Linux 2.6.35-rc2
[linux/fpc-iii.git] / fs / xfs / xfs_trans.c
blob28547dfce037643fb19744ed36906d5e7f3c1c76
1 /*
2 * Copyright (c) 2000-2003,2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_trans.h"
25 #include "xfs_sb.h"
26 #include "xfs_ag.h"
27 #include "xfs_dir2.h"
28 #include "xfs_dmapi.h"
29 #include "xfs_mount.h"
30 #include "xfs_error.h"
31 #include "xfs_da_btree.h"
32 #include "xfs_bmap_btree.h"
33 #include "xfs_alloc_btree.h"
34 #include "xfs_ialloc_btree.h"
35 #include "xfs_dir2_sf.h"
36 #include "xfs_attr_sf.h"
37 #include "xfs_dinode.h"
38 #include "xfs_inode.h"
39 #include "xfs_btree.h"
40 #include "xfs_ialloc.h"
41 #include "xfs_alloc.h"
42 #include "xfs_bmap.h"
43 #include "xfs_quota.h"
44 #include "xfs_trans_priv.h"
45 #include "xfs_trans_space.h"
46 #include "xfs_inode_item.h"
47 #include "xfs_trace.h"
49 kmem_zone_t *xfs_trans_zone;
53 * Various log reservation values.
55 * These are based on the size of the file system block because that is what
56 * most transactions manipulate. Each adds in an additional 128 bytes per
57 * item logged to try to account for the overhead of the transaction mechanism.
59 * Note: Most of the reservations underestimate the number of allocation
60 * groups into which they could free extents in the xfs_bmap_finish() call.
61 * This is because the number in the worst case is quite high and quite
62 * unusual. In order to fix this we need to change xfs_bmap_finish() to free
63 * extents in only a single AG at a time. This will require changes to the
64 * EFI code as well, however, so that the EFI for the extents not freed is
65 * logged again in each transaction. See SGI PV #261917.
67 * Reservation functions here avoid a huge stack in xfs_trans_init due to
68 * register overflow from temporaries in the calculations.
73 * In a write transaction we can allocate a maximum of 2
74 * extents. This gives:
75 * the inode getting the new extents: inode size
76 * the inode's bmap btree: max depth * block size
77 * the agfs of the ags from which the extents are allocated: 2 * sector
78 * the superblock free block counter: sector size
79 * the allocation btrees: 2 exts * 2 trees * (2 * max depth - 1) * block size
80 * And the bmap_finish transaction can free bmap blocks in a join:
81 * the agfs of the ags containing the blocks: 2 * sector size
82 * the agfls of the ags containing the blocks: 2 * sector size
83 * the super block free block counter: sector size
84 * the allocation btrees: 2 exts * 2 trees * (2 * max depth - 1) * block size
86 STATIC uint
87 xfs_calc_write_reservation(
88 struct xfs_mount *mp)
90 return XFS_DQUOT_LOGRES(mp) +
91 MAX((mp->m_sb.sb_inodesize +
92 XFS_FSB_TO_B(mp, XFS_BM_MAXLEVELS(mp, XFS_DATA_FORK)) +
93 2 * mp->m_sb.sb_sectsize +
94 mp->m_sb.sb_sectsize +
95 XFS_ALLOCFREE_LOG_RES(mp, 2) +
96 128 * (4 + XFS_BM_MAXLEVELS(mp, XFS_DATA_FORK) +
97 XFS_ALLOCFREE_LOG_COUNT(mp, 2))),
98 (2 * mp->m_sb.sb_sectsize +
99 2 * mp->m_sb.sb_sectsize +
100 mp->m_sb.sb_sectsize +
101 XFS_ALLOCFREE_LOG_RES(mp, 2) +
102 128 * (5 + XFS_ALLOCFREE_LOG_COUNT(mp, 2))));
106 * In truncating a file we free up to two extents at once. We can modify:
107 * the inode being truncated: inode size
108 * the inode's bmap btree: (max depth + 1) * block size
109 * And the bmap_finish transaction can free the blocks and bmap blocks:
110 * the agf for each of the ags: 4 * sector size
111 * the agfl for each of the ags: 4 * sector size
112 * the super block to reflect the freed blocks: sector size
113 * worst case split in allocation btrees per extent assuming 4 extents:
114 * 4 exts * 2 trees * (2 * max depth - 1) * block size
115 * the inode btree: max depth * blocksize
116 * the allocation btrees: 2 trees * (max depth - 1) * block size
118 STATIC uint
119 xfs_calc_itruncate_reservation(
120 struct xfs_mount *mp)
122 return XFS_DQUOT_LOGRES(mp) +
123 MAX((mp->m_sb.sb_inodesize +
124 XFS_FSB_TO_B(mp, XFS_BM_MAXLEVELS(mp, XFS_DATA_FORK) + 1) +
125 128 * (2 + XFS_BM_MAXLEVELS(mp, XFS_DATA_FORK))),
126 (4 * mp->m_sb.sb_sectsize +
127 4 * mp->m_sb.sb_sectsize +
128 mp->m_sb.sb_sectsize +
129 XFS_ALLOCFREE_LOG_RES(mp, 4) +
130 128 * (9 + XFS_ALLOCFREE_LOG_COUNT(mp, 4)) +
131 128 * 5 +
132 XFS_ALLOCFREE_LOG_RES(mp, 1) +
133 128 * (2 + XFS_IALLOC_BLOCKS(mp) + mp->m_in_maxlevels +
134 XFS_ALLOCFREE_LOG_COUNT(mp, 1))));
138 * In renaming a files we can modify:
139 * the four inodes involved: 4 * inode size
140 * the two directory btrees: 2 * (max depth + v2) * dir block size
141 * the two directory bmap btrees: 2 * max depth * block size
142 * And the bmap_finish transaction can free dir and bmap blocks (two sets
143 * of bmap blocks) giving:
144 * the agf for the ags in which the blocks live: 3 * sector size
145 * the agfl for the ags in which the blocks live: 3 * sector size
146 * the superblock for the free block count: sector size
147 * the allocation btrees: 3 exts * 2 trees * (2 * max depth - 1) * block size
149 STATIC uint
150 xfs_calc_rename_reservation(
151 struct xfs_mount *mp)
153 return XFS_DQUOT_LOGRES(mp) +
154 MAX((4 * mp->m_sb.sb_inodesize +
155 2 * XFS_DIROP_LOG_RES(mp) +
156 128 * (4 + 2 * XFS_DIROP_LOG_COUNT(mp))),
157 (3 * mp->m_sb.sb_sectsize +
158 3 * mp->m_sb.sb_sectsize +
159 mp->m_sb.sb_sectsize +
160 XFS_ALLOCFREE_LOG_RES(mp, 3) +
161 128 * (7 + XFS_ALLOCFREE_LOG_COUNT(mp, 3))));
165 * For creating a link to an inode:
166 * the parent directory inode: inode size
167 * the linked inode: inode size
168 * the directory btree could split: (max depth + v2) * dir block size
169 * the directory bmap btree could join or split: (max depth + v2) * blocksize
170 * And the bmap_finish transaction can free some bmap blocks giving:
171 * the agf for the ag in which the blocks live: sector size
172 * the agfl for the ag in which the blocks live: sector size
173 * the superblock for the free block count: sector size
174 * the allocation btrees: 2 trees * (2 * max depth - 1) * block size
176 STATIC uint
177 xfs_calc_link_reservation(
178 struct xfs_mount *mp)
180 return XFS_DQUOT_LOGRES(mp) +
181 MAX((mp->m_sb.sb_inodesize +
182 mp->m_sb.sb_inodesize +
183 XFS_DIROP_LOG_RES(mp) +
184 128 * (2 + XFS_DIROP_LOG_COUNT(mp))),
185 (mp->m_sb.sb_sectsize +
186 mp->m_sb.sb_sectsize +
187 mp->m_sb.sb_sectsize +
188 XFS_ALLOCFREE_LOG_RES(mp, 1) +
189 128 * (3 + XFS_ALLOCFREE_LOG_COUNT(mp, 1))));
193 * For removing a directory entry we can modify:
194 * the parent directory inode: inode size
195 * the removed inode: inode size
196 * the directory btree could join: (max depth + v2) * dir block size
