2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
20 #include "xfs_types.h"
24 #include "xfs_trans.h"
28 #include "xfs_dmapi.h"
29 #include "xfs_mount.h"
30 #include "xfs_bmap_btree.h"
31 #include "xfs_alloc_btree.h"
32 #include "xfs_ialloc_btree.h"
33 #include "xfs_dir2_sf.h"
34 #include "xfs_attr_sf.h"
35 #include "xfs_dinode.h"
36 #include "xfs_inode.h"
37 #include "xfs_btree.h"
38 #include "xfs_ialloc.h"
39 #include "xfs_alloc.h"
40 #include "xfs_rtalloc.h"
42 #include "xfs_error.h"
44 #include "xfs_quota.h"
45 #include "xfs_fsops.h"
46 #include "xfs_utils.h"
47 #include "xfs_trace.h"
50 STATIC
void xfs_unmountfs_wait(xfs_mount_t
*);
54 STATIC
void xfs_icsb_balance_counter(xfs_mount_t
*, xfs_sb_field_t
,
56 STATIC
void xfs_icsb_balance_counter_locked(xfs_mount_t
*, xfs_sb_field_t
,
58 STATIC
int xfs_icsb_modify_counters(xfs_mount_t
*, xfs_sb_field_t
,
60 STATIC
void xfs_icsb_disable_counter(xfs_mount_t
*, xfs_sb_field_t
);
64 #define xfs_icsb_balance_counter(mp, a, b) do { } while (0)
65 #define xfs_icsb_balance_counter_locked(mp, a, b) do { } while (0)
66 #define xfs_icsb_modify_counters(mp, a, b, c) do { } while (0)
72 short type
; /* 0 = integer
73 * 1 = binary / string (no translation)
76 { offsetof(xfs_sb_t
, sb_magicnum
), 0 },
77 { offsetof(xfs_sb_t
, sb_blocksize
), 0 },
78 { offsetof(xfs_sb_t
, sb_dblocks
), 0 },
79 { offsetof(xfs_sb_t
, sb_rblocks
), 0 },
80 { offsetof(xfs_sb_t
, sb_rextents
), 0 },
81 { offsetof(xfs_sb_t
, sb_uuid
), 1 },
82 { offsetof(xfs_sb_t
, sb_logstart
), 0 },
83 { offsetof(xfs_sb_t
, sb_rootino
), 0 },
84 { offsetof(xfs_sb_t
, sb_rbmino
), 0 },
85 { offsetof(xfs_sb_t
, sb_rsumino
), 0 },
86 { offsetof(xfs_sb_t
, sb_rextsize
), 0 },
87 { offsetof(xfs_sb_t
, sb_agblocks
), 0 },
88 { offsetof(xfs_sb_t
, sb_agcount
), 0 },
89 { offsetof(xfs_sb_t
, sb_rbmblocks
), 0 },
90 { offsetof(xfs_sb_t
, sb_logblocks
), 0 },
91 { offsetof(xfs_sb_t
, sb_versionnum
), 0 },
92 { offsetof(xfs_sb_t
, sb_sectsize
), 0 },
93 { offsetof(xfs_sb_t
, sb_inodesize
), 0 },
94 { offsetof(xfs_sb_t
, sb_inopblock
), 0 },
95 { offsetof(xfs_sb_t
, sb_fname
[0]), 1 },
96 { offsetof(xfs_sb_t
, sb_blocklog
), 0 },
97 { offsetof(xfs_sb_t
, sb_sectlog
), 0 },
98 { offsetof(xfs_sb_t
, sb_inodelog
), 0 },
99 { offsetof(xfs_sb_t
, sb_inopblog
), 0 },
100 { offsetof(xfs_sb_t
, sb_agblklog
), 0 },
101 { offsetof(xfs_sb_t
, sb_rextslog
), 0 },
102 { offsetof(xfs_sb_t
, sb_inprogress
), 0 },
103 { offsetof(xfs_sb_t
, sb_imax_pct
), 0 },
104 { offsetof(xfs_sb_t
, sb_icount
), 0 },
105 { offsetof(xfs_sb_t
, sb_ifree
), 0 },
106 { offsetof(xfs_sb_t
, sb_fdblocks
), 0 },
107 { offsetof(xfs_sb_t
, sb_frextents
), 0 },
108 { offsetof(xfs_sb_t
, sb_uquotino
), 0 },
109 { offsetof(xfs_sb_t
, sb_gquotino
), 0 },
110 { offsetof(xfs_sb_t
, sb_qflags
), 0 },
111 { offsetof(xfs_sb_t
, sb_flags
), 0 },
112 { offsetof(xfs_sb_t
, sb_shared_vn
), 0 },
113 { offsetof(xfs_sb_t
, sb_inoalignmt
), 0 },
114 { offsetof(xfs_sb_t
, sb_unit
), 0 },
115 { offsetof(xfs_sb_t
, sb_width
), 0 },
116 { offsetof(xfs_sb_t
, sb_dirblklog
), 0 },
117 { offsetof(xfs_sb_t
, sb_logsectlog
), 0 },
118 { offsetof(xfs_sb_t
, sb_logsectsize
),0 },
119 { offsetof(xfs_sb_t
, sb_logsunit
), 0 },
120 { offsetof(xfs_sb_t
, sb_features2
), 0 },
121 { offsetof(xfs_sb_t
, sb_bad_features2
), 0 },
122 { sizeof(xfs_sb_t
), 0 }
125 static DEFINE_MUTEX(xfs_uuid_table_mutex
);
126 static int xfs_uuid_table_size
;
127 static uuid_t
*xfs_uuid_table
;
130 * See if the UUID is unique among mounted XFS filesystems.
131 * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
135 struct xfs_mount
*mp
)
137 uuid_t
*uuid
= &mp
->m_sb
.sb_uuid
;
140 if (mp
->m_flags
& XFS_MOUNT_NOUUID
)
143 if (uuid_is_nil(uuid
)) {
145 "XFS: Filesystem %s has nil UUID - can't mount",
147 return XFS_ERROR(EINVAL
);
150 mutex_lock(&xfs_uuid_table_mutex
);
151 for (i
= 0, hole
= -1; i
< xfs_uuid_table_size
; i
++) {
152 if (uuid_is_nil(&xfs_uuid_table
[i
])) {
156 if (uuid_equal(uuid
, &xfs_uuid_table
[i
]))
161 xfs_uuid_table
= kmem_realloc(xfs_uuid_table
,
162 (xfs_uuid_table_size
+ 1) * sizeof(*xfs_uuid_table
),
163 xfs_uuid_table_size
* sizeof(*xfs_uuid_table
),
165 hole
= xfs_uuid_table_size
++;
167 xfs_uuid_table
[hole
] = *uuid
;
168 mutex_unlock(&xfs_uuid_table_mutex
);
173 mutex_unlock(&xfs_uuid_table_mutex
);
174 cmn_err(CE_WARN
, "XFS: Filesystem %s has duplicate UUID - can't mount",
176 return XFS_ERROR(EINVAL
);
181 struct xfs_mount
*mp
)
183 uuid_t
*uuid
= &mp
->m_sb
.sb_uuid
;
186 if (mp
->m_flags
& XFS_MOUNT_NOUUID
)
189 mutex_lock(&xfs_uuid_table_mutex
);
190 for (i
= 0; i
< xfs_uuid_table_size
; i
++) {
191 if (uuid_is_nil(&xfs_uuid_table
[i
]))
193 if (!uuid_equal(uuid
, &xfs_uuid_table
[i
]))
195 memset(&xfs_uuid_table
[i
], 0, sizeof(uuid_t
));
198 ASSERT(i
< xfs_uuid_table_size
);
199 mutex_unlock(&xfs_uuid_table_mutex
);
204 * Reference counting access wrappers to the perag structures.
207 xfs_perag_get(struct xfs_mount
*mp
, xfs_agnumber_t agno
)
209 struct xfs_perag
*pag
;
212 spin_lock(&mp
->m_perag_lock
);
213 pag
= radix_tree_lookup(&mp
->m_perag_tree
, agno
);
215 ASSERT(atomic_read(&pag
->pag_ref
) >= 0);
216 /* catch leaks in the positive direction during testing */
217 ASSERT(atomic_read(&pag
->pag_ref
) < 1000);
218 ref
= atomic_inc_return(&pag
->pag_ref
);
220 spin_unlock(&mp
->m_perag_lock
);
221 trace_xfs_perag_get(mp
, agno
, ref
, _RET_IP_
);
226 xfs_perag_put(struct xfs_perag
*pag
)
230 ASSERT(atomic_read(&pag
->pag_ref
) > 0);
231 ref
= atomic_dec_return(&pag
->pag_ref
);
232 trace_xfs_perag_put(pag
->pag_mount
, pag
->pag_agno
, ref
, _RET_IP_
);
236 * Free up the resources associated with a mount structure. Assume that
237 * the structure was initially zeroed, so we can tell which fields got
245 struct xfs_perag
*pag
;
247 for (agno
= 0; agno
< mp
->m_sb
.sb_agcount
; agno
++) {
248 spin_lock(&mp
->m_perag_lock
);
249 pag
= radix_tree_delete(&mp
->m_perag_tree
, agno
);
251 ASSERT(atomic_read(&pag
->pag_ref
) == 0);
252 spin_unlock(&mp
->m_perag_lock
);
258 * Check size of device based on the (data/realtime) block count.
259 * Note: this check is used by the growfs code as well as mount.
262 xfs_sb_validate_fsb_count(
266 ASSERT(PAGE_SHIFT
>= sbp
->sb_blocklog
);
267 ASSERT(sbp
->sb_blocklog
>= BBSHIFT
);
269 #if XFS_BIG_BLKNOS /* Limited by ULONG_MAX of page cache index */
270 if (nblocks
>> (PAGE_CACHE_SHIFT
- sbp
->sb_blocklog
) > ULONG_MAX
)
272 #else /* Limited by UINT_MAX of sectors */
273 if (nblocks
<< (sbp
->sb_blocklog
- BBSHIFT
) > UINT_MAX
)
280 * Check the validity of the SB found.
283 xfs_mount_validate_sb(
289 * If the log device and data device have the
290 * same device number, the log is internal.
291 * Consequently, the sb_logstart should be non-zero. If
292 * we have a zero sb_logstart in this case, we may be trying to mount
293 * a volume filesystem in a non-volume manner.
