX style log");
308 } else if (unlikely(!uuid_equal(&mp
->m_sb
.sb_uuid
, &head
->h_fs_uuid
))) {
309 xlog_warn("XFS: log has mismatched uuid - can't recover");
310 xlog_header_check_dump(mp
, head
);
311 XFS_ERROR_REPORT("xlog_header_check_mount",
312 XFS_ERRLEVEL_HIGH
, mp
);
313 return XFS_ERROR(EFSCORRUPTED
);
322 if (XFS_BUF_GETERROR(bp
)) {
324 * We're not going to bother about retrying
325 * this during recovery. One strike!
327 xfs_ioerror_alert("xlog_recover_iodone",
328 bp
->b_mount
, bp
, XFS_BUF_ADDR(bp
));
329 xfs_force_shutdown(bp
->b_mount
, SHUTDOWN_META_IO_ERROR
);
332 XFS_BUF_CLR_IODONE_FUNC(bp
);
337 * This routine finds (to an approximation) the first block in the physical
338 * log which contains the given cycle. It uses a binary search algorithm.
339 * Note that the algorithm can not be perfect because the disk will not
340 * necessarily be perfect.
343 xlog_find_cycle_start(
346 xfs_daddr_t first_blk
,
347 xfs_daddr_t
*last_blk
,
357 mid_blk
= BLK_AVG(first_blk
, end_blk
);
358 while (mid_blk
!= first_blk
&& mid_blk
!= end_blk
) {
359 error
= xlog_bread(log
, mid_blk
, 1, bp
, &offset
);
362 mid_cycle
= xlog_get_cycle(offset
);
363 if (mid_cycle
== cycle
)
364 end_blk
= mid_blk
; /* last_half_cycle == mid_cycle */
366 first_blk
= mid_blk
; /* first_half_cycle == mid_cycle */
367 mid_blk
= BLK_AVG(first_blk
, end_blk
);
369 ASSERT((mid_blk
== first_blk
&& mid_blk
+1 == end_blk
) ||
370 (mid_blk
== end_blk
&& mid_blk
-1 == first_blk
));
378 * Check that a range of blocks does not contain stop_on_cycle_no.
379 * Fill in *new_blk with the block offset where such a block is
380 * found, or with -1 (an invalid block number) if there is no such
381 * block in the range. The scan needs to occur from front to back
382 * and the pointer into the region must be updated since a later
383 * routine will need to perform another test.
386 xlog_find_verify_cycle(
388 xfs_daddr_t start_blk
,
390 uint stop_on_cycle_no
,
391 xfs_daddr_t
*new_blk
)
397 xfs_caddr_t buf
= NULL
;
401 * Greedily allocate a buffer big enough to handle the full
402 * range of basic blocks we'll be examining. If that fails,
403 * try a smaller size. We need to be able to read at least
404 * a log sector, or we're out of luck.
406 bufblks
= 1 << ffs(nbblks
);
407 while (!(bp
= xlog_get_bp(log
, bufblks
))) {
409 if (bufblks
< log
->l_sectBBsize
)
413 for (i
= start_blk
; i
< start_blk
+ nbblks
; i
+= bufblks
) {
416 bcount
= min(bufblks
, (start_blk
+ nbblks
- i
));
418 error
= xlog_bread(log
, i
, bcount
, bp
, &buf
);
422 for (j
= 0; j
< bcount
; j
++) {
423 cycle
= xlog_get_cycle(buf
);
424 if (cycle
== stop_on_cycle_no
) {
441 * Potentially backup over partial log record write.
443 * In the typical case, last_blk is the number of the block directly after
444 * a good log record. Therefore, we subtract one to get the block number
445 * of the last block in the given buffer. extra_bblks contains the number
446 * of blocks we would have read on a previous read. This happens when the
447 * last log record is split over the end of the physical log.
449 * extra_bblks is the number of blocks potentially verified on a previous
450 * call to this routine.
453 xlog_find_verify_log_record(
455 xfs_daddr_t start_blk
,
456 xfs_daddr_t
*last_blk
,
461 xfs_caddr_t offset
= NULL
;
462 xlog_rec_header_t
*head
= NULL
;
465 int num_blks
= *last_blk
- start_blk
;
468 ASSERT(start_blk
!= 0 || *last_blk
!= start_blk
);
470 if (!(bp
= xlog_get_bp(log
, num_blks
))) {
471 if (!(bp
= xlog_get_bp(log
, 1)))
475 error
= xlog_bread(log
, start_blk
, num_blks
, bp
, &offset
);
478 offset
+= ((num_blks
- 1) << BBSHIFT
);
481 for (i
= (*last_blk
) - 1; i
>= 0; i
--) {
483 /* valid log record not found */
485 "XFS: Log inconsistent (didn't find previous header)");
487 error
= XFS_ERROR(EIO
);
492 error
= xlog_bread(log
, i
, 1, bp
, &offset
);
497 head
= (xlog_rec_header_t
*)offset
;
499 if (XLOG_HEADER_MAGIC_NUM
== be32_to_cpu(head
->h_magicno
))
507 * We hit the beginning of the physical log & still no header. Return
508 * to caller. If caller can handle a return of -1, then this routine
509 * will be called again for the end of the physical log.
517 * We have the final block of the good log (the first block
518 * of the log record _before_ the head. So we check the uuid.
520 if ((error
= xlog_header_check_mount(log
->l_mp
, head
)))
524 * We may have found a log record header before we expected one.
525 * last_blk will be the 1st block # with a given cycle #. We may end
526 * up reading an entire log record. In this case, we don't want to
527 * reset last_blk. Only when last_blk points in the middle of a log
528 * record do we update last_blk.
530 if (xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
)) {
531 uint h_size
= be32_to_cpu(head
->h_size
);
533 xhdrs
= h_size
/ XLOG_HEADER_CYCLE_SIZE
;
534 if (h_size
% XLOG_HEADER_CYCLE_SIZE
)
540 if (*last_blk
- i
+ extra_bblks
!=
541 BTOBB(be32_to_cpu(head
->h_len
)) + xhdrs
)
550 * Head is defined to be the point of the log where the next log write
551 * write could go. This means that incomplete LR writes at the end are
552 * eliminated when calculating the head. We aren't guaranteed that previous
553 * LR have complete transactions. We only know that a cycle number of
554 * current cycle number -1 won't be present in the log if we start writing
555 * from our current block number.
557 * last_blk contains the block number of the first block with a given
560 * Return: zero if normal, non-zero if error.
565 xfs_daddr_t
*return_head_blk
)
569 xfs_daddr_t new_blk
, first_blk
, start_blk
, last_blk
, head_blk
;
571 uint first_half_cycle
, last_half_cycle
;
573 int error
, log_bbnum
= log
->l_logBBsize
;
575 /* Is the end of the log device zeroed? */
576 if ((error
= xlog_find_zeroed(log
, &first_blk
)) == -1) {
577 *return_head_blk
= first_blk
;
579 /* Is the whole lot zeroed? */
581 /* Linux XFS shouldn't generate totally zeroed logs -
582 * mkfs etc write a dummy unmount record to a fresh
583 * log so we can store the uuid in there
585 xlog_warn("XFS: totally zeroed log");
590 xlog_warn("XFS: empty log check failed");
594 first_blk
= 0; /* get cycle # of 1st block */
595 bp
= xlog_get_bp(log
, 1);
599 error
= xlog_bread(log
, 0, 1, bp
, &offset
);
603 first_half_cycle
= xlog_get_cycle(offset
);
605 last_blk
= head_blk
= log_bbnum
- 1; /* get cycle # of last block */
606 error
= xlog_bread(log
, last_blk
, 1, bp
, &offset
);
610 last_half_cycle
= xlog_get_cycle(offset
);
611 ASSERT(last_half_cycle
!= 0);
614 * If the 1st half cycle number is equal to the last half cycle number,
615 * then the entire log is stamped with the same cycle number. In this
616 * case, head_blk can't be set to zero (which makes sense). The below
617 * math doesn't work out properly with head_blk equal to zero. Instead,
618 * we set it to log_bbnum which is an invalid block number, but this
619 * value makes the math correct. If head_blk doesn't changed through
620 * all the tests below, *head_blk is set to zero at the very end rather
621 * than log_bbnum. In a sense, log_bbnum and zero are the same block
622 * in a circular file.
624 if (first_half_cycle
== last_half_cycle
) {
626 * In this case we believe that the entire log should have
627 * cycle number last_half_cycle. We need to scan backwards
628 * from the end verifying that there are no holes still
629 * containing last_half_cycle - 1. If we find such a hole,
630 * then the start of that hole will be the new head. The
631 * simple case looks like
632 * x | x ... | x - 1 | x
633 * Another case that fits this picture would be
634 * x | x + 1 | x ... | x
635 * In this case the head really is somewhere at the end of the
636 * log, as one of the latest writes at the beginning was
639 * x | x + 1 | x ... | x - 1 | x
640 * This is really the combination of the above two cases, and
641 * the head has to end up at the start of the x-1 hole at the
644 * In the 256k log case, we will read from the beginning to the
645 * end of the log and search for cycle numbers equal to x-1.
646 * We don't worry about the x+1 blocks that we encounter,
647 * because we know that they cannot be the head since the log
650 head_blk
= log_bbnum
;
651 stop_on_cycle
= last_half_cycle
- 1;
654 * In this case we want to find the first block with cycle
655 * number matching last_half_cycle. We expect the log to be
657 * x + 1 ... | x ... | x
658 * The first block with cycle number x (last_half_cycle) will
659 * be where the new head belongs. First we do a binary search
660 * for the first occurrence of last_half_cycle. The binary
661 * search may not be totally accurate, so then we scan back
662 * from there looking for occurrences of last_half_cycle before
663 * us. If that backwards scan wraps around the beginning of
664 * the log, then we look for occurrences of last_half_cycle - 1
665 * at the end of the log. The cases we're looking for look
667 * v binary search stopped here
668 * x + 1 ... | x | x + 1 | x ... | x
669 * ^ but we want to locate this spot
671 * <---------> less than scan distance
672 * x + 1 ... | x ... | x - 1 | x
673 * ^ we want to locate this spot
675 stop_on_cycle
= last_half_cycle
;
676 if ((error
= xlog_find_cycle_start(log
, bp
, first_blk
,
677 &head_blk
, last_half_cycle
)))
682 * Now validate the answer. Scan back some number of maximum possible
683 * blocks and make sure each one has the expected cycle number. The
684 * maximum is determined by the total possible amount of buffering
685 * in the in-core log. The following number can be made tighter if
686 * we actually look at the block size of the filesystem.
688 num_scan_bblks
= XLOG_TOTAL_REC_SHIFT(log
);
689 if (head_blk
>= num_scan_bblks
) {
691 * We are guaranteed that the entire check can be performed
694 start_blk
= head_blk
- num_scan_bblks
;
695 if ((error
= xlog_find_verify_cycle(log
,
696 start_blk
, num_scan_bblks
,
697 stop_on_cycle
, &new_blk
)))
701 } else { /* need to read 2 parts of log */
703 * We are going to scan backwards in the log in two parts.
704 * First we scan the physical end of the log. In this part
705 * of the log, we are looking for blocks with cycle number
706 * last_half_cycle - 1.
707 * If we find one, then we know that the log starts there, as
708 * we've found a hole that didn't get written in going around
709 * the end of the physical log. The simple case for this is
710 * x + 1 ... | x ... | x - 1 | x
711 * <---------> less than scan distance
712 * If all of the blocks at the end of the log have cycle number
713 * last_half_cycle, then we check the blocks at the start of
714 * the log looking for occurrences of last_half_cycle. If we
715 * find one, then our current estimate for the location of the
716 * first occurrence of last_half_cycle is wrong and we move
717 * back to the hole we've found. This case looks like
718 * x + 1 ... | x | x + 1 | x ...
719 * ^ binary search stopped here
720 * Another case we need to handle that only occurs in 256k
722 * x + 1 ... | x ... | x+1 | x ...
723 * ^ binary search stops here
724 * In a 256k log, the scan at the end of the log will see the
725 * x + 1 blocks. We need to skip past those since that is
726 * certainly not the head of the log. By searching for
727 * last_half_cycle-1 we accomplish that.
729 ASSERT(head_blk
<= INT_MAX
&&
730 (xfs_daddr_t
) num_scan_bblks
>= head_blk
);
731 start_blk
= log_bbnum
- (num_scan_bblks
- head_blk
);
732 if ((error
= xlog_find_verify_cycle(log
, start_blk
,
733 num_scan_bblks
- (int)head_blk
,
734 (stop_on_cycle
- 1), &new_blk
)))
742 * Scan beginning of log now. The last part of the physical
743 * log is good. This scan needs to verify that it doesn't find
744 * the last_half_cycle.
747 ASSERT(head_blk
<= INT_MAX
);
748 if ((error
= xlog_find_verify_cycle(log
,
749 start_blk
, (int)head_blk
,
750 stop_on_cycle
, &new_blk
)))
758 * Now we need to make sure head_blk is not pointing to a block in
759 * the middle of a log record.
761 num_scan_bblks
= XLOG_REC_SHIFT(log
);
762 if (head_blk
>= num_scan_bblks
) {
763 start_blk
= head_blk
- num_scan_bblks
; /* don't read head_blk */
765 /* start ptr at last block ptr before head_blk */
766 if ((error
= xlog_find_verify_log_record(log
, start_blk
,
767 &head_blk
, 0)) == -1) {
768 error
= XFS_ERROR(EIO
);
774 ASSERT(head_blk
<= INT_MAX
);
775 if ((error
= xlog_find_verify_log_record(log
, start_blk
,
776 &head_blk
, 0)) == -1) {
777 /* We hit the beginning of the log during our search */
778 start_blk
= log_bbnum
- (num_scan_bblks
- head_blk
);
780 ASSERT(start_blk
<= INT_MAX
&&
781 (xfs_daddr_t
) log_bbnum
-start_blk
>= 0);
782 ASSERT(head_blk
<= INT_MAX
);
783 if ((error
= xlog_find_verify_log_record(log
,
785 (int)head_blk
)) == -1) {
786 error
= XFS_ERROR(EIO
);
790 if (new_blk
!= log_bbnum
)
797 if (head_blk
== log_bbnum
)
798 *return_head_blk
= 0;
800 *return_head_blk
= head_blk
;
802 * When returning here, we have a good block number. Bad block
803 * means that during a previous crash, we didn't have a clean break
804 * from cycle number N to cycle number N-1. In this case, we need
805 * to find the first block with cycle number N-1.