197 * the directory bmap btree could join or split: (max depth + v2) * blocksize
198 * And the bmap_finish transaction can free the dir and bmap blocks giving:
199 * the agf for the ag in which the blocks live: 2 * sector size
200 * the agfl for the ag in which the blocks live: 2 * sector size
201 * the superblock for the free block count: sector size
202 * the allocation btrees: 2 exts * 2 trees * (2 * max depth - 1) * block size
204 STATIC uint
205 xfs_calc_remove_reservation(
206 struct xfs_mount *mp)
208 return XFS_DQUOT_LOGRES(mp) +
209 MAX((mp->m_sb.sb_inodesize +
210 mp->m_sb.sb_inodesize +
211 XFS_DIROP_LOG_RES(mp) +
212 128 * (2 + XFS_DIROP_LOG_COUNT(mp))),
213 (2 * mp->m_sb.sb_sectsize +
214 2 * mp->m_sb.sb_sectsize +
215 mp->m_sb.sb_sectsize +
216 XFS_ALLOCFREE_LOG_RES(mp, 2) +
217 128 * (5 + XFS_ALLOCFREE_LOG_COUNT(mp, 2))));
221 * For symlink we can modify:
222 * the parent directory inode: inode size
223 * the new inode: inode size
224 * the inode btree entry: 1 block
225 * the directory btree: (max depth + v2) * dir block size
226 * the directory inode's bmap btree: (max depth + v2) * block size
227 * the blocks for the symlink: 1 kB
228 * Or in the first xact we allocate some inodes giving:
229 * the agi and agf of the ag getting the new inodes: 2 * sectorsize
230 * the inode blocks allocated: XFS_IALLOC_BLOCKS * blocksize
231 * the inode btree: max depth * blocksize
232 * the allocation btrees: 2 trees * (2 * max depth - 1) * block size
234 STATIC uint
235 xfs_calc_symlink_reservation(
236 struct xfs_mount *mp)
238 return XFS_DQUOT_LOGRES(mp) +
239 MAX((mp->m_sb.sb_inodesize +
240 mp->m_sb.sb_inodesize +
241 XFS_FSB_TO_B(mp, 1) +
242 XFS_DIROP_LOG_RES(mp) +
243 1024 +
244 128 * (4 + XFS_DIROP_LOG_COUNT(mp))),
245 (2 * mp->m_sb.sb_sectsize +
246 XFS_FSB_TO_B(mp, XFS_IALLOC_BLOCKS(mp)) +
247 XFS_FSB_TO_B(mp, mp->m_in_maxlevels) +
248 XFS_ALLOCFREE_LOG_RES(mp, 1) +
249 128 * (2 + XFS_IALLOC_BLOCKS(mp) + mp->m_in_maxlevels +
250 XFS_ALLOCFREE_LOG_COUNT(mp, 1))));
254 * For create we can modify:
255 * the parent directory inode: inode size
256 * the new inode: inode size
257 * the inode btree entry: block size
258 * the superblock for the nlink flag: sector size
259 * the directory btree: (max depth + v2) * dir block size
260 * the directory inode's bmap btree: (max depth + v2) * block size
261 * Or in the first xact we allocate some inodes giving:
262 * the agi and agf of the ag getting the new inodes: 2 * sectorsize
263 * the superblock for the nlink flag: sector size
264 * the inode blocks allocated: XFS_IALLOC_BLOCKS * blocksize
265 * the inode btree: max depth * blocksize
266 * the allocation btrees: 2 trees * (max depth - 1) * block size
268 STATIC uint
269 xfs_calc_create_reservation(
270 struct xfs_mount *mp)
272 return XFS_DQUOT_LOGRES(mp) +
273 MAX((mp->m_sb.sb_inodesize +
274 mp->m_sb.sb_inodesize +
275 mp->m_sb.sb_sectsize +
276 XFS_FSB_TO_B(mp, 1) +
277 XFS_DIROP_LOG_RES(mp) +
278 128 * (3 + XFS_DIROP_LOG_COUNT(mp))),
279 (3 * mp->m_sb.sb_sectsize +
280 XFS_FSB_TO_B(mp, XFS_IALLOC_BLOCKS(mp)) +
281 XFS_FSB_TO_B(mp, mp->m_in_maxlevels) +
282 XFS_ALLOCFREE_LOG_RES(mp, 1) +
283 128 * (2 + XFS_IALLOC_BLOCKS(mp) + mp->m_in_maxlevels +
284 XFS_ALLOCFREE_LOG_COUNT(mp, 1))));
288 * Making a new directory is the same as creating a new file.
290 STATIC uint
291 xfs_calc_mkdir_reservation(
292 struct xfs_mount *mp)
294 return xfs_calc_create_reservation(mp);
298 * In freeing an inode we can modify:
299 * the inode being freed: inode size
300 * the super block free inode counter: sector size
301 * the agi hash list and counters: sector size
302 * the inode btree entry: block size
303 * the on disk inode before ours in the agi hash list: inode cluster size
304 * the inode btree: max depth * blocksize
305 * the allocation btrees: 2 trees * (max depth - 1) * block size
307 STATIC uint
308 xfs_calc_ifree_reservation(
309 struct xfs_mount *mp)
311 return XFS_DQUOT_LOGRES(mp) +
312 mp->m_sb.sb_inodesize +
313 mp->m_sb.sb_sectsize +
314 mp->m_sb.sb_sectsize +
315 XFS_FSB_TO_B(mp, 1) +
316 MAX((__uint16_t)XFS_FSB_TO_B(mp, 1),
317 XFS_INODE_CLUSTER_SIZE(mp)) +
318 128 * 5 +
319 XFS_ALLOCFREE_LOG_RES(mp, 1) +
320 128 * (2 + XFS_IALLOC_BLOCKS(mp) + mp->m_in_maxlevels +
321 XFS_ALLOCFREE_LOG_COUNT(mp, 1));
325 * When only changing the inode we log the inode and possibly the superblock
326 * We also add a bit of slop for the transaction stuff.
328 STATIC uint
329 xfs_calc_ichange_reservation(
330 struct xfs_mount *mp)
332 return XFS_DQUOT_LOGRES(mp) +
333 mp->m_sb.sb_inodesize +
334 mp->m_sb.sb_sectsize +
335 512;
340 * Growing the data section of the filesystem.
341 * superblock
342 * agi and agf
343 * allocation btrees
345 STATIC uint
346 xfs_calc_growdata_reservation(
347 struct xfs_mount *mp)
349 return mp->m_sb.sb_sectsize * 3 +
350 XFS_ALLOCFREE_LOG_RES(mp, 1) +
351 128 * (3 + XFS_ALLOCFREE_LOG_COUNT(mp, 1));
355 * Growing the rt section of the filesystem.
356 * In the first set of transactions (ALLOC) we allocate space to the
357 * bitmap or summary files.
358 * superblock: sector size
359 * agf of the ag from which the extent is allocated: sector size
360 * bmap btree for bitmap/summary inode: max depth * blocksize
361 * bitmap/summary inode: inode size
362 * allocation btrees for 1 block alloc: 2 * (2 * maxdepth - 1) * blocksize
364 STATIC uint
365 xfs_calc_growrtalloc_reservation(
366 struct xfs_mount *mp)
368 return 2 * mp->m_sb.sb_sectsize +
369 XFS_FSB_TO_B(mp, XFS_BM_MAXLEVELS(mp, XFS_DATA_FORK)) +
370 mp->m_sb.sb_inodesize +
371 XFS_ALLOCFREE_LOG_RES(mp, 1) +
372 128 * (3 + XFS_BM_MAXLEVELS(mp, XFS_DATA_FORK) +
373 XFS_ALLOCFREE_LOG_COUNT(mp, 1));
377 * Growing the rt section of the filesystem.
378 * In the second set of transactions (ZERO) we zero the new metadata blocks.
379 * one bitmap/summary block: blocksize
381 STATIC uint
382 xfs_calc_growrtzero_reservation(
383 struct xfs_mount *mp)
385 return mp->m_sb.sb_blocksize + 128;
389 * Growing the rt section of the filesystem.
390 * In the third set of transactions (FREE) we update metadata without
391 * allocating any new blocks.
392 * superblock: sector size
393 * bitmap inode: inode size
394 * summary inode: inode size
395 * one bitmap block: blocksize
396 * summary blocks: new summary size
398 STATIC uint
399 xfs_calc_growrtfree_reservation(
400 struct xfs_mount *mp)
402 return mp->m_sb.sb_sectsize +
403 2 * mp->m_sb.sb_inodesize +
404 mp->m_sb.sb_blocksize +
405 mp->m_rsumsize +
406 128 * 5;
410 * Logging the inode modification timestamp on a synchronous write.