295 if (sbp
->sb_magicnum
!= XFS_SB_MAGIC
) {
296 xfs_fs_mount_cmn_err(flags
, "bad magic number");
297 return XFS_ERROR(EWRONGFS
);
300 if (!xfs_sb_good_version(sbp
)) {
301 xfs_fs_mount_cmn_err(flags
, "bad version");
302 return XFS_ERROR(EWRONGFS
);
306 sbp
->sb_logstart
== 0 && mp
->m_logdev_targp
== mp
->m_ddev_targp
)) {
307 xfs_fs_mount_cmn_err(flags
,
308 "filesystem is marked as having an external log; "
309 "specify logdev on the\nmount command line.");
310 return XFS_ERROR(EINVAL
);
314 sbp
->sb_logstart
!= 0 && mp
->m_logdev_targp
!= mp
->m_ddev_targp
)) {
315 xfs_fs_mount_cmn_err(flags
,
316 "filesystem is marked as having an internal log; "
317 "do not specify logdev on\nthe mount command line.");
318 return XFS_ERROR(EINVAL
);
322 * More sanity checking. These were stolen directly from
326 sbp
->sb_agcount
<= 0 ||
327 sbp
->sb_sectsize
< XFS_MIN_SECTORSIZE
||
328 sbp
->sb_sectsize
> XFS_MAX_SECTORSIZE
||
329 sbp
->sb_sectlog
< XFS_MIN_SECTORSIZE_LOG
||
330 sbp
->sb_sectlog
> XFS_MAX_SECTORSIZE_LOG
||
331 sbp
->sb_sectsize
!= (1 << sbp
->sb_sectlog
) ||
332 sbp
->sb_blocksize
< XFS_MIN_BLOCKSIZE
||
333 sbp
->sb_blocksize
> XFS_MAX_BLOCKSIZE
||
334 sbp
->sb_blocklog
< XFS_MIN_BLOCKSIZE_LOG
||
335 sbp
->sb_blocklog
> XFS_MAX_BLOCKSIZE_LOG
||
336 sbp
->sb_blocksize
!= (1 << sbp
->sb_blocklog
) ||
337 sbp
->sb_inodesize
< XFS_DINODE_MIN_SIZE
||
338 sbp
->sb_inodesize
> XFS_DINODE_MAX_SIZE
||
339 sbp
->sb_inodelog
< XFS_DINODE_MIN_LOG
||
340 sbp
->sb_inodelog
> XFS_DINODE_MAX_LOG
||
341 sbp
->sb_inodesize
!= (1 << sbp
->sb_inodelog
) ||
342 (sbp
->sb_blocklog
- sbp
->sb_inodelog
!= sbp
->sb_inopblog
) ||
343 (sbp
->sb_rextsize
* sbp
->sb_blocksize
> XFS_MAX_RTEXTSIZE
) ||
344 (sbp
->sb_rextsize
* sbp
->sb_blocksize
< XFS_MIN_RTEXTSIZE
) ||
345 (sbp
->sb_imax_pct
> 100 /* zero sb_imax_pct is valid */))) {
346 xfs_fs_mount_cmn_err(flags
, "SB sanity check 1 failed");
347 return XFS_ERROR(EFSCORRUPTED
);
351 * Sanity check AG count, size fields against data size field
354 sbp
->sb_dblocks
== 0 ||
356 (xfs_drfsbno_t
)sbp
->sb_agcount
* sbp
->sb_agblocks
||
357 sbp
->sb_dblocks
< (xfs_drfsbno_t
)(sbp
->sb_agcount
- 1) *
358 sbp
->sb_agblocks
+ XFS_MIN_AG_BLOCKS
)) {
359 xfs_fs_mount_cmn_err(flags
, "SB sanity check 2 failed");
360 return XFS_ERROR(EFSCORRUPTED
);
364 * Until this is fixed only page-sized or smaller data blocks work.
366 if (unlikely(sbp
->sb_blocksize
> PAGE_SIZE
)) {
367 xfs_fs_mount_cmn_err(flags
,
368 "file system with blocksize %d bytes",
370 xfs_fs_mount_cmn_err(flags
,
371 "only pagesize (%ld) or less will currently work.",
373 return XFS_ERROR(ENOSYS
);
377 * Currently only very few inode sizes are supported.
379 switch (sbp
->sb_inodesize
) {
386 xfs_fs_mount_cmn_err(flags
,
387 "inode size of %d bytes not supported",
389 return XFS_ERROR(ENOSYS
);
392 if (xfs_sb_validate_fsb_count(sbp
, sbp
->sb_dblocks
) ||
393 xfs_sb_validate_fsb_count(sbp
, sbp
->sb_rblocks
)) {
394 xfs_fs_mount_cmn_err(flags
,
395 "file system too large to be mounted on this system.");
396 return XFS_ERROR(EFBIG
);
399 if (unlikely(sbp
->sb_inprogress
)) {
400 xfs_fs_mount_cmn_err(flags
, "file system busy");
401 return XFS_ERROR(EFSCORRUPTED
);
405 * Version 1 directory format has never worked on Linux.
407 if (unlikely(!xfs_sb_version_hasdirv2(sbp
))) {
408 xfs_fs_mount_cmn_err(flags
,
409 "file system using version 1 directory format");
410 return XFS_ERROR(ENOSYS
);
417 xfs_initialize_perag(
419 xfs_agnumber_t agcount
,
420 xfs_agnumber_t
*maxagi
)
422 xfs_agnumber_t index
, max_metadata
;
423 xfs_agnumber_t first_initialised
= 0;
427 xfs_sb_t
*sbp
= &mp
->m_sb
;
431 * Walk the current per-ag tree so we don't try to initialise AGs
432 * that already exist (growfs case). Allocate and insert all the
433 * AGs we don't find ready for initialisation.
435 for (index
= 0; index
< agcount
; index
++) {
436 pag
= xfs_perag_get(mp
, index
);
441 if (!first_initialised
)
442 first_initialised
= index
;
444 pag
= kmem_zalloc(sizeof(*pag
), KM_MAYFAIL
);
447 pag
->pag_agno
= index
;
449 rwlock_init(&pag
->pag_ici_lock
);
450 INIT_RADIX_TREE(&pag
->pag_ici_root
, GFP_ATOMIC
);
452 if (radix_tree_preload(GFP_NOFS
))
455 spin_lock(&mp
->m_perag_lock
);
456 if (radix_tree_insert(&mp
->m_perag_tree
, index
, pag
)) {
458 spin_unlock(&mp
->m_perag_lock
);
459 radix_tree_preload_end();
463 spin_unlock(&mp
->m_perag_lock
);
464 radix_tree_preload_end();
468 * If we mount with the inode64 option, or no inode overflows
469 * the legacy 32-bit address space clear the inode32 option.
471 agino
= XFS_OFFBNO_TO_AGINO(mp
, sbp
->sb_agblocks
- 1, 0);
472 ino
= XFS_AGINO_TO_INO(mp
, agcount
- 1, agino
);
474 if ((mp
->m_flags
& XFS_MOUNT_SMALL_INUMS
) && ino
> XFS_MAXINUMBER_32
)
475 mp
->m_flags
|= XFS_MOUNT_32BITINODES
;
477 mp
->m_flags
&= ~XFS_MOUNT_32BITINODES
;
479 if (mp
->m_flags
& XFS_MOUNT_32BITINODES
) {
481 * Calculate how much should be reserved for inodes to meet
482 * the max inode percentage.
484 if (mp
->m_maxicount
) {
487 icount
= sbp
->sb_dblocks
* sbp
->sb_imax_pct
;
489 icount
+= sbp
->sb_agblocks
- 1;
490 do_div(icount
, sbp
->sb_agblocks
);
491 max_metadata
= icount
;
493 max_metadata
= agcount
;
496 for (index
= 0; index
< agcount
; index
++) {
497 ino
= XFS_AGINO_TO_INO(mp
, index
, agino
);
498 if (ino
> XFS_MAXINUMBER_32
) {
503 pag
= xfs_perag_get(mp
, index
);
504 pag
->pagi_inodeok
= 1;
505 if (index
< max_metadata
)
506 pag
->pagf_metadata
= 1;
510 for (index
= 0; index
< agcount
; index
++) {
511 pag
= xfs_perag_get(mp
, index
);
512 pag
->pagi_inodeok
= 1;
523 for (; index
> first_initialised
; index
--) {
524 pag
= radix_tree_delete(&mp
->m_perag_tree
, index
);
535 to
->sb_magicnum
= be32_to_cpu(from
->sb_magicnum
);
536 to
->sb_blocksize
= be32_to_cpu(from
->sb_blocksize
);
537 to
->sb_dblocks
= be64_to_cpu(from
->sb_dblocks
);
538 to
->sb_rblocks
= be64_to_cpu(from
->sb_rblocks
);
539 to
->sb_rextents
= be64_to_cpu(from
->sb_rextents
);
540 memcpy(&to
->sb_uuid
, &from
->sb_uuid
, sizeof(to
->sb_uuid
));
541 to
->sb_logstart
= be64_to_cpu(from
->sb_logstart
);
542 to
->sb_rootino
= be64_to_cpu(from
->sb_rootino
);
543 to
->sb_rbmino
= be64_to_cpu(from
->sb_rbmino
);
544 to
->sb_rsumino
= be64_to_cpu(from
->sb_rsumino
);
545 to
->sb_rextsize
= be32_to_cpu(from
->sb_rextsize
);
546 to
->sb_agblocks
= be32_to_cpu(from
->sb_agblocks
);
547 to
->sb_agcount
= be32_to_cpu(from
->sb_agcount
);
548 to
->sb_rbmblocks
= be32_to_cpu(from
->sb_rbmblocks
);
549 to
->sb_logblocks
= be32_to_cpu(from
->sb_logblocks
);
550 to
->sb_versionnum
= be16_to_cpu(from
->sb_versionnum
);
551 to
->sb_sectsize
= be16_to_cpu(from
->sb_sectsize
);
552 to
->sb_inodesize
= be16_to_cpu(from
->sb_inodesize
);
553 to
->sb_inopblock
= be16_to_cpu(from
->sb_inopblock
);
554 memcpy(&to
->sb_fname
, &from
->sb_fname
, sizeof(to
->sb_fname
));
555 to
->sb_blocklog
= from
->sb_blocklog
;
556 to
->sb_sectlog
= from
->sb_sectlog
;
557 to
->sb_inodelog
= from
->sb_inodelog
;
558 to
->sb_inopblog
= from
->sb_inopblog
;
559 to
->sb_agblklog
= from
->sb_agblklog
;
560 to
->sb_rextslog
= from
->sb_rextslog
;
561 to
->sb_inprogress
= from
->sb_inprogress
;
562 to
->sb_imax_pct
= from
->sb_imax_pct
;
563 to
->sb_icount
= be64_to_cpu(from
->sb_icount
);
564 to
->sb_ifree
= be64_to_cpu(from
->sb_ifree
);
565 to
->sb_fdblocks
= be64_to_cpu(from
->sb_fdblocks
);
566 to
->sb_frextents
= be64_to_cpu(from
->sb_frextents
);
567 to
->sb_uquotino
= be64_to_cpu(from
->sb_uquotino
);
568 to
->sb_gquotino
= be64_to_cpu(from
->sb_gquotino
);
569 to
->sb_qflags
= be16_to_cpu(from
->sb_qflags
);
570 to
->sb_flags
= from
->sb_flags
;
571 to
->sb_shared_vn
= from
->sb_shared_vn
;
572 to
->sb_inoalignmt
= be32_to_cpu(from
->sb_inoalignmt
);
573 to
->sb_unit
= be32_to_cpu(from
->sb_unit
);
574 to
->sb_width
= be32_to_cpu(from
->sb_width
);
575 to
->sb_dirblklog
= from
->sb_dirblklog
;
576 to
->sb_logsectlog
= from
->sb_logsectlog
;
577 to
->sb_logsectsize
= be16_to_cpu(from
->sb_logsectsize
);
578 to
->sb_logsunit
= be32_to_cpu(from
->sb_logsunit
);
579 to
->sb_features2
= be32_to_cpu(from
->sb_features2
);
580 to
->sb_bad_features2
= be32_to_cpu(from
->sb_bad_features2
);
584 * Copy in core superblock to ondisk one.