813 xlog_warn("XFS: failed to find log head");
818 * Find the sync block number or the tail of the log.
820 * This will be the block number of the last record to have its
821 * associated buffers synced to disk. Every log record header has
822 * a sync lsn embedded in it. LSNs hold block numbers, so it is easy
823 * to get a sync block number. The only concern is to figure out which
824 * log record header to believe.
826 * The following algorithm uses the log record header with the largest
827 * lsn. The entire log record does not need to be valid. We only care
828 * that the header is valid.
830 * We could speed up search by using current head_blk buffer, but it is not
836 xfs_daddr_t
*head_blk
,
837 xfs_daddr_t
*tail_blk
)
839 xlog_rec_header_t
*rhead
;
840 xlog_op_header_t
*op_head
;
841 xfs_caddr_t offset
= NULL
;
844 xfs_daddr_t umount_data_blk
;
845 xfs_daddr_t after_umount_blk
;
852 * Find previous log record
854 if ((error
= xlog_find_head(log
, head_blk
)))
857 bp
= xlog_get_bp(log
, 1);
860 if (*head_blk
== 0) { /* special case */
861 error
= xlog_bread(log
, 0, 1, bp
, &offset
);
865 if (xlog_get_cycle(offset
) == 0) {
867 /* leave all other log inited values alone */
873 * Search backwards looking for log record header block
875 ASSERT(*head_blk
< INT_MAX
);
876 for (i
= (int)(*head_blk
) - 1; i
>= 0; i
--) {
877 error
= xlog_bread(log
, i
, 1, bp
, &offset
);
881 if (XLOG_HEADER_MAGIC_NUM
== be32_to_cpu(*(__be32
*)offset
)) {
887 * If we haven't found the log record header block, start looking
888 * again from the end of the physical log. XXXmiken: There should be
889 * a check here to make sure we didn't search more than N blocks in
893 for (i
= log
->l_logBBsize
- 1; i
>= (int)(*head_blk
); i
--) {
894 error
= xlog_bread(log
, i
, 1, bp
, &offset
);
898 if (XLOG_HEADER_MAGIC_NUM
==
899 be32_to_cpu(*(__be32
*)offset
)) {
906 xlog_warn("XFS: xlog_find_tail: couldn't find sync record");
908 return XFS_ERROR(EIO
);
911 /* find blk_no of tail of log */
912 rhead
= (xlog_rec_header_t
*)offset
;
913 *tail_blk
= BLOCK_LSN(be64_to_cpu(rhead
->h_tail_lsn
));
916 * Reset log values according to the state of the log when we
917 * crashed. In the case where head_blk == 0, we bump curr_cycle
918 * one because the next write starts a new cycle rather than
919 * continuing the cycle of the last good log record. At this
920 * point we have guaranteed that all partial log records have been
921 * accounted for. Therefore, we know that the last good log record
922 * written was complete and ended exactly on the end boundary
923 * of the physical log.
925 log
->l_prev_block
= i
;
926 log
->l_curr_block
= (int)*head_blk
;
927 log
->l_curr_cycle
= be32_to_cpu(rhead
->h_cycle
);
930 log
->l_tail_lsn
= be64_to_cpu(rhead
->h_tail_lsn
);
931 log
->l_last_sync_lsn
= be64_to_cpu(rhead
->h_lsn
);
932 log
->l_grant_reserve_cycle
= log
->l_curr_cycle
;
933 log
->l_grant_reserve_bytes
= BBTOB(log
->l_curr_block
);
934 log
->l_grant_write_cycle
= log
->l_curr_cycle
;
935 log
->l_grant_write_bytes
= BBTOB(log
->l_curr_block
);
938 * Look for unmount record. If we find it, then we know there
939 * was a clean unmount. Since 'i' could be the last block in
940 * the physical log, we convert to a log block before comparing
943 * Save the current tail lsn to use to pass to
944 * xlog_clear_stale_blocks() below. We won't want to clear the
945 * unmount record if there is one, so we pass the lsn of the
946 * unmount record rather than the block after it.
948 if (xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
)) {
949 int h_size
= be32_to_cpu(rhead
->h_size
);
950 int h_version
= be32_to_cpu(rhead
->h_version
);
952 if ((h_version
& XLOG_VERSION_2
) &&
953 (h_size
> XLOG_HEADER_CYCLE_SIZE
)) {
954 hblks
= h_size
/ XLOG_HEADER_CYCLE_SIZE
;
955 if (h_size
% XLOG_HEADER_CYCLE_SIZE
)
963 after_umount_blk
= (i
+ hblks
+ (int)
964 BTOBB(be32_to_cpu(rhead
->h_len
))) % log
->l_logBBsize
;
965 tail_lsn
= log
->l_tail_lsn
;
966 if (*head_blk
== after_umount_blk
&&
967 be32_to_cpu(rhead
->h_num_logops
) == 1) {
968 umount_data_blk
= (i
+ hblks
) % log
->l_logBBsize
;
969 error
= xlog_bread(log
, umount_data_blk
, 1, bp
, &offset
);
973 op_head
= (xlog_op_header_t
*)offset
;
974 if (op_head
->oh_flags
& XLOG_UNMOUNT_TRANS
) {
976 * Set tail and last sync so that newly written
977 * log records will point recovery to after the
978 * current unmount record.
981 xlog_assign_lsn(log
->l_curr_cycle
,
983 log
->l_last_sync_lsn
=
984 xlog_assign_lsn(log
->l_curr_cycle
,
986 *tail_blk
= after_umount_blk
;
989 * Note that the unmount was clean. If the unmount
990 * was not clean, we need to know this to rebuild the
991 * superblock counters from the perag headers if we
992 * have a filesystem using non-persistent counters.
994 log
->l_mp
->m_flags
|= XFS_MOUNT_WAS_CLEAN
;
999 * Make sure that there are no blocks in front of the head
1000 * with the same cycle number as the head. This can happen
1001 * because we allow multiple outstanding log writes concurrently,
1002 * and the later writes might make it out before earlier ones.
1004 * We use the lsn from before modifying it so that we'll never
1005 * overwrite the unmount record after a clean unmount.
1007 * Do this only if we are going to recover the filesystem
1009 * NOTE: This used to say "if (!readonly)"
1010 * However on Linux, we can & do recover a read-only filesystem.
1011 * We only skip recovery if NORECOVERY is specified on mount,
1012 * in which case we would not be here.
1014 * But... if the -device- itself is readonly, just skip this.
1015 * We can't recover this device anyway, so it won't matter.
1017 if (!xfs_readonly_buftarg(log
->l_mp
->m_logdev_targp
))
1018 error
= xlog_clear_stale_blocks(log
, tail_lsn
);
1024 xlog_warn("XFS: failed to locate log tail");
1029 * Is the log zeroed at all?
1031 * The last binary search should be changed to perform an X block read
1032 * once X becomes small enough. You can then search linearly through
1033 * the X blocks. This will cut down on the number of reads we need to do.
1035 * If the log is partially zeroed, this routine will pass back the blkno
1036 * of the first block with cycle number 0. It won't have a complete LR
1040 * 0 => the log is completely written to
1041 * -1 => use *blk_no as the first block of the log
1042 * >0 => error has occurred
1047 xfs_daddr_t
*blk_no
)
1051 uint first_cycle
, last_cycle
;
1052 xfs_daddr_t new_blk
, last_blk
, start_blk
;
1053 xfs_daddr_t num_scan_bblks
;
1054 int error
, log_bbnum
= log
->l_logBBsize
;
1058 /* check totally zeroed log */
1059 bp
= xlog_get_bp(log
, 1);
1062 error
= xlog_bread(log
, 0, 1, bp
, &offset
);
1066 first_cycle
= xlog_get_cycle(offset
);
1067 if (first_cycle
== 0) { /* completely zeroed log */
1073 /* check partially zeroed log */
1074 error
= xlog_bread(log
, log_bbnum
-1, 1, bp
, &offset
);
1078 last_cycle
= xlog_get_cycle(offset
);
1079 if (last_cycle
!= 0) { /* log completely written to */
1082 } else if (first_cycle
!= 1) {
1084 * If the cycle of the last block is zero, the cycle of
1085 * the first block must be 1. If it's not, maybe we're
1086 * not looking at a log... Bail out.
1088 xlog_warn("XFS: Log inconsistent or not a log (last==0, first!=1)");
1089 return XFS_ERROR(EINVAL
);
1092 /* we have a partially zeroed log */
1093 last_blk
= log_bbnum
-1;
1094 if ((error
= xlog_find_cycle_start(log
, bp
, 0, &last_blk
, 0)))
1098 * Validate the answer. Because there is no way to guarantee that
1099 * the entire log is made up of log records which are the same size,
1100 * we scan over the defined maximum blocks. At this point, the maximum
1101 * is not chosen to mean anything special. XXXmiken
1103 num_scan_bblks
= XLOG_TOTAL_REC_SHIFT(log
);
1104 ASSERT(num_scan_bblks
<= INT_MAX
);
1106 if (last_blk
< num_scan_bblks
)
1107 num_scan_bblks
= last_blk
;
1108 start_blk
= last_blk
- num_scan_bblks
;
1111 * We search for any instances of cycle number 0 that occur before
1112 * our current estimate of the head. What we're trying to detect is
1113 * 1 ... | 0 | 1 | 0...
1114 * ^ binary search ends here
1116 if ((error
= xlog_find_verify_cycle(log
, start_blk
,
1117 (int)num_scan_bblks
, 0, &new_blk
)))
1123 * Potentially backup over partial log record write. We don't need
1124 * to search the end of the log because we know it is zero.
1126 if ((error
= xlog_find_verify_log_record(log
, start_blk
,
1127 &last_blk
, 0)) == -1) {
1128 error
= XFS_ERROR(EIO
);
1142 * These are simple subroutines used by xlog_clear_stale_blocks() below
1143 * to initialize a buffer full of empty log record headers and write
1144 * them into the log.
1155 xlog_rec_header_t
*recp
= (xlog_rec_header_t
*)buf
;
1157 memset(buf
, 0, BBSIZE
);
1158 recp
->h_magicno
= cpu_to_be32(XLOG_HEADER_MAGIC_NUM
);
1159 recp
->h_cycle
= cpu_to_be32(cycle
);
1160 recp
->h_version
= cpu_to_be32(
1161 xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
) ? 2 : 1);
1162 recp
->h_lsn
= cpu_to_be64(xlog_assign_lsn(cycle
, block
));
1163 recp
->h_tail_lsn
= cpu_to_be64(xlog_assign_lsn(tail_cycle
, tail_block
));
1164 recp
->h_fmt
= cpu_to_be32(XLOG_FMT
);
1165 memcpy(&recp
->h_fs_uuid
, &log
->l_mp
->m_sb
.sb_uuid
, sizeof(uuid_t
));
1169 xlog_write_log_records(
1180 int sectbb
= log
->l_sectBBsize
;
1181 int end_block
= start_block
+ blocks
;
1187 * Greedily allocate a buffer big enough to handle the full
1188 * range of basic blocks to be written. If that fails, try
1189 * a smaller size. We need to be able to write at least a
1190 * log sector, or we're out of luck.
1192 bufblks
= 1 << ffs(blocks
);
1193 while (!(bp
= xlog_get_bp(log
, bufblks
))) {
1195 if (bufblks
< sectbb
)
1199 /* We may need to do a read at the start to fill in part of
1200 * the buffer in the starting sector not covered by the first
1203 balign
= round_down(start_block
, sectbb
);
1204 if (balign
!= start_block
) {
1205 error
= xlog_bread_noalign(log
, start_block
, 1, bp
);
1209 j
= start_block
- balign
;
1212 for (i
= start_block
; i
< end_block
; i
+= bufblks
) {
1213 int bcount
, endcount
;
1215 bcount
= min(bufblks
, end_block
- start_block
);
1216 endcount
= bcount
- j
;
1218 /* We may need to do a read at the end to fill in part of
1219 * the buffer in the final sector not covered by the write.
1220 * If this is the same sector as the above read, skip it.
1222 ealign
= round_down(end_block
, sectbb
);
1223 if (j
== 0 && (start_block
+ endcount
> ealign
)) {
1224 offset
= XFS_BUF_PTR(bp
);
1225 balign
= BBTOB(ealign
- start_block
);
1226 error
= XFS_BUF_SET_PTR(bp
, offset
+ balign
,
1231 error
= xlog_bread_noalign(log
, ealign
, sectbb
, bp
);
1235 error
= XFS_BUF_SET_PTR(bp
, offset
, bufblks
);
1240 offset
= xlog_align(log
, start_block
, endcount
, bp
);
1241 for (; j
< endcount
; j
++) {
1242 xlog_add_record(log
, offset
, cycle
, i
+j
,
1243 tail_cycle
, tail_block
);
1246 error
= xlog_bwrite(log
, start_block
, endcount
, bp
);
1249 start_block
+= endcount
;
1259 * This routine is called to blow away any incomplete log writes out
1260 * in front of the log head. We do this so that we won't become confused
1261 * if we come up, write only a little bit more, and then crash again.
1262 * If we leave the partial log records out there, this situation could
1263 * cause us to think those partial writes are valid blocks since they
1264 * have the current cycle number. We get rid of them by overwriting them
1265 * with empty log records with the old cycle number rather than the
1268 * The tail lsn is passed in rather than taken from
1269 * the log so that we will not write over the unmount record after a
1270 * clean unmount in a 512 block log. Doing so would leave the log without
1271 * any valid log records in it until a new one was written. If we crashed
1272 * during that time we would not be able to recover.
1275 xlog_clear_stale_blocks(
1279 int tail_cycle
, head_cycle
;
1280 int tail_block
, head_block
;
1281 int tail_distance
, max_distance
;
1285 tail_cycle
= CYCLE_LSN(tail_lsn
);
1286 tail_block
= BLOCK_LSN(tail_lsn
);
1287 head_cycle
= log
->l_curr_cycle
;
1288 head_block
= log
->l_curr_block
;
1291 * Figure out the distance between the new head of the log
1292 * and the tail. We want to write over any blocks beyond the
1293 * head that we may have written just before the crash, but
1294 * we don't want to overwrite the tail of the log.