411 * inode
413 STATIC uint
414 xfs_calc_swrite_reservation(
415 struct xfs_mount *mp)
417 return mp->m_sb.sb_inodesize + 128;
421 * Logging the inode mode bits when writing a setuid/setgid file
422 * inode
424 STATIC uint
425 xfs_calc_writeid_reservation(xfs_mount_t *mp)
427 return mp->m_sb.sb_inodesize + 128;
431 * Converting the inode from non-attributed to attributed.
432 * the inode being converted: inode size
433 * agf block and superblock (for block allocation)
434 * the new block (directory sized)
435 * bmap blocks for the new directory block
436 * allocation btrees
438 STATIC uint
439 xfs_calc_addafork_reservation(
440 struct xfs_mount *mp)
442 return XFS_DQUOT_LOGRES(mp) +
443 mp->m_sb.sb_inodesize +
444 mp->m_sb.sb_sectsize * 2 +
445 mp->m_dirblksize +
446 XFS_FSB_TO_B(mp, XFS_DAENTER_BMAP1B(mp, XFS_DATA_FORK) + 1) +
447 XFS_ALLOCFREE_LOG_RES(mp, 1) +
448 128 * (4 + XFS_DAENTER_BMAP1B(mp, XFS_DATA_FORK) + 1 +
449 XFS_ALLOCFREE_LOG_COUNT(mp, 1));
453 * Removing the attribute fork of a file
454 * the inode being truncated: inode size
455 * the inode's bmap btree: max depth * block size
456 * And the bmap_finish transaction can free the blocks and bmap blocks:
457 * the agf for each of the ags: 4 * sector size
458 * the agfl for each of the ags: 4 * sector size
459 * the super block to reflect the freed blocks: sector size
460 * worst case split in allocation btrees per extent assuming 4 extents:
461 * 4 exts * 2 trees * (2 * max depth - 1) * block size
463 STATIC uint
464 xfs_calc_attrinval_reservation(
465 struct xfs_mount *mp)
467 return MAX((mp->m_sb.sb_inodesize +
468 XFS_FSB_TO_B(mp, XFS_BM_MAXLEVELS(mp, XFS_ATTR_FORK)) +
469 128 * (1 + XFS_BM_MAXLEVELS(mp, XFS_ATTR_FORK))),
470 (4 * mp->m_sb.sb_sectsize +
471 4 * mp->m_sb.sb_sectsize +
472 mp->m_sb.sb_sectsize +
473 XFS_ALLOCFREE_LOG_RES(mp, 4) +
474 128 * (9 + XFS_ALLOCFREE_LOG_COUNT(mp, 4))));
478 * Setting an attribute.
479 * the inode getting the attribute
480 * the superblock for allocations
481 * the agfs extents are allocated from
482 * the attribute btree * max depth
483 * the inode allocation btree
484 * Since attribute transaction space is dependent on the size of the attribute,
485 * the calculation is done partially at mount time and partially at runtime.
487 STATIC uint
488 xfs_calc_attrset_reservation(
489 struct xfs_mount *mp)
491 return XFS_DQUOT_LOGRES(mp) +
492 mp->m_sb.sb_inodesize +
493 mp->m_sb.sb_sectsize +
494 XFS_FSB_TO_B(mp, XFS_DA_NODE_MAXDEPTH) +
495 128 * (2 + XFS_DA_NODE_MAXDEPTH);
499 * Removing an attribute.
500 * the inode: inode size
501 * the attribute btree could join: max depth * block size
502 * the inode bmap btree could join or split: max depth * block size
503 * And the bmap_finish transaction can free the attr blocks freed giving:
504 * the agf for the ag in which the blocks live: 2 * sector size
505 * the agfl for the ag in which the blocks live: 2 * sector size
506 * the superblock for the free block count: sector size
507 * the allocation btrees: 2 exts * 2 trees * (2 * max depth - 1) * block size
509 STATIC uint
510 xfs_calc_attrrm_reservation(
511 struct xfs_mount *mp)
513 return XFS_DQUOT_LOGRES(mp) +
514 MAX((mp->m_sb.sb_inodesize +
515 XFS_FSB_TO_B(mp, XFS_DA_NODE_MAXDEPTH) +
516 XFS_FSB_TO_B(mp, XFS_BM_MAXLEVELS(mp, XFS_ATTR_FORK)) +
517 128 * (1 + XFS_DA_NODE_MAXDEPTH +
518 XFS_BM_MAXLEVELS(mp, XFS_DATA_FORK))),
519 (2 * mp->m_sb.sb_sectsize +
520 2 * mp->m_sb.sb_sectsize +
521 mp->m_sb.sb_sectsize +
522 XFS_ALLOCFREE_LOG_RES(mp, 2) +
523 128 * (5 + XFS_ALLOCFREE_LOG_COUNT(mp, 2))));
527 * Clearing a bad agino number in an agi hash bucket.
529 STATIC uint
530 xfs_calc_clear_agi_bucket_reservation(
531 struct xfs_mount *mp)
533 return mp->m_sb.sb_sectsize + 128;
537 * Initialize the precomputed transaction reservation values
538 * in the mount structure.
540 void
541 xfs_trans_init(
542 struct xfs_mount *mp)
544 struct xfs_trans_reservations *resp = &mp->m_reservations;
546 resp->tr_write = xfs_calc_write_reservation(mp);
547 resp->tr_itruncate = xfs_calc_itruncate_reservation(mp);
548 resp->tr_rename = xfs_calc_rename_reservation(mp);
549 resp->tr_link = xfs_calc_link_reservation(mp);
550 resp->tr_remove = xfs_calc_remove_reservation(mp);
551 resp->tr_symlink = xfs_calc_symlink_reservation(mp);
552 resp->tr_create = xfs_calc_create_reservation(mp);
553 resp->tr_mkdir = xfs_calc_mkdir_reservation(mp);
554 resp->tr_ifree = xfs_calc_ifree_reservation(mp);
555 resp->tr_ichange = xfs_calc_ichange_reservation(mp);
556 resp->tr_growdata = xfs_calc_growdata_reservation(mp);
557 resp->tr_swrite = xfs_calc_swrite_reservation(mp);
558 resp->tr_writeid = xfs_calc_writeid_reservation(mp);
559 resp->tr_addafork = xfs_calc_addafork_reservation(mp);
560 resp->tr_attrinval = xfs_calc_attrinval_reservation(mp);
561 resp->tr_attrset = xfs_calc_attrset_reservation(mp);
562 resp->tr_attrrm = xfs_calc_attrrm_reservation(mp);
563 resp->tr_clearagi = xfs_calc_clear_agi_bucket_reservation(mp);
564 resp->tr_growrtalloc = xfs_calc_growrtalloc_reservation(mp);
565 resp->tr_growrtzero = xfs_calc_growrtzero_reservation(mp);
566 resp->tr_growrtfree = xfs_calc_growrtfree_reservation(mp);
570 * This routine is called to allocate a transaction structure.
571 * The type parameter indicates the type of the transaction. These
572 * are enumerated in xfs_trans.h.
574 * Dynamically allocate the transaction structure from the transaction
575 * zone, initialize it, and return it to the caller.
577 xfs_trans_t *
578 xfs_trans_alloc(
579 xfs_mount_t *mp,
580 uint type)
582 xfs_wait_for_freeze(mp, SB_FREEZE_TRANS);
583 return _xfs_trans_alloc(mp, type, KM_SLEEP);
586 xfs_trans_t *
587 _xfs_trans_alloc(
588 xfs_mount_t *mp,
589 uint type,
590 uint memflags)
592 xfs_trans_t *tp;
594 atomic_inc(&mp->m_active_trans);
596 tp = kmem_zone_zalloc(xfs_trans_zone, memflags);
597 tp->t_magic = XFS_TRANS_MAGIC;
598 tp->t_type = type;
599 tp->t_mountp = mp;
600 tp->t_items_free = XFS_LIC_NUM_SLOTS;
601 xfs_lic_init(&(tp->t_items));
602 INIT_LIST_HEAD(&tp->t_busy);
603 return tp;
607 * Free the transaction structure. If there is more clean up
608 * to do when the structure is freed, add it here.
610 STATIC void
611 xfs_trans_free(
612 struct xfs_trans *tp)
614 struct xfs_busy_extent *busyp, *n;
616 list_for_each_entry_safe(busyp, n, &tp->t_busy, list)
617 xfs_alloc_busy_clear(tp->t_mountp, busyp);
619 atomic_dec(&tp->t_mountp->m_active_trans);
620 xfs_trans_free_dqinfo(tp);
621 kmem_zone_free(xfs_trans_zone, tp);
625 * This is called to create a new transaction which will share the
626 * permanent log reservation of the given transaction. The remaining
627 * unused block and rt extent reservations are also inherited. This
628 * implies that the original transaction is no longer allowed to allocate
629 * blocks. Locks and log items, however, are no inherited. They must
630 * be added to the new transaction explicitly.