586 * The fields argument is mask of superblock fields to copy.
594 xfs_caddr_t to_ptr
= (xfs_caddr_t
)to
;
595 xfs_caddr_t from_ptr
= (xfs_caddr_t
)from
;
605 f
= (xfs_sb_field_t
)xfs_lowbit64((__uint64_t
)fields
);
606 first
= xfs_sb_info
[f
].offset
;
607 size
= xfs_sb_info
[f
+ 1].offset
- first
;
609 ASSERT(xfs_sb_info
[f
].type
== 0 || xfs_sb_info
[f
].type
== 1);
611 if (size
== 1 || xfs_sb_info
[f
].type
== 1) {
612 memcpy(to_ptr
+ first
, from_ptr
+ first
, size
);
616 *(__be16
*)(to_ptr
+ first
) =
617 cpu_to_be16(*(__u16
*)(from_ptr
+ first
));
620 *(__be32
*)(to_ptr
+ first
) =
621 cpu_to_be32(*(__u32
*)(from_ptr
+ first
));
624 *(__be64
*)(to_ptr
+ first
) =
625 cpu_to_be64(*(__u64
*)(from_ptr
+ first
));
632 fields
&= ~(1LL << f
);
639 * Does the initial read of the superblock.
642 xfs_readsb(xfs_mount_t
*mp
, int flags
)
644 unsigned int sector_size
;
645 unsigned int extra_flags
;
649 ASSERT(mp
->m_sb_bp
== NULL
);
650 ASSERT(mp
->m_ddev_targp
!= NULL
);
653 * Allocate a (locked) buffer to hold the superblock.
654 * This will be kept around at all times to optimize
655 * access to the superblock.
657 sector_size
= xfs_getsize_buftarg(mp
->m_ddev_targp
);
658 extra_flags
= XBF_LOCK
| XBF_FS_MANAGED
| XBF_MAPPED
;
660 bp
= xfs_buf_read(mp
->m_ddev_targp
, XFS_SB_DADDR
, BTOBB(sector_size
),
662 if (!bp
|| XFS_BUF_ISERROR(bp
)) {
663 xfs_fs_mount_cmn_err(flags
, "SB read failed");
664 error
= bp
? XFS_BUF_GETERROR(bp
) : ENOMEM
;
667 ASSERT(XFS_BUF_ISBUSY(bp
));
668 ASSERT(XFS_BUF_VALUSEMA(bp
) <= 0);
671 * Initialize the mount structure from the superblock.
672 * But first do some basic consistency checking.
674 xfs_sb_from_disk(&mp
->m_sb
, XFS_BUF_TO_SBP(bp
));
676 error
= xfs_mount_validate_sb(mp
, &(mp
->m_sb
), flags
);
678 xfs_fs_mount_cmn_err(flags
, "SB validate failed");
683 * We must be able to do sector-sized and sector-aligned IO.
685 if (sector_size
> mp
->m_sb
.sb_sectsize
) {
686 xfs_fs_mount_cmn_err(flags
,
687 "device supports only %u byte sectors (not %u)",
688 sector_size
, mp
->m_sb
.sb_sectsize
);
694 * If device sector size is smaller than the superblock size,
695 * re-read the superblock so the buffer is correctly sized.
697 if (sector_size
< mp
->m_sb
.sb_sectsize
) {
698 XFS_BUF_UNMANAGE(bp
);
700 sector_size
= mp
->m_sb
.sb_sectsize
;
701 bp
= xfs_buf_read(mp
->m_ddev_targp
, XFS_SB_DADDR
,
702 BTOBB(sector_size
), extra_flags
);
703 if (!bp
|| XFS_BUF_ISERROR(bp
)) {
704 xfs_fs_mount_cmn_err(flags
, "SB re-read failed");
705 error
= bp
? XFS_BUF_GETERROR(bp
) : ENOMEM
;
708 ASSERT(XFS_BUF_ISBUSY(bp
));
709 ASSERT(XFS_BUF_VALUSEMA(bp
) <= 0);
712 /* Initialize per-cpu counters */
713 xfs_icsb_reinit_counters(mp
);
717 ASSERT(XFS_BUF_VALUSEMA(bp
) > 0);
722 XFS_BUF_UNMANAGE(bp
);
732 * Mount initialization code establishing various mount
733 * fields from the superblock associated with the given
737 xfs_mount_common(xfs_mount_t
*mp
, xfs_sb_t
*sbp
)
739 mp
->m_agfrotor
= mp
->m_agirotor
= 0;
740 spin_lock_init(&mp
->m_agirotor_lock
);
741 mp
->m_maxagi
= mp
->m_sb
.sb_agcount
;
742 mp
->m_blkbit_log
= sbp
->sb_blocklog
+ XFS_NBBYLOG
;
743 mp
->m_blkbb_log
= sbp
->sb_blocklog
- BBSHIFT
;
744 mp
->m_sectbb_log
= sbp
->sb_sectlog
- BBSHIFT
;
745 mp
->m_agno_log
= xfs_highbit32(sbp
->sb_agcount
- 1) + 1;
746 mp
->m_agino_log
= sbp
->sb_inopblog
+ sbp
->sb_agblklog
;
747 mp
->m_blockmask
= sbp
->sb_blocksize
- 1;
748 mp
->m_blockwsize
= sbp
->sb_blocksize
>> XFS_WORDLOG
;
749 mp
->m_blockwmask
= mp
->m_blockwsize
- 1;
751 mp
->m_alloc_mxr
[0] = xfs_allocbt_maxrecs(mp
, sbp
->sb_blocksize
, 1);
752 mp
->m_alloc_mxr
[1] = xfs_allocbt_maxrecs(mp
, sbp
->sb_blocksize
, 0);
753 mp
->m_alloc_mnr
[0] = mp
->m_alloc_mxr
[0] / 2;
754 mp
->m_alloc_mnr
[1] = mp
->m_alloc_mxr
[1] / 2;
756 mp
->m_inobt_mxr
[0] = xfs_inobt_maxrecs(mp
, sbp
->sb_blocksize
, 1);
757 mp
->m_inobt_mxr
[1] = xfs_inobt_maxrecs(mp
, sbp
->sb_blocksize
, 0);
758 mp
->m_inobt_mnr
[0] = mp
->m_inobt_mxr
[0] / 2;
759 mp
->m_inobt_mnr
[1] = mp
->m_inobt_mxr
[1] / 2;
761 mp
->m_bmap_dmxr
[0] = xfs_bmbt_maxrecs(mp
, sbp
->sb_blocksize
, 1);
762 mp
->m_bmap_dmxr
[1] = xfs_bmbt_maxrecs(mp
, sbp
->sb_blocksize
, 0);
763 mp
->m_bmap_dmnr
[0] = mp
->m_bmap_dmxr
[0] / 2;
764 mp
->m_bmap_dmnr
[1] = mp
->m_bmap_dmxr
[1] / 2;
766 mp
->m_bsize
= XFS_FSB_TO_BB(mp
, 1);
767 mp
->m_ialloc_inos
= (int)MAX((__uint16_t
)XFS_INODES_PER_CHUNK
,
769 mp
->m_ialloc_blks
= mp
->m_ialloc_inos
>> sbp
->sb_inopblog
;
773 * xfs_initialize_perag_data
775 * Read in each per-ag structure so we can count up the number of
776 * allocated inodes, free inodes and used filesystem blocks as this
777 * information is no longer persistent in the superblock. Once we have
778 * this information, write it into the in-core superblock structure.
781 xfs_initialize_perag_data(xfs_mount_t
*mp
, xfs_agnumber_t agcount
)
783 xfs_agnumber_t index
;
785 xfs_sb_t
*sbp
= &mp
->m_sb
;
789 uint64_t bfreelst
= 0;
793 for (index
= 0; index
< agcount
; index
++) {
795 * read the agf, then the agi. This gets us
796 * all the information we need and populates the
797 * per-ag structures for us.
799 error
= xfs_alloc_pagf_init(mp
, NULL
, index
, 0);
803 error
= xfs_ialloc_pagi_init(mp
, NULL
, index
);
806 pag
= xfs_perag_get(mp
, index
);
807 ifree
+= pag
->pagi_freecount
;
808 ialloc
+= pag
->pagi_count
;
809 bfree
+= pag
->pagf_freeblks
;
810 bfreelst
+= pag
->pagf_flcount
;
811 btree
+= pag
->pagf_btreeblks
;
815 * Overwrite incore superblock counters with just-read data
817 spin_lock(&mp
->m_sb_lock
);
818 sbp
->sb_ifree
= ifree
;
819 sbp
->sb_icount
= ialloc
;
820 sbp
->sb_fdblocks
= bfree
+ bfreelst
+ btree
;
821 spin_unlock(&mp
->m_sb_lock
);
823 /* Fixup the per-cpu counters as well. */
824 xfs_icsb_reinit_counters(mp
);
830 * Update alignment values based on mount options and sb values
833 xfs_update_alignment(xfs_mount_t
*mp
)
835 xfs_sb_t
*sbp
= &(mp
->m_sb
);
839 * If stripe unit and stripe width are not multiples
840 * of the fs blocksize turn off alignment.
842 if ((BBTOB(mp
->m_dalign
) & mp
->m_blockmask
) ||
843 (BBTOB(mp
->m_swidth
) & mp
->m_blockmask
)) {
844 if (mp
->m_flags
& XFS_MOUNT_RETERR
) {
846 "XFS: alignment check 1 failed");
847 return XFS_ERROR(EINVAL
);
849 mp
->m_dalign
= mp
->m_swidth
= 0;
852 * Convert the stripe unit and width to FSBs.
854 mp
->m_dalign
= XFS_BB_TO_FSBT(mp
, mp
->m_dalign
);
855 if (mp
->m_dalign
&& (sbp
->sb_agblocks
% mp
->m_dalign
)) {
856 if (mp
->m_flags
& XFS_MOUNT_RETERR
) {
857 return XFS_ERROR(EINVAL
);
859 xfs_fs_cmn_err(CE_WARN
, mp
,
860 "stripe alignment turned off: sunit(%d)/swidth(%d) incompatible with agsize(%d)",
861 mp
->m_dalign
, mp
->m_swidth
,
866 } else if (mp
->m_dalign
) {
867 mp
->m_swidth
= XFS_BB_TO_FSBT(mp
, mp
->m_swidth
);
869 if (mp
->m_flags
& XFS_MOUNT_RETERR
) {
870 xfs_fs_cmn_err(CE_WARN
, mp
,
871 "stripe alignment turned off: sunit(%d) less than bsize(%d)",
874 return XFS_ERROR(EINVAL
);
881 * Update superblock with new values
884 if (xfs_sb_version_hasdalign(sbp
)) {
885 if (sbp
->sb_unit
!= mp
->m_dalign
) {
886 sbp
->sb_unit
= mp
->m_dalign
;
887 mp
->m_update_flags
|= XFS_SB_UNIT
;
889 if (sbp
->sb_width
!= mp
->m_swidth
) {
890 sbp
->sb_width
= mp
->m_swidth
;
891 mp
->m_update_flags
|= XFS_SB_WIDTH
;
894 } else if ((mp
->m_flags
& XFS_MOUNT_NOALIGN
) != XFS_MOUNT_NOALIGN
&&
895 xfs_sb_version_hasdalign(&mp
->m_sb
)) {
896 mp
->m_dalign
= sbp
->sb_unit
;
897 mp
->m_swidth
= sbp
->sb_width
;
904 * Set the maximum inode count for this filesystem
907 xfs_set_maxicount(xfs_mount_t
*mp
)
909 xfs_sb_t
*sbp
= &(mp
->m_sb
);
912 if (sbp
->sb_imax_pct
) {
914 * Make sure the maximum inode count is a multiple
915 * of the units we allocate inodes in.