1296 if (head_cycle
== tail_cycle
) {
1298 * The tail is behind the head in the physical log,
1299 * so the distance from the head to the tail is the
1300 * distance from the head to the end of the log plus
1301 * the distance from the beginning of the log to the
1304 if (unlikely(head_block
< tail_block
|| head_block
>= log
->l_logBBsize
)) {
1305 XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
1306 XFS_ERRLEVEL_LOW
, log
->l_mp
);
1307 return XFS_ERROR(EFSCORRUPTED
);
1309 tail_distance
= tail_block
+ (log
->l_logBBsize
- head_block
);
1312 * The head is behind the tail in the physical log,
1313 * so the distance from the head to the tail is just
1314 * the tail block minus the head block.
1316 if (unlikely(head_block
>= tail_block
|| head_cycle
!= (tail_cycle
+ 1))){
1317 XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
1318 XFS_ERRLEVEL_LOW
, log
->l_mp
);
1319 return XFS_ERROR(EFSCORRUPTED
);
1321 tail_distance
= tail_block
- head_block
;
1325 * If the head is right up against the tail, we can't clear
1328 if (tail_distance
<= 0) {
1329 ASSERT(tail_distance
== 0);
1333 max_distance
= XLOG_TOTAL_REC_SHIFT(log
);
1335 * Take the smaller of the maximum amount of outstanding I/O
1336 * we could have and the distance to the tail to clear out.
1337 * We take the smaller so that we don't overwrite the tail and
1338 * we don't waste all day writing from the head to the tail
1341 max_distance
= MIN(max_distance
, tail_distance
);
1343 if ((head_block
+ max_distance
) <= log
->l_logBBsize
) {
1345 * We can stomp all the blocks we need to without
1346 * wrapping around the end of the log. Just do it
1347 * in a single write. Use the cycle number of the
1348 * current cycle minus one so that the log will look like:
1351 error
= xlog_write_log_records(log
, (head_cycle
- 1),
1352 head_block
, max_distance
, tail_cycle
,
1358 * We need to wrap around the end of the physical log in
1359 * order to clear all the blocks. Do it in two separate
1360 * I/Os. The first write should be from the head to the
1361 * end of the physical log, and it should use the current
1362 * cycle number minus one just like above.
1364 distance
= log
->l_logBBsize
- head_block
;
1365 error
= xlog_write_log_records(log
, (head_cycle
- 1),
1366 head_block
, distance
, tail_cycle
,
1373 * Now write the blocks at the start of the physical log.
1374 * This writes the remainder of the blocks we want to clear.
1375 * It uses the current cycle number since we're now on the
1376 * same cycle as the head so that we get:
1377 * n ... n ... | n - 1 ...
1378 * ^^^^^ blocks we're writing
1380 distance
= max_distance
- (log
->l_logBBsize
- head_block
);
1381 error
= xlog_write_log_records(log
, head_cycle
, 0, distance
,
1382 tail_cycle
, tail_block
);
1390 /******************************************************************************
1392 * Log recover routines
1394 ******************************************************************************
1397 STATIC xlog_recover_t
*
1398 xlog_recover_find_tid(
1399 struct hlist_head
*head
,
1402 xlog_recover_t
*trans
;
1403 struct hlist_node
*n
;
1405 hlist_for_each_entry(trans
, n
, head
, r_list
) {
1406 if (trans
->r_log_tid
== tid
)
1413 xlog_recover_new_tid(
1414 struct hlist_head
*head
,
1418 xlog_recover_t
*trans
;
1420 trans
= kmem_zalloc(sizeof(xlog_recover_t
), KM_SLEEP
);
1421 trans
->r_log_tid
= tid
;
1423 INIT_LIST_HEAD(&trans
->r_itemq
);
1425 INIT_HLIST_NODE(&trans
->r_list
);
1426 hlist_add_head(&trans
->r_list
, head
);
1430 xlog_recover_add_item(
1431 struct list_head
*head
)
1433 xlog_recover_item_t
*item
;
1435 item
= kmem_zalloc(sizeof(xlog_recover_item_t
), KM_SLEEP
);
1436 INIT_LIST_HEAD(&item
->ri_list
);
1437 list_add_tail(&item
->ri_list
, head
);
1441 xlog_recover_add_to_cont_trans(
1443 xlog_recover_t
*trans
,
1447 xlog_recover_item_t
*item
;
1448 xfs_caddr_t ptr
, old_ptr
;
1451 if (list_empty(&trans
->r_itemq
)) {
1452 /* finish copying rest of trans header */
1453 xlog_recover_add_item(&trans
->r_itemq
);
1454 ptr
= (xfs_caddr_t
) &trans
->r_theader
+
1455 sizeof(xfs_trans_header_t
) - len
;
1456 memcpy(ptr
, dp
, len
); /* d, s, l */
1459 /* take the tail entry */
1460 item
= list_entry(trans
->r_itemq
.prev
, xlog_recover_item_t
, ri_list
);
1462 old_ptr
= item
->ri_buf
[item
->ri_cnt
-1].i_addr
;
1463 old_len
= item
->ri_buf
[item
->ri_cnt
-1].i_len
;
1465 ptr
= kmem_realloc(old_ptr
, len
+old_len
, old_len
, 0u);
1466 memcpy(&ptr
[old_len
], dp
, len
); /* d, s, l */
1467 item
->ri_buf
[item
->ri_cnt
-1].i_len
+= len
;
1468 item
->ri_buf
[item
->ri_cnt
-1].i_addr
= ptr
;
1469 trace_xfs_log_recover_item_add_cont(log
, trans
, item
, 0);
1474 * The next region to add is the start of a new region. It could be
1475 * a whole region or it could be the first part of a new region. Because
1476 * of this, the assumption here is that the type and size fields of all
1477 * format structures fit into the first 32 bits of the structure.
1479 * This works because all regions must be 32 bit aligned. Therefore, we
1480 * either have both fields or we have neither field. In the case we have
1481 * neither field, the data part of the region is zero length. We only have
1482 * a log_op_header and can throw away the header since a new one will appear
1483 * later. If we have at least 4 bytes, then we can determine how many regions
1484 * will appear in the current log item.
1487 xlog_recover_add_to_trans(
1489 xlog_recover_t
*trans
,
1493 xfs_inode_log_format_t
*in_f
; /* any will do */
1494 xlog_recover_item_t
*item
;
1499 if (list_empty(&trans
->r_itemq
)) {
1500 /* we need to catch log corruptions here */
1501 if (*(uint
*)dp
!= XFS_TRANS_HEADER_MAGIC
) {
1502 xlog_warn("XFS: xlog_recover_add_to_trans: "
1503 "bad header magic number");
1505 return XFS_ERROR(EIO
);
1507 if (len
== sizeof(xfs_trans_header_t
))
1508 xlog_recover_add_item(&trans
->r_itemq
);
1509 memcpy(&trans
->r_theader
, dp
, len
); /* d, s, l */
1513 ptr
= kmem_alloc(len
, KM_SLEEP
);
1514 memcpy(ptr
, dp
, len
);
1515 in_f
= (xfs_inode_log_format_t
*)ptr
;
1517 /* take the tail entry */
1518 item
= list_entry(trans
->r_itemq
.prev
, xlog_recover_item_t
, ri_list
);
1519 if (item
->ri_total
!= 0 &&
1520 item
->ri_total
== item
->ri_cnt
) {
1521 /* tail item is in use, get a new one */
1522 xlog_recover_add_item(&trans
->r_itemq
);
1523 item
= list_entry(trans
->r_itemq
.prev
,
1524 xlog_recover_item_t
, ri_list
);
1527 if (item
->ri_total
== 0) { /* first region to be added */
1528 if (in_f
->ilf_size
== 0 ||
1529 in_f
->ilf_size
> XLOG_MAX_REGIONS_IN_ITEM
) {
1531 "XFS: bad number of regions (%d) in inode log format",
1534 return XFS_ERROR(EIO
);
1537 item
->ri_total
= in_f
->ilf_size
;
1539 kmem_zalloc(item
->ri_total
* sizeof(xfs_log_iovec_t
),
1542 ASSERT(item
->ri_total
> item
->ri_cnt
);
1543 /* Description region is ri_buf[0] */
1544 item
->ri_buf
[item
->ri_cnt
].i_addr
= ptr
;
1545 item
->ri_buf
[item
->ri_cnt
].i_len
= len
;
1547 trace_xfs_log_recover_item_add(log
, trans
, item
, 0);
1552 * Sort the log items in the transaction. Cancelled buffers need
1553 * to be put first so they are processed before any items that might
1554 * modify the buffers. If they are cancelled, then the modifications
1555 * don't need to be replayed.
1558 xlog_recover_reorder_trans(
1560 xlog_recover_t
*trans
,
1563 xlog_recover_item_t
*item
, *n
;
1564 LIST_HEAD(sort_list
);
1566 list_splice_init(&trans
->r_itemq
, &sort_list
);
1567 list_for_each_entry_safe(item
, n
, &sort_list
, ri_list
) {
1568 xfs_buf_log_format_t
*buf_f
;
1570 buf_f
= (xfs_buf_log_format_t
*)item
->ri_buf
[0].i_addr
;
1572 switch (ITEM_TYPE(item
)) {
1574 if (!(buf_f
->blf_flags
& XFS_BLF_CANCEL
)) {
1575 trace_xfs_log_recover_item_reorder_head(log
,
1577 list_move(&item
->ri_list
, &trans
->r_itemq
);
1582 case XFS_LI_QUOTAOFF
:
1585 trace_xfs_log_recover_item_reorder_tail(log
,
1587 list_move_tail(&item
->ri_list
, &trans
->r_itemq
);
1591 "XFS: xlog_recover_reorder_trans: unrecognized type of log operation");
1593 return XFS_ERROR(EIO
);
1596 ASSERT(list_empty(&sort_list
));
1601 * Build up the table of buf cancel records so that we don't replay
1602 * cancelled data in the second pass. For buffer records that are
1603 * not cancel records, there is nothing to do here so we just return.
1605 * If we get a cancel record which is already in the table, this indicates
1606 * that the buffer was cancelled multiple times. In order to ensure
1607 * that during pass 2 we keep the record in the table until we reach its
1608 * last occurrence in the log, we keep a reference count in the cancel
1609 * record in the table to tell us how many times we expect to see this
1610 * record during the second pass.
1613 xlog_recover_do_buffer_pass1(
1615 xfs_buf_log_format_t
*buf_f
)
1617 xfs_buf_cancel_t
*bcp
;
1618 xfs_buf_cancel_t
*nextp
;
1619 xfs_buf_cancel_t
*prevp
;
1620 xfs_buf_cancel_t
**bucket
;
1621 xfs_daddr_t blkno
= 0;
1625 switch (buf_f
->blf_type
) {
1627 blkno
= buf_f
->blf_blkno
;
1628 len
= buf_f
->blf_len
;
1629 flags
= buf_f
->blf_flags
;
1634 * If this isn't a cancel buffer item, then just return.
1636 if (!(flags
& XFS_BLF_CANCEL
)) {
1637 trace_xfs_log_recover_buf_not_cancel(log
, buf_f
);
1642 * Insert an xfs_buf_cancel record into the hash table of
1643 * them. If there is already an identical record, bump
1644 * its reference count.
1646 bucket
= &log
->l_buf_cancel_table
[(__uint64_t
)blkno
%
1647 XLOG_BC_TABLE_SIZE
];
1649 * If the hash bucket is empty then just insert a new record into
1652 if (*bucket
== NULL
) {
1653 bcp
= (xfs_buf_cancel_t
*)kmem_alloc(sizeof(xfs_buf_cancel_t
),
1655 bcp
->bc_blkno
= blkno
;
1657 bcp
->bc_refcount
= 1;
1658 bcp
->bc_next
= NULL
;
1664 * The hash bucket is not empty, so search for duplicates of our
1665 * record. If we find one them just bump its refcount. If not
1666 * then add us at the end of the list.
1670 while (nextp
!= NULL
) {
1671 if (nextp
->bc_blkno
== blkno
&& nextp
->bc_len
== len
) {
1672 nextp
->bc_refcount
++;
1673 trace_xfs_log_recover_buf_cancel_ref_inc(log
, buf_f
);
1677 nextp
= nextp
->bc_next
;
1679 ASSERT(prevp
!= NULL
);
1680 bcp
= (xfs_buf_cancel_t
*)kmem_alloc(sizeof(xfs_buf_cancel_t
),
1682 bcp
->bc_blkno
= blkno
;
1684 bcp
->bc_refcount
= 1;
1685 bcp
->bc_next
= NULL
;
1686 prevp
->bc_next
= bcp
;
1687 trace_xfs_log_recover_buf_cancel_add(log
, buf_f
);
1691 * Check to see whether the buffer being recovered has a corresponding
1692 * entry in the buffer cancel record table. If it does then return 1
1693 * so that it will be cancelled, otherwise return 0. If the buffer is
1694 * actually a buffer cancel item (XFS_BLF_CANCEL is set), then decrement
1695 * the refcount on the entry in the table and remove it from the table
1696 * if this is the last reference.
1698 * We remove the cancel record from the table when we encounter its
1699 * last occurrence in the log so that if the same buffer is re-used
1700 * again after its last cancellation we actually replay the changes
1701 * made at that point.
1704 xlog_check_buffer_cancelled(
1710 xfs_buf_cancel_t
*bcp
;
1711 xfs_buf_cancel_t
*prevp
;
1712 xfs_buf_cancel_t
**bucket
;
1714 if (log
->l_buf_cancel_table
== NULL
) {
1716 * There is nothing in the table built in pass one,
1717 * so this buffer must not be cancelled.
1719 ASSERT(!(flags
& XFS_BLF_CANCEL
));
1723 bucket
= &log
->l_buf_cancel_table
[(__uint64_t
)blkno
%
1724 XLOG_BC_TABLE_SIZE
];
1728 * There is no corresponding entry in the table built
1729 * in pass one, so this buffer has not been cancelled.
1731 ASSERT(!(flags
& XFS_BLF_CANCEL
));
1736 * Search for an entry in the buffer cancel table that
1737 * matches our buffer.
1740 while (bcp
!= NULL
) {
1741 if (bcp
->bc_blkno
== blkno
&& bcp
->bc_len
== len
) {
1743 * We've go a match, so return 1 so that the
1744 * recovery of this buffer is cancelled.