632 xfs_trans_t *
633 xfs_trans_dup(
634 xfs_trans_t *tp)
636 xfs_trans_t *ntp;
638 ntp = kmem_zone_zalloc(xfs_trans_zone, KM_SLEEP);
641 * Initialize the new transaction structure.
643 ntp->t_magic = XFS_TRANS_MAGIC;
644 ntp->t_type = tp->t_type;
645 ntp->t_mountp = tp->t_mountp;
646 ntp->t_items_free = XFS_LIC_NUM_SLOTS;
647 xfs_lic_init(&(ntp->t_items));
648 INIT_LIST_HEAD(&ntp->t_busy);
650 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
651 ASSERT(tp->t_ticket != NULL);
653 ntp->t_flags = XFS_TRANS_PERM_LOG_RES | (tp->t_flags & XFS_TRANS_RESERVE);
654 ntp->t_ticket = xfs_log_ticket_get(tp->t_ticket);
655 ntp->t_blk_res = tp->t_blk_res - tp->t_blk_res_used;
656 tp->t_blk_res = tp->t_blk_res_used;
657 ntp->t_rtx_res = tp->t_rtx_res - tp->t_rtx_res_used;
658 tp->t_rtx_res = tp->t_rtx_res_used;
659 ntp->t_pflags = tp->t_pflags;
661 xfs_trans_dup_dqinfo(tp, ntp);
663 atomic_inc(&tp->t_mountp->m_active_trans);
664 return ntp;
668 * This is called to reserve free disk blocks and log space for the
669 * given transaction. This must be done before allocating any resources
670 * within the transaction.
672 * This will return ENOSPC if there are not enough blocks available.
673 * It will sleep waiting for available log space.
674 * The only valid value for the flags parameter is XFS_RES_LOG_PERM, which
675 * is used by long running transactions. If any one of the reservations
676 * fails then they will all be backed out.
678 * This does not do quota reservations. That typically is done by the
679 * caller afterwards.
682 xfs_trans_reserve(
683 xfs_trans_t *tp,
684 uint blocks,
685 uint logspace,
686 uint rtextents,
687 uint flags,
688 uint logcount)
690 int log_flags;
691 int error = 0;
692 int rsvd = (tp->t_flags & XFS_TRANS_RESERVE) != 0;
694 /* Mark this thread as being in a transaction */
695 current_set_flags_nested(&tp->t_pflags, PF_FSTRANS);
698 * Attempt to reserve the needed disk blocks by decrementing
699 * the number needed from the number available. This will
700 * fail if the count would go below zero.
702 if (blocks > 0) {
703 error = xfs_mod_incore_sb(tp->t_mountp, XFS_SBS_FDBLOCKS,
704 -((int64_t)blocks), rsvd);
705 if (error != 0) {
706 current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS);
707 return (XFS_ERROR(ENOSPC));
709 tp->t_blk_res += blocks;
713 * Reserve the log space needed for this transaction.
715 if (logspace > 0) {
716 ASSERT((tp->t_log_res == 0) || (tp->t_log_res == logspace));
717 ASSERT((tp->t_log_count == 0) ||
718 (tp->t_log_count == logcount));
719 if (flags & XFS_TRANS_PERM_LOG_RES) {
720 log_flags = XFS_LOG_PERM_RESERV;
721 tp->t_flags |= XFS_TRANS_PERM_LOG_RES;
722 } else {
723 ASSERT(tp->t_ticket == NULL);
724 ASSERT(!(tp->t_flags & XFS_TRANS_PERM_LOG_RES));
725 log_flags = 0;
728 error = xfs_log_reserve(tp->t_mountp, logspace, logcount,
729 &tp->t_ticket,
730 XFS_TRANSACTION, log_flags, tp->t_type);
731 if (error) {
732 goto undo_blocks;
734 tp->t_log_res = logspace;
735 tp->t_log_count = logcount;
739 * Attempt to reserve the needed realtime extents by decrementing
740 * the number needed from the number available. This will
741 * fail if the count would go below zero.
743 if (rtextents > 0) {
744 error = xfs_mod_incore_sb(tp->t_mountp, XFS_SBS_FREXTENTS,
745 -((int64_t)rtextents), rsvd);
746 if (error) {
747 error = XFS_ERROR(ENOSPC);
748 goto undo_log;
750 tp->t_rtx_res += rtextents;
753 return 0;
756 * Error cases jump to one of these labels to undo any
757 * reservations which have already been performed.
759 undo_log:
760 if (logspace > 0) {
761 if (flags & XFS_TRANS_PERM_LOG_RES) {
762 log_flags = XFS_LOG_REL_PERM_RESERV;
763 } else {
764 log_flags = 0;
766 xfs_log_done(tp->t_mountp, tp->t_ticket, NULL, log_flags);
767 tp->t_ticket = NULL;
768 tp->t_log_res = 0;
769 tp->t_flags &= ~XFS_TRANS_PERM_LOG_RES;
772 undo_blocks:
773 if (blocks > 0) {
774 (void) xfs_mod_incore_sb(tp->t_mountp, XFS_SBS_FDBLOCKS,
775 (int64_t)blocks, rsvd);
776 tp->t_blk_res = 0;
779 current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS);
781 return error;
785 * Record the indicated change to the given field for application
786 * to the file system's superblock when the transaction commits.
787 * For now, just store the change in the transaction structure.
789 * Mark the transaction structure to indicate that the superblock
790 * needs to be updated before committing.
792 * Because we may not be keeping track of allocated/free inodes and
793 * used filesystem blocks in the superblock, we do not mark the
794 * superblock dirty in this transaction if we modify these fields.
795 * We still need to update the transaction deltas so that they get
796 * applied to the incore superblock, but we don't want them to
797 * cause the superblock to get locked and logged if these are the
798 * only fields in the superblock that the transaction modifies.
800 void
801 xfs_trans_mod_sb(
802 xfs_trans_t *tp,
803 uint field,
804 int64_t delta)
806 uint32_t flags = (XFS_TRANS_DIRTY|XFS_TRANS_SB_DIRTY);
807 xfs_mount_t *mp = tp->t_mountp;
809 switch (field) {
810 case XFS_TRANS_SB_ICOUNT:
811 tp->t_icount_delta += delta;
812 if (xfs_sb_version_haslazysbcount(&mp->m_sb))
813 flags &= ~XFS_TRANS_SB_DIRTY;
814 break;
815 case XFS_TRANS_SB_IFREE:
816 tp->t_ifree_delta += delta;
817 if (xfs_sb_version_haslazysbcount(&mp->m_sb))
818 flags &= ~XFS_TRANS_SB_DIRTY;
819 break;
820 case XFS_TRANS_SB_FDBLOCKS:
822 * Track the number of blocks allocated in the
823 * transaction. Make sure it does not exceed the
824 * number reserved.
826 if (delta < 0) {
827 tp->t_blk_res_used += (uint)-delta;
828 ASSERT(tp->t_blk_res_used <= tp->t_blk_res);
830 tp->t_fdblocks_delta += delta;
831 if (xfs_sb_version_haslazysbcount(&mp->m_sb))
832 flags &= ~XFS_TRANS_SB_DIRTY;
833 break;
834 case XFS_TRANS_SB_RES_FDBLOCKS:
836 * The allocation has already been applied to the
837 * in-core superblock's counter. This should only
838 * be applied to the on-disk superblock.
840 ASSERT(delta < 0);
841 tp->t_res_fdblocks_delta += delta;
842 if (xfs_sb_version_haslazysbcount(&mp->m_sb))
843 flags &= ~XFS_TRANS_SB_DIRTY;
844 break;
845 case XFS_TRANS_SB_FREXTENTS:
847 * Track the number of blocks allocated in the
848 * transaction. Make sure it does not exceed the
849 * number reserved.
851 if (delta < 0) {
852 tp->t_rtx_res_used += (uint)-delta;
853 ASSERT(tp->t_rtx_res_used <= tp->t_rtx_res);
855 tp->t_frextents_delta += delta;
856 break;
857 case XFS_TRANS_SB_RES_FREXTENTS:
859 * The allocation has already been applied to the
860 * in-core superblock's counter. This should only
861 * be applied to the on-disk superblock.