917 icount
= sbp
->sb_dblocks
* sbp
->sb_imax_pct
;
919 do_div(icount
, mp
->m_ialloc_blks
);
920 mp
->m_maxicount
= (icount
* mp
->m_ialloc_blks
) <<
928 * Set the default minimum read and write sizes unless
929 * already specified in a mount option.
930 * We use smaller I/O sizes when the file system
931 * is being used for NFS service (wsync mount option).
934 xfs_set_rw_sizes(xfs_mount_t
*mp
)
936 xfs_sb_t
*sbp
= &(mp
->m_sb
);
937 int readio_log
, writeio_log
;
939 if (!(mp
->m_flags
& XFS_MOUNT_DFLT_IOSIZE
)) {
940 if (mp
->m_flags
& XFS_MOUNT_WSYNC
) {
941 readio_log
= XFS_WSYNC_READIO_LOG
;
942 writeio_log
= XFS_WSYNC_WRITEIO_LOG
;
944 readio_log
= XFS_READIO_LOG_LARGE
;
945 writeio_log
= XFS_WRITEIO_LOG_LARGE
;
948 readio_log
= mp
->m_readio_log
;
949 writeio_log
= mp
->m_writeio_log
;
952 if (sbp
->sb_blocklog
> readio_log
) {
953 mp
->m_readio_log
= sbp
->sb_blocklog
;
955 mp
->m_readio_log
= readio_log
;
957 mp
->m_readio_blocks
= 1 << (mp
->m_readio_log
- sbp
->sb_blocklog
);
958 if (sbp
->sb_blocklog
> writeio_log
) {
959 mp
->m_writeio_log
= sbp
->sb_blocklog
;
961 mp
->m_writeio_log
= writeio_log
;
963 mp
->m_writeio_blocks
= 1 << (mp
->m_writeio_log
- sbp
->sb_blocklog
);
967 * Set whether we're using inode alignment.
970 xfs_set_inoalignment(xfs_mount_t
*mp
)
972 if (xfs_sb_version_hasalign(&mp
->m_sb
) &&
973 mp
->m_sb
.sb_inoalignmt
>=
974 XFS_B_TO_FSBT(mp
, mp
->m_inode_cluster_size
))
975 mp
->m_inoalign_mask
= mp
->m_sb
.sb_inoalignmt
- 1;
977 mp
->m_inoalign_mask
= 0;
979 * If we are using stripe alignment, check whether
980 * the stripe unit is a multiple of the inode alignment
982 if (mp
->m_dalign
&& mp
->m_inoalign_mask
&&
983 !(mp
->m_dalign
& mp
->m_inoalign_mask
))
984 mp
->m_sinoalign
= mp
->m_dalign
;
990 * Check that the data (and log if separate) are an ok size.
993 xfs_check_sizes(xfs_mount_t
*mp
)
999 d
= (xfs_daddr_t
)XFS_FSB_TO_BB(mp
, mp
->m_sb
.sb_dblocks
);
1000 if (XFS_BB_TO_FSB(mp
, d
) != mp
->m_sb
.sb_dblocks
) {
1001 cmn_err(CE_WARN
, "XFS: size check 1 failed");
1002 return XFS_ERROR(EFBIG
);
1004 error
= xfs_read_buf(mp
, mp
->m_ddev_targp
,
1005 d
- XFS_FSS_TO_BB(mp
, 1),
1006 XFS_FSS_TO_BB(mp
, 1), 0, &bp
);
1010 cmn_err(CE_WARN
, "XFS: size check 2 failed");
1011 if (error
== ENOSPC
)
1012 error
= XFS_ERROR(EFBIG
);
1016 if (mp
->m_logdev_targp
!= mp
->m_ddev_targp
) {
1017 d
= (xfs_daddr_t
)XFS_FSB_TO_BB(mp
, mp
->m_sb
.sb_logblocks
);
1018 if (XFS_BB_TO_FSB(mp
, d
) != mp
->m_sb
.sb_logblocks
) {
1019 cmn_err(CE_WARN
, "XFS: size check 3 failed");
1020 return XFS_ERROR(EFBIG
);
1022 error
= xfs_read_buf(mp
, mp
->m_logdev_targp
,
1023 d
- XFS_FSB_TO_BB(mp
, 1),
1024 XFS_FSB_TO_BB(mp
, 1), 0, &bp
);
1028 cmn_err(CE_WARN
, "XFS: size check 3 failed");
1029 if (error
== ENOSPC
)
1030 error
= XFS_ERROR(EFBIG
);
1038 * Clear the quotaflags in memory and in the superblock.
1041 xfs_mount_reset_sbqflags(
1042 struct xfs_mount
*mp
)
1045 struct xfs_trans
*tp
;
1050 * It is OK to look at sb_qflags here in mount path,
1051 * without m_sb_lock.
1053 if (mp
->m_sb
.sb_qflags
== 0)
1055 spin_lock(&mp
->m_sb_lock
);
1056 mp
->m_sb
.sb_qflags
= 0;
1057 spin_unlock(&mp
->m_sb_lock
);
1060 * If the fs is readonly, let the incore superblock run
1061 * with quotas off but don't flush the update out to disk
1063 if (mp
->m_flags
& XFS_MOUNT_RDONLY
)
1067 xfs_fs_cmn_err(CE_NOTE
, mp
, "Writing superblock quota changes");
1070 tp
= xfs_trans_alloc(mp
, XFS_TRANS_QM_SBCHANGE
);
1071 error
= xfs_trans_reserve(tp
, 0, mp
->m_sb
.sb_sectsize
+ 128, 0, 0,
1072 XFS_DEFAULT_LOG_COUNT
);
1074 xfs_trans_cancel(tp
, 0);
1075 xfs_fs_cmn_err(CE_ALERT
, mp
,
1076 "xfs_mount_reset_sbqflags: Superblock update failed!");
1080 xfs_mod_sb(tp
, XFS_SB_QFLAGS
);
1081 return xfs_trans_commit(tp
, 0);
1085 xfs_default_resblks(xfs_mount_t
*mp
)
1090 * We default to 5% or 8192 fsbs of space reserved, whichever is
1091 * smaller. This is intended to cover concurrent allocation
1092 * transactions when we initially hit enospc. These each require a 4
1093 * block reservation. Hence by default we cover roughly 2000 concurrent
1094 * allocation reservations.
1096 resblks
= mp
->m_sb
.sb_dblocks
;
1097 do_div(resblks
, 20);
1098 resblks
= min_t(__uint64_t
, resblks
, 8192);
1103 * This function does the following on an initial mount of a file system:
1104 * - reads the superblock from disk and init the mount struct
1105 * - if we're a 32-bit kernel, do a size check on the superblock
1106 * so we don't mount terabyte filesystems
1107 * - init mount struct realtime fields
1108 * - allocate inode hash table for fs
1109 * - init directory manager
1110 * - perform recovery and init the log manager
1116 xfs_sb_t
*sbp
= &(mp
->m_sb
);
1119 uint quotamount
= 0;
1120 uint quotaflags
= 0;
1123 xfs_mount_common(mp
, sbp
);
1126 * Check for a mismatched features2 values. Older kernels
1127 * read & wrote into the wrong sb offset for sb_features2
1128 * on some platforms due to xfs_sb_t not being 64bit size aligned
1129 * when sb_features2 was added, which made older superblock
1130 * reading/writing routines swap it as a 64-bit value.
1132 * For backwards compatibility, we make both slots equal.
1134 * If we detect a mismatched field, we OR the set bits into the
1135 * existing features2 field in case it has already been modified; we
1136 * don't want to lose any features. We then update the bad location
1137 * with the ORed value so that older kernels will see any features2
1138 * flags, and mark the two fields as needing updates once the
1139 * transaction subsystem is online.
1141 if (xfs_sb_has_mismatched_features2(sbp
)) {
1143 "XFS: correcting sb_features alignment problem");
1144 sbp
->sb_features2
|= sbp
->sb_bad_features2
;
1145 sbp
->sb_bad_features2
= sbp
->sb_features2
;
1146 mp
->m_update_flags
|= XFS_SB_FEATURES2
| XFS_SB_BAD_FEATURES2
;
1149 * Re-check for ATTR2 in case it was found in bad_features2
1152 if (xfs_sb_version_hasattr2(&mp
->m_sb
) &&
1153 !(mp
->m_flags
& XFS_MOUNT_NOATTR2
))
1154 mp
->m_flags
|= XFS_MOUNT_ATTR2
;
1157 if (xfs_sb_version_hasattr2(&mp
->m_sb
) &&
1158 (mp
->m_flags
& XFS_MOUNT_NOATTR2
)) {
1159 xfs_sb_version_removeattr2(&mp
->m_sb
);
1160 mp
->m_update_flags
|= XFS_SB_FEATURES2
;
1162 /* update sb_versionnum for the clearing of the morebits */
1163 if (!sbp
->sb_features2
)
1164 mp
->m_update_flags
|= XFS_SB_VERSIONNUM
;
1168 * Check if sb_agblocks is aligned at stripe boundary
1169 * If sb_agblocks is NOT aligned turn off m_dalign since
1170 * allocator alignment is within an ag, therefore ag has
1171 * to be aligned at stripe boundary.
1173 error
= xfs_update_alignment(mp
);
1177 xfs_alloc_compute_maxlevels(mp
);
1178 xfs_bmap_compute_maxlevels(mp
, XFS_DATA_FORK
);
1179 xfs_bmap_compute_maxlevels(mp
, XFS_ATTR_FORK
);
1180 xfs_ialloc_compute_maxlevels(mp
);
1182 xfs_set_maxicount(mp
);
1184 mp
->m_maxioffset
= xfs_max_file_offset(sbp
->sb_blocklog
);
1186 error
= xfs_uuid_mount(mp
);
1191 * Set the minimum read and write sizes
1193 xfs_set_rw_sizes(mp
);
1196 * Set the inode cluster size.
1197 * This may still be overridden by the file system
1198 * block size if it is larger than the chosen cluster size.