1745 * If this buffer is actually a buffer cancel
1746 * log item, then decrement the refcount on the
1747 * one in the table and remove it if this is the
1750 if (flags
& XFS_BLF_CANCEL
) {
1752 if (bcp
->bc_refcount
== 0) {
1753 if (prevp
== NULL
) {
1754 *bucket
= bcp
->bc_next
;
1756 prevp
->bc_next
= bcp
->bc_next
;
1767 * We didn't find a corresponding entry in the table, so
1768 * return 0 so that the buffer is NOT cancelled.
1770 ASSERT(!(flags
& XFS_BLF_CANCEL
));
1775 xlog_recover_do_buffer_pass2(
1777 xfs_buf_log_format_t
*buf_f
)
1779 xfs_daddr_t blkno
= 0;
1783 switch (buf_f
->blf_type
) {
1785 blkno
= buf_f
->blf_blkno
;
1786 flags
= buf_f
->blf_flags
;
1787 len
= buf_f
->blf_len
;
1791 return xlog_check_buffer_cancelled(log
, blkno
, len
, flags
);
1795 * Perform recovery for a buffer full of inodes. In these buffers,
1796 * the only data which should be recovered is that which corresponds
1797 * to the di_next_unlinked pointers in the on disk inode structures.
1798 * The rest of the data for the inodes is always logged through the
1799 * inodes themselves rather than the inode buffer and is recovered
1800 * in xlog_recover_do_inode_trans().
1802 * The only time when buffers full of inodes are fully recovered is
1803 * when the buffer is full of newly allocated inodes. In this case
1804 * the buffer will not be marked as an inode buffer and so will be
1805 * sent to xlog_recover_do_reg_buffer() below during recovery.
1808 xlog_recover_do_inode_buffer(
1810 xlog_recover_item_t
*item
,
1812 xfs_buf_log_format_t
*buf_f
)
1820 int next_unlinked_offset
;
1822 xfs_agino_t
*logged_nextp
;
1823 xfs_agino_t
*buffer_nextp
;
1824 unsigned int *data_map
= NULL
;
1825 unsigned int map_size
= 0;
1827 trace_xfs_log_recover_buf_inode_buf(mp
->m_log
, buf_f
);
1829 switch (buf_f
->blf_type
) {
1831 data_map
= buf_f
->blf_data_map
;
1832 map_size
= buf_f
->blf_map_size
;
1836 * Set the variables corresponding to the current region to
1837 * 0 so that we'll initialize them on the first pass through
1845 inodes_per_buf
= XFS_BUF_COUNT(bp
) >> mp
->m_sb
.sb_inodelog
;
1846 for (i
= 0; i
< inodes_per_buf
; i
++) {
1847 next_unlinked_offset
= (i
* mp
->m_sb
.sb_inodesize
) +
1848 offsetof(xfs_dinode_t
, di_next_unlinked
);
1850 while (next_unlinked_offset
>=
1851 (reg_buf_offset
+ reg_buf_bytes
)) {
1853 * The next di_next_unlinked field is beyond
1854 * the current logged region. Find the next
1855 * logged region that contains or is beyond
1856 * the current di_next_unlinked field.
1859 bit
= xfs_next_bit(data_map
, map_size
, bit
);
1862 * If there are no more logged regions in the
1863 * buffer, then we're done.
1869 nbits
= xfs_contig_bits(data_map
, map_size
,
1872 reg_buf_offset
= bit
<< XFS_BLF_SHIFT
;
1873 reg_buf_bytes
= nbits
<< XFS_BLF_SHIFT
;
1878 * If the current logged region starts after the current
1879 * di_next_unlinked field, then move on to the next
1880 * di_next_unlinked field.
1882 if (next_unlinked_offset
< reg_buf_offset
) {
1886 ASSERT(item
->ri_buf
[item_index
].i_addr
!= NULL
);
1887 ASSERT((item
->ri_buf
[item_index
].i_len
% XFS_BLF_CHUNK
) == 0);
1888 ASSERT((reg_buf_offset
+ reg_buf_bytes
) <= XFS_BUF_COUNT(bp
));
1891 * The current logged region contains a copy of the
1892 * current di_next_unlinked field. Extract its value
1893 * and copy it to the buffer copy.
1895 logged_nextp
= (xfs_agino_t
*)
1896 ((char *)(item
->ri_buf
[item_index
].i_addr
) +
1897 (next_unlinked_offset
- reg_buf_offset
));
1898 if (unlikely(*logged_nextp
== 0)) {
1899 xfs_fs_cmn_err(CE_ALERT
, mp
,
1900 "bad inode buffer log record (ptr = 0x%p, bp = 0x%p). XFS trying to replay bad (0) inode di_next_unlinked field",
1902 XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
1903 XFS_ERRLEVEL_LOW
, mp
);
1904 return XFS_ERROR(EFSCORRUPTED
);
1907 buffer_nextp
= (xfs_agino_t
*)xfs_buf_offset(bp
,
1908 next_unlinked_offset
);
1909 *buffer_nextp
= *logged_nextp
;
1916 * Perform a 'normal' buffer recovery. Each logged region of the
1917 * buffer should be copied over the corresponding region in the
1918 * given buffer. The bitmap in the buf log format structure indicates
1919 * where to place the logged data.
1923 xlog_recover_do_reg_buffer(
1924 struct xfs_mount
*mp
,
1925 xlog_recover_item_t
*item
,
1927 xfs_buf_log_format_t
*buf_f
)
1932 unsigned int *data_map
= NULL
;
1933 unsigned int map_size
= 0;
1936 trace_xfs_log_recover_buf_reg_buf(mp
->m_log
, buf_f
);
1938 switch (buf_f
->blf_type
) {
1940 data_map
= buf_f
->blf_data_map
;
1941 map_size
= buf_f
->blf_map_size
;
1945 i
= 1; /* 0 is the buf format structure */
1947 bit
= xfs_next_bit(data_map
, map_size
, bit
);
1950 nbits
= xfs_contig_bits(data_map
, map_size
, bit
);
1952 ASSERT(item
->ri_buf
[i
].i_addr
!= NULL
);
1953 ASSERT(item
->ri_buf
[i
].i_len
% XFS_BLF_CHUNK
== 0);
1954 ASSERT(XFS_BUF_COUNT(bp
) >=
1955 ((uint
)bit
<< XFS_BLF_SHIFT
)+(nbits
<<XFS_BLF_SHIFT
));
1958 * Do a sanity check if this is a dquot buffer. Just checking
1959 * the first dquot in the buffer should do. XXXThis is
1960 * probably a good thing to do for other buf types also.
1963 if (buf_f
->blf_flags
&
1964 (XFS_BLF_UDQUOT_BUF
|XFS_BLF_PDQUOT_BUF
|XFS_BLF_GDQUOT_BUF
)) {
1965 if (item
->ri_buf
[i
].i_addr
== NULL
) {
1967 "XFS: NULL dquot in %s.", __func__
);
1970 if (item
->ri_buf
[i
].i_len
< sizeof(xfs_disk_dquot_t
)) {
1972 "XFS: dquot too small (%d) in %s.",
1973 item
->ri_buf
[i
].i_len
, __func__
);
1976 error
= xfs_qm_dqcheck((xfs_disk_dquot_t
*)
1977 item
->ri_buf
[i
].i_addr
,
1978 -1, 0, XFS_QMOPT_DOWARN
,
1979 "dquot_buf_recover");
1984 memcpy(xfs_buf_offset(bp
,
1985 (uint
)bit
<< XFS_BLF_SHIFT
), /* dest */
1986 item
->ri_buf
[i
].i_addr
, /* source */
1987 nbits
<<XFS_BLF_SHIFT
); /* length */
1993 /* Shouldn't be any more regions */
1994 ASSERT(i
== item
->ri_total
);
1998 * Do some primitive error checking on ondisk dquot data structures.
2002 xfs_disk_dquot_t
*ddq
,
2004 uint type
, /* used only when IO_dorepair is true */
2008 xfs_dqblk_t
*d
= (xfs_dqblk_t
*)ddq
;
2012 * We can encounter an uninitialized dquot buffer for 2 reasons:
2013 * 1. If we crash while deleting the quotainode(s), and those blks got
2014 * used for user data. This is because we take the path of regular
2015 * file deletion; however, the size field of quotainodes is never
2016 * updated, so all the tricks that we play in itruncate_finish
2017 * don't quite matter.
2019 * 2. We don't play the quota buffers when there's a quotaoff logitem.
2020 * But the allocation will be replayed so we'll end up with an
2021 * uninitialized quota block.
2023 * This is all fine; things are still consistent, and we haven't lost
2024 * any quota information. Just don't complain about bad dquot blks.
2026 if (be16_to_cpu(ddq
->d_magic
) != XFS_DQUOT_MAGIC
) {
2027 if (flags
& XFS_QMOPT_DOWARN
)
2029 "%s : XFS dquot ID 0x%x, magic 0x%x != 0x%x",
2030 str
, id
, be16_to_cpu(ddq
->d_magic
), XFS_DQUOT_MAGIC
);
2033 if (ddq
->d_version
!= XFS_DQUOT_VERSION
) {
2034 if (flags
& XFS_QMOPT_DOWARN
)
2036 "%s : XFS dquot ID 0x%x, version 0x%x != 0x%x",
2037 str
, id
, ddq
->d_version
, XFS_DQUOT_VERSION
);
2041 if (ddq
->d_flags
!= XFS_DQ_USER
&&
2042 ddq
->d_flags
!= XFS_DQ_PROJ
&&
2043 ddq
->d_flags
!= XFS_DQ_GROUP
) {
2044 if (flags
& XFS_QMOPT_DOWARN
)
2046 "%s : XFS dquot ID 0x%x, unknown flags 0x%x",
2047 str
, id
, ddq
->d_flags
);
2051 if (id
!= -1 && id
!= be32_to_cpu(ddq
->d_id
)) {
2052 if (flags
& XFS_QMOPT_DOWARN
)
2054 "%s : ondisk-dquot 0x%p, ID mismatch: "
2055 "0x%x expected, found id 0x%x",
2056 str
, ddq
, id
, be32_to_cpu(ddq
->d_id
));
2060 if (!errs
&& ddq
->d_id
) {
2061 if (ddq
->d_blk_softlimit
&&
2062 be64_to_cpu(ddq
->d_bcount
) >=
2063 be64_to_cpu(ddq
->d_blk_softlimit
)) {
2064 if (!ddq
->d_btimer
) {
2065 if (flags
& XFS_QMOPT_DOWARN
)
2067 "%s : Dquot ID 0x%x (0x%p) "
2068 "BLK TIMER NOT STARTED",
2069 str
, (int)be32_to_cpu(ddq
->d_id
), ddq
);
2073 if (ddq
->d_ino_softlimit
&&
2074 be64_to_cpu(ddq
->d_icount
) >=
2075 be64_to_cpu(ddq
->d_ino_softlimit
)) {
2076 if (!ddq
->d_itimer
) {
2077 if (flags
& XFS_QMOPT_DOWARN
)
2079 "%s : Dquot ID 0x%x (0x%p) "
2080 "INODE TIMER NOT STARTED",
2081 str
, (int)be32_to_cpu(ddq
->d_id
), ddq
);
2085 if (ddq
->d_rtb_softlimit
&&
2086 be64_to_cpu(ddq
->d_rtbcount
) >=
2087 be64_to_cpu(ddq
->d_rtb_softlimit
)) {
2088 if (!ddq
->d_rtbtimer
) {
2089 if (flags
& XFS_QMOPT_DOWARN
)
2091 "%s : Dquot ID 0x%x (0x%p) "
2092 "RTBLK TIMER NOT STARTED",
2093 str
, (int)be32_to_cpu(ddq
->d_id
), ddq
);
2099 if (!errs
|| !(flags
& XFS_QMOPT_DQREPAIR
))
2102 if (flags
& XFS_QMOPT_DOWARN
)
2103 cmn_err(CE_NOTE
, "Re-initializing dquot ID 0x%x", id
);
2106 * Typically, a repair is only requested by quotacheck.
2109 ASSERT(flags
& XFS_QMOPT_DQREPAIR
);
2110 memset(d
, 0, sizeof(xfs_dqblk_t
));
2112 d
->dd_diskdq
.d_magic
= cpu_to_be16(XFS_DQUOT_MAGIC
);
2113 d
->dd_diskdq
.d_version
= XFS_DQUOT_VERSION
;
2114 d
->dd_diskdq
.d_flags
= type
;
2115 d
->dd_diskdq
.d_id
= cpu_to_be32(id
);
2121 * Perform a dquot buffer recovery.
2122 * Simple algorithm: if we have found a QUOTAOFF logitem of the same type
2123 * (ie. USR or GRP), then just toss this buffer away; don't recover it.
2124 * Else, treat it as a regular buffer and do recovery.
2127 xlog_recover_do_dquot_buffer(
2130 xlog_recover_item_t
*item
,
2132 xfs_buf_log_format_t
*buf_f
)
2136 trace_xfs_log_recover_buf_dquot_buf(log
, buf_f
);
2139 * Filesystems are required to send in quota flags at mount time.
2141 if (mp
->m_qflags
== 0) {
2146 if (buf_f
->blf_flags
& XFS_BLF_UDQUOT_BUF
)
2147 type
|= XFS_DQ_USER
;
2148 if (buf_f
->blf_flags
& XFS_BLF_PDQUOT_BUF
)
2149 type
|= XFS_DQ_PROJ
;
2150 if (buf_f
->blf_flags
& XFS_BLF_GDQUOT_BUF
)
2151 type
|= XFS_DQ_GROUP
;
2153 * This type of quotas was turned off, so ignore this buffer
2155 if (log
->l_quotaoffs_flag
& type
)
2158 xlog_recover_do_reg_buffer(mp
, item
, bp
, buf_f
);
2162 * This routine replays a modification made to a buffer at runtime.
2163 * There are actually two types of buffer, regular and inode, which
2164 * are handled differently. Inode buffers are handled differently
2165 * in that we only recover a specific set of data from them, namely
2166 * the inode di_next_unlinked fields. This is because all other inode
2167 * data is actually logged via inode records and any data we replay
2168 * here which overlaps that may be stale.
2170 * When meta-data buffers are freed at run time we log a buffer item
2171 * with the XFS_BLF_CANCEL bit set to indicate that previous copies
2172 * of the buffer in the log should not be replayed at recovery time.
2173 * This is so that if the blocks covered by the buffer are reused for
2174 * file data before we crash we don't end up replaying old, freed
2175 * meta-data into a user's file.