863 ASSERT(delta < 0);
864 tp->t_res_frextents_delta += delta;
865 break;
866 case XFS_TRANS_SB_DBLOCKS:
867 ASSERT(delta > 0);
868 tp->t_dblocks_delta += delta;
869 break;
870 case XFS_TRANS_SB_AGCOUNT:
871 ASSERT(delta > 0);
872 tp->t_agcount_delta += delta;
873 break;
874 case XFS_TRANS_SB_IMAXPCT:
875 tp->t_imaxpct_delta += delta;
876 break;
877 case XFS_TRANS_SB_REXTSIZE:
878 tp->t_rextsize_delta += delta;
879 break;
880 case XFS_TRANS_SB_RBMBLOCKS:
881 tp->t_rbmblocks_delta += delta;
882 break;
883 case XFS_TRANS_SB_RBLOCKS:
884 tp->t_rblocks_delta += delta;
885 break;
886 case XFS_TRANS_SB_REXTENTS:
887 tp->t_rextents_delta += delta;
888 break;
889 case XFS_TRANS_SB_REXTSLOG:
890 tp->t_rextslog_delta += delta;
891 break;
892 default:
893 ASSERT(0);
894 return;
897 tp->t_flags |= flags;
901 * xfs_trans_apply_sb_deltas() is called from the commit code
902 * to bring the superblock buffer into the current transaction
903 * and modify it as requested by earlier calls to xfs_trans_mod_sb().
905 * For now we just look at each field allowed to change and change
906 * it if necessary.
908 STATIC void
909 xfs_trans_apply_sb_deltas(
910 xfs_trans_t *tp)
912 xfs_dsb_t *sbp;
913 xfs_buf_t *bp;
914 int whole = 0;
916 bp = xfs_trans_getsb(tp, tp->t_mountp, 0);
917 sbp = XFS_BUF_TO_SBP(bp);
920 * Check that superblock mods match the mods made to AGF counters.
922 ASSERT((tp->t_fdblocks_delta + tp->t_res_fdblocks_delta) ==
923 (tp->t_ag_freeblks_delta + tp->t_ag_flist_delta +
924 tp->t_ag_btree_delta));
927 * Only update the superblock counters if we are logging them
929 if (!xfs_sb_version_haslazysbcount(&(tp->t_mountp->m_sb))) {
930 if (tp->t_icount_delta)
931 be64_add_cpu(&sbp->sb_icount, tp->t_icount_delta);
932 if (tp->t_ifree_delta)
933 be64_add_cpu(&sbp->sb_ifree, tp->t_ifree_delta);
934 if (tp->t_fdblocks_delta)
935 be64_add_cpu(&sbp->sb_fdblocks, tp->t_fdblocks_delta);
936 if (tp->t_res_fdblocks_delta)
937 be64_add_cpu(&sbp->sb_fdblocks, tp->t_res_fdblocks_delta);
940 if (tp->t_frextents_delta)
941 be64_add_cpu(&sbp->sb_frextents, tp->t_frextents_delta);
942 if (tp->t_res_frextents_delta)
943 be64_add_cpu(&sbp->sb_frextents, tp->t_res_frextents_delta);
945 if (tp->t_dblocks_delta) {
946 be64_add_cpu(&sbp->sb_dblocks, tp->t_dblocks_delta);
947 whole = 1;
949 if (tp->t_agcount_delta) {
950 be32_add_cpu(&sbp->sb_agcount, tp->t_agcount_delta);
951 whole = 1;
953 if (tp->t_imaxpct_delta) {
954 sbp->sb_imax_pct += tp->t_imaxpct_delta;
955 whole = 1;
957 if (tp->t_rextsize_delta) {
958 be32_add_cpu(&sbp->sb_rextsize, tp->t_rextsize_delta);
959 whole = 1;
961 if (tp->t_rbmblocks_delta) {
962 be32_add_cpu(&sbp->sb_rbmblocks, tp->t_rbmblocks_delta);
963 whole = 1;
965 if (tp->t_rblocks_delta) {
966 be64_add_cpu(&sbp->sb_rblocks, tp->t_rblocks_delta);
967 whole = 1;
969 if (tp->t_rextents_delta) {
970 be64_add_cpu(&sbp->sb_rextents, tp->t_rextents_delta);
971 whole = 1;
973 if (tp->t_rextslog_delta) {
974 sbp->sb_rextslog += tp->t_rextslog_delta;
975 whole = 1;
978 if (whole)
980 * Log the whole thing, the fields are noncontiguous.
982 xfs_trans_log_buf(tp, bp, 0, sizeof(xfs_dsb_t) - 1);
983 else
985 * Since all the modifiable fields are contiguous, we
986 * can get away with this.
988 xfs_trans_log_buf(tp, bp, offsetof(xfs_dsb_t, sb_icount),
989 offsetof(xfs_dsb_t, sb_frextents) +
990 sizeof(sbp->sb_frextents) - 1);
994 * xfs_trans_unreserve_and_mod_sb() is called to release unused reservations
995 * and apply superblock counter changes to the in-core superblock. The
996 * t_res_fdblocks_delta and t_res_frextents_delta fields are explicitly NOT
997 * applied to the in-core superblock. The idea is that that has already been
998 * done.
1000 * This is done efficiently with a single call to xfs_mod_incore_sb_batch().
1001 * However, we have to ensure that we only modify each superblock field only
1002 * once because the application of the delta values may not be atomic. That can
1003 * lead to ENOSPC races occurring if we have two separate modifcations of the
1004 * free space counter to put back the entire reservation and then take away
1005 * what we used.
1007 * If we are not logging superblock counters, then the inode allocated/free and
1008 * used block counts are not updated in the on disk superblock. In this case,
1009 * XFS_TRANS_SB_DIRTY will not be set when the transaction is updated but we
1010 * still need to update the incore superblock with the changes.
1012 void
1013 xfs_trans_unreserve_and_mod_sb(
1014 xfs_trans_t *tp)
1016 xfs_mod_sb_t msb[14]; /* If you add cases, add entries */
1017 xfs_mod_sb_t *msbp;
1018 xfs_mount_t *mp = tp->t_mountp;
1019 /* REFERENCED */
1020 int error;
1021 int rsvd;
1022 int64_t blkdelta = 0;
1023 int64_t rtxdelta = 0;
1025 msbp = msb;
1026 rsvd = (tp->t_flags & XFS_TRANS_RESERVE) != 0;
1028 /* calculate free blocks delta */
1029 if (tp->t_blk_res > 0)
1030 blkdelta = tp->t_blk_res;
1032 if ((tp->t_fdblocks_delta != 0) &&
1033 (xfs_sb_version_haslazysbcount(&mp->m_sb) ||
1034 (tp->t_flags & XFS_TRANS_SB_DIRTY)))
1035 blkdelta += tp->t_fdblocks_delta;
1037 if (blkdelta != 0) {
1038 msbp->msb_field = XFS_SBS_FDBLOCKS;
1039 msbp->msb_delta = blkdelta;
1040 msbp++;
1043 /* calculate free realtime extents delta */
1044 if (tp->t_rtx_res > 0)
1045 rtxdelta = tp->t_rtx_res;
1047 if ((tp->t_frextents_delta != 0) &&
1048 (tp->t_flags & XFS_TRANS_SB_DIRTY))
1049 rtxdelta += tp->t_frextents_delta;
1051 if (rtxdelta != 0) {
1052 msbp->msb_field = XFS_SBS_FREXTENTS;
1053 msbp->msb_delta = rtxdelta;
1054 msbp++;
1057 /* apply remaining deltas */
1059 if (xfs_sb_version_haslazysbcount(&mp->m_sb) ||
1060 (tp->t_flags & XFS_TRANS_SB_DIRTY)) {
1061 if (tp->t_icount_delta != 0) {
1062 msbp->msb_field = XFS_SBS_ICOUNT;
1063 msbp->msb_delta = tp->t_icount_delta;
1064 msbp++;
1066 if (tp->t_ifree_delta != 0) {
1067 msbp->msb_field = XFS_SBS_IFREE;
1068 msbp->msb_delta = tp->t_ifree_delta;
1069 msbp++;
1073 if (tp->t_flags & XFS_TRANS_SB_DIRTY) {
1074 if (tp->t_dblocks_delta != 0) {
1075 msbp->msb_field = XFS_SBS_DBLOCKS;
1076 msbp->msb_delta = tp->t_dblocks_delta;
1077 msbp++;
1079 if (tp->t_agcount_delta != 0) {
1080 msbp->msb_field = XFS_SBS_AGCOUNT;
1081 msbp->msb_delta = tp->t_agcount_delta;
1082 msbp++;
1084 if (tp->t_imaxpct_delta != 0) {
1085 msbp->msb_field = XFS_SBS_IMAX_PCT;
1086 msbp->msb_delta = tp->t_imaxpct_delta;
1087 msbp++;
1089 if (tp->t_rextsize_delta != 0) {
1090 msbp->msb_field = XFS_SBS_REXTSIZE;
1091 msbp->msb_delta = tp->t_rextsize_delta;
1092 msbp++;
1094 if (tp->t_rbmblocks_delta != 0) {
1095 msbp->msb_field = XFS_SBS_RBMBLOCKS;
1096 msbp->msb_delta = tp->t_rbmblocks_delta;
1097 msbp++;
1099 if (tp->t_rblocks_delta != 0) {
1100 msbp->msb_field = XFS_SBS_RBLOCKS;
1101 msbp->msb_delta = tp->t_rblocks_delta;
1102 msbp++;
1104 if (tp->t_rextents_delta != 0) {
1105 msbp->msb_field = XFS_SBS_REXTENTS;
1106 msbp->msb_delta = tp->t_rextents_delta;
1107 msbp++;
1109 if (tp->t_rextslog_delta != 0) {
1110 msbp->msb_field = XFS_SBS_REXTSLOG;
1111 msbp->msb_delta = tp->t_rextslog_delta;
1112 msbp++;
1117 * If we need to change anything, do it.