1200 mp
->m_inode_cluster_size
= XFS_INODE_BIG_CLUSTER_SIZE
;
1203 * Set inode alignment fields
1205 xfs_set_inoalignment(mp
);
1208 * Check that the data (and log if separate) are an ok size.
1210 error
= xfs_check_sizes(mp
);
1212 goto out_remove_uuid
;
1215 * Initialize realtime fields in the mount structure
1217 error
= xfs_rtmount_init(mp
);
1219 cmn_err(CE_WARN
, "XFS: RT mount failed");
1220 goto out_remove_uuid
;
1224 * Copies the low order bits of the timestamp and the randomly
1225 * set "sequence" number out of a UUID.
1227 uuid_getnodeuniq(&sbp
->sb_uuid
, mp
->m_fixedfsid
);
1229 mp
->m_dmevmask
= 0; /* not persistent; set after each mount */
1234 * Initialize the attribute manager's entries.
1236 mp
->m_attr_magicpct
= (mp
->m_sb
.sb_blocksize
* 37) / 100;
1239 * Initialize the precomputed transaction reservations values.
1244 * Allocate and initialize the per-ag data.
1246 spin_lock_init(&mp
->m_perag_lock
);
1247 INIT_RADIX_TREE(&mp
->m_perag_tree
, GFP_ATOMIC
);
1248 error
= xfs_initialize_perag(mp
, sbp
->sb_agcount
, &mp
->m_maxagi
);
1250 cmn_err(CE_WARN
, "XFS: Failed per-ag init: %d", error
);
1251 goto out_remove_uuid
;
1254 if (!sbp
->sb_logblocks
) {
1255 cmn_err(CE_WARN
, "XFS: no log defined");
1256 XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW
, mp
);
1257 error
= XFS_ERROR(EFSCORRUPTED
);
1258 goto out_free_perag
;
1262 * log's mount-time initialization. Perform 1st part recovery if needed
1264 error
= xfs_log_mount(mp
, mp
->m_logdev_targp
,
1265 XFS_FSB_TO_DADDR(mp
, sbp
->sb_logstart
),
1266 XFS_FSB_TO_BB(mp
, sbp
->sb_logblocks
));
1268 cmn_err(CE_WARN
, "XFS: log mount failed");
1269 goto out_free_perag
;
1273 * Now the log is mounted, we know if it was an unclean shutdown or
1274 * not. If it was, with the first phase of recovery has completed, we
1275 * have consistent AG blocks on disk. We have not recovered EFIs yet,
1276 * but they are recovered transactionally in the second recovery phase
1279 * Hence we can safely re-initialise incore superblock counters from
1280 * the per-ag data. These may not be correct if the filesystem was not
1281 * cleanly unmounted, so we need to wait for recovery to finish before
1284 * If the filesystem was cleanly unmounted, then we can trust the
1285 * values in the superblock to be correct and we don't need to do
1288 * If we are currently making the filesystem, the initialisation will
1289 * fail as the perag data is in an undefined state.
1291 if (xfs_sb_version_haslazysbcount(&mp
->m_sb
) &&
1292 !XFS_LAST_UNMOUNT_WAS_CLEAN(mp
) &&
1293 !mp
->m_sb
.sb_inprogress
) {
1294 error
= xfs_initialize_perag_data(mp
, sbp
->sb_agcount
);
1296 goto out_free_perag
;
1300 * Get and sanity-check the root inode.
1301 * Save the pointer to it in the mount structure.
1303 error
= xfs_iget(mp
, NULL
, sbp
->sb_rootino
, 0, XFS_ILOCK_EXCL
, &rip
, 0);
1305 cmn_err(CE_WARN
, "XFS: failed to read root inode");
1306 goto out_log_dealloc
;
1309 ASSERT(rip
!= NULL
);
1311 if (unlikely((rip
->i_d
.di_mode
& S_IFMT
) != S_IFDIR
)) {
1312 cmn_err(CE_WARN
, "XFS: corrupted root inode");
1313 cmn_err(CE_WARN
, "Device %s - root %llu is not a directory",
1314 XFS_BUFTARG_NAME(mp
->m_ddev_targp
),
1315 (unsigned long long)rip
->i_ino
);
1316 xfs_iunlock(rip
, XFS_ILOCK_EXCL
);
1317 XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW
,
1319 error
= XFS_ERROR(EFSCORRUPTED
);
1322 mp
->m_rootip
= rip
; /* save it */
1324 xfs_iunlock(rip
, XFS_ILOCK_EXCL
);
1327 * Initialize realtime inode pointers in the mount structure
1329 error
= xfs_rtmount_inodes(mp
);
1332 * Free up the root inode.
1334 cmn_err(CE_WARN
, "XFS: failed to read RT inodes");
1339 * If this is a read-only mount defer the superblock updates until
1340 * the next remount into writeable mode. Otherwise we would never
1341 * perform the update e.g. for the root filesystem.
1343 if (mp
->m_update_flags
&& !(mp
->m_flags
& XFS_MOUNT_RDONLY
)) {
1344 error
= xfs_mount_log_sb(mp
, mp
->m_update_flags
);
1346 cmn_err(CE_WARN
, "XFS: failed to write sb changes");
1352 * Initialise the XFS quota management subsystem for this mount
1354 if (XFS_IS_QUOTA_RUNNING(mp
)) {
1355 error
= xfs_qm_newmount(mp
, "amount
, "aflags
);
1359 ASSERT(!XFS_IS_QUOTA_ON(mp
));
1362 * If a file system had quotas running earlier, but decided to
1363 * mount without -o uquota/pquota/gquota options, revoke the
1364 * quotachecked license.
1366 if (mp
->m_sb
.sb_qflags
& XFS_ALL_QUOTA_ACCT
) {
1368 "XFS: resetting qflags for filesystem %s",
1371 error
= xfs_mount_reset_sbqflags(mp
);
1378 * Finish recovering the file system. This part needed to be
1379 * delayed until after the root and real-time bitmap inodes
1380 * were consistently read in.
1382 error
= xfs_log_mount_finish(mp
);
1384 cmn_err(CE_WARN
, "XFS: log mount finish failed");
1389 * Complete the quota initialisation, post-log-replay component.
1392 ASSERT(mp
->m_qflags
== 0);
1393 mp
->m_qflags
= quotaflags
;
1395 xfs_qm_mount_quotas(mp
);
1399 * Now we are mounted, reserve a small amount of unused space for
1400 * privileged transactions. This is needed so that transaction
1401 * space required for critical operations can dip into this pool
1402 * when at ENOSPC. This is needed for operations like create with
1403 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
1404 * are not allowed to use this reserved space.
1406 * This may drive us straight to ENOSPC on mount, but that implies
1407 * we were already there on the last unmount. Warn if this occurs.
1409 if (!(mp
->m_flags
& XFS_MOUNT_RDONLY
)) {
1410 resblks
= xfs_default_resblks(mp
);
1411 error
= xfs_reserve_blocks(mp
, &resblks
, NULL
);
1413 cmn_err(CE_WARN
, "XFS: Unable to allocate reserve "
1414 "blocks. Continuing without a reserve pool.");
1420 xfs_rtunmount_inodes(mp
);
1424 xfs_log_unmount(mp
);
1428 xfs_uuid_unmount(mp
);
1434 * This flushes out the inodes,dquots and the superblock, unmounts the
1435 * log and makes sure that incore structures are freed.
1439 struct xfs_mount
*mp
)
1444 xfs_qm_unmount_quotas(mp
);
1445 xfs_rtunmount_inodes(mp
);
1446 IRELE(mp
->m_rootip
);
1449 * We can potentially deadlock here if we have an inode cluster
1450 * that has been freed has its buffer still pinned in memory because
1451 * the transaction is still sitting in a iclog. The stale inodes
1452 * on that buffer will have their flush locks held until the
1453 * transaction hits the disk and the callbacks run. the inode
1454 * flush takes the flush lock unconditionally and with nothing to
1455 * push out the iclog we will never get that unlocked. hence we
1456 * need to force the log first.
1458 xfs_log_force(mp
, XFS_LOG_SYNC
);
1461 * Do a delwri reclaim pass first so that as many dirty inodes are
1462 * queued up for IO as possible. Then flush the buffers before making
1463 * a synchronous path to catch all the remaining inodes are reclaimed.
1464 * This makes the reclaim process as quick as possible by avoiding
1465 * synchronous writeout and blocking on inodes already in the delwri
1466 * state as much as possible.
1468 xfs_reclaim_inodes(mp
, 0);
1469 XFS_bflush(mp
->m_ddev_targp
);
1470 xfs_reclaim_inodes(mp
, SYNC_WAIT
);
1475 * Flush out the log synchronously so that we know for sure
1476 * that nothing is pinned. This is important because bflush()
1477 * will skip pinned buffers.
1479 xfs_log_force(mp
, XFS_LOG_SYNC
);
1481 xfs_binval(mp
->m_ddev_targp
);
1482 if (mp
->m_rtdev_targp
) {
1483 xfs_binval(mp
->m_rtdev_targp
);
1487 * Unreserve any blocks we have so that when we unmount we don't account
1488 * the reserved free space as used. This is really only necessary for
1489 * lazy superblock counting because it trusts the incore superblock
1490 * counters to be absolutely correct on clean unmount.
1492 * We don't bother correcting this elsewhere for lazy superblock
1493 * counting because on mount of an unclean filesystem we reconstruct the
1494 * correct counter value and this is irrelevant.
1496 * For non-lazy counter filesystems, this doesn't matter at all because
1497 * we only every apply deltas to the superblock and hence the incore
1498 * value does not matter....
1501 error
= xfs_reserve_blocks(mp
, &resblks
, NULL
);
1503 cmn_err(CE_WARN
, "XFS: Unable to free reserved block pool. "
1504 "Freespace may not be correct on next mount.");
1506 error
= xfs_log_sbcount(mp
, 1);
1508 cmn_err(CE_WARN
, "XFS: Unable to update superblock counters. "
1509 "Freespace may not be correct on next mount.");
1510 xfs_unmountfs_writesb(mp
);
1511 xfs_unmountfs_wait(mp
); /* wait for async bufs */
1512 xfs_log_unmount_write(mp
);
1513 xfs_log_unmount(mp
);
1514 xfs_uuid_unmount(mp
);
1517 xfs_errortag_clearall(mp
, 0);
1523 xfs_unmountfs_wait(xfs_mount_t
*mp
)
1525 if (mp
->m_logdev_targp
!= mp
->m_ddev_targp
)
1526 xfs_wait_buftarg(mp
->m_logdev_targp
);
1527 if (mp
->m_rtdev_targp
)
1528 xfs_wait_buftarg(mp
->m_rtdev_targp
);
1529 xfs_wait_buftarg(mp
->m_ddev_targp
);
1533 xfs_fs_writable(xfs_mount_t
*mp
)
1535 return !(xfs_test_for_freeze(mp
) || XFS_FORCED_SHUTDOWN(mp
) ||
1536 (mp
->m_flags
& XFS_MOUNT_RDONLY
));
1542 * Called either periodically to keep the on disk superblock values
1543 * roughly up to date or from unmount to make sure the values are
1544 * correct on a clean unmount.