2177 * To handle the cancellation of buffer log items, we make two passes
2178 * over the log during recovery. During the first we build a table of
2179 * those buffers which have been cancelled, and during the second we
2180 * only replay those buffers which do not have corresponding cancel
2181 * records in the table. See xlog_recover_do_buffer_pass[1,2] above
2182 * for more details on the implementation of the table of cancel records.
2185 xlog_recover_do_buffer_trans(
2187 xlog_recover_item_t
*item
,
2190 xfs_buf_log_format_t
*buf_f
;
2200 buf_f
= (xfs_buf_log_format_t
*)item
->ri_buf
[0].i_addr
;
2202 if (pass
== XLOG_RECOVER_PASS1
) {
2204 * In this pass we're only looking for buf items
2205 * with the XFS_BLF_CANCEL bit set.
2207 xlog_recover_do_buffer_pass1(log
, buf_f
);
2211 * In this pass we want to recover all the buffers
2212 * which have not been cancelled and are not
2213 * cancellation buffers themselves. The routine
2214 * we call here will tell us whether or not to
2215 * continue with the replay of this buffer.
2217 cancel
= xlog_recover_do_buffer_pass2(log
, buf_f
);
2219 trace_xfs_log_recover_buf_cancel(log
, buf_f
);
2223 trace_xfs_log_recover_buf_recover(log
, buf_f
);
2224 switch (buf_f
->blf_type
) {
2226 blkno
= buf_f
->blf_blkno
;
2227 len
= buf_f
->blf_len
;
2228 flags
= buf_f
->blf_flags
;
2231 xfs_fs_cmn_err(CE_ALERT
, log
->l_mp
,
2232 "xfs_log_recover: unknown buffer type 0x%x, logdev %s",
2233 buf_f
->blf_type
, log
->l_mp
->m_logname
?
2234 log
->l_mp
->m_logname
: "internal");
2235 XFS_ERROR_REPORT("xlog_recover_do_buffer_trans",
2236 XFS_ERRLEVEL_LOW
, log
->l_mp
);
2237 return XFS_ERROR(EFSCORRUPTED
);
2241 buf_flags
= XBF_LOCK
;
2242 if (!(flags
& XFS_BLF_INODE_BUF
))
2243 buf_flags
|= XBF_MAPPED
;
2245 bp
= xfs_buf_read(mp
->m_ddev_targp
, blkno
, len
, buf_flags
);
2246 if (XFS_BUF_ISERROR(bp
)) {
2247 xfs_ioerror_alert("xlog_recover_do..(read#1)", log
->l_mp
,
2249 error
= XFS_BUF_GETERROR(bp
);
2255 if (flags
& XFS_BLF_INODE_BUF
) {
2256 error
= xlog_recover_do_inode_buffer(mp
, item
, bp
, buf_f
);
2258 (XFS_BLF_UDQUOT_BUF
|XFS_BLF_PDQUOT_BUF
|XFS_BLF_GDQUOT_BUF
)) {
2259 xlog_recover_do_dquot_buffer(mp
, log
, item
, bp
, buf_f
);
2261 xlog_recover_do_reg_buffer(mp
, item
, bp
, buf_f
);
2264 return XFS_ERROR(error
);
2267 * Perform delayed write on the buffer. Asynchronous writes will be
2268 * slower when taking into account all the buffers to be flushed.
2270 * Also make sure that only inode buffers with good sizes stay in
2271 * the buffer cache. The kernel moves inodes in buffers of 1 block
2272 * or XFS_INODE_CLUSTER_SIZE bytes, whichever is bigger. The inode
2273 * buffers in the log can be a different size if the log was generated
2274 * by an older kernel using unclustered inode buffers or a newer kernel
2275 * running with a different inode cluster size. Regardless, if the
2276 * the inode buffer size isn't MAX(blocksize, XFS_INODE_CLUSTER_SIZE)
2277 * for *our* value of XFS_INODE_CLUSTER_SIZE, then we need to keep
2278 * the buffer out of the buffer cache so that the buffer won't
2279 * overlap with future reads of those inodes.
2281 if (XFS_DINODE_MAGIC
==
2282 be16_to_cpu(*((__be16
*)xfs_buf_offset(bp
, 0))) &&
2283 (XFS_BUF_COUNT(bp
) != MAX(log
->l_mp
->m_sb
.sb_blocksize
,
2284 (__uint32_t
)XFS_INODE_CLUSTER_SIZE(log
->l_mp
)))) {
2286 error
= xfs_bwrite(mp
, bp
);
2288 ASSERT(bp
->b_mount
== NULL
|| bp
->b_mount
== mp
);
2290 XFS_BUF_SET_IODONE_FUNC(bp
, xlog_recover_iodone
);
2291 xfs_bdwrite(mp
, bp
);
2298 xlog_recover_do_inode_trans(
2300 xlog_recover_item_t
*item
,
2303 xfs_inode_log_format_t
*in_f
;
2314 xfs_icdinode_t
*dicp
;
2317 if (pass
== XLOG_RECOVER_PASS1
) {
2321 if (item
->ri_buf
[0].i_len
== sizeof(xfs_inode_log_format_t
)) {
2322 in_f
= (xfs_inode_log_format_t
*)item
->ri_buf
[0].i_addr
;
2324 in_f
= (xfs_inode_log_format_t
*)kmem_alloc(
2325 sizeof(xfs_inode_log_format_t
), KM_SLEEP
);
2327 error
= xfs_inode_item_format_convert(&item
->ri_buf
[0], in_f
);
2331 ino
= in_f
->ilf_ino
;
2335 * Inode buffers can be freed, look out for it,
2336 * and do not replay the inode.
2338 if (xlog_check_buffer_cancelled(log
, in_f
->ilf_blkno
,
2339 in_f
->ilf_len
, 0)) {
2341 trace_xfs_log_recover_inode_cancel(log
, in_f
);
2344 trace_xfs_log_recover_inode_recover(log
, in_f
);
2346 bp
= xfs_buf_read(mp
->m_ddev_targp
, in_f
->ilf_blkno
, in_f
->ilf_len
,
2348 if (XFS_BUF_ISERROR(bp
)) {
2349 xfs_ioerror_alert("xlog_recover_do..(read#2)", mp
,
2350 bp
, in_f
->ilf_blkno
);
2351 error
= XFS_BUF_GETERROR(bp
);
2356 ASSERT(in_f
->ilf_fields
& XFS_ILOG_CORE
);
2357 dip
= (xfs_dinode_t
*)xfs_buf_offset(bp
, in_f
->ilf_boffset
);
2360 * Make sure the place we're flushing out to really looks
2363 if (unlikely(be16_to_cpu(dip
->di_magic
) != XFS_DINODE_MAGIC
)) {
2365 xfs_fs_cmn_err(CE_ALERT
, mp
,
2366 "xfs_inode_recover: Bad inode magic number, dino ptr = 0x%p, dino bp = 0x%p, ino = %Ld",
2368 XFS_ERROR_REPORT("xlog_recover_do_inode_trans(1)",
2369 XFS_ERRLEVEL_LOW
, mp
);
2370 error
= EFSCORRUPTED
;
2373 dicp
= (xfs_icdinode_t
*)(item
->ri_buf
[1].i_addr
);
2374 if (unlikely(dicp
->di_magic
!= XFS_DINODE_MAGIC
)) {
2376 xfs_fs_cmn_err(CE_ALERT
, mp
,
2377 "xfs_inode_recover: Bad inode log record, rec ptr 0x%p, ino %Ld",
2379 XFS_ERROR_REPORT("xlog_recover_do_inode_trans(2)",
2380 XFS_ERRLEVEL_LOW
, mp
);
2381 error
= EFSCORRUPTED
;
2385 /* Skip replay when the on disk inode is newer than the log one */
2386 if (dicp
->di_flushiter
< be16_to_cpu(dip
->di_flushiter
)) {
2388 * Deal with the wrap case, DI_MAX_FLUSH is less
2389 * than smaller numbers
2391 if (be16_to_cpu(dip
->di_flushiter
) == DI_MAX_FLUSH
&&
2392 dicp
->di_flushiter
< (DI_MAX_FLUSH
>> 1)) {
2396 trace_xfs_log_recover_inode_skip(log
, in_f
);
2401 /* Take the opportunity to reset the flush iteration count */
2402 dicp
->di_flushiter
= 0;
2404 if (unlikely((dicp
->di_mode
& S_IFMT
) == S_IFREG
)) {
2405 if ((dicp
->di_format
!= XFS_DINODE_FMT_EXTENTS
) &&
2406 (dicp
->di_format
!= XFS_DINODE_FMT_BTREE
)) {
2407 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(3)",
2408 XFS_ERRLEVEL_LOW
, mp
, dicp
);
2410 xfs_fs_cmn_err(CE_ALERT
, mp
,
2411 "xfs_inode_recover: Bad regular inode log record, rec ptr 0x%p, ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2412 item
, dip
, bp
, ino
);
2413 error
= EFSCORRUPTED
;
2416 } else if (unlikely((dicp
->di_mode
& S_IFMT
) == S_IFDIR
)) {
2417 if ((dicp
->di_format
!= XFS_DINODE_FMT_EXTENTS
) &&
2418 (dicp
->di_format
!= XFS_DINODE_FMT_BTREE
) &&
2419 (dicp
->di_format
!= XFS_DINODE_FMT_LOCAL
)) {
2420 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(4)",
2421 XFS_ERRLEVEL_LOW
, mp
, dicp
);
2423 xfs_fs_cmn_err(CE_ALERT
, mp
,
2424 "xfs_inode_recover: Bad dir inode log record, rec ptr 0x%p, ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2425 item
, dip
, bp
, ino
);
2426 error
= EFSCORRUPTED
;
2430 if (unlikely(dicp
->di_nextents
+ dicp
->di_anextents
> dicp
->di_nblocks
)){
2431 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(5)",
2432 XFS_ERRLEVEL_LOW
, mp
, dicp
);
2434 xfs_fs_cmn_err(CE_ALERT
, mp
,
2435 "xfs_inode_recover: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld",
2437 dicp
->di_nextents
+ dicp
->di_anextents
,
2439 error
= EFSCORRUPTED
;
2442 if (unlikely(dicp
->di_forkoff
> mp
->m_sb
.sb_inodesize
)) {
2443 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(6)",
2444 XFS_ERRLEVEL_LOW
, mp
, dicp
);
2446 xfs_fs_cmn_err(CE_ALERT
, mp
,
2447 "xfs_inode_recover: Bad inode log rec ptr 0x%p, dino ptr 0x%p, dino bp 0x%p, ino %Ld, forkoff 0x%x",
2448 item
, dip
, bp
, ino
, dicp
->di_forkoff
);
2449 error
= EFSCORRUPTED
;
2452 if (unlikely(item
->ri_buf
[1].i_len
> sizeof(struct xfs_icdinode
))) {
2453 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(7)",
2454 XFS_ERRLEVEL_LOW
, mp
, dicp
);
2456 xfs_fs_cmn_err(CE_ALERT
, mp
,
2457 "xfs_inode_recover: Bad inode log record length %d, rec ptr 0x%p",
2458 item
->ri_buf
[1].i_len
, item
);
2459 error
= EFSCORRUPTED
;
2463 /* The core is in in-core format */
2464 xfs_dinode_to_disk(dip
, (xfs_icdinode_t
*)item
->ri_buf
[1].i_addr
);
2466 /* the rest is in on-disk format */
2467 if (item
->ri_buf
[1].i_len
> sizeof(struct xfs_icdinode
)) {
2468 memcpy((xfs_caddr_t
) dip
+ sizeof(struct xfs_icdinode
),
2469 item
->ri_buf
[1].i_addr
+ sizeof(struct xfs_icdinode
),
2470 item
->ri_buf
[1].i_len
- sizeof(struct xfs_icdinode
));
2473 fields
= in_f
->ilf_fields
;
2474 switch (fields
& (XFS_ILOG_DEV
| XFS_ILOG_UUID
)) {
2476 xfs_dinode_put_rdev(dip
, in_f
->ilf_u
.ilfu_rdev
);
2479 memcpy(XFS_DFORK_DPTR(dip
),
2480 &in_f
->ilf_u
.ilfu_uuid
,
2485 if (in_f
->ilf_size
== 2)
2486 goto write_inode_buffer
;
2487 len
= item
->ri_buf
[2].i_len
;
2488 src
= item
->ri_buf
[2].i_addr
;
2489 ASSERT(in_f
->ilf_size
<= 4);
2490 ASSERT((in_f
->ilf_size
== 3) || (fields
& XFS_ILOG_AFORK
));
2491 ASSERT(!(fields
& XFS_ILOG_DFORK
) ||
2492 (len
== in_f
->ilf_dsize
));
2494 switch (fields
& XFS_ILOG_DFORK
) {
2495 case XFS_ILOG_DDATA
:
2497 memcpy(XFS_DFORK_DPTR(dip
), src
, len
);
2500 case XFS_ILOG_DBROOT
:
2501 xfs_bmbt_to_bmdr(mp
, (struct xfs_btree_block
*)src
, len
,
2502 (xfs_bmdr_block_t
*)XFS_DFORK_DPTR(dip
),
2503 XFS_DFORK_DSIZE(dip
, mp
));
2508 * There are no data fork flags set.
2510 ASSERT((fields
& XFS_ILOG_DFORK
) == 0);
2515 * If we logged any attribute data, recover it. There may or
2516 * may not have been any other non-core data logged in this
2519 if (in_f
->ilf_fields
& XFS_ILOG_AFORK
) {
2520 if (in_f
->ilf_fields
& XFS_ILOG_DFORK
) {
2525 len
= item
->ri_buf
[attr_index
].i_len
;
2526 src
= item
->ri_buf
[attr_index
].i_addr
;
2527 ASSERT(len
== in_f
->ilf_asize
);
2529 switch (in_f
->ilf_fields
& XFS_ILOG_AFORK
) {
2530 case XFS_ILOG_ADATA
:
2532 dest
= XFS_DFORK_APTR(dip
);
2533 ASSERT(len
<= XFS_DFORK_ASIZE(dip
, mp
));
2534 memcpy(dest
, src
, len
);
2537 case XFS_ILOG_ABROOT
:
2538 dest
= XFS_DFORK_APTR(dip
);
2539 xfs_bmbt_to_bmdr(mp
, (struct xfs_btree_block
*)src
,
2540 len
, (xfs_bmdr_block_t
*)dest
,
2541 XFS_DFORK_ASIZE(dip
, mp
));
2545 xlog_warn("XFS: xlog_recover_do_inode_trans: Invalid flag");
2554 ASSERT(bp
->b_mount
== NULL
|| bp
->b_mount
== mp
);
2556 XFS_BUF_SET_IODONE_FUNC(bp
, xlog_recover_iodone
);
2557 xfs_bdwrite(mp
, bp
);
2561 return XFS_ERROR(error
);
2565 * Recover QUOTAOFF records. We simply make a note of it in the xlog_t
2566 * structure, so that we know not to do any dquot item or dquot buffer recovery,
2570 xlog_recover_do_quotaoff_trans(
2572 xlog_recover_item_t
*item
,
2575 xfs_qoff_logformat_t
*qoff_f
;
2577 if (pass
== XLOG_RECOVER_PASS2
) {
2581 qoff_f
= (xfs_qoff_logformat_t
*)item
->ri_buf
[0].i_addr
;
2585 * The logitem format's flag tells us if this was user quotaoff,
2586 * group/project quotaoff or both.