1119 if (msbp > msb) {
1120 error = xfs_mod_incore_sb_batch(tp->t_mountp, msb,
1121 (uint)(msbp - msb), rsvd);
1122 ASSERT(error == 0);
1127 * Total up the number of log iovecs needed to commit this
1128 * transaction. The transaction itself needs one for the
1129 * transaction header. Ask each dirty item in turn how many
1130 * it needs to get the total.
1132 static uint
1133 xfs_trans_count_vecs(
1134 struct xfs_trans *tp)
1136 int nvecs;
1137 xfs_log_item_desc_t *lidp;
1139 nvecs = 1;
1140 lidp = xfs_trans_first_item(tp);
1141 ASSERT(lidp != NULL);
1143 /* In the non-debug case we need to start bailing out if we
1144 * didn't find a log_item here, return zero and let trans_commit
1145 * deal with it.
1147 if (lidp == NULL)
1148 return 0;
1150 while (lidp != NULL) {
1152 * Skip items which aren't dirty in this transaction.
1154 if (!(lidp->lid_flags & XFS_LID_DIRTY)) {
1155 lidp = xfs_trans_next_item(tp, lidp);
1156 continue;
1158 lidp->lid_size = IOP_SIZE(lidp->lid_item);
1159 nvecs += lidp->lid_size;
1160 lidp = xfs_trans_next_item(tp, lidp);
1163 return nvecs;
1167 * Fill in the vector with pointers to data to be logged
1168 * by this transaction. The transaction header takes
1169 * the first vector, and then each dirty item takes the
1170 * number of vectors it indicated it needed in xfs_trans_count_vecs().
1172 * As each item fills in the entries it needs, also pin the item
1173 * so that it cannot be flushed out until the log write completes.
1175 static void
1176 xfs_trans_fill_vecs(
1177 struct xfs_trans *tp,
1178 struct xfs_log_iovec *log_vector)
1180 xfs_log_item_desc_t *lidp;
1181 struct xfs_log_iovec *vecp;
1182 uint nitems;
1185 * Skip over the entry for the transaction header, we'll
1186 * fill that in at the end.
1188 vecp = log_vector + 1;
1190 nitems = 0;
1191 lidp = xfs_trans_first_item(tp);
1192 ASSERT(lidp);
1193 while (lidp) {
1194 /* Skip items which aren't dirty in this transaction. */
1195 if (!(lidp->lid_flags & XFS_LID_DIRTY)) {
1196 lidp = xfs_trans_next_item(tp, lidp);
1197 continue;
1201 * The item may be marked dirty but not log anything. This can
1202 * be used to get called when a transaction is committed.
1204 if (lidp->lid_size)
1205 nitems++;
1206 IOP_FORMAT(lidp->lid_item, vecp);
1207 vecp += lidp->lid_size;
1208 IOP_PIN(lidp->lid_item);
1209 lidp = xfs_trans_next_item(tp, lidp);
1213 * Now that we've counted the number of items in this transaction, fill
1214 * in the transaction header. Note that the transaction header does not
1215 * have a log item.
1217 tp->t_header.th_magic = XFS_TRANS_HEADER_MAGIC;
1218 tp->t_header.th_type = tp->t_type;
1219 tp->t_header.th_num_items = nitems;
1220 log_vector->i_addr = (xfs_caddr_t)&tp->t_header;
1221 log_vector->i_len = sizeof(xfs_trans_header_t);
1222 log_vector->i_type = XLOG_REG_TYPE_TRANSHDR;
1226 * The committed item processing consists of calling the committed routine of
1227 * each logged item, updating the item's position in the AIL if necessary, and
1228 * unpinning each item. If the committed routine returns -1, then do nothing
1229 * further with the item because it may have been freed.
1231 * Since items are unlocked when they are copied to the incore log, it is
1232 * possible for two transactions to be completing and manipulating the same
1233 * item simultaneously. The AIL lock will protect the lsn field of each item.
1234 * The value of this field can never go backwards.
1236 * We unpin the items after repositioning them in the AIL, because otherwise
1237 * they could be immediately flushed and we'd have to race with the flusher
1238 * trying to pull the item from the AIL as we add it.
1240 void
1241 xfs_trans_item_committed(
1242 struct xfs_log_item *lip,
1243 xfs_lsn_t commit_lsn,
1244 int aborted)
1246 xfs_lsn_t item_lsn;
1247 struct xfs_ail *ailp;
1249 if (aborted)
1250 lip->li_flags |= XFS_LI_ABORTED;
1251 item_lsn = IOP_COMMITTED(lip, commit_lsn);
1253 /* If the committed routine returns -1, item has been freed. */
1254 if (XFS_LSN_CMP(item_lsn, (xfs_lsn_t)-1) == 0)
1255 return;
1258 * If the returned lsn is greater than what it contained before, update
1259 * the location of the item in the AIL. If it is not, then do nothing.
1260 * Items can never move backwards in the AIL.
1262 * While the new lsn should usually be greater, it is possible that a
1263 * later transaction completing simultaneously with an earlier one
1264 * using the same item could complete first with a higher lsn. This
1265 * would cause the earlier transaction to fail the test below.
1267 ailp = lip->li_ailp;
1268 spin_lock(&ailp->xa_lock);
1269 if (XFS_LSN_CMP(item_lsn, lip->li_lsn) > 0) {
1271 * This will set the item's lsn to item_lsn and update the
1272 * position of the item in the AIL.
1274 * xfs_trans_ail_update() drops the AIL lock.
1276 xfs_trans_ail_update(ailp, lip, item_lsn);
1277 } else {
1278 spin_unlock(&ailp->xa_lock);
1282 * Now that we've repositioned the item in the AIL, unpin it so it can
1283 * be flushed. Pass information about buffer stale state down from the
1284 * log item flags, if anyone else stales the buffer we do not want to
1285 * pay any attention to it.
1287 IOP_UNPIN(lip);
1291 * This is typically called by the LM when a transaction has been fully
1292 * committed to disk. It needs to unpin the items which have
1293 * been logged by the transaction and update their positions
1294 * in the AIL if necessary.
1296 * This also gets called when the transactions didn't get written out
1297 * because of an I/O error. Abortflag & XFS_LI_ABORTED is set then.
1299 STATIC void
1300 xfs_trans_committed(
1301 struct xfs_trans *tp,
1302 int abortflag)
1304 xfs_log_item_desc_t *lidp;
1305 xfs_log_item_chunk_t *licp;
1306 xfs_log_item_chunk_t *next_licp;
1308 /* Call the transaction's completion callback if there is one. */
1309 if (tp->t_callback != NULL)
1310 tp->t_callback(tp, tp->t_callarg);
1312 for (lidp = xfs_trans_first_item(tp);
1313 lidp != NULL;
1314 lidp = xfs_trans_next_item(tp, lidp)) {
1315 xfs_trans_item_committed(lidp->lid_item, tp->t_lsn, abortflag);
1318 /* free the item chunks, ignoring the embedded chunk */
1319 for (licp = tp->t_items.lic_next; licp != NULL; licp = next_licp) {
1320 next_licp = licp->lic_next;
1321 kmem_free(licp);
1324 xfs_trans_free(tp);
1328 * Called from the trans_commit code when we notice that
1329 * the filesystem is in the middle of a forced shutdown.