1546 * Note this code can be called during the process of freezing, so
1547 * we may need to use the transaction allocator which does not not
1548 * block when the transaction subsystem is in its frozen state.
1558 if (!xfs_fs_writable(mp
))
1561 xfs_icsb_sync_counters(mp
, 0);
1564 * we don't need to do this if we are updating the superblock
1565 * counters on every modification.
1567 if (!xfs_sb_version_haslazysbcount(&mp
->m_sb
))
1570 tp
= _xfs_trans_alloc(mp
, XFS_TRANS_SB_COUNT
, KM_SLEEP
);
1571 error
= xfs_trans_reserve(tp
, 0, mp
->m_sb
.sb_sectsize
+ 128, 0, 0,
1572 XFS_DEFAULT_LOG_COUNT
);
1574 xfs_trans_cancel(tp
, 0);
1578 xfs_mod_sb(tp
, XFS_SB_IFREE
| XFS_SB_ICOUNT
| XFS_SB_FDBLOCKS
);
1580 xfs_trans_set_sync(tp
);
1581 error
= xfs_trans_commit(tp
, 0);
1586 xfs_unmountfs_writesb(xfs_mount_t
*mp
)
1592 * skip superblock write if fs is read-only, or
1593 * if we are doing a forced umount.
1595 if (!((mp
->m_flags
& XFS_MOUNT_RDONLY
) ||
1596 XFS_FORCED_SHUTDOWN(mp
))) {
1598 sbp
= xfs_getsb(mp
, 0);
1600 XFS_BUF_UNDONE(sbp
);
1601 XFS_BUF_UNREAD(sbp
);
1602 XFS_BUF_UNDELAYWRITE(sbp
);
1604 XFS_BUF_UNASYNC(sbp
);
1605 ASSERT(XFS_BUF_TARGET(sbp
) == mp
->m_ddev_targp
);
1606 xfsbdstrat(mp
, sbp
);
1607 error
= xfs_iowait(sbp
);
1609 xfs_ioerror_alert("xfs_unmountfs_writesb",
1610 mp
, sbp
, XFS_BUF_ADDR(sbp
));
1617 * xfs_mod_sb() can be used to copy arbitrary changes to the
1618 * in-core superblock into the superblock buffer to be logged.
1619 * It does not provide the higher level of locking that is
1620 * needed to protect the in-core superblock from concurrent
1624 xfs_mod_sb(xfs_trans_t
*tp
, __int64_t fields
)
1636 bp
= xfs_trans_getsb(tp
, mp
, 0);
1637 first
= sizeof(xfs_sb_t
);
1640 /* translate/copy */
1642 xfs_sb_to_disk(XFS_BUF_TO_SBP(bp
), &mp
->m_sb
, fields
);
1644 /* find modified range */
1645 f
= (xfs_sb_field_t
)xfs_highbit64((__uint64_t
)fields
);
1646 ASSERT((1LL << f
) & XFS_SB_MOD_BITS
);
1647 last
= xfs_sb_info
[f
+ 1].offset
- 1;
1649 f
= (xfs_sb_field_t
)xfs_lowbit64((__uint64_t
)fields
);
1650 ASSERT((1LL << f
) & XFS_SB_MOD_BITS
);
1651 first
= xfs_sb_info
[f
].offset
;
1653 xfs_trans_log_buf(tp
, bp
, first
, last
);
1658 * xfs_mod_incore_sb_unlocked() is a utility routine common used to apply
1659 * a delta to a specified field in the in-core superblock. Simply
1660 * switch on the field indicated and apply the delta to that field.
1661 * Fields are not allowed to dip below zero, so if the delta would
1662 * do this do not apply it and return EINVAL.
1664 * The m_sb_lock must be held when this routine is called.
1667 xfs_mod_incore_sb_unlocked(
1669 xfs_sb_field_t field
,
1673 int scounter
; /* short counter for 32 bit fields */
1674 long long lcounter
; /* long counter for 64 bit fields */
1675 long long res_used
, rem
;
1678 * With the in-core superblock spin lock held, switch
1679 * on the indicated field. Apply the delta to the
1680 * proper field. If the fields value would dip below
1681 * 0, then do not apply the delta and return EINVAL.
1684 case XFS_SBS_ICOUNT
:
1685 lcounter
= (long long)mp
->m_sb
.sb_icount
;
1689 return XFS_ERROR(EINVAL
);
1691 mp
->m_sb
.sb_icount
= lcounter
;
1694 lcounter
= (long long)mp
->m_sb
.sb_ifree
;
1698 return XFS_ERROR(EINVAL
);
1700 mp
->m_sb
.sb_ifree
= lcounter
;
1702 case XFS_SBS_FDBLOCKS
:
1703 lcounter
= (long long)
1704 mp
->m_sb
.sb_fdblocks
- XFS_ALLOC_SET_ASIDE(mp
);
1705 res_used
= (long long)(mp
->m_resblks
- mp
->m_resblks_avail
);
1707 if (delta
> 0) { /* Putting blocks back */
1708 if (res_used
> delta
) {
1709 mp
->m_resblks_avail
+= delta
;
1711 rem
= delta
- res_used
;
1712 mp
->m_resblks_avail
= mp
->m_resblks
;
1715 } else { /* Taking blocks away */
1717 if (lcounter
>= 0) {
1718 mp
->m_sb
.sb_fdblocks
= lcounter
+
1719 XFS_ALLOC_SET_ASIDE(mp
);
1724 * We are out of blocks, use any available reserved
1725 * blocks if were allowed to.
1728 return XFS_ERROR(ENOSPC
);
1730 lcounter
= (long long)mp
->m_resblks_avail
+ delta
;
1731 if (lcounter
>= 0) {
1732 mp
->m_resblks_avail
= lcounter
;
1735 printk_once(KERN_WARNING
1736 "Filesystem \"%s\": reserve blocks depleted! "
1737 "Consider increasing reserve pool size.",
1739 return XFS_ERROR(ENOSPC
);
1742 mp
->m_sb
.sb_fdblocks
= lcounter
+ XFS_ALLOC_SET_ASIDE(mp
);
1744 case XFS_SBS_FREXTENTS
:
1745 lcounter
= (long long)mp
->m_sb
.sb_frextents
;
1748 return XFS_ERROR(ENOSPC
);
1750 mp
->m_sb
.sb_frextents
= lcounter
;
1752 case XFS_SBS_DBLOCKS
:
1753 lcounter
= (long long)mp
->m_sb
.sb_dblocks
;
1757 return XFS_ERROR(EINVAL
);
1759 mp
->m_sb
.sb_dblocks
= lcounter
;
1761 case XFS_SBS_AGCOUNT
:
1762 scounter
= mp
->m_sb
.sb_agcount
;
1766 return XFS_ERROR(EINVAL
);
1768 mp
->m_sb
.sb_agcount
= scounter
;
1770 case XFS_SBS_IMAX_PCT
:
1771 scounter
= mp
->m_sb
.sb_imax_pct
;
1775 return XFS_ERROR(EINVAL
);
1777 mp
->m_sb
.sb_imax_pct
= scounter
;
1779 case XFS_SBS_REXTSIZE
:
1780 scounter
= mp
->m_sb
.sb_rextsize
;
1784 return XFS_ERROR(EINVAL
);
1786 mp
->m_sb
.sb_rextsize
= scounter
;
1788 case XFS_SBS_RBMBLOCKS
:
1789 scounter
= mp
->m_sb
.sb_rbmblocks
;
1793 return XFS_ERROR(EINVAL
);
1795 mp
->m_sb
.sb_rbmblocks
= scounter
;
1797 case XFS_SBS_RBLOCKS
:
1798 lcounter
= (long long)mp
->m_sb
.sb_rblocks
;
1802 return XFS_ERROR(EINVAL
);
1804 mp
->m_sb
.sb_rblocks
= lcounter
;
1806 case XFS_SBS_REXTENTS
:
1807 lcounter
= (long long)mp
->m_sb
.sb_rextents
;
1811 return XFS_ERROR(EINVAL
);
1813 mp
->m_sb
.sb_rextents
= lcounter
;
1815 case XFS_SBS_REXTSLOG
:
1816 scounter
= mp
->m_sb
.sb_rextslog
;
1820 return XFS_ERROR(EINVAL
);
1822 mp
->m_sb
.sb_rextslog
= scounter
;
1826 return XFS_ERROR(EINVAL
);
1831 * xfs_mod_incore_sb() is used to change a field in the in-core
1832 * superblock structure by the specified delta. This modification
1833 * is protected by the m_sb_lock. Just use the xfs_mod_incore_sb_unlocked()
1834 * routine to do the work.
1839 xfs_sb_field_t field
,
1845 /* check for per-cpu counters */
1847 #ifdef HAVE_PERCPU_SB
1848 case XFS_SBS_ICOUNT
:
1850 case XFS_SBS_FDBLOCKS
:
1851 if (!(mp
->m_flags
& XFS_MOUNT_NO_PERCPU_SB
)) {
1852 status
= xfs_icsb_modify_counters(mp
, field
,
1859 spin_lock(&mp
->m_sb_lock
);
1860 status
= xfs_mod_incore_sb_unlocked(mp
, field
, delta
, rsvd
);
1861 spin_unlock(&mp
->m_sb_lock
);
1869 * xfs_mod_incore_sb_batch() is used to change more than one field
1870 * in the in-core superblock structure at a time. This modification
1871 * is protected by a lock internal to this module. The fields and
1872 * changes to those fields are specified in the array of xfs_mod_sb
1873 * structures passed in.
1875 * Either all of the specified deltas will be applied or none of
1876 * them will. If any modified field dips below 0, then all modifications
1877 * will be backed out and EINVAL will be returned.
1880 xfs_mod_incore_sb_batch(xfs_mount_t
*mp
, xfs_mod_sb_t
*msb
, uint nmsb
, int rsvd
)
1886 * Loop through the array of mod structures and apply each
1887 * individually. If any fail, then back out all those
1888 * which have already been applied. Do all of this within
1889 * the scope of the m_sb_lock so that all of the changes will
1892 spin_lock(&mp
->m_sb_lock
);
1894 for (msbp
= &msbp
[0]; msbp
< (msb
+ nmsb
); msbp
++) {
1896 * Apply the delta at index n. If it fails, break
1897 * from the loop so we'll fall into the undo loop
1900 switch (msbp
->msb_field
) {
1901 #ifdef HAVE_PERCPU_SB
1902 case XFS_SBS_ICOUNT
:
1904 case XFS_SBS_FDBLOCKS
:
1905 if (!(mp
->m_flags
& XFS_MOUNT_NO_PERCPU_SB
)) {
1906 spin_unlock(&mp
->m_sb_lock
);
1907 status
= xfs_icsb_modify_counters(mp
,
1909 msbp
->msb_delta
, rsvd
);
1910 spin_lock(&mp
->m_sb_lock
);
1916 status
= xfs_mod_incore_sb_unlocked(mp
,
1918 msbp
->msb_delta
, rsvd
);
1928 * If we didn't complete the loop above, then back out
1929 * any changes made to the superblock. If you add code
1930 * between the loop above and here, make sure that you
1931 * preserve the value of status. Loop back until
1932 * we step below the beginning of the array. Make sure
1933 * we don't touch anything back there.