2588 if (qoff_f
->qf_flags
& XFS_UQUOTA_ACCT
)
2589 log
->l_quotaoffs_flag
|= XFS_DQ_USER
;
2590 if (qoff_f
->qf_flags
& XFS_PQUOTA_ACCT
)
2591 log
->l_quotaoffs_flag
|= XFS_DQ_PROJ
;
2592 if (qoff_f
->qf_flags
& XFS_GQUOTA_ACCT
)
2593 log
->l_quotaoffs_flag
|= XFS_DQ_GROUP
;
2599 * Recover a dquot record
2602 xlog_recover_do_dquot_trans(
2604 xlog_recover_item_t
*item
,
2609 struct xfs_disk_dquot
*ddq
, *recddq
;
2611 xfs_dq_logformat_t
*dq_f
;
2614 if (pass
== XLOG_RECOVER_PASS1
) {
2620 * Filesystems are required to send in quota flags at mount time.
2622 if (mp
->m_qflags
== 0)
2625 recddq
= (xfs_disk_dquot_t
*)item
->ri_buf
[1].i_addr
;
2627 if (item
->ri_buf
[1].i_addr
== NULL
) {
2629 "XFS: NULL dquot in %s.", __func__
);
2630 return XFS_ERROR(EIO
);
2632 if (item
->ri_buf
[1].i_len
< sizeof(xfs_disk_dquot_t
)) {
2634 "XFS: dquot too small (%d) in %s.",
2635 item
->ri_buf
[1].i_len
, __func__
);
2636 return XFS_ERROR(EIO
);
2640 * This type of quotas was turned off, so ignore this record.
2642 type
= recddq
->d_flags
& (XFS_DQ_USER
| XFS_DQ_PROJ
| XFS_DQ_GROUP
);
2644 if (log
->l_quotaoffs_flag
& type
)
2648 * At this point we know that quota was _not_ turned off.
2649 * Since the mount flags are not indicating to us otherwise, this
2650 * must mean that quota is on, and the dquot needs to be replayed.
2651 * Remember that we may not have fully recovered the superblock yet,
2652 * so we can't do the usual trick of looking at the SB quota bits.
2654 * The other possibility, of course, is that the quota subsystem was
2655 * removed since the last mount - ENOSYS.
2657 dq_f
= (xfs_dq_logformat_t
*)item
->ri_buf
[0].i_addr
;
2659 if ((error
= xfs_qm_dqcheck(recddq
,
2661 0, XFS_QMOPT_DOWARN
,
2662 "xlog_recover_do_dquot_trans (log copy)"))) {
2663 return XFS_ERROR(EIO
);
2665 ASSERT(dq_f
->qlf_len
== 1);
2667 error
= xfs_read_buf(mp
, mp
->m_ddev_targp
,
2669 XFS_FSB_TO_BB(mp
, dq_f
->qlf_len
),
2672 xfs_ioerror_alert("xlog_recover_do..(read#3)", mp
,
2673 bp
, dq_f
->qlf_blkno
);
2677 ddq
= (xfs_disk_dquot_t
*)xfs_buf_offset(bp
, dq_f
->qlf_boffset
);
2680 * At least the magic num portion should be on disk because this
2681 * was among a chunk of dquots created earlier, and we did some
2682 * minimal initialization then.
2684 if (xfs_qm_dqcheck(ddq
, dq_f
->qlf_id
, 0, XFS_QMOPT_DOWARN
,
2685 "xlog_recover_do_dquot_trans")) {
2687 return XFS_ERROR(EIO
);
2690 memcpy(ddq
, recddq
, item
->ri_buf
[1].i_len
);
2692 ASSERT(dq_f
->qlf_size
== 2);
2693 ASSERT(bp
->b_mount
== NULL
|| bp
->b_mount
== mp
);
2695 XFS_BUF_SET_IODONE_FUNC(bp
, xlog_recover_iodone
);
2696 xfs_bdwrite(mp
, bp
);
2702 * This routine is called to create an in-core extent free intent
2703 * item from the efi format structure which was logged on disk.
2704 * It allocates an in-core efi, copies the extents from the format
2705 * structure into it, and adds the efi to the AIL with the given
2709 xlog_recover_do_efi_trans(
2711 xlog_recover_item_t
*item
,
2717 xfs_efi_log_item_t
*efip
;
2718 xfs_efi_log_format_t
*efi_formatp
;
2720 if (pass
== XLOG_RECOVER_PASS1
) {
2724 efi_formatp
= (xfs_efi_log_format_t
*)item
->ri_buf
[0].i_addr
;
2727 efip
= xfs_efi_init(mp
, efi_formatp
->efi_nextents
);
2728 if ((error
= xfs_efi_copy_format(&(item
->ri_buf
[0]),
2729 &(efip
->efi_format
)))) {
2730 xfs_efi_item_free(efip
);
2733 efip
->efi_next_extent
= efi_formatp
->efi_nextents
;
2734 efip
->efi_flags
|= XFS_EFI_COMMITTED
;
2736 spin_lock(&log
->l_ailp
->xa_lock
);
2738 * xfs_trans_ail_update() drops the AIL lock.
2740 xfs_trans_ail_update(log
->l_ailp
, (xfs_log_item_t
*)efip
, lsn
);
2746 * This routine is called when an efd format structure is found in
2747 * a committed transaction in the log. It's purpose is to cancel
2748 * the corresponding efi if it was still in the log. To do this
2749 * it searches the AIL for the efi with an id equal to that in the
2750 * efd format structure. If we find it, we remove the efi from the
2754 xlog_recover_do_efd_trans(
2756 xlog_recover_item_t
*item
,
2759 xfs_efd_log_format_t
*efd_formatp
;
2760 xfs_efi_log_item_t
*efip
= NULL
;
2761 xfs_log_item_t
*lip
;
2763 struct xfs_ail_cursor cur
;
2764 struct xfs_ail
*ailp
= log
->l_ailp
;
2766 if (pass
== XLOG_RECOVER_PASS1
) {
2770 efd_formatp
= (xfs_efd_log_format_t
*)item
->ri_buf
[0].i_addr
;
2771 ASSERT((item
->ri_buf
[0].i_len
== (sizeof(xfs_efd_log_format_32_t
) +
2772 ((efd_formatp
->efd_nextents
- 1) * sizeof(xfs_extent_32_t
)))) ||
2773 (item
->ri_buf
[0].i_len
== (sizeof(xfs_efd_log_format_64_t
) +
2774 ((efd_formatp
->efd_nextents
- 1) * sizeof(xfs_extent_64_t
)))));
2775 efi_id
= efd_formatp
->efd_efi_id
;
2778 * Search for the efi with the id in the efd format structure
2781 spin_lock(&ailp
->xa_lock
);
2782 lip
= xfs_trans_ail_cursor_first(ailp
, &cur
, 0);
2783 while (lip
!= NULL
) {
2784 if (lip
->li_type
== XFS_LI_EFI
) {
2785 efip
= (xfs_efi_log_item_t
*)lip
;
2786 if (efip
->efi_format
.efi_id
== efi_id
) {
2788 * xfs_trans_ail_delete() drops the
2791 xfs_trans_ail_delete(ailp
, lip
);
2792 xfs_efi_item_free(efip
);
2793 spin_lock(&ailp
->xa_lock
);
2797 lip
= xfs_trans_ail_cursor_next(ailp
, &cur
);
2799 xfs_trans_ail_cursor_done(ailp
, &cur
);
2800 spin_unlock(&ailp
->xa_lock
);
2804 * Perform the transaction
2806 * If the transaction modifies a buffer or inode, do it now. Otherwise,
2807 * EFIs and EFDs get queued up by adding entries into the AIL for them.
2810 xlog_recover_do_trans(
2812 xlog_recover_t
*trans
,
2816 xlog_recover_item_t
*item
;
2818 error
= xlog_recover_reorder_trans(log
, trans
, pass
);
2822 list_for_each_entry(item
, &trans
->r_itemq
, ri_list
) {
2823 trace_xfs_log_recover_item_recover(log
, trans
, item
, pass
);
2824 switch (ITEM_TYPE(item
)) {
2826 error
= xlog_recover_do_buffer_trans(log
, item
, pass
);
2829 error
= xlog_recover_do_inode_trans(log
, item
, pass
);
2832 error
= xlog_recover_do_efi_trans(log
, item
,
2833 trans
->r_lsn
, pass
);
2836 xlog_recover_do_efd_trans(log
, item
, pass
);
2840 error
= xlog_recover_do_dquot_trans(log
, item
, pass
);
2842 case XFS_LI_QUOTAOFF
:
2843 error
= xlog_recover_do_quotaoff_trans(log
, item
,
2848 "XFS: invalid item type (%d) xlog_recover_do_trans", ITEM_TYPE(item
));
2850 error
= XFS_ERROR(EIO
);
2862 * Free up any resources allocated by the transaction
2864 * Remember that EFIs, EFDs, and IUNLINKs are handled later.
2867 xlog_recover_free_trans(
2868 xlog_recover_t
*trans
)
2870 xlog_recover_item_t
*item
, *n
;
2873 list_for_each_entry_safe(item
, n
, &trans
->r_itemq
, ri_list
) {
2874 /* Free the regions in the item. */
2875 list_del(&item
->ri_list
);
2876 for (i
= 0; i
< item
->ri_cnt
; i
++)
2877 kmem_free(item
->ri_buf
[i
].i_addr
);
2878 /* Free the item itself */
2879 kmem_free(item
->ri_buf
);
2882 /* Free the transaction recover structure */
2887 xlog_recover_commit_trans(
2889 xlog_recover_t
*trans
,
2894 hlist_del(&trans
->r_list
);
2895 if ((error
= xlog_recover_do_trans(log
, trans
, pass
)))
2897 xlog_recover_free_trans(trans
); /* no error */
2902 xlog_recover_unmount_trans(
2903 xlog_recover_t
*trans
)
2905 /* Do nothing now */
2906 xlog_warn("XFS: xlog_recover_unmount_trans: Unmount LR");
2911 * There are two valid states of the r_state field. 0 indicates that the
2912 * transaction structure is in a normal state. We have either seen the
2913 * start of the transaction or the last operation we added was not a partial
2914 * operation. If the last operation we added to the transaction was a
2915 * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
2917 * NOTE: skip LRs with 0 data length.
2920 xlog_recover_process_data(
2922 struct hlist_head rhash
[],
2923 xlog_rec_header_t
*rhead
,
2929 xlog_op_header_t
*ohead
;
2930 xlog_recover_t
*trans
;
2936 lp
= dp
+ be32_to_cpu(rhead
->h_len
);
2937 num_logops
= be32_to_cpu(rhead
->h_num_logops
);
2939 /* check the log format matches our own - else we can't recover */
2940 if (xlog_header_check_recover(log
->l_mp
, rhead
))
2941 return (XFS_ERROR(EIO
));
2943 while ((dp
< lp
) && num_logops
) {
2944 ASSERT(dp
+ sizeof(xlog_op_header_t
) <= lp
);
2945 ohead
= (xlog_op_header_t
*)dp
;
2946 dp
+= sizeof(xlog_op_header_t
);
2947 if (ohead
->oh_clientid
!= XFS_TRANSACTION
&&
2948 ohead
->oh_clientid
!= XFS_LOG
) {
2950 "XFS: xlog_recover_process_data: bad clientid");
2952 return (XFS_ERROR(EIO
));
2954 tid
= be32_to_cpu(ohead
->oh_tid
);
2955 hash
= XLOG_RHASH(tid
);
2956 trans
= xlog_recover_find_tid(&rhash
[hash
], tid
);
2957 if (trans
== NULL
) { /* not found; add new tid */
2958 if (ohead
->oh_flags
& XLOG_START_TRANS
)
2959 xlog_recover_new_tid(&rhash
[hash
], tid
,
2960 be64_to_cpu(rhead
->h_lsn
));
2962 if (dp
+ be32_to_cpu(ohead
->oh_len
) > lp
) {
2964 "XFS: xlog_recover_process_data: bad length");
2966 return (XFS_ERROR(EIO
));
2968 flags
= ohead
->oh_flags
& ~XLOG_END_TRANS
;
2969 if (flags
& XLOG_WAS_CONT_TRANS
)
2970 flags
&= ~XLOG_CONTINUE_TRANS
;
2972 case XLOG_COMMIT_TRANS
:
2973 error
= xlog_recover_commit_trans(log
,
2976 case XLOG_UNMOUNT_TRANS
:
2977 error
= xlog_recover_unmount_trans(trans
);
2979 case XLOG_WAS_CONT_TRANS
:
2980 error
= xlog_recover_add_to_cont_trans(log
,
2982 be32_to_cpu(ohead
->oh_len
));
2984 case XLOG_START_TRANS
:
2986 "XFS: xlog_recover_process_data: bad transaction");
2988 error
= XFS_ERROR(EIO
);
2991 case XLOG_CONTINUE_TRANS
:
2992 error
= xlog_recover_add_to_trans(log
, trans
,
2993 dp
, be32_to_cpu(ohead
->oh_len
));
2997 "XFS: xlog_recover_process_data: bad flag");
2999 error
= XFS_ERROR(EIO
);
3005 dp
+= be32_to_cpu(ohead
->oh_len
);
3012 * Process an extent free intent item that was recovered from
3013 * the log. We need to free the extents that it describes.