1331 STATIC void
1332 xfs_trans_uncommit(
1333 struct xfs_trans *tp,
1334 uint flags)
1336 xfs_log_item_desc_t *lidp;
1338 for (lidp = xfs_trans_first_item(tp);
1339 lidp != NULL;
1340 lidp = xfs_trans_next_item(tp, lidp)) {
1342 * Unpin all but those that aren't dirty.
1344 if (lidp->lid_flags & XFS_LID_DIRTY)
1345 IOP_UNPIN_REMOVE(lidp->lid_item, tp);
1348 xfs_trans_unreserve_and_mod_sb(tp);
1349 xfs_trans_unreserve_and_mod_dquots(tp);
1351 xfs_trans_free_items(tp, NULLCOMMITLSN, flags);
1352 xfs_trans_free(tp);
1356 * Format the transaction direct to the iclog. This isolates the physical
1357 * transaction commit operation from the logical operation and hence allows
1358 * other methods to be introduced without affecting the existing commit path.
1360 static int
1361 xfs_trans_commit_iclog(
1362 struct xfs_mount *mp,
1363 struct xfs_trans *tp,
1364 xfs_lsn_t *commit_lsn,
1365 int flags)
1367 int shutdown;
1368 int error;
1369 int log_flags = 0;
1370 struct xlog_in_core *commit_iclog;
1371 #define XFS_TRANS_LOGVEC_COUNT 16
1372 struct xfs_log_iovec log_vector_fast[XFS_TRANS_LOGVEC_COUNT];
1373 struct xfs_log_iovec *log_vector;
1374 uint nvec;
1378 * Ask each log item how many log_vector entries it will
1379 * need so we can figure out how many to allocate.
1380 * Try to avoid the kmem_alloc() call in the common case
1381 * by using a vector from the stack when it fits.
1383 nvec = xfs_trans_count_vecs(tp);
1384 if (nvec == 0) {
1385 return ENOMEM; /* triggers a shutdown! */
1386 } else if (nvec <= XFS_TRANS_LOGVEC_COUNT) {
1387 log_vector = log_vector_fast;
1388 } else {
1389 log_vector = (xfs_log_iovec_t *)kmem_alloc(nvec *
1390 sizeof(xfs_log_iovec_t),
1391 KM_SLEEP);
1395 * Fill in the log_vector and pin the logged items, and
1396 * then write the transaction to the log.
1398 xfs_trans_fill_vecs(tp, log_vector);
1400 if (flags & XFS_TRANS_RELEASE_LOG_RES)
1401 log_flags = XFS_LOG_REL_PERM_RESERV;
1403 error = xfs_log_write(mp, log_vector, nvec, tp->t_ticket, &(tp->t_lsn));
1406 * The transaction is committed incore here, and can go out to disk
1407 * at any time after this call. However, all the items associated
1408 * with the transaction are still locked and pinned in memory.
1410 *commit_lsn = xfs_log_done(mp, tp->t_ticket, &commit_iclog, log_flags);
1412 tp->t_commit_lsn = *commit_lsn;
1413 trace_xfs_trans_commit_lsn(tp);
1415 if (nvec > XFS_TRANS_LOGVEC_COUNT)
1416 kmem_free(log_vector);
1419 * If we got a log write error. Unpin the logitems that we
1420 * had pinned, clean up, free trans structure, and return error.
1422 if (error || *commit_lsn == -1) {
1423 current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS);
1424 xfs_trans_uncommit(tp, flags|XFS_TRANS_ABORT);
1425 return XFS_ERROR(EIO);
1429 * Once the transaction has committed, unused
1430 * reservations need to be released and changes to
1431 * the superblock need to be reflected in the in-core
1432 * version. Do that now.
1434 xfs_trans_unreserve_and_mod_sb(tp);
1437 * Tell the LM to call the transaction completion routine
1438 * when the log write with LSN commit_lsn completes (e.g.
1439 * when the transaction commit really hits the on-disk log).
1440 * After this call we cannot reference tp, because the call
1441 * can happen at any time and the call will free the transaction
1442 * structure pointed to by tp. The only case where we call
1443 * the completion routine (xfs_trans_committed) directly is
1444 * if the log is turned off on a debug kernel or we're
1445 * running in simulation mode (the log is explicitly turned
1446 * off).
1448 tp->t_logcb.cb_func = (void(*)(void*, int))xfs_trans_committed;
1449 tp->t_logcb.cb_arg = tp;
1452 * We need to pass the iclog buffer which was used for the
1453 * transaction commit record into this function, and attach
1454 * the callback to it. The callback must be attached before
1455 * the items are unlocked to avoid racing with other threads
1456 * waiting for an item to unlock.
1458 shutdown = xfs_log_notify(mp, commit_iclog, &(tp->t_logcb));
1461 * Mark this thread as no longer being in a transaction
1463 current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS);
1466 * Once all the items of the transaction have been copied
1467 * to the in core log and the callback is attached, the
1468 * items can be unlocked.
1470 * This will free descriptors pointing to items which were
1471 * not logged since there is nothing more to do with them.
1472 * For items which were logged, we will keep pointers to them
1473 * so they can be unpinned after the transaction commits to disk.
1474 * This will also stamp each modified meta-data item with
1475 * the commit lsn of this transaction for dependency tracking
1476 * purposes.
1478 xfs_trans_unlock_items(tp, *commit_lsn);
1481 * If we detected a log error earlier, finish committing
1482 * the transaction now (unpin log items, etc).
1484 * Order is critical here, to avoid using the transaction
1485 * pointer after its been freed (by xfs_trans_committed
1486 * either here now, or as a callback). We cannot do this
1487 * step inside xfs_log_notify as was done earlier because
1488 * of this issue.
1490 if (shutdown)
1491 xfs_trans_committed(tp, XFS_LI_ABORTED);
1494 * Now that the xfs_trans_committed callback has been attached,
1495 * and the items are released we can finally allow the iclog to
1496 * go to disk.
1498 return xfs_log_release_iclog(mp, commit_iclog);
1502 * Walk the log items and allocate log vector structures for
1503 * each item large enough to fit all the vectors they require.
1504 * Note that this format differs from the old log vector format in
1505 * that there is no transaction header in these log vectors.
1507 STATIC struct xfs_log_vec *
1508 xfs_trans_alloc_log_vecs(
1509 xfs_trans_t *tp)
1511 xfs_log_item_desc_t *lidp;
1512 struct xfs_log_vec *lv = NULL;
1513 struct xfs_log_vec *ret_lv = NULL;
1515 lidp = xfs_trans_first_item(tp);
1517 /* Bail out if we didn't find a log item. */
1518 if (!lidp) {
1519 ASSERT(0);
1520 return NULL;
1523 while (lidp != NULL) {
1524 struct xfs_log_vec *new_lv;
1526 /* Skip items which aren't dirty in this transaction. */
1527 if (!(lidp->lid_flags & XFS_LID_DIRTY)) {
1528 lidp = xfs_trans_next_item(tp, lidp);
1529 continue;
1532 /* Skip items that do not have any vectors for writing */
1533 lidp->lid_size = IOP_SIZE(lidp->lid_item);
1534 if (!lidp->lid_size) {
1535 lidp = xfs_trans_next_item(tp, lidp);
1536 continue;
1539 new_lv = kmem_zalloc(sizeof(*new_lv) +
1540 lidp->lid_size * sizeof(struct xfs_log_iovec),
1541 KM_SLEEP);
1543 /* The allocated iovec region lies beyond the log vector. */
1544 new_lv->lv_iovecp = (struct xfs_log_iovec *)&new_lv[1];
1545 new_lv->lv_niovecs = lidp->lid_size;
1546 new_lv->lv_item = lidp->lid_item;
1547 if (!ret_lv)
1548 ret_lv = new_lv;
1549 else
1550 lv->lv_next = new_lv;
1551 lv = new_lv;
1552 lidp = xfs_trans_next_item(tp, lidp);
1555 return ret_lv;
1558 static int
1559 xfs_trans_commit_cil(
1560 struct xfs_mount *mp,
1561 struct xfs_trans *tp,
1562 xfs_lsn_t *commit_lsn,
1563 int flags)
1565 struct xfs_log_vec *log_vector;
1566 int error;
1569 * Get each log item to allocate a vector structure for
1570 * the log item to to pass to the log write code. The
1571 * CIL commit code will format the vector and save it away.
1573 log_vector = xfs_trans_alloc_log_vecs(tp);
1574 if (!log_vector)
1575 return ENOMEM;
1577 error = xfs_log_commit_cil(mp, tp, log_vector, commit_lsn, flags);
1578 if (error)
1579 return error;
1581 current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS);
1583 /* xfs_trans_free_items() unlocks them first */
1584 xfs_trans_free_items(tp, *commit_lsn, 0);
1585 xfs_trans_free(tp);
1586 return 0;
1590 * xfs_trans_commit
1592 * Commit the given transaction to the log a/synchronously.