1937 while (msbp
>= msb
) {
1938 switch (msbp
->msb_field
) {
1939 #ifdef HAVE_PERCPU_SB
1940 case XFS_SBS_ICOUNT
:
1942 case XFS_SBS_FDBLOCKS
:
1943 if (!(mp
->m_flags
& XFS_MOUNT_NO_PERCPU_SB
)) {
1944 spin_unlock(&mp
->m_sb_lock
);
1945 status
= xfs_icsb_modify_counters(mp
,
1949 spin_lock(&mp
->m_sb_lock
);
1955 status
= xfs_mod_incore_sb_unlocked(mp
,
1961 ASSERT(status
== 0);
1965 spin_unlock(&mp
->m_sb_lock
);
1970 * xfs_getsb() is called to obtain the buffer for the superblock.
1971 * The buffer is returned locked and read in from disk.
1972 * The buffer should be released with a call to xfs_brelse().
1974 * If the flags parameter is BUF_TRYLOCK, then we'll only return
1975 * the superblock buffer if it can be locked without sleeping.
1976 * If it can't then we'll return NULL.
1985 ASSERT(mp
->m_sb_bp
!= NULL
);
1987 if (flags
& XBF_TRYLOCK
) {
1988 if (!XFS_BUF_CPSEMA(bp
)) {
1992 XFS_BUF_PSEMA(bp
, PRIBIO
);
1995 ASSERT(XFS_BUF_ISDONE(bp
));
2000 * Used to free the superblock along various error paths.
2009 * Use xfs_getsb() so that the buffer will be locked
2010 * when we call xfs_buf_relse().
2012 bp
= xfs_getsb(mp
, 0);
2013 XFS_BUF_UNMANAGE(bp
);
2019 * Used to log changes to the superblock unit and width fields which could
2020 * be altered by the mount options, as well as any potential sb_features2
2021 * fixup. Only the first superblock is updated.
2031 ASSERT(fields
& (XFS_SB_UNIT
| XFS_SB_WIDTH
| XFS_SB_UUID
|
2032 XFS_SB_FEATURES2
| XFS_SB_BAD_FEATURES2
|
2033 XFS_SB_VERSIONNUM
));
2035 tp
= xfs_trans_alloc(mp
, XFS_TRANS_SB_UNIT
);
2036 error
= xfs_trans_reserve(tp
, 0, mp
->m_sb
.sb_sectsize
+ 128, 0, 0,
2037 XFS_DEFAULT_LOG_COUNT
);
2039 xfs_trans_cancel(tp
, 0);
2042 xfs_mod_sb(tp
, fields
);
2043 error
= xfs_trans_commit(tp
, 0);
2048 * If the underlying (data/log/rt) device is readonly, there are some
2049 * operations that cannot proceed.
2052 xfs_dev_is_read_only(
2053 struct xfs_mount
*mp
,
2056 if (xfs_readonly_buftarg(mp
->m_ddev_targp
) ||
2057 xfs_readonly_buftarg(mp
->m_logdev_targp
) ||
2058 (mp
->m_rtdev_targp
&& xfs_readonly_buftarg(mp
->m_rtdev_targp
))) {
2060 "XFS: %s required on read-only device.", message
);
2062 "XFS: write access unavailable, cannot proceed.");
2068 #ifdef HAVE_PERCPU_SB
2070 * Per-cpu incore superblock counters
2072 * Simple concept, difficult implementation
2074 * Basically, replace the incore superblock counters with a distributed per cpu
2075 * counter for contended fields (e.g. free block count).
2077 * Difficulties arise in that the incore sb is used for ENOSPC checking, and
2078 * hence needs to be accurately read when we are running low on space. Hence
2079 * there is a method to enable and disable the per-cpu counters based on how
2080 * much "stuff" is available in them.
2082 * Basically, a counter is enabled if there is enough free resource to justify
2083 * running a per-cpu fast-path. If the per-cpu counter runs out (i.e. a local
2084 * ENOSPC), then we disable the counters to synchronise all callers and
2085 * re-distribute the available resources.
2087 * If, once we redistributed the available resources, we still get a failure,
2088 * we disable the per-cpu counter and go through the slow path.
2090 * The slow path is the current xfs_mod_incore_sb() function. This means that
2091 * when we disable a per-cpu counter, we need to drain its resources back to
2092 * the global superblock. We do this after disabling the counter to prevent
2093 * more threads from queueing up on the counter.
2095 * Essentially, this means that we still need a lock in the fast path to enable
2096 * synchronisation between the global counters and the per-cpu counters. This
2097 * is not a problem because the lock will be local to a CPU almost all the time
2098 * and have little contention except when we get to ENOSPC conditions.
2100 * Basically, this lock becomes a barrier that enables us to lock out the fast
2101 * path while we do things like enabling and disabling counters and
2102 * synchronising the counters.
2106 * 1. m_sb_lock before picking up per-cpu locks
2107 * 2. per-cpu locks always picked up via for_each_online_cpu() order
2108 * 3. accurate counter sync requires m_sb_lock + per cpu locks
2109 * 4. modifying per-cpu counters requires holding per-cpu lock
2110 * 5. modifying global counters requires holding m_sb_lock
2111 * 6. enabling or disabling a counter requires holding the m_sb_lock
2112 * and _none_ of the per-cpu locks.
2114 * Disabled counters are only ever re-enabled by a balance operation
2115 * that results in more free resources per CPU than a given threshold.
2116 * To ensure counters don't remain disabled, they are rebalanced when
2117 * the global resource goes above a higher threshold (i.e. some hysteresis
2118 * is present to prevent thrashing).
2121 #ifdef CONFIG_HOTPLUG_CPU
2123 * hot-plug CPU notifier support.
2125 * We need a notifier per filesystem as we need to be able to identify
2126 * the filesystem to balance the counters out. This is achieved by
2127 * having a notifier block embedded in the xfs_mount_t and doing pointer
2128 * magic to get the mount pointer from the notifier block address.
2131 xfs_icsb_cpu_notify(
2132 struct notifier_block
*nfb
,
2133 unsigned long action
,
2136 xfs_icsb_cnts_t
*cntp
;
2139 mp
= (xfs_mount_t
*)container_of(nfb
, xfs_mount_t
, m_icsb_notifier
);
2140 cntp
= (xfs_icsb_cnts_t
*)
2141 per_cpu_ptr(mp
->m_sb_cnts
, (unsigned long)hcpu
);
2143 case CPU_UP_PREPARE
:
2144 case CPU_UP_PREPARE_FROZEN
:
2145 /* Easy Case - initialize the area and locks, and
2146 * then rebalance when online does everything else for us. */
2147 memset(cntp
, 0, sizeof(xfs_icsb_cnts_t
));
2150 case CPU_ONLINE_FROZEN
:
2152 xfs_icsb_balance_counter(mp
, XFS_SBS_ICOUNT
, 0);
2153 xfs_icsb_balance_counter(mp
, XFS_SBS_IFREE
, 0);
2154 xfs_icsb_balance_counter(mp
, XFS_SBS_FDBLOCKS
, 0);
2155 xfs_icsb_unlock(mp
);
2158 case CPU_DEAD_FROZEN
:
2159 /* Disable all the counters, then fold the dead cpu's
2160 * count into the total on the global superblock and
2161 * re-enable the counters. */
2163 spin_lock(&mp
->m_sb_lock
);
2164 xfs_icsb_disable_counter(mp
, XFS_SBS_ICOUNT
);
2165 xfs_icsb_disable_counter(mp
, XFS_SBS_IFREE
);
2166 xfs_icsb_disable_counter(mp
, XFS_SBS_FDBLOCKS
);
2168 mp
->m_sb
.sb_icount
+= cntp
->icsb_icount
;
2169 mp
->m_sb
.sb_ifree
+= cntp
->icsb_ifree
;
2170 mp
->m_sb
.sb_fdblocks
+= cntp
->icsb_fdblocks
;
2172 memset(cntp
, 0, sizeof(xfs_icsb_cnts_t
));
2174 xfs_icsb_balance_counter_locked(mp
, XFS_SBS_ICOUNT
, 0);
2175 xfs_icsb_balance_counter_locked(mp
, XFS_SBS_IFREE
, 0);
2176 xfs_icsb_balance_counter_locked(mp
, XFS_SBS_FDBLOCKS
, 0);
2177 spin_unlock(&mp
->m_sb_lock
);
2178 xfs_icsb_unlock(mp
);
2184 #endif /* CONFIG_HOTPLUG_CPU */
2187 xfs_icsb_init_counters(
2190 xfs_icsb_cnts_t
*cntp
;
2193 mp
->m_sb_cnts
= alloc_percpu(xfs_icsb_cnts_t
);
2194 if (mp
->m_sb_cnts
== NULL
)
2197 #ifdef CONFIG_HOTPLUG_CPU
2198 mp
->m_icsb_notifier
.notifier_call
= xfs_icsb_cpu_notify
;
2199 mp
->m_icsb_notifier
.priority
= 0;
2200 register_hotcpu_notifier(&mp
->m_icsb_notifier
);
2201 #endif /* CONFIG_HOTPLUG_CPU */
2203 for_each_online_cpu(i
) {
2204 cntp
= (xfs_icsb_cnts_t
*)per_cpu_ptr(mp
->m_sb_cnts
, i
);
2205 memset(cntp
, 0, sizeof(xfs_icsb_cnts_t
));
2208 mutex_init(&mp
->m_icsb_mutex
);
2211 * start with all counters disabled so that the
2212 * initial balance kicks us off correctly
2214 mp
->m_icsb_counters
= -1;
2219 xfs_icsb_reinit_counters(
2224 * start with all counters disabled so that the
2225 * initial balance kicks us off correctly
2227 mp
->m_icsb_counters
= -1;
2228 xfs_icsb_balance_counter(mp
, XFS_SBS_ICOUNT
, 0);
2229 xfs_icsb_balance_counter(mp
, XFS_SBS_IFREE
, 0);
2230 xfs_icsb_balance_counter(mp
, XFS_SBS_FDBLOCKS
, 0);
2231 xfs_icsb_unlock(mp
);
2235 xfs_icsb_destroy_counters(
2238 if (mp
->m_sb_cnts
) {
2239 unregister_hotcpu_notifier(&mp
->m_icsb_notifier
);
2240 free_percpu(mp
->m_sb_cnts
);
2242 mutex_destroy(&mp
->m_icsb_mutex
);
2247 xfs_icsb_cnts_t
*icsbp
)
2249 while (test_and_set_bit(XFS_ICSB_FLAG_LOCK
, &icsbp
->icsb_flags
)) {
2255 xfs_icsb_unlock_cntr(
2256 xfs_icsb_cnts_t
*icsbp
)
2258 clear_bit(XFS_ICSB_FLAG_LOCK
