1 // SPDX-License-Identifier: GPL-2.0-only
3 * Simple NUMA memory policy for the Linux kernel.
5 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
6 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
8 * NUMA policy allows the user to give hints in which node(s) memory should
11 * Support four policies per VMA and per process:
13 * The VMA policy has priority over the process policy for a page fault.
15 * interleave Allocate memory interleaved over a set of nodes,
16 * with normal fallback if it fails.
17 * For VMA based allocations this interleaves based on the
18 * offset into the backing object or offset into the mapping
19 * for anonymous memory. For process policy an process counter
22 * bind Only allocate memory on a specific set of nodes,
24 * FIXME: memory is allocated starting with the first node
25 * to the last. It would be better if bind would truly restrict
26 * the allocation to memory nodes instead
28 * preferred Try a specific node first before normal fallback.
29 * As a special case NUMA_NO_NODE here means do the allocation
30 * on the local CPU. This is normally identical to default,
31 * but useful to set in a VMA when you have a non default
34 * default Allocate on the local node first, or when on a VMA
35 * use the process policy. This is what Linux always did
36 * in a NUMA aware kernel and still does by, ahem, default.
38 * The process policy is applied for most non interrupt memory allocations
39 * in that process' context. Interrupts ignore the policies and always
40 * try to allocate on the local CPU. The VMA policy is only applied for memory
41 * allocations for a VMA in the VM.
43 * Currently there are a few corner cases in swapping where the policy
44 * is not applied, but the majority should be handled. When process policy
45 * is used it is not remembered over swap outs/swap ins.
47 * Only the highest zone in the zone hierarchy gets policied. Allocations
48 * requesting a lower zone just use default policy. This implies that
49 * on systems with highmem kernel lowmem allocation don't get policied.
50 * Same with GFP_DMA allocations.
52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
53 * all users and remembered even when nobody has memory mapped.
57 fix mmap readahead to honour policy and enable policy for any page cache
59 statistics for bigpages
60 global policy for page cache? currently it uses process policy. Requires
62 handle mremap for shared memory (currently ignored for the policy)
64 make bind policy root only? It can trigger oom much faster and the
65 kernel is not always grateful with that.
68 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
70 #include <linux/mempolicy.h>
71 #include <linux/pagewalk.h>
72 #include <linux/highmem.h>
73 #include <linux/hugetlb.h>
74 #include <linux/kernel.h>
75 #include <linux/sched.h>
76 #include <linux/sched/mm.h>
77 #include <linux/sched/numa_balancing.h>
78 #include <linux/sched/task.h>
79 #include <linux/nodemask.h>
80 #include <linux/cpuset.h>
81 #include <linux/slab.h>
82 #include <linux/string.h>
83 #include <linux/export.h>
84 #include <linux/nsproxy.h>
85 #include <linux/interrupt.h>
86 #include <linux/init.h>
87 #include <linux/compat.h>
88 #include <linux/ptrace.h>
89 #include <linux/swap.h>
90 #include <linux/seq_file.h>
91 #include <linux/proc_fs.h>
92 #include <linux/migrate.h>
93 #include <linux/ksm.h>
94 #include <linux/rmap.h>
95 #include <linux/security.h>
96 #include <linux/syscalls.h>
97 #include <linux/ctype.h>
98 #include <linux/mm_inline.h>
99 #include <linux/mmu_notifier.h>
100 #include <linux/printk.h>
101 #include <linux/swapops.h>
103 #include <asm/tlbflush.h>
104 #include <linux/uaccess.h>
106 #include "internal.h"
109 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */
110 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */
112 static struct kmem_cache
*policy_cache
;
113 static struct kmem_cache
*sn_cache
;
115 /* Highest zone. An specific allocation for a zone below that is not
117 enum zone_type policy_zone
= 0;
120 * run-time system-wide default policy => local allocation
122 static struct mempolicy default_policy
= {
123 .refcnt
= ATOMIC_INIT(1), /* never free it */
124 .mode
= MPOL_PREFERRED
,
125 .flags
= MPOL_F_LOCAL
,
128 static struct mempolicy preferred_node_policy
[MAX_NUMNODES
];
130 struct mempolicy
*get_task_policy(struct task_struct
*p
)
132 struct mempolicy
*pol
= p
->mempolicy
;
138 node
= numa_node_id();
139 if (node
!= NUMA_NO_NODE
) {
140 pol
= &preferred_node_policy
[node
];
141 /* preferred_node_policy is not initialised early in boot */
146 return &default_policy
;
149 static const struct mempolicy_operations
{
150 int (*create
)(struct mempolicy
*pol
, const nodemask_t
*nodes
);
151 void (*rebind
)(struct mempolicy
*pol
, const nodemask_t
*nodes
);
152 } mpol_ops
[MPOL_MAX
];
154 static inline int mpol_store_user_nodemask(const struct mempolicy
*pol
)
156 return pol
->flags
& MPOL_MODE_FLAGS
;
159 static void mpol_relative_nodemask(nodemask_t
*ret
, const nodemask_t
*orig
,
160 const nodemask_t
*rel
)
163 nodes_fold(tmp
, *orig
, nodes_weight(*rel
));
164 nodes_onto(*ret
, tmp
, *rel
);
167 static int mpol_new_interleave(struct mempolicy
*pol
, const nodemask_t
*nodes
)
169 if (nodes_empty(*nodes
))
171 pol
->v
.nodes
= *nodes
;
175 static int mpol_new_preferred(struct mempolicy
*pol
, const nodemask_t
*nodes
)
178 pol
->flags
|= MPOL_F_LOCAL
; /* local allocation */
179 else if (nodes_empty(*nodes
))
180 return -EINVAL
; /* no allowed nodes */
182 pol
->v
.preferred_node
= first_node(*nodes
);
186 static int mpol_new_bind(struct mempolicy
*pol
, const nodemask_t
*nodes
)
188 if (nodes_empty(*nodes
))
190 pol
->v
.nodes
= *nodes
;
195 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
196 * any, for the new policy. mpol_new() has already validated the nodes
197 * parameter with respect to the policy mode and flags. But, we need to
198 * handle an empty nodemask with MPOL_PREFERRED here.
200 * Must be called holding task's alloc_lock to protect task's mems_allowed
201 * and mempolicy. May also be called holding the mmap_semaphore for write.