1594 * XFS disk error handling mechanism is not based on a typical
1595 * transaction abort mechanism. Logically after the filesystem
1596 * gets marked 'SHUTDOWN', we can't let any new transactions
1597 * be durable - ie. committed to disk - because some metadata might
1598 * be inconsistent. In such cases, this returns an error, and the
1599 * caller may assume that all locked objects joined to the transaction
1600 * have already been unlocked as if the commit had succeeded.
1601 * Do not reference the transaction structure after this call.
1604 _xfs_trans_commit(
1605 struct xfs_trans *tp,
1606 uint flags,
1607 int *log_flushed)
1609 struct xfs_mount *mp = tp->t_mountp;
1610 xfs_lsn_t commit_lsn = -1;
1611 int error = 0;
1612 int log_flags = 0;
1613 int sync = tp->t_flags & XFS_TRANS_SYNC;
1616 * Determine whether this commit is releasing a permanent
1617 * log reservation or not.
1619 if (flags & XFS_TRANS_RELEASE_LOG_RES) {
1620 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1621 log_flags = XFS_LOG_REL_PERM_RESERV;
1625 * If there is nothing to be logged by the transaction,
1626 * then unlock all of the items associated with the
1627 * transaction and free the transaction structure.
1628 * Also make sure to return any reserved blocks to
1629 * the free pool.
1631 if (!(tp->t_flags & XFS_TRANS_DIRTY))
1632 goto out_unreserve;
1634 if (XFS_FORCED_SHUTDOWN(mp)) {
1635 error = XFS_ERROR(EIO);
1636 goto out_unreserve;
1639 ASSERT(tp->t_ticket != NULL);
1642 * If we need to update the superblock, then do it now.
1644 if (tp->t_flags & XFS_TRANS_SB_DIRTY)
1645 xfs_trans_apply_sb_deltas(tp);
1646 xfs_trans_apply_dquot_deltas(tp);
1648 if (mp->m_flags & XFS_MOUNT_DELAYLOG)
1649 error = xfs_trans_commit_cil(mp, tp, &commit_lsn, flags);
1650 else
1651 error = xfs_trans_commit_iclog(mp, tp, &commit_lsn, flags);
1653 if (error == ENOMEM) {
1654 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
1655 error = XFS_ERROR(EIO);
1656 goto out_unreserve;
1660 * If the transaction needs to be synchronous, then force the
1661 * log out now and wait for it.
1663 if (sync) {
1664 if (!error) {
1665 error = _xfs_log_force_lsn(mp, commit_lsn,
1666 XFS_LOG_SYNC, log_flushed);
1668 XFS_STATS_INC(xs_trans_sync);
1669 } else {
1670 XFS_STATS_INC(xs_trans_async);
1673 return error;
1675 out_unreserve:
1676 xfs_trans_unreserve_and_mod_sb(tp);
1679 * It is indeed possible for the transaction to be not dirty but
1680 * the dqinfo portion to be. All that means is that we have some
1681 * (non-persistent) quota reservations that need to be unreserved.
1683 xfs_trans_unreserve_and_mod_dquots(tp);
1684 if (tp->t_ticket) {
1685 commit_lsn = xfs_log_done(mp, tp->t_ticket, NULL, log_flags);
1686 if (commit_lsn == -1 && !error)
1687 error = XFS_ERROR(EIO);
1689 current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS);
1690 xfs_trans_free_items(tp, NULLCOMMITLSN, error ? XFS_TRANS_ABORT : 0);
1691 xfs_trans_free(tp);
1693 XFS_STATS_INC(xs_trans_empty);
1694 return error;
1698 * Unlock all of the transaction's items and free the transaction.
1699 * The transaction must not have modified any of its items, because
1700 * there is no way to restore them to their previous state.
1702 * If the transaction has made a log reservation, make sure to release
1703 * it as well.
1705 void
1706 xfs_trans_cancel(
1707 xfs_trans_t *tp,
1708 int flags)
1710 int log_flags;
1711 #ifdef DEBUG
1712 xfs_log_item_chunk_t *licp;
1713 xfs_log_item_desc_t *lidp;
1714 xfs_log_item_t *lip;
1715 int i;
1716 #endif
1717 xfs_mount_t *mp = tp->t_mountp;
1720 * See if the caller is being too lazy to figure out if
1721 * the transaction really needs an abort.
1723 if ((flags & XFS_TRANS_ABORT) && !(tp->t_flags & XFS_TRANS_DIRTY))
1724 flags &= ~XFS_TRANS_ABORT;
1726 * See if the caller is relying on us to shut down the
1727 * filesystem. This happens in paths where we detect
1728 * corruption and decide to give up.
1730 if ((tp->t_flags & XFS_TRANS_DIRTY) && !XFS_FORCED_SHUTDOWN(mp)) {
1731 XFS_ERROR_REPORT("xfs_trans_cancel", XFS_ERRLEVEL_LOW, mp);
1732 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
1734 #ifdef DEBUG
1735 if (!(flags & XFS_TRANS_ABORT)) {
1736 licp = &(tp->t_items);
1737 while (licp != NULL) {
1738 lidp = licp->lic_descs;
1739 for (i = 0; i < licp->lic_unused; i++, lidp++) {
1740 if (xfs_lic_isfree(licp, i)) {
1741 continue;
1744 lip = lidp->lid_item;
1745 if (!XFS_FORCED_SHUTDOWN(mp))
1746 ASSERT(!(lip->li_type == XFS_LI_EFD));
1748 licp = licp->lic_next;
1751 #endif
1752 xfs_trans_unreserve_and_mod_sb(tp);
1753 xfs_trans_unreserve_and_mod_dquots(tp);
1755 if (tp->t_ticket) {
1756 if (flags & XFS_TRANS_RELEASE_LOG_RES) {
1757 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1758 log_flags = XFS_LOG_REL_PERM_RESERV;
1759 } else {
1760 log_flags = 0;
1762 xfs_log_done(mp, tp->t_ticket, NULL, log_flags);
1765 /* mark this thread as no longer being in a transaction */
1766 current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS);
1768 xfs_trans_free_items(tp, NULLCOMMITLSN, flags);
1769 xfs_trans_free(tp);
1773 * Roll from one trans in the sequence of PERMANENT transactions to
1774 * the next: permanent transactions are only flushed out when
1775 * committed with XFS_TRANS_RELEASE_LOG_RES, but we still want as soon
1776 * as possible to let chunks of it go to the log. So we commit the
1777 * chunk we've been working on and get a new transaction to continue.
1780 xfs_trans_roll(
1781 struct xfs_trans **tpp,
1782 struct xfs_inode *dp)
1784 struct xfs_trans *trans;
1785 unsigned int logres, count;
1786 int error;
1789 * Ensure that the inode is always logged.
1791 trans = *tpp;
1792 xfs_trans_log_inode(trans, dp, XFS_ILOG_CORE);
1795 * Copy the critical parameters from one trans to the next.
1797 logres = trans->t_log_res;
1798 count = trans->t_log_count;
1799 *tpp = xfs_trans_dup(trans);
1802 * Commit the current transaction.
1803 * If this commit failed, then it'd just unlock those items that
1804 * are not marked ihold. That also means that a filesystem shutdown
1805 * is in progress. The caller takes the responsibility to cancel
1806 * the duplicate transaction that gets returned.
1808 error = xfs_trans_commit(trans, 0);
1809 if (error)
1810 return (error);
1812 trans = *tpp;
1815 * transaction commit worked ok so we can drop the extra ticket
1816 * reference that we gained in xfs_trans_dup()
1818 xfs_log_ticket_put(trans->t_ticket);
1822 * Reserve space in the log for th next transaction.
1823 * This also pushes items in the "AIL", the list of logged items,
1824 * out to disk if they are taking up space at the tail of the log
1825 * that we want to use. This requires that either nothing be locked
1826 * across this call, or that anything that is locked be logged in
1827 * the prior and the next transactions.
1829 error = xfs_trans_reserve(trans, 0, logres, 0,
1830 XFS_TRANS_PERM_LOG_RES, count);
1832 * Ensure that the inode is in the new transaction and locked.
1834 if (error)
1835 return error;
1837 xfs_trans_ijoin(trans, dp, XFS_ILOCK_EXCL);
1838 xfs_trans_ihold(trans, dp);
1839 return 0;