3016 xlog_recover_process_efi(
3018 xfs_efi_log_item_t
*efip
)
3020 xfs_efd_log_item_t
*efdp
;
3025 xfs_fsblock_t startblock_fsb
;
3027 ASSERT(!(efip
->efi_flags
& XFS_EFI_RECOVERED
));
3030 * First check the validity of the extents described by the
3031 * EFI. If any are bad, then assume that all are bad and
3032 * just toss the EFI.
3034 for (i
= 0; i
< efip
->efi_format
.efi_nextents
; i
++) {
3035 extp
= &(efip
->efi_format
.efi_extents
[i
]);
3036 startblock_fsb
= XFS_BB_TO_FSB(mp
,
3037 XFS_FSB_TO_DADDR(mp
, extp
->ext_start
));
3038 if ((startblock_fsb
== 0) ||
3039 (extp
->ext_len
== 0) ||
3040 (startblock_fsb
>= mp
->m_sb
.sb_dblocks
) ||
3041 (extp
->ext_len
>= mp
->m_sb
.sb_agblocks
)) {
3043 * This will pull the EFI from the AIL and
3044 * free the memory associated with it.
3046 xfs_efi_release(efip
, efip
->efi_format
.efi_nextents
);
3047 return XFS_ERROR(EIO
);
3051 tp
= xfs_trans_alloc(mp
, 0);
3052 error
= xfs_trans_reserve(tp
, 0, XFS_ITRUNCATE_LOG_RES(mp
), 0, 0, 0);
3055 efdp
= xfs_trans_get_efd(tp
, efip
, efip
->efi_format
.efi_nextents
);
3057 for (i
= 0; i
< efip
->efi_format
.efi_nextents
; i
++) {
3058 extp
= &(efip
->efi_format
.efi_extents
[i
]);
3059 error
= xfs_free_extent(tp
, extp
->ext_start
, extp
->ext_len
);
3062 xfs_trans_log_efd_extent(tp
, efdp
, extp
->ext_start
,
3066 efip
->efi_flags
|= XFS_EFI_RECOVERED
;
3067 error
= xfs_trans_commit(tp
, 0);
3071 xfs_trans_cancel(tp
, XFS_TRANS_ABORT
);
3076 * When this is called, all of the EFIs which did not have
3077 * corresponding EFDs should be in the AIL. What we do now
3078 * is free the extents associated with each one.
3080 * Since we process the EFIs in normal transactions, they
3081 * will be removed at some point after the commit. This prevents
3082 * us from just walking down the list processing each one.
3083 * We'll use a flag in the EFI to skip those that we've already
3084 * processed and use the AIL iteration mechanism's generation
3085 * count to try to speed this up at least a bit.
3087 * When we start, we know that the EFIs are the only things in
3088 * the AIL. As we process them, however, other items are added
3089 * to the AIL. Since everything added to the AIL must come after
3090 * everything already in the AIL, we stop processing as soon as
3091 * we see something other than an EFI in the AIL.
3094 xlog_recover_process_efis(
3097 xfs_log_item_t
*lip
;
3098 xfs_efi_log_item_t
*efip
;
3100 struct xfs_ail_cursor cur
;
3101 struct xfs_ail
*ailp
;
3104 spin_lock(&ailp
->xa_lock
);
3105 lip
= xfs_trans_ail_cursor_first(ailp
, &cur
, 0);
3106 while (lip
!= NULL
) {
3108 * We're done when we see something other than an EFI.
3109 * There should be no EFIs left in the AIL now.
3111 if (lip
->li_type
!= XFS_LI_EFI
) {
3113 for (; lip
; lip
= xfs_trans_ail_cursor_next(ailp
, &cur
))
3114 ASSERT(lip
->li_type
!= XFS_LI_EFI
);
3120 * Skip EFIs that we've already processed.
3122 efip
= (xfs_efi_log_item_t
*)lip
;
3123 if (efip
->efi_flags
& XFS_EFI_RECOVERED
) {
3124 lip
= xfs_trans_ail_cursor_next(ailp
, &cur
);
3128 spin_unlock(&ailp
->xa_lock
);
3129 error
= xlog_recover_process_efi(log
->l_mp
, efip
);
3130 spin_lock(&ailp
->xa_lock
);
3133 lip
= xfs_trans_ail_cursor_next(ailp
, &cur
);
3136 xfs_trans_ail_cursor_done(ailp
, &cur
);
3137 spin_unlock(&ailp
->xa_lock
);
3142 * This routine performs a transaction to null out a bad inode pointer
3143 * in an agi unlinked inode hash bucket.
3146 xlog_recover_clear_agi_bucket(
3148 xfs_agnumber_t agno
,
3157 tp
= xfs_trans_alloc(mp
, XFS_TRANS_CLEAR_AGI_BUCKET
);
3158 error
= xfs_trans_reserve(tp
, 0, XFS_CLEAR_AGI_BUCKET_LOG_RES(mp
),
3163 error
= xfs_read_agi(mp
, tp
, agno
, &agibp
);
3167 agi
= XFS_BUF_TO_AGI(agibp
);
3168 agi
->agi_unlinked
[bucket
] = cpu_to_be32(NULLAGINO
);
3169 offset
= offsetof(xfs_agi_t
, agi_unlinked
) +
3170 (sizeof(xfs_agino_t
) * bucket
);
3171 xfs_trans_log_buf(tp
, agibp
, offset
,
3172 (offset
+ sizeof(xfs_agino_t
) - 1));
3174 error
= xfs_trans_commit(tp
, 0);
3180 xfs_trans_cancel(tp
, XFS_TRANS_ABORT
);
3182 xfs_fs_cmn_err(CE_WARN
, mp
, "xlog_recover_clear_agi_bucket: "
3183 "failed to clear agi %d. Continuing.", agno
);
3188 xlog_recover_process_one_iunlink(
3189 struct xfs_mount
*mp
,
3190 xfs_agnumber_t agno
,
3194 struct xfs_buf
*ibp
;
3195 struct xfs_dinode
*dip
;
3196 struct xfs_inode
*ip
;
3200 ino
= XFS_AGINO_TO_INO(mp
, agno
, agino
);
3201 error
= xfs_iget(mp
, NULL
, ino
, 0, 0, &ip
, 0);
3206 * Get the on disk inode to find the next inode in the bucket.
3208 error
= xfs_itobp(mp
, NULL
, ip
, &dip
, &ibp
, XBF_LOCK
);
3212 ASSERT(ip
->i_d
.di_nlink
== 0);
3213 ASSERT(ip
->i_d
.di_mode
!= 0);
3215 /* setup for the next pass */
3216 agino
= be32_to_cpu(dip
->di_next_unlinked
);
3220 * Prevent any DMAPI event from being sent when the reference on
3221 * the inode is dropped.
3223 ip
->i_d
.di_dmevmask
= 0;
3232 * We can't read in the inode this bucket points to, or this inode
3233 * is messed up. Just ditch this bucket of inodes. We will lose
3234 * some inodes and space, but at least we won't hang.
3236 * Call xlog_recover_clear_agi_bucket() to perform a transaction to
3237 * clear the inode pointer in the bucket.
3239 xlog_recover_clear_agi_bucket(mp
, agno
, bucket
);
3244 * xlog_iunlink_recover
3246 * This is called during recovery to process any inodes which
3247 * we unlinked but not freed when the system crashed. These
3248 * inodes will be on the lists in the AGI blocks. What we do
3249 * here is scan all the AGIs and fully truncate and free any
3250 * inodes found on the lists. Each inode is removed from the
3251 * lists when it has been fully truncated and is freed. The
3252 * freeing of the inode and its removal from the list must be
3256 xlog_recover_process_iunlinks(
3260 xfs_agnumber_t agno
;
3271 * Prevent any DMAPI event from being sent while in this function.
3273 mp_dmevmask
= mp
->m_dmevmask
;
3276 for (agno
= 0; agno
< mp
->m_sb
.sb_agcount
; agno
++) {
3278 * Find the agi for this ag.
3280 error
= xfs_read_agi(mp
, NULL
, agno
, &agibp
);
3283 * AGI is b0rked. Don't process it.
3285 * We should probably mark the filesystem as corrupt
3286 * after we've recovered all the ag's we can....
3290 agi
= XFS_BUF_TO_AGI(agibp
);
3292 for (bucket
= 0; bucket
< XFS_AGI_UNLINKED_BUCKETS
; bucket
++) {
3293 agino
= be32_to_cpu(agi
->agi_unlinked
[bucket
]);
3294 while (agino
!= NULLAGINO
) {
3296 * Release the agi buffer so that it can
3297 * be acquired in the normal course of the
3298 * transaction to truncate and free the inode.
3300 xfs_buf_relse(agibp
);
3302 agino
= xlog_recover_process_one_iunlink(mp
,
3303 agno
, agino
, bucket
);
3306 * Reacquire the agibuffer and continue around
3307 * the loop. This should never fail as we know
3308 * the buffer was good earlier on.
3310 error
= xfs_read_agi(mp
, NULL
, agno
, &agibp
);
3312 agi
= XFS_BUF_TO_AGI(agibp
);
3317 * Release the buffer for the current agi so we can
3318 * go on to the next one.
3320 xfs_buf_relse(agibp
);
3323 mp
->m_dmevmask
= mp_dmevmask
;
3329 xlog_pack_data_checksum(
3331 xlog_in_core_t
*iclog
,
3338 up
= (__be32
*)iclog
->ic_datap
;
3339 /* divide length by 4 to get # words */
3340 for (i
= 0; i
< (size
>> 2); i
++) {
3341 chksum
^= be32_to_cpu(*up
);
3344 iclog
->ic_header
.h_chksum
= cpu_to_be32(chksum
);
3347 #define xlog_pack_data_checksum(log, iclog, size)
3351 * Stamp cycle number in every block
3356 xlog_in_core_t
*iclog
,
3360 int size
= iclog
->ic_offset
+ roundoff
;
3364 xlog_pack_data_checksum(log
, iclog
, size
);
3366 cycle_lsn
= CYCLE_LSN_DISK(iclog
->ic_header
.h_lsn
);
3368 dp
= iclog
->ic_datap
;
3369 for (i
= 0; i
< BTOBB(size
) &&
3370 i
< (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
); i
++) {
3371 iclog
->ic_header
.h_cycle_data
[i
] = *(__be32
*)dp
;
3372 *(__be32
*)dp
= cycle_lsn
;
3376 if (xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
)) {
3377 xlog_in_core_2_t
*xhdr
= iclog
->ic_data
;
3379 for ( ; i
< BTOBB(size
); i
++) {
3380 j
= i
/ (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
);
3381 k
= i
% (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
);
3382 xhdr
[j
].hic_xheader
.xh_cycle_data
[k
] = *(__be32
*)dp
;
3383 *(__be32
*)dp
= cycle_lsn
;
3387 for (i
= 1; i
< log
->l_iclog_heads
; i
++) {
3388 xhdr
[i
].hic_xheader
.xh_cycle
= cycle_lsn
;
3395 xlog_rec_header_t
*rhead
,
3401 for (i
= 0; i
< BTOBB(be32_to_cpu(rhead
->h_len
)) &&
3402 i
< (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
); i
++) {
3403 *(__be32
*)dp
= *(__be32
*)&rhead
->h_cycle_data
[i
];
3407 if (xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
)) {
3408 xlog_in_core_2_t
*xhdr
= (xlog_in_core_2_t
*)rhead
;
3409 for ( ; i
< BTOBB(be32_to_cpu(rhead
->h_len
)); i
++) {
3410 j
= i
/ (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
);
3411 k
= i
% (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
);
3412 *(__be32
*)dp
= xhdr
[j
].hic_xheader
.xh_cycle_data
[k
];
3419 xlog_valid_rec_header(
3421 xlog_rec_header_t
*rhead
,
3426 if (unlikely(be32_to_cpu(rhead
->h_magicno
) != XLOG_HEADER_MAGIC_NUM
)) {
3427 XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
3428 XFS_ERRLEVEL_LOW
, log
->l_mp
);
3429 return XFS_ERROR(EFSCORRUPTED
);
3432 (!rhead
->h_version
||
3433 (be32_to_cpu(rhead
->h_version
) & (~XLOG_VERSION_OKBITS
))))) {
3434 xlog_warn("XFS: %s: unrecognised log version (%d).",
3435 __func__
, be32_to_cpu(rhead
->h_version
));
3436 return XFS_ERROR(EIO
);
3439 /* LR body must have data or it wouldn't have been written */
3440 hlen
= be32_to_cpu(rhead
->h_len
);
3441 if (unlikely( hlen
<= 0 || hlen
> INT_MAX
)) {
3442 XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
3443 XFS_ERRLEVEL_LOW
, log
->l_mp
);
3444 return XFS_ERROR(EFSCORRUPTED
);
3446 if (unlikely( blkno
> log
->l_logBBsize
|| blkno
> INT_MAX
)) {
3447 XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
3448 XFS_ERRLEVEL_LOW
, log
->l_mp
);
3449 return XFS_ERROR(EFSCORRUPTED
);
3455 * Read the log from tail to head and process the log records found.
3456 * Handle the two cases where the tail and head are in the same cycle
3457 * and where the active portion of the log wraps around the end of
3458 * the physical log separately. The pass parameter is passed through
3459 * to the routines called to process the data and is not looked at
3463 xlog_do_recovery_pass(
3465 xfs_daddr_t head_blk
,
3466 xfs_daddr_t tail_blk
,
3469 xlog_rec_header_t
*rhead
;
3472 xfs_buf_t
*hbp
, *dbp
;
3473 int error
= 0, h_size
;
3474 int bblks
, split_bblks
;
3475 int hblks
, split_hblks
, wrapped_hblks
;
3476 struct hlist_head rhash
[XLOG_RHASH_SIZE
];
3478 ASSERT(head_blk
!= tail_blk
);
3481 * Read the header of the tail block and get the iclog buffer size from
3482 * h_size. Use this to tell how many sectors make up the log header.
3484 if (xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
)) {
3486 * When using variable length iclogs, read first sector of
3487 * iclog header and extract the header size from it. Get a
3488 * new hbp that is the correct size.