203 static int mpol_set_nodemask(struct mempolicy
*pol
,
204 const nodemask_t
*nodes
, struct nodemask_scratch
*nsc
)
208 /* if mode is MPOL_DEFAULT, pol is NULL. This is right. */
212 nodes_and(nsc
->mask1
,
213 cpuset_current_mems_allowed
, node_states
[N_MEMORY
]);
216 if (pol
->mode
== MPOL_PREFERRED
&& nodes_empty(*nodes
))
217 nodes
= NULL
; /* explicit local allocation */
219 if (pol
->flags
& MPOL_F_RELATIVE_NODES
)
220 mpol_relative_nodemask(&nsc
->mask2
, nodes
, &nsc
->mask1
);
222 nodes_and(nsc
->mask2
, *nodes
, nsc
->mask1
);
224 if (mpol_store_user_nodemask(pol
))
225 pol
->w
.user_nodemask
= *nodes
;
227 pol
->w
.cpuset_mems_allowed
=
228 cpuset_current_mems_allowed
;
232 ret
= mpol_ops
[pol
->mode
].create(pol
, &nsc
->mask2
);
234 ret
= mpol_ops
[pol
->mode
].create(pol
, NULL
);
239 * This function just creates a new policy, does some check and simple
240 * initialization. You must invoke mpol_set_nodemask() to set nodes.
242 static struct mempolicy
*mpol_new(unsigned short mode
, unsigned short flags
,
245 struct mempolicy
*policy
;
247 pr_debug("setting mode %d flags %d nodes[0] %lx\n",
248 mode
, flags
, nodes
? nodes_addr(*nodes
)[0] : NUMA_NO_NODE
);
250 if (mode
== MPOL_DEFAULT
) {
251 if (nodes
&& !nodes_empty(*nodes
))
252 return ERR_PTR(-EINVAL
);
258 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
259 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
260 * All other modes require a valid pointer to a non-empty nodemask.
262 if (mode
== MPOL_PREFERRED
) {
263 if (nodes_empty(*nodes
)) {
264 if (((flags
& MPOL_F_STATIC_NODES
) ||
265 (flags
& MPOL_F_RELATIVE_NODES
)))
266 return ERR_PTR(-EINVAL
);
268 } else if (mode
== MPOL_LOCAL
) {
269 if (!nodes_empty(*nodes
) ||
270 (flags
& MPOL_F_STATIC_NODES
) ||
271 (flags
& MPOL_F_RELATIVE_NODES
))
272 return ERR_PTR(-EINVAL
);
273 mode
= MPOL_PREFERRED
;
274 } else if (nodes_empty(*nodes
))
275 return ERR_PTR(-EINVAL
);
276 policy
= kmem_cache_alloc(policy_cache
, GFP_KERNEL
);
278 return ERR_PTR(-ENOMEM
);
279 atomic_set(&policy
->refcnt
, 1);
281 policy
->flags
= flags
;
286 /* Slow path of a mpol destructor. */
287 void __mpol_put(struct mempolicy
*p
)
289 if (!atomic_dec_and_test(&p
->refcnt
))
291 kmem_cache_free(policy_cache
, p
);
294 static void mpol_rebind_default(struct mempolicy
*pol
, const nodemask_t
*nodes
)
298 static void mpol_rebind_nodemask(struct mempolicy
*pol
, const nodemask_t
*nodes
)
302 if (pol
->flags
& MPOL_F_STATIC_NODES
)
303 nodes_and(tmp
, pol
->w
.user_nodemask
, *nodes
);
304 else if (pol
->flags
& MPOL_F_RELATIVE_NODES
)
305 mpol_relative_nodemask(&tmp
, &pol
->w
.user_nodemask
, nodes
);
307 nodes_remap(tmp
, pol
->v
.nodes
,pol
->w
.cpuset_mems_allowed
,
309 pol
->w
.cpuset_mems_allowed
= *nodes
;
312 if (nodes_empty(tmp
))
318 static void mpol_rebind_preferred(struct mempolicy
*pol
,
319 const nodemask_t
*nodes
)
323 if (pol
->flags
& MPOL_F_STATIC_NODES
) {
324 int node
= first_node(pol
->w
.user_nodemask
);
326 if (node_isset(node
, *nodes
)) {
327 pol
->v
.preferred_node
= node
;
328 pol
->flags
&= ~MPOL_F_LOCAL
;
330 pol
->flags
|= MPOL_F_LOCAL
;
331 } else if (pol
->flags
& MPOL_F_RELATIVE_NODES
) {
332 mpol_relative_nodemask(&tmp
, &pol
->w
.user_nodemask
, nodes
);
333 pol
->v
.preferred_node
= first_node(tmp
);
334 } else if (!(pol
->flags
& MPOL_F_LOCAL
)) {
335 pol
->v
.preferred_node
= node_remap(pol
->v
.preferred_node
,
336 pol
->w
.cpuset_mems_allowed
,
338 pol
->w
.cpuset_mems_allowed
= *nodes
;
343 * mpol_rebind_policy - Migrate a policy to a different set of nodes
345 * Per-vma policies are protected by mmap_sem. Allocations using per-task
346 * policies are protected by task->mems_allowed_seq to prevent a premature
347 * OOM/allocation failure due to parallel nodemask modification.
349 static void mpol_rebind_policy(struct mempolicy
*pol
, const nodemask_t
*newmask
)
353 if (!mpol_store_user_nodemask(pol
) && !(pol
->flags
& MPOL_F_LOCAL
) &&
354 nodes_equal(pol
->w
.cpuset_mems_allowed
, *newmask
))
357 mpol_ops
[pol
->mode
].rebind(pol
, newmask
);
361 * Wrapper for mpol_rebind_policy() that just requires task
362 * pointer, and updates task mempolicy.
364 * Called with task's alloc_lock held.
367 void mpol_rebind_task(struct task_struct
*tsk
, const nodemask_t
*new)
369 mpol_rebind_policy(tsk
->mempolicy
, new);
373 * Rebind each vma in mm to new nodemask.
375 * Call holding a reference to mm. Takes mm->mmap_sem during call.