, &icsbp
->icsb_flags
);
2263 xfs_icsb_lock_all_counters(
2266 xfs_icsb_cnts_t
*cntp
;
2269 for_each_online_cpu(i
) {
2270 cntp
= (xfs_icsb_cnts_t
*)per_cpu_ptr(mp
->m_sb_cnts
, i
);
2271 xfs_icsb_lock_cntr(cntp
);
2276 xfs_icsb_unlock_all_counters(
2279 xfs_icsb_cnts_t
*cntp
;
2282 for_each_online_cpu(i
) {
2283 cntp
= (xfs_icsb_cnts_t
*)per_cpu_ptr(mp
->m_sb_cnts
, i
);
2284 xfs_icsb_unlock_cntr(cntp
);
2291 xfs_icsb_cnts_t
*cnt
,
2294 xfs_icsb_cnts_t
*cntp
;
2297 memset(cnt
, 0, sizeof(xfs_icsb_cnts_t
));
2299 if (!(flags
& XFS_ICSB_LAZY_COUNT
))
2300 xfs_icsb_lock_all_counters(mp
);
2302 for_each_online_cpu(i
) {
2303 cntp
= (xfs_icsb_cnts_t
*)per_cpu_ptr(mp
->m_sb_cnts
, i
);
2304 cnt
->icsb_icount
+= cntp
->icsb_icount
;
2305 cnt
->icsb_ifree
+= cntp
->icsb_ifree
;
2306 cnt
->icsb_fdblocks
+= cntp
->icsb_fdblocks
;
2309 if (!(flags
& XFS_ICSB_LAZY_COUNT
))
2310 xfs_icsb_unlock_all_counters(mp
);
2314 xfs_icsb_counter_disabled(
2316 xfs_sb_field_t field
)
2318 ASSERT((field
>= XFS_SBS_ICOUNT
) && (field
<= XFS_SBS_FDBLOCKS
));
2319 return test_bit(field
, &mp
->m_icsb_counters
);
2323 xfs_icsb_disable_counter(
2325 xfs_sb_field_t field
)
2327 xfs_icsb_cnts_t cnt
;
2329 ASSERT((field
>= XFS_SBS_ICOUNT
) && (field
<= XFS_SBS_FDBLOCKS
));
2332 * If we are already disabled, then there is nothing to do
2333 * here. We check before locking all the counters to avoid
2334 * the expensive lock operation when being called in the
2335 * slow path and the counter is already disabled. This is
2336 * safe because the only time we set or clear this state is under
2339 if (xfs_icsb_counter_disabled(mp
, field
))
2342 xfs_icsb_lock_all_counters(mp
);
2343 if (!test_and_set_bit(field
, &mp
->m_icsb_counters
)) {
2344 /* drain back to superblock */
2346 xfs_icsb_count(mp
, &cnt
, XFS_ICSB_LAZY_COUNT
);
2348 case XFS_SBS_ICOUNT
:
2349 mp
->m_sb
.sb_icount
= cnt
.icsb_icount
;
2352 mp
->m_sb
.sb_ifree
= cnt
.icsb_ifree
;
2354 case XFS_SBS_FDBLOCKS
:
2355 mp
->m_sb
.sb_fdblocks
= cnt
.icsb_fdblocks
;
2362 xfs_icsb_unlock_all_counters(mp
);
2366 xfs_icsb_enable_counter(
2368 xfs_sb_field_t field
,
2372 xfs_icsb_cnts_t
*cntp
;
2375 ASSERT((field
>= XFS_SBS_ICOUNT
) && (field
<= XFS_SBS_FDBLOCKS
));
2377 xfs_icsb_lock_all_counters(mp
);
2378 for_each_online_cpu(i
) {
2379 cntp
= per_cpu_ptr(mp
->m_sb_cnts
, i
);
2381 case XFS_SBS_ICOUNT
:
2382 cntp
->icsb_icount
= count
+ resid
;
2385 cntp
->icsb_ifree
= count
+ resid
;
2387 case XFS_SBS_FDBLOCKS
:
2388 cntp
->icsb_fdblocks
= count
+ resid
;
2396 clear_bit(field
, &mp
->m_icsb_counters
);
2397 xfs_icsb_unlock_all_counters(mp
);
2401 xfs_icsb_sync_counters_locked(
2405 xfs_icsb_cnts_t cnt
;
2407 xfs_icsb_count(mp
, &cnt
, flags
);
2409 if (!xfs_icsb_counter_disabled(mp
, XFS_SBS_ICOUNT
))
2410 mp
->m_sb
.sb_icount
= cnt
.icsb_icount
;
2411 if (!xfs_icsb_counter_disabled(mp
, XFS_SBS_IFREE
))
2412 mp
->m_sb
.sb_ifree
= cnt
.icsb_ifree
;
2413 if (!xfs_icsb_counter_disabled(mp
, XFS_SBS_FDBLOCKS
))
2414 mp
->m_sb
.sb_fdblocks
= cnt
.icsb_fdblocks
;
2418 * Accurate update of per-cpu counters to incore superblock
2421 xfs_icsb_sync_counters(
2425 spin_lock(&mp
->m_sb_lock
);
2426 xfs_icsb_sync_counters_locked(mp
, flags
);
2427 spin_unlock(&mp
->m_sb_lock
);
2431 * Balance and enable/disable counters as necessary.
2433 * Thresholds for re-enabling counters are somewhat magic. inode counts are
2434 * chosen to be the same number as single on disk allocation chunk per CPU, and
2435 * free blocks is something far enough zero that we aren't going thrash when we
2436 * get near ENOSPC. We also need to supply a minimum we require per cpu to
2437 * prevent looping endlessly when xfs_alloc_space asks for more than will
2438 * be distributed to a single CPU but each CPU has enough blocks to be
2441 * Note that we can be called when counters are already disabled.
2442 * xfs_icsb_disable_counter() optimises the counter locking in this case to
2443 * prevent locking every per-cpu counter needlessly.
2446 #define XFS_ICSB_INO_CNTR_REENABLE (uint64_t)64
2447 #define XFS_ICSB_FDBLK_CNTR_REENABLE(mp) \
2448 (uint64_t)(512 + XFS_ALLOC_SET_ASIDE(mp))
2450 xfs_icsb_balance_counter_locked(
2452 xfs_sb_field_t field
,
2455 uint64_t count
, resid
;
2456 int weight
= num_online_cpus();
2457 uint64_t min
= (uint64_t)min_per_cpu
;
2459 /* disable counter and sync counter */
2460 xfs_icsb_disable_counter(mp
, field
);
2462 /* update counters - first CPU gets residual*/
2464 case XFS_SBS_ICOUNT
:
2465 count
= mp
->m_sb
.sb_icount
;
2466 resid
= do_div(count
, weight
);
2467 if (count
< max(min
, XFS_ICSB_INO_CNTR_REENABLE
))
2471 count
= mp
->m_sb
.sb_ifree
;
2472 resid
= do_div(count
, weight
);
2473 if (count
< max(min
, XFS_ICSB_INO_CNTR_REENABLE
))
2476 case XFS_SBS_FDBLOCKS
:
2477 count
= mp
->m_sb
.sb_fdblocks
;
2478 resid
= do_div(count
, weight
);
2479 if (count
< max(min
, XFS_ICSB_FDBLK_CNTR_REENABLE(mp
)))
2484 count
= resid
= 0; /* quiet, gcc */
2488 xfs_icsb_enable_counter(mp
, field
, count
, resid
);
2492 xfs_icsb_balance_counter(
2494 xfs_sb_field_t fields
,
2497 spin_lock(&mp
->m_sb_lock
);
2498 xfs_icsb_balance_counter_locked(mp
, fields
, min_per_cpu
);
2499 spin_unlock(&mp
->m_sb_lock
);
2503 xfs_icsb_modify_counters(
2505 xfs_sb_field_t field
,
2509 xfs_icsb_cnts_t
*icsbp
;
2510 long long lcounter
; /* long counter for 64 bit fields */
2516 icsbp
= this_cpu_ptr(mp
->m_sb_cnts
);
2519 * if the counter is disabled, go to slow path
2521 if (unlikely(xfs_icsb_counter_disabled(mp
, field
)))
2523 xfs_icsb_lock_cntr(icsbp
);
2524 if (unlikely(xfs_icsb_counter_disabled(mp
, field
))) {
2525 xfs_icsb_unlock_cntr(icsbp
);
2530 case XFS_SBS_ICOUNT
:
2531 lcounter
= icsbp
->icsb_icount
;
2533 if (unlikely(lcounter
< 0))
2534 goto balance_counter
;
2535 icsbp
->icsb_icount
= lcounter
;
2539 lcounter
= icsbp
->icsb_ifree
;
2541 if (unlikely(lcounter
< 0))
2542 goto balance_counter
;
2543 icsbp
->icsb_ifree
= lcounter
;
2546 case XFS_SBS_FDBLOCKS
:
2547 BUG_ON((mp
->m_resblks
- mp
->m_resblks_avail
) != 0);
2549 lcounter
= icsbp
->icsb_fdblocks
- XFS_ALLOC_SET_ASIDE(mp
);
2551 if (unlikely(lcounter
< 0))
2552 goto balance_counter
;
2553 icsbp
->icsb_fdblocks
= lcounter
+ XFS_ALLOC_SET_ASIDE(mp
);
2559 xfs_icsb_unlock_cntr(icsbp
);
2567 * serialise with a mutex so we don't burn lots of cpu on
2568 * the superblock lock. We still need to hold the superblock
2569 * lock, however, when we modify the global structures.
2574 * Now running atomically.
2576 * If the counter is enabled, someone has beaten us to rebalancing.
2577 * Drop the lock and try again in the fast path....
2579 if (!(xfs_icsb_counter_disabled(mp
, field
))) {
2580 xfs_icsb_unlock(mp
);
2585 * The counter is currently disabled. Because we are
2586 * running atomically here, we know a rebalance cannot
2587 * be in progress. Hence we can go straight to operating
2588 * on the global superblock. We do not call xfs_mod_incore_sb()
2589 * here even though we need to get the m_sb_lock. Doing so
2590 * will cause us to re-enter this function and deadlock.
2591 * Hence we get the m_sb_lock ourselves and then call
2592 * xfs_mod_incore_sb_unlocked() as the unlocked path operates
2593 * directly on the global counters.
2595 spin_lock(&mp
->m_sb_lock
);
2596 ret
= xfs_mod_incore_sb_unlocked(mp
, field
, delta
, rsvd
);
2597 spin_unlock(&mp
->m_sb_lock
);
2600 * Now that we've modified the global superblock, we
2601 * may be able to re-enable the distributed counters
2602 * (e.g. lots of space just got freed). After that
2606 xfs_icsb_balance_counter(mp
, field
, 0);
2607 xfs_icsb_unlock(mp
);
2611 xfs_icsb_unlock_cntr(icsbp
);
2615 * We may have multiple threads here if multiple per-cpu
2616 * counters run dry at the same time. This will mean we can
2617 * do more balances than strictly necessary but it is not
2618 * the common slowpath case.
2623 * running atomically.
2625 * This will leave the counter in the correct state for future
2626 * accesses. After the rebalance, we simply try again and our retry
2627 * will either succeed through the fast path or slow path without
2628 * another balance operation being required.
2630 xfs_icsb_balance_counter(mp
, field
, delta
);
2631 xfs_icsb_unlock(mp
);