3490 hbp
= xlog_get_bp(log
, 1);
3494 error
= xlog_bread(log
, tail_blk
, 1, hbp
, &offset
);
3498 rhead
= (xlog_rec_header_t
*)offset
;
3499 error
= xlog_valid_rec_header(log
, rhead
, tail_blk
);
3502 h_size
= be32_to_cpu(rhead
->h_size
);
3503 if ((be32_to_cpu(rhead
->h_version
) & XLOG_VERSION_2
) &&
3504 (h_size
> XLOG_HEADER_CYCLE_SIZE
)) {
3505 hblks
= h_size
/ XLOG_HEADER_CYCLE_SIZE
;
3506 if (h_size
% XLOG_HEADER_CYCLE_SIZE
)
3509 hbp
= xlog_get_bp(log
, hblks
);
3514 ASSERT(log
->l_sectBBsize
== 1);
3516 hbp
= xlog_get_bp(log
, 1);
3517 h_size
= XLOG_BIG_RECORD_BSIZE
;
3522 dbp
= xlog_get_bp(log
, BTOBB(h_size
));
3528 memset(rhash
, 0, sizeof(rhash
));
3529 if (tail_blk
<= head_blk
) {
3530 for (blk_no
= tail_blk
; blk_no
< head_blk
; ) {
3531 error
= xlog_bread(log
, blk_no
, hblks
, hbp
, &offset
);
3535 rhead
= (xlog_rec_header_t
*)offset
;
3536 error
= xlog_valid_rec_header(log
, rhead
, blk_no
);
3540 /* blocks in data section */
3541 bblks
= (int)BTOBB(be32_to_cpu(rhead
->h_len
));
3542 error
= xlog_bread(log
, blk_no
+ hblks
, bblks
, dbp
,
3547 xlog_unpack_data(rhead
, offset
, log
);
3548 if ((error
= xlog_recover_process_data(log
,
3549 rhash
, rhead
, offset
, pass
)))
3551 blk_no
+= bblks
+ hblks
;
3555 * Perform recovery around the end of the physical log.
3556 * When the head is not on the same cycle number as the tail,
3557 * we can't do a sequential recovery as above.
3560 while (blk_no
< log
->l_logBBsize
) {
3562 * Check for header wrapping around physical end-of-log
3564 offset
= XFS_BUF_PTR(hbp
);
3567 if (blk_no
+ hblks
<= log
->l_logBBsize
) {
3568 /* Read header in one read */
3569 error
= xlog_bread(log
, blk_no
, hblks
, hbp
,
3574 /* This LR is split across physical log end */
3575 if (blk_no
!= log
->l_logBBsize
) {
3576 /* some data before physical log end */
3577 ASSERT(blk_no
<= INT_MAX
);
3578 split_hblks
= log
->l_logBBsize
- (int)blk_no
;
3579 ASSERT(split_hblks
> 0);
3580 error
= xlog_bread(log
, blk_no
,
3588 * Note: this black magic still works with
3589 * large sector sizes (non-512) only because:
3590 * - we increased the buffer size originally
3591 * by 1 sector giving us enough extra space
3592 * for the second read;
3593 * - the log start is guaranteed to be sector
3595 * - we read the log end (LR header start)
3596 * _first_, then the log start (LR header end)
3597 * - order is important.
3599 wrapped_hblks
= hblks
- split_hblks
;
3600 error
= XFS_BUF_SET_PTR(hbp
,
3601 offset
+ BBTOB(split_hblks
),
3602 BBTOB(hblks
- split_hblks
));
3606 error
= xlog_bread_noalign(log
, 0,
3607 wrapped_hblks
, hbp
);
3611 error
= XFS_BUF_SET_PTR(hbp
, offset
,
3616 rhead
= (xlog_rec_header_t
*)offset
;
3617 error
= xlog_valid_rec_header(log
, rhead
,
3618 split_hblks
? blk_no
: 0);
3622 bblks
= (int)BTOBB(be32_to_cpu(rhead
->h_len
));
3625 /* Read in data for log record */
3626 if (blk_no
+ bblks
<= log
->l_logBBsize
) {
3627 error
= xlog_bread(log
, blk_no
, bblks
, dbp
,
3632 /* This log record is split across the
3633 * physical end of log */
3634 offset
= XFS_BUF_PTR(dbp
);
3636 if (blk_no
!= log
->l_logBBsize
) {
3637 /* some data is before the physical
3639 ASSERT(!wrapped_hblks
);
3640 ASSERT(blk_no
<= INT_MAX
);
3642 log
->l_logBBsize
- (int)blk_no
;
3643 ASSERT(split_bblks
> 0);
3644 error
= xlog_bread(log
, blk_no
,
3652 * Note: this black magic still works with
3653 * large sector sizes (non-512) only because:
3654 * - we increased the buffer size originally
3655 * by 1 sector giving us enough extra space
3656 * for the second read;
3657 * - the log start is guaranteed to be sector
3659 * - we read the log end (LR header start)
3660 * _first_, then the log start (LR header end)
3661 * - order is important.
3663 error
= XFS_BUF_SET_PTR(dbp
,
3664 offset
+ BBTOB(split_bblks
),
3665 BBTOB(bblks
- split_bblks
));
3669 error
= xlog_bread_noalign(log
, wrapped_hblks
,
3670 bblks
- split_bblks
,
3675 error
= XFS_BUF_SET_PTR(dbp
, offset
, h_size
);
3679 xlog_unpack_data(rhead
, offset
, log
);
3680 if ((error
= xlog_recover_process_data(log
, rhash
,
3681 rhead
, offset
, pass
)))
3686 ASSERT(blk_no
>= log
->l_logBBsize
);
3687 blk_no
-= log
->l_logBBsize
;
3689 /* read first part of physical log */
3690 while (blk_no
< head_blk
) {
3691 error
= xlog_bread(log
, blk_no
, hblks
, hbp
, &offset
);
3695 rhead
= (xlog_rec_header_t
*)offset
;
3696 error
= xlog_valid_rec_header(log
, rhead
, blk_no
);
3700 bblks
= (int)BTOBB(be32_to_cpu(rhead
->h_len
));
3701 error
= xlog_bread(log
, blk_no
+hblks
, bblks
, dbp
,
3706 xlog_unpack_data(rhead
, offset
, log
);
3707 if ((error
= xlog_recover_process_data(log
, rhash
,
3708 rhead
, offset
, pass
)))
3710 blk_no
+= bblks
+ hblks
;
3722 * Do the recovery of the log. We actually do this in two phases.
3723 * The two passes are necessary in order to implement the function
3724 * of cancelling a record written into the log. The first pass
3725 * determines those things which have been cancelled, and the
3726 * second pass replays log items normally except for those which
3727 * have been cancelled. The handling of the replay and cancellations
3728 * takes place in the log item type specific routines.
3730 * The table of items which have cancel records in the log is allocated
3731 * and freed at this level, since only here do we know when all of
3732 * the log recovery has been completed.
3735 xlog_do_log_recovery(
3737 xfs_daddr_t head_blk
,
3738 xfs_daddr_t tail_blk
)
3742 ASSERT(head_blk
!= tail_blk
);
3745 * First do a pass to find all of the cancelled buf log items.
3746 * Store them in the buf_cancel_table for use in the second pass.
3748 log
->l_buf_cancel_table
=
3749 (xfs_buf_cancel_t
**)kmem_zalloc(XLOG_BC_TABLE_SIZE
*
3750 sizeof(xfs_buf_cancel_t
*),
3752 error
= xlog_do_recovery_pass(log
, head_blk
, tail_blk
,
3753 XLOG_RECOVER_PASS1
);
3755 kmem_free(log
->l_buf_cancel_table
);
3756 log
->l_buf_cancel_table
= NULL
;
3760 * Then do a second pass to actually recover the items in the log.
3761 * When it is complete free the table of buf cancel items.
3763 error
= xlog_do_recovery_pass(log
, head_blk
, tail_blk
,
3764 XLOG_RECOVER_PASS2
);
3769 for (i
= 0; i
< XLOG_BC_TABLE_SIZE
; i
++)
3770 ASSERT(log
->l_buf_cancel_table
[i
] == NULL
);
3774 kmem_free(log
->l_buf_cancel_table
);
3775 log
->l_buf_cancel_table
= NULL
;
3781 * Do the actual recovery
3786 xfs_daddr_t head_blk
,
3787 xfs_daddr_t tail_blk
)
3794 * First replay the images in the log.
3796 error
= xlog_do_log_recovery(log
, head_blk
, tail_blk
);
3801 XFS_bflush(log
->l_mp
->m_ddev_targp
);
3804 * If IO errors happened during recovery, bail out.
3806 if (XFS_FORCED_SHUTDOWN(log
->l_mp
)) {
3811 * We now update the tail_lsn since much of the recovery has completed
3812 * and there may be space available to use. If there were no extent
3813 * or iunlinks, we can free up the entire log and set the tail_lsn to
3814 * be the last_sync_lsn. This was set in xlog_find_tail to be the
3815 * lsn of the last known good LR on disk. If there are extent frees
3816 * or iunlinks they will have some entries in the AIL; so we look at
3817 * the AIL to determine how to set the tail_lsn.
3819 xlog_assign_tail_lsn(log
->l_mp
);
3822 * Now that we've finished replaying all buffer and inode
3823 * updates, re-read in the superblock.
3825 bp
= xfs_getsb(log
->l_mp
, 0);
3827 ASSERT(!(XFS_BUF_ISWRITE(bp
)));
3828 ASSERT(!(XFS_BUF_ISDELAYWRITE(bp
)));
3830 XFS_BUF_UNASYNC(bp
);
3831 xfsbdstrat(log
->l_mp
, bp
);
3832 error
= xfs_iowait(bp
);
3834 xfs_ioerror_alert("xlog_do_recover",
3835 log
->l_mp
, bp
, XFS_BUF_ADDR(bp
));
3841 /* Convert superblock from on-disk format */
3842 sbp
= &log
->l_mp
->m_sb
;
3843 xfs_sb_from_disk(sbp
, XFS_BUF_TO_SBP(bp
));
3844 ASSERT(sbp
->sb_magicnum
== XFS_SB_MAGIC
);
3845 ASSERT(xfs_sb_good_version(sbp
));
3848 /* We've re-read the superblock so re-initialize per-cpu counters */
3849 xfs_icsb_reinit_counters(log
->l_mp
);
3851 xlog_recover_check_summary(log
);
3853 /* Normal transactions can now occur */
3854 log
->l_flags
&= ~XLOG_ACTIVE_RECOVERY
;
3859 * Perform recovery and re-initialize some log variables in xlog_find_tail.
3861 * Return error or zero.
3867 xfs_daddr_t head_blk
, tail_blk
;
3870 /* find the tail of the log */
3871 if ((error
= xlog_find_tail(log
, &head_blk
, &tail_blk
)))
3874 if (tail_blk
!= head_blk
) {
3875 /* There used to be a comment here:
3877 * disallow recovery on read-only mounts. note -- mount
3878 * checks for ENOSPC and turns it into an intelligent
3880 * ...but this is no longer true. Now, unless you specify
3881 * NORECOVERY (in which case this function would never be
3882 * called), we just go ahead and recover. We do this all
3883 * under the vfs layer, so we can get away with it unless
3884 * the device itself is read-only, in which case we fail.
3886 if ((error
= xfs_dev_is_read_only(log
->l_mp
, "recovery"))) {
3891 "Starting XFS recovery on filesystem: %s (logdev: %s)",
3892 log
->l_mp
->m_fsname
, log
->l_mp
->m_logname
?
3893 log
->l_mp
->m_logname
: "internal");
3895 error
= xlog_do_recover(log
, head_blk
, tail_blk
);
3896 log
->l_flags
|= XLOG_RECOVERY_NEEDED
;
3902 * In the first part of recovery we replay inodes and buffers and build
3903 * up the list of extent free items which need to be processed. Here
3904 * we process the extent free items and clean up the on disk unlinked
3905 * inode lists. This is separated from the first part of recovery so
3906 * that the root and real-time bitmap inodes can be read in from disk in
3907 * between the two stages. This is necessary so that we can free space
3908 * in the real-time portion of the file system.
3911 xlog_recover_finish(
3915 * Now we're ready to do the transactions needed for the
3916 * rest of recovery. Start with completing all the extent
3917 * free intent records and then process the unlinked inode
3918 * lists. At this point, we essentially run in normal mode
3919 * except that we're still performing recovery actions
3920 * rather than accepting new requests.
3922 if (log
->l_flags
& XLOG_RECOVERY_NEEDED
) {
3924 error
= xlog_recover_process_efis(log
);
3927 "Failed to recover EFIs on filesystem: %s",
3928 log
->l_mp
->m_fsname
);
3932 * Sync the log to get all the EFIs out of the AIL.
3933 * This isn't absolutely necessary, but it helps in
3934 * case the unlink transactions would have problems
3935 * pushing the EFIs out of the way.
3937 xfs_log_force(log
->l_mp
, XFS_LOG_SYNC
);
3939 xlog_recover_process_iunlinks(log
);
3941 xlog_recover_check_summary(log
);
3944 "Ending XFS recovery on filesystem: %s (logdev: %s)",
3945 log
->l_mp
->m_fsname
, log
->l_mp
->m_logname
?
3946 log
->l_mp
->m_logname
: "internal");
3947 log
->l_flags
&= ~XLOG_RECOVERY_NEEDED
;
3950 "!Ending clean XFS mount for filesystem: %s\n",
3951 log
->l_mp
->m_fsname
);
3959 * Read all of the agf and agi counters and check that they
3960 * are consistent with the superblock counters.
3963 xlog_recover_check_summary(
3970 xfs_agnumber_t agno
;
3971 __uint64_t freeblks
;
3981 for (agno
= 0; agno
< mp
->m_sb
.sb_agcount
; agno
++) {
3982 error
= xfs_read_agf(mp
, NULL
, agno
, 0, &agfbp
);
3984 xfs_fs_cmn_err(CE_ALERT
, mp
,
3985 "xlog_recover_check_summary(agf)"
3986 "agf read failed agno %d error %d",
3989 agfp
= XFS_BUF_TO_AGF(agfbp
);
3990 freeblks
+= be32_to_cpu(agfp
->agf_freeblks
) +
3991 be32_to_cpu(agfp
->agf_flcount
);
3992 xfs_buf_relse(agfbp
);
3995 error
= xfs_read_agi(mp
, NULL
, agno
, &agibp
);
3997 struct xfs_agi
*agi
= XFS_BUF_TO_AGI(agibp
);
3999 itotal
+= be32_to_cpu(agi
->agi_count
);
4000 ifree
+= be32_to_cpu(agi
->agi_freecount
);
4001 xfs_buf_relse(agibp
);