378 void mpol_rebind_mm(struct mm_struct
*mm
, nodemask_t
*new)
380 struct vm_area_struct
*vma
;
382 down_write(&mm
->mmap_sem
);
383 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
)
384 mpol_rebind_policy(vma
->vm_policy
, new);
385 up_write(&mm
->mmap_sem
);
388 static const struct mempolicy_operations mpol_ops
[MPOL_MAX
] = {
390 .rebind
= mpol_rebind_default
,
392 [MPOL_INTERLEAVE
] = {
393 .create
= mpol_new_interleave
,
394 .rebind
= mpol_rebind_nodemask
,
397 .create
= mpol_new_preferred
,
398 .rebind
= mpol_rebind_preferred
,
401 .create
= mpol_new_bind
,
402 .rebind
= mpol_rebind_nodemask
,
406 static int migrate_page_add(struct page
*page
, struct list_head
*pagelist
,
407 unsigned long flags
);
410 struct list_head
*pagelist
;
413 struct vm_area_struct
*prev
;
417 * Check if the page's nid is in qp->nmask.
419 * If MPOL_MF_INVERT is set in qp->flags, check if the nid is
420 * in the invert of qp->nmask.
422 static inline bool queue_pages_required(struct page
*page
,
423 struct queue_pages
*qp
)
425 int nid
= page_to_nid(page
);
426 unsigned long flags
= qp
->flags
;
428 return node_isset(nid
, *qp
->nmask
) == !(flags
& MPOL_MF_INVERT
);
432 * queue_pages_pmd() has four possible return values:
433 * 0 - pages are placed on the right node or queued successfully.
434 * 1 - there is unmovable page, and MPOL_MF_MOVE* & MPOL_MF_STRICT were
437 * -EIO - is migration entry or only MPOL_MF_STRICT was specified and an
438 * existing page was already on a node that does not follow the
441 static int queue_pages_pmd(pmd_t
*pmd
, spinlock_t
*ptl
, unsigned long addr
,
442 unsigned long end
, struct mm_walk
*walk
)
446 struct queue_pages
*qp
= walk
->private;
449 if (unlikely(is_pmd_migration_entry(*pmd
))) {
453 page
= pmd_page(*pmd
);
454 if (is_huge_zero_page(page
)) {
456 __split_huge_pmd(walk
->vma
, pmd
, addr
, false, NULL
);
460 if (!queue_pages_required(page
, qp
))
464 /* go to thp migration */
465 if (flags
& (MPOL_MF_MOVE
| MPOL_MF_MOVE_ALL
)) {
466 if (!vma_migratable(walk
->vma
) ||
467 migrate_page_add(page
, qp
->pagelist
, flags
)) {
480 * Scan through pages checking if pages follow certain conditions,
481 * and move them to the pagelist if they do.
483 * queue_pages_pte_range() has three possible return values:
484 * 0 - pages are placed on the right node or queued successfully.
485 * 1 - there is unmovable page, and MPOL_MF_MOVE* & MPOL_MF_STRICT were
487 * -EIO - only MPOL_MF_STRICT was specified and an existing page was already
488 * on a node that does not follow the policy.
490 static int queue_pages_pte_range(pmd_t
*pmd
, unsigned long addr
,
491 unsigned long end
, struct mm_walk
*walk
)
493 struct vm_area_struct
*vma
= walk
->vma
;
495 struct queue_pages
*qp
= walk
->private;
496 unsigned long flags
= qp
->flags
;
498 bool has_unmovable
= false;
502 ptl
= pmd_trans_huge_lock(pmd
, vma
);
504 ret
= queue_pages_pmd(pmd
, ptl
, addr
, end
, walk
);
508 /* THP was split, fall through to pte walk */
510 if (pmd_trans_unstable(pmd
))
513 pte
= pte_offset_map_lock(walk
->mm
, pmd
, addr
, &ptl
);
514 for (; addr
!= end
; pte
++, addr
+= PAGE_SIZE
) {
515 if (!pte_present(*pte
))
517 page
= vm_normal_page(vma
, addr
, *pte
);
521 * vm_normal_page() filters out zero pages, but there might
522 * still be PageReserved pages to skip, perhaps in a VDSO.
524 if (PageReserved(page
))
526 if (!queue_pages_required(page
, qp
))
528 if (flags
& (MPOL_MF_MOVE
| MPOL_MF_MOVE_ALL
)) {
529 /* MPOL_MF_STRICT must be specified if we get here */
530 if (!vma_migratable(vma
)) {
531 has_unmovable
= true;
536 * Do not abort immediately since there may be
537 * temporary off LRU pages in the range. Still
538 * need migrate other LRU pages.
540 if (migrate_page_add(page
, qp
->pagelist
, flags
))
541 has_unmovable
= true;
545 pte_unmap_unlock(pte
- 1, ptl
);
551 return addr
!= end
? -EIO
: 0;
554 static int queue_pages_hugetlb(pte_t
*pte
, unsigned long hmask
,
555 unsigned long addr
, unsigned long end
,
556 struct mm_walk
*walk
)
558 #ifdef CONFIG_HUGETLB_PAGE
559 struct queue_pages
*qp
= walk
->private;
560 unsigned long flags
= qp
->flags
;
565 ptl
= huge_pte_lock(hstate_vma(walk
->vma
), walk
->mm
, pte
);
566 entry
= huge_ptep_get(pte
);
567 if (!pte_present(entry
))
569 page
= pte_page(entry
);
570 if (!queue_pages_required(page
, qp
))
572 /* With MPOL_MF_MOVE, we migrate only unshared hugepage. */
573 if (flags
& (MPOL_MF_MOVE_ALL
) ||
574 (flags
& MPOL_MF_MOVE
&& page_mapcount(page
) == 1))
575 isolate_huge_page(page
, qp
->pagelist
);
584 #ifdef CONFIG_NUMA_BALANCING
586 * This is used to mark a range of virtual addresses to be inaccessible.
587 * These are later cleared by a NUMA hinting fault. Depending on these
588 * faults, pages may be migrated for better NUMA placement.
590 * This is assuming that NUMA faults are handled using PROT_NONE. If
591 * an architecture makes a different choice, it will need further
592 * changes to the core.
594 unsigned long change_prot_numa(struct vm_area_struct
*vma
,
595 unsigned long addr
, unsigned long end
)
599 nr_updated
= change_protection(vma
, addr
, end
, PAGE_NONE
, 0, 1);
601 count_vm_numa_events(NUMA_PTE_UPDATES
, nr_updated
);
606 static unsigned long change_prot_numa(struct vm_area_struct
*vma
,
607 unsigned long addr
, unsigned long end
)
611 #endif /* CONFIG_NUMA_BALANCING */
613 static int queue_pages_test_walk(unsigned long start
, unsigned long end
,
614 struct mm_walk
*walk
)
616 struct vm_area_struct
*vma
= walk
->vma
;
617 struct queue_pages
*qp
= walk
->private;
618 unsigned long endvma
= vma
->vm_end
;
619 unsigned long flags
= qp
->flags
;
622 * Need check MPOL_MF_STRICT to return -EIO if possible
623 * regardless of vma_migratable
625 if (!vma_migratable(vma
) &&
626 !(flags
& MPOL_MF_STRICT
))
631 if (vma
->vm_start
> start
)
632 start
= vma
->vm_start
;
634 if (!(flags
& MPOL_MF_DISCONTIG_OK
)) {
635 if (!vma
->vm_next
&& vma
->vm_end
< end
)
637 if (qp
->prev
&& qp
->prev
->vm_end
< vma
->vm_start
)
643 if (flags
& MPOL_MF_LAZY
) {
644 /* Similar to task_numa_work, skip inaccessible VMAs */
645 if (!is_vm_hugetlb_page(vma
) &&
646 (vma
->vm_flags
& (VM_READ
| VM_EXEC
| VM_WRITE
)) &&
647 !(vma
->vm_flags
& VM_MIXEDMAP
))
648 change_prot_numa(vma
, start
, endvma
);
652 /* queue pages from current vma */
653 if (flags
& MPOL_MF_VALID
)
658 static const struct mm_walk_ops queue_pages_walk_ops
= {
659 .hugetlb_entry
= queue_pages_hugetlb
,
660 .pmd_entry
= queue_pages_pte_range
,
661 .test_walk
= queue_pages_test_walk
,
665 * Walk through page tables and collect pages to be migrated.
667 * If pages found in a given range are on a set of nodes (determined by
668 * @nodes and @flags,) it's isolated and queued to the pagelist which is
669 * passed via @private.
671 * queue_pages_range() has three possible return values:
672 * 1 - there is unmovable page, but MPOL_MF_MOVE* & MPOL_MF_STRICT were
674 * 0 - queue pages successfully or no misplaced page.
675 * errno - i.e. misplaced pages with MPOL_MF_STRICT specified (-EIO) or
676 * memory range specified by nodemask and maxnode points outside
677 * your accessible address space (-EFAULT)
680 queue_pages_range(struct mm_struct
*mm
, unsigned long start
, unsigned long end
,
681 nodemask_t
*nodes
, unsigned long flags
,
682 struct list_head
*pagelist
)
684 struct queue_pages qp
= {
685 .pagelist
= pagelist
,
691 return walk_page_range(mm
, start
, end
, &queue_pages_walk_ops
, &qp
);
695 * Apply policy to a single VMA
696 * This must be called with the mmap_sem held for writing.
698 static int vma_replace_policy(struct vm_area_struct
*vma
,
699 struct mempolicy
*pol
)
702 struct mempolicy
*old
;
703 struct mempolicy
*new;
705 pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
706 vma
->vm_start
, vma
->vm_end
, vma
->vm_pgoff
,
707 vma
->vm_ops
, vma
->vm_file
,
708 vma
->vm_ops
? vma
->vm_ops
->set_policy
: NULL
);
714 if (vma
->vm_ops
&& vma
->vm_ops
->set_policy
) {
715 err
= vma
->vm_ops
->set_policy(vma
, new);
720 old
= vma
->vm_policy
;
721 vma
->vm_policy
= new; /* protected by mmap_sem */
730 /* Step 2: apply policy to a range and do splits. */
731 static int mbind_range(struct mm_struct
*mm
, unsigned long start
,
732 unsigned long end
, struct mempolicy
*new_pol
)
734 struct vm_area_struct
*next
;
735 struct vm_area_struct
*prev
;
736 struct vm_area_struct
*vma
;
739 unsigned long vmstart
;
742 vma
= find_vma(mm
, start
);
743 if (!vma
|| vma
->vm_start
> start
)
747 if (start
> vma
->vm_start
)
750 for (; vma
&& vma
->vm_start
< end
; prev
= vma
, vma
= next
) {
752 vmstart
= max(start
, vma
->vm_start
);
753 vmend
= min(end
, vma
->vm_end
);
755 if (mpol_equal(vma_policy(vma
), new_pol
))
758 pgoff
= vma
->vm_pgoff
+
759 ((vmstart
- vma
->vm_start
) >> PAGE_SHIFT
);
760 prev
= vma_merge(mm
, prev
, vmstart
, vmend
, vma
->vm_flags
,
761 vma
->anon_vma
, vma
->vm_file
, pgoff
,
762 new_pol
, vma
->vm_userfaultfd_ctx
);
766 if (mpol_equal(vma_policy(vma
), new_pol
))
768 /* vma_merge() joined vma && vma->next, case 8 */
771 if (vma
->vm_start
!= vmstart
) {
772 err
= split_vma(vma
->vm_mm
, vma
, vmstart
, 1);
776 if (vma
->vm_end
!= vmend
) {
777 err
= split_vma(vma
->vm_mm
, vma
, vmend
, 0);
782 err
= vma_replace_policy(vma
, new_pol
);
791 /* Set the process memory policy */
792 static long do_set_mempolicy(unsigned short mode
, unsigned short flags
,
795 struct mempolicy
*new, *old
;
796 NODEMASK_SCRATCH(scratch
);
802 new = mpol_new(mode
, flags
, nodes
);
809 ret
= mpol_set_nodemask(new, nodes
, scratch
);
811 task_unlock(current
);
815 old
= current
->mempolicy
;
816 current
->mempolicy
= new;
817 if (new && new->mode
== MPOL_INTERLEAVE
)
818 current
->il_prev
= MAX_NUMNODES
-1;
819 task_unlock(current
);
823 NODEMASK_SCRATCH_FREE(scratch
);
828 * Return nodemask for policy for get_mempolicy() query
830 * Called with task's alloc_lock held
832 static void get_policy_nodemask(struct mempolicy
*p
, nodemask_t
*nodes
)
835 if (p
== &default_policy
)
841 case MPOL_INTERLEAVE
:
845 if (!(p
->flags
& MPOL_F_LOCAL
))
846 node_set(p
->v
.preferred_node
, *nodes
);
847 /* else return empty node mask for local allocation */
854 static int lookup_node(struct mm_struct
*mm
, unsigned long addr
)
860 err
= get_user_pages_locked(addr
& PAGE_MASK
, 1, 0, &p
, &locked
);
862 err
= page_to_nid(p
);
866 up_read(&mm
->mmap_sem
);
870 /* Retrieve NUMA policy */
871 static long do_get_mempolicy(int *policy
, nodemask_t
*nmask
,
872 unsigned long addr
, unsigned long flags
)
875 struct mm_struct
*mm
= current
->mm
;
876 struct vm_area_struct
*vma
= NULL
;
877 struct mempolicy
*pol
= current
->mempolicy
, *pol_refcount
= NULL
;
880 ~(unsigned long)(MPOL_F_NODE
|MPOL_F_ADDR
|MPOL_F_MEMS_ALLOWED
))
883 if (flags
& MPOL_F_MEMS_ALLOWED
) {
884 if (flags
& (MPOL_F_NODE
|MPOL_F_ADDR
))
886 *policy
= 0; /* just so it's initialized */
888 *nmask
= cpuset_current_mems_allowed
;
889 task_unlock(current
);
893 if (flags
& MPOL_F_ADDR
) {
895 * Do NOT fall back to task policy if the
896 * vma/shared policy at addr is NULL. We
897 * want to return MPOL_DEFAULT in this case.
899 down_read(&mm
->mmap_sem
);
900 vma
= find_vma_intersection(mm
, addr
, addr
+1);
902 up_read(&mm
->mmap_sem
);
905 if (vma
->vm_ops
&& vma
->vm_ops
->get_policy
)
906 pol
= vma
->vm_ops
->get_policy(vma
, addr
);
908 pol
= vma
->vm_policy
;
913 pol
= &default_policy
; /* indicates default behavior */
915 if (flags
& MPOL_F_NODE
) {
916 if (flags
& MPOL_F_ADDR
) {
918 * Take a refcount on the mpol, lookup_node()
919 * wil drop the mmap_sem, so after calling
920 * lookup_node() only "pol" remains valid, "vma"
926 err
= lookup_node(mm
, addr
);
930 } else if (pol
== current
->mempolicy
&&
931 pol
->mode
== MPOL_INTERLEAVE
) {
932 *policy
= next_node_in(current
->il_prev
, pol
->v
.nodes
);
938 *policy
= pol
== &default_policy
? MPOL_DEFAULT
:
941 * Internal mempolicy flags must be masked off before exposing
942 * the policy to userspace.
944 *policy
|= (pol
->flags
& MPOL_MODE_FLAGS
);
949 if (mpol_store_user_nodemask(pol
)) {
950 *nmask
= pol
->w
.user_nodemask
;
953 get_policy_nodemask(pol
, nmask
);
954 task_unlock(current
);
961 up_read(&mm
->mmap_sem
);
963 mpol_put(pol_refcount
);
967 #ifdef CONFIG_MIGRATION
969 * page migration, thp tail pages can be passed.
971 static int migrate_page_add(struct page
*page
, struct list_head
*pagelist
,
974 struct page
*head
= compound_head(page
);
976 * Avoid migrating a page that is shared with others.
978 if ((flags
& MPOL_MF_MOVE_ALL
) || page_mapcount(head
) == 1) {
979 if (!isolate_lru_page(head
)) {
980 list_add_tail(&head
->lru
, pagelist
);
981 mod_node_page_state(page_pgdat(head
),
982 NR_ISOLATED_ANON
+ page_is_file_cache(head
),
983 hpage_nr_pages(head
));
984 } else if (flags
& MPOL_MF_STRICT
) {
986 * Non-movable page may reach here. And, there may be
987 * temporary off LRU pages or non-LRU movable pages.
988 * Treat them as unmovable pages since they can't be
989 * isolated, so they can't be moved at the moment. It
990 * should return -EIO for this case too.
999 /* page allocation callback for NUMA node migration */
1000 struct page
*alloc_new_node_page(struct page
*page
, unsigned long node
)
1003 return alloc_huge_page_node(page_hstate(compound_head(page
)),
1005 else if (PageTransHuge(page
)) {
1008 thp
= alloc_pages_node(node
,
1009 (GFP_TRANSHUGE
| __GFP_THISNODE
),
1013 prep_transhuge_page(thp
);
1016 return __alloc_pages_node(node
, GFP_HIGHUSER_MOVABLE
|
1021 * Migrate pages from one node to a target node.
1022 * Returns error or the number of pages not migrated.
1024 static int migrate_to_node(struct mm_struct
*mm
, int source
, int dest
,
1028 LIST_HEAD(pagelist
);
1032 node_set(source
, nmask
);
1035 * This does not "check" the range but isolates all pages that
1036 * need migration. Between passing in the full user address
1037 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail.
1039 VM_BUG_ON(!(flags
& (MPOL_MF_MOVE
| MPOL_MF_MOVE_ALL
)));
1040 queue_pages_range(mm
, mm
->mmap
->vm_start
, mm
->task_size
, &nmask
,
1041 flags
| MPOL_MF_DISCONTIG_OK
, &pagelist
);
1043 if (!list_empty(&pagelist
)) {
1044 err
= migrate_pages(&pagelist
, alloc_new_node_page
, NULL
, dest
,
1045 MIGRATE_SYNC
, MR_SYSCALL
);
1047 putback_movable_pages(&pagelist
);
1054 * Move pages between the two nodesets so as to preserve the physical
1055 * layout as much as possible.
1057 * Returns the number of page that could not be moved.
1059 int do_migrate_pages(struct mm_struct
*mm
, const nodemask_t
*from
,
1060 const nodemask_t
*to
, int flags
)
1066 err
= migrate_prep();
1070 down_read(&mm
->mmap_sem
);
1073 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
1074 * bit in 'to' is not also set in 'tmp'. Clear the found 'source'
1075 * bit in 'tmp', and return that <source, dest> pair for migration.
1076 * The pair of nodemasks 'to' and 'from' define the map.
1078 * If no pair of bits is found that way, fallback to picking some
1079 * pair of 'source' and 'dest' bits that are not the same. If the
1080 * 'source' and 'dest' bits are the same, this represents a node
1081 * that will be migrating to itself, so no pages need move.
1083 * If no bits are left in 'tmp', or if all remaining bits left
1084 * in 'tmp' correspond to the same bit in 'to', return false
1085 * (nothing left to migrate).
1087 * This lets us pick a pair of nodes to migrate between, such that
1088 * if possible the dest node is not already occupied by some other
1089 * source node, minimizing the risk of overloading the memory on a
1090 * node that would happen if we migrated incoming memory to a node
1091 * before migrating outgoing memory source that same node.
1093 * A single scan of tmp is sufficient. As we go, we remember the
1094 * most recent <s, d> pair that moved (s != d). If we find a pair
1095 * that not only moved, but what's better, moved to an empty slot
1096 * (d is not set in tmp), then we break out then, with that pair.
1097 * Otherwise when we finish scanning from_tmp, we at least have the
1098 * most recent <s, d> pair that moved. If we get all the way through
1099 * the scan of tmp without finding any node that moved, much less
1100 * moved to an empty node, then there is nothing left worth migrating.
1104 while (!nodes_empty(tmp
)) {
1106 int source
= NUMA_NO_NODE
;
1109 for_each_node_mask(s
, tmp
) {
1112 * do_migrate_pages() tries to maintain the relative
1113 * node relationship of the pages established between
1114 * threads and memory areas.
1116 * However if the number of source nodes is not equal to
1117 * the number of destination nodes we can not preserve
1118 * this node relative relationship. In that case, skip
1119 * copying memory from a node that is in the destination
1122 * Example: [2,3,4] -> [3,4,5] moves everything.
1123 * [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1126 if ((nodes_weight(*from
) != nodes_weight(*to
)) &&
1127 (node_isset(s
, *to
)))
1130 d
= node_remap(s
, *from
, *to
);
1134 source
= s
; /* Node moved. Memorize */
1137 /* dest not in remaining from nodes? */
1138 if (!node_isset(dest
, tmp
))
1141 if (source
== NUMA_NO_NODE
)
1144 node_clear(source
, tmp
);
1145 err
= migrate_to_node(mm
, source
, dest
, flags
);
1151 up_read(&mm
->mmap_sem
);
1159 * Allocate a new page for page migration based on vma policy.
1160 * Start by assuming the page is mapped by the same vma as contains @start.
1161 * Search forward from there, if not. N.B., this assumes that the
1162 * list of pages handed to migrate_pages()--which is how we get here--
1163 * is in virtual address order.
1165 static struct page
*new_page(struct page
*page
, unsigned long start
)
1167 struct vm_area_struct
*vma
;
1168 unsigned long uninitialized_var(address
);
1170 vma
= find_vma(current
->mm
, start
);
1172 address
= page_address_in_vma(page
, vma
);
1173 if (address
!= -EFAULT
)
1178 if (PageHuge(page
)) {
1179 return alloc_huge_page_vma(page_hstate(compound_head(page
)),
1181 } else if (PageTransHuge(page
)) {
1184 thp
= alloc_hugepage_vma(GFP_TRANSHUGE
, vma
, address
,
1188 prep_transhuge_page(thp
);
1192 * if !vma, alloc_page_vma() will use task or system default policy
1194 return alloc_page_vma(GFP_HIGHUSER_MOVABLE
| __GFP_RETRY_MAYFAIL
,
1199 static int migrate_page_add(struct page
*page
, struct list_head
*pagelist
,
1200 unsigned long flags
)
1205 int do_migrate_pages(struct mm_struct
*mm
, const nodemask_t
*from
,
1206 const nodemask_t
*to
, int flags
)
1211 static struct page
*new_page(struct page
*page
, unsigned long start
)
1217 static long do_mbind(unsigned long start
, unsigned long len
,
1218 unsigned short mode
, unsigned short mode_flags
,
1219 nodemask_t
*nmask
, unsigned long flags
)
1221 struct mm_struct
*mm
= current
->mm
;
1222 struct mempolicy
*new;
1226 LIST_HEAD(pagelist
);
1228 if (flags
& ~(unsigned long)MPOL_MF_VALID
)
1230 if ((flags
& MPOL_MF_MOVE_ALL
) && !capable(CAP_SYS_NICE
))
1233 if (start
& ~PAGE_MASK
)
1236 if (mode
== MPOL_DEFAULT
)
1237 flags
&= ~MPOL_MF_STRICT
;
1239 len
= (len
+ PAGE_SIZE
- 1) & PAGE_MASK
;
1247 new = mpol_new(mode
, mode_flags
, nmask
);
1249 return PTR_ERR(new);
1251 if (flags
& MPOL_MF_LAZY
)
1252 new->flags
|= MPOL_F_MOF
;
1255 * If we are using the default policy then operation
1256 * on discontinuous address spaces is okay after all
1259 flags
|= MPOL_MF_DISCONTIG_OK
;
1261 pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1262 start
, start
+ len
, mode
, mode_flags
,
1263 nmask
? nodes_addr(*nmask
)[0] : NUMA_NO_NODE
);
1265 if (flags
& (MPOL_MF_MOVE
| MPOL_MF_MOVE_ALL
)) {
1267 err
= migrate_prep();
1272 NODEMASK_SCRATCH(scratch
);
1274 down_write(&mm
->mmap_sem
);
1276 err
= mpol_set_nodemask(new, nmask
, scratch
);
1277 task_unlock(current
);
1279 up_write(&mm
->mmap_sem
);
1282 NODEMASK_SCRATCH_FREE(scratch
);
1287 ret
= queue_pages_range(mm
, start
, end
, nmask
,
1288 flags
| MPOL_MF_INVERT
, &pagelist
);
1295 err
= mbind_range(mm
, start
, end
, new);
1300 if (!list_empty(&pagelist
)) {
1301 WARN_ON_ONCE(flags
& MPOL_MF_LAZY
);
1302 nr_failed
= migrate_pages(&pagelist
, new_page
, NULL
,
1303 start
, MIGRATE_SYNC
, MR_MEMPOLICY_MBIND
);
1305 putback_movable_pages(&pagelist
);
1308 if ((ret
> 0) || (nr_failed
&& (flags
& MPOL_MF_STRICT
)))
1312 if (!list_empty(&pagelist
))
1313 putback_movable_pages(&pagelist
);
1316 up_write(&mm
->mmap_sem
);
1323 * User space interface with variable sized bitmaps for nodelists.
1326 /* Copy a node mask from user space. */
1327 static int get_nodes(nodemask_t
*nodes
, const unsigned long __user
*nmask
,
1328 unsigned long maxnode
)
1332 unsigned long nlongs
;
1333 unsigned long endmask
;
1336 nodes_clear(*nodes
);
1337 if (maxnode
== 0 || !nmask
)
1339 if (maxnode
> PAGE_SIZE
*BITS_PER_BYTE
)
1342 nlongs
= BITS_TO_LONGS(maxnode
);
1343 if ((maxnode
% BITS_PER_LONG
) == 0)
1346 endmask
= (1UL << (maxnode
% BITS_PER_LONG
)) - 1;
1349 * When the user specified more nodes than supported just check
1350 * if the non supported part is all zero.
1352 * If maxnode have more longs than MAX_NUMNODES, check
1353 * the bits in that area first. And then go through to
1354 * check the rest bits which equal or bigger than MAX_NUMNODES.
1355 * Otherwise, just check bits [MAX_NUMNODES, maxnode).
1357 if (nlongs
> BITS_TO_LONGS(MAX_NUMNODES
)) {
1358 for (k
= BITS_TO_LONGS(MAX_NUMNODES
); k
< nlongs
; k
++) {
1359 if (get_user(t
, nmask
+ k
))
1361 if (k
== nlongs
- 1) {
1367 nlongs
= BITS_TO_LONGS(MAX_NUMNODES
);
1371 if (maxnode
> MAX_NUMNODES
&& MAX_NUMNODES
% BITS_PER_LONG
!= 0) {
1372 unsigned long valid_mask
= endmask
;
1374 valid_mask
&= ~((1UL << (MAX_NUMNODES
% BITS_PER_LONG
)) - 1);
1375 if (get_user(t
, nmask
+ nlongs
- 1))
1381 if (copy_from_user(nodes_addr(*nodes
), nmask
, nlongs
*sizeof(unsigned long)))
1383 nodes_addr(*nodes
)[nlongs
-1] &= endmask
;
1387 /* Copy a kernel node mask to user space */
1388 static int copy_nodes_to_user(unsigned long __user
*mask
, unsigned long maxnode
,
1391 unsigned long copy
= ALIGN(maxnode
-1, 64) / 8;
1392 unsigned int nbytes
= BITS_TO_LONGS(nr_node_ids
) * sizeof(long);
1394 if (copy
> nbytes
) {
1395 if (copy
> PAGE_SIZE
)
1397 if (clear_user((char __user
*)mask
+ nbytes
, copy
- nbytes
))
1401 return copy_to_user(mask
, nodes_addr(*nodes
), copy
) ? -EFAULT
: 0;
1404 static long kernel_mbind(unsigned long start
, unsigned long len
,
1405 unsigned long mode
, const unsigned long __user
*nmask
,
1406 unsigned long maxnode
, unsigned int flags
)
1410 unsigned short mode_flags
;
1412 start
= untagged_addr(start
);
1413 mode_flags
= mode
& MPOL_MODE_FLAGS
;
1414 mode
&= ~MPOL_MODE_FLAGS
;
1415 if (mode
>= MPOL_MAX
)
1417 if ((mode_flags
& MPOL_F_STATIC_NODES
) &&
1418 (mode_flags
& MPOL_F_RELATIVE_NODES
))
1420 err
= get_nodes(&nodes
, nmask
, maxnode
);
1423 return do_mbind(start
, len
, mode
, mode_flags
, &nodes
, flags
);
1426 SYSCALL_DEFINE6(mbind
, unsigned long, start
, unsigned long, len
,
1427 unsigned long, mode
, const unsigned long __user
*, nmask
,
1428 unsigned long, maxnode
, unsigned int, flags
)
1430 return kernel_mbind(start
, len
, mode
, nmask
, maxnode
, flags
);
1433 /* Set the process memory policy */
1434 static long kernel_set_mempolicy(int mode
, const unsigned long __user
*nmask
,
1435 unsigned long maxnode
)
1439 unsigned short flags
;
1441 flags
= mode
& MPOL_MODE_FLAGS
;
1442 mode
&= ~MPOL_MODE_FLAGS
;
1443 if ((unsigned int)mode
>= MPOL_MAX
)
1445 if ((flags
& MPOL_F_STATIC_NODES
) && (flags
& MPOL_F_RELATIVE_NODES
))
1447 err
= get_nodes(&nodes
, nmask
, maxnode
);
1450 return do_set_mempolicy(mode
, flags
, &nodes
);
1453 SYSCALL_DEFINE3(set_mempolicy
, int, mode
, const unsigned long __user
*, nmask
,
1454 unsigned long, maxnode
)
1456 return kernel_set_mempolicy(mode
, nmask
, maxnode
);
1459 static int kernel_migrate_pages(pid_t pid
, unsigned long maxnode
,
1460 const unsigned long __user
*old_nodes
,
1461 const unsigned long __user
*new_nodes
)
1463 struct mm_struct
*mm
= NULL
;
1464 struct task_struct
*task
;
1465 nodemask_t task_nodes
;
1469 NODEMASK_SCRATCH(scratch
);
1474 old
= &scratch
->mask1
;
1475 new = &scratch
->mask2
;
1477 err
= get_nodes(old
, old_nodes
, maxnode
);
1481 err
= get_nodes(new, new_nodes
, maxnode
);
1485 /* Find the mm_struct */
1487 task
= pid
? find_task_by_vpid(pid
) : current
;
1493 get_task_struct(task
);
1498 * Check if this process has the right to modify the specified process.
1499 * Use the regular "ptrace_may_access()" checks.
1501 if (!ptrace_may_access(task
, PTRACE_MODE_READ_REALCREDS
)) {
1508 task_nodes
= cpuset_mems_allowed(task
);
1509 /* Is the user allowed to access the target nodes? */
1510 if (!nodes_subset(*new, task_nodes
) && !capable(CAP_SYS_NICE
)) {
1515 task_nodes
= cpuset_mems_allowed(current
);
1516 nodes_and(*new, *new, task_nodes
);
1517 if (nodes_empty(*new))
1520 err
= security_task_movememory(task
);
1524 mm
= get_task_mm(task
);
1525 put_task_struct(task
);
1532 err
= do_migrate_pages(mm
, old
, new,
1533 capable(CAP_SYS_NICE
) ? MPOL_MF_MOVE_ALL
: MPOL_MF_MOVE
);
1537 NODEMASK_SCRATCH_FREE(scratch
);
1542 put_task_struct(task
);
1547 SYSCALL_DEFINE4(migrate_pages
, pid_t
, pid
, unsigned long, maxnode
,
1548 const unsigned long __user
*, old_nodes
,
1549 const unsigned long __user
*, new_nodes
)
1551 return kernel_migrate_pages(pid
, maxnode
, old_nodes
, new_nodes
);
1555 /* Retrieve NUMA policy */
1556 static int kernel_get_mempolicy(int __user
*policy
,
1557 unsigned long __user
*nmask
,
1558 unsigned long maxnode
,
1560 unsigned long flags
)
1563 int uninitialized_var(pval
);
1566 addr
= untagged_addr(addr
);
1568 if (nmask
!= NULL
&& maxnode
< nr_node_ids
)
1571 err
= do_get_mempolicy(&pval
, &nodes
, addr
, flags
);
1576 if (policy
&& put_user(pval
, policy
))
1580 err
= copy_nodes_to_user(nmask
, maxnode
, &nodes
);
1585 SYSCALL_DEFINE5(get_mempolicy
, int __user
*, policy
,
1586 unsigned long __user
*, nmask
, unsigned long, maxnode
,
1587 unsigned long, addr
, unsigned long, flags
)
1589 return kernel_get_mempolicy(policy
, nmask
, maxnode
, addr
, flags
);
1592 #ifdef CONFIG_COMPAT
1594 COMPAT_SYSCALL_DEFINE5(get_mempolicy
, int __user
*, policy
,
1595 compat_ulong_t __user
*, nmask
,
1596 compat_ulong_t
, maxnode
,
1597 compat_ulong_t
, addr
, compat_ulong_t
, flags
)
1600 unsigned long __user
*nm
= NULL
;
1601 unsigned long nr_bits
, alloc_size
;
1602 DECLARE_BITMAP(bm
, MAX_NUMNODES
);
1604 nr_bits
= min_t(unsigned long, maxnode
-1, nr_node_ids
);
1605 alloc_size
= ALIGN(nr_bits
, BITS_PER_LONG
) / 8;
1608 nm
= compat_alloc_user_space(alloc_size
);
1610 err
= kernel_get_mempolicy(policy
, nm
, nr_bits
+1, addr
, flags
);
1612 if (!err
&& nmask
) {
1613 unsigned long copy_size
;
1614 copy_size
= min_t(unsigned long, sizeof(bm
), alloc_size
);
1615 err
= copy_from_user(bm
, nm
, copy_size
);
1616 /* ensure entire bitmap is zeroed */
1617 err
|= clear_user(nmask
, ALIGN(maxnode
-1, 8) / 8);
1618 err
|= compat_put_bitmap(nmask
, bm
, nr_bits
);
1624 COMPAT_SYSCALL_DEFINE3(set_mempolicy
, int, mode
, compat_ulong_t __user
*, nmask
,
1625 compat_ulong_t
, maxnode
)
1627 unsigned long __user
*nm
= NULL
;
1628 unsigned long nr_bits
, alloc_size
;
1629 DECLARE_BITMAP(bm
, MAX_NUMNODES
);
1631 nr_bits
= min_t(unsigned long, maxnode
-1, MAX_NUMNODES
);
1632 alloc_size
= ALIGN(nr_bits
, BITS_PER_LONG
) / 8;
1635 if (compat_get_bitmap(bm
, nmask
, nr_bits
))
1637 nm
= compat_alloc_user_space(alloc_size
);
1638 if (copy_to_user(nm
, bm
, alloc_size
))
1642 return kernel_set_mempolicy(mode
, nm
, nr_bits
+1);
1645 COMPAT_SYSCALL_DEFINE6(mbind
, compat_ulong_t
, start
, compat_ulong_t
, len
,
1646 compat_ulong_t
, mode
, compat_ulong_t __user
*, nmask
,
1647 compat_ulong_t
, maxnode
, compat_ulong_t
, flags
)
1649 unsigned long __user
*nm
= NULL
;
1650 unsigned long nr_bits
, alloc_size
;
1653 nr_bits
= min_t(unsigned long, maxnode
-1, MAX_NUMNODES
);
1654 alloc_size
= ALIGN(nr_bits
, BITS_PER_LONG
) / 8;
1657 if (compat_get_bitmap(nodes_addr(bm
), nmask
, nr_bits
))
1659 nm
= compat_alloc_user_space(alloc_size
);
1660 if (copy_to_user(nm
, nodes_addr(bm
), alloc_size
))
1664 return kernel_mbind(start
, len
, mode
, nm
, nr_bits
+1, flags
);
1667 COMPAT_SYSCALL_DEFINE4(migrate_pages
, compat_pid_t
, pid
,
1668 compat_ulong_t
, maxnode
,
1669 const compat_ulong_t __user
*, old_nodes
,
1670 const compat_ulong_t __user
*, new_nodes
)
1672 unsigned long __user
*old
= NULL
;
1673 unsigned long __user
*new = NULL
;
1674 nodemask_t tmp_mask
;
1675 unsigned long nr_bits
;
1678 nr_bits
= min_t(unsigned long, maxnode
- 1, MAX_NUMNODES
);
1679 size
= ALIGN(nr_bits
, BITS_PER_LONG
) / 8;
1681 if (compat_get_bitmap(nodes_addr(tmp_mask
), old_nodes
, nr_bits
))
1683 old
= compat_alloc_user_space(new_nodes
? size
* 2 : size
);
1685 new = old
+ size
/ sizeof(unsigned long);
1686 if (copy_to_user(old
, nodes_addr(tmp_mask
), size
))
1690 if (compat_get_bitmap(nodes_addr(tmp_mask
), new_nodes
, nr_bits
))
1693 new = compat_alloc_user_space(size
);
1694 if (copy_to_user(new, nodes_addr(tmp_mask
), size
))
1697 return kernel_migrate_pages(pid
, nr_bits
+ 1, old
, new);
1700 #endif /* CONFIG_COMPAT */
1702 struct mempolicy
*__get_vma_policy(struct vm_area_struct
*vma
,
1705 struct mempolicy
*pol
= NULL
;
1708 if (vma
->vm_ops
&& vma
->vm_ops
->get_policy
) {
1709 pol
= vma
->vm_ops
->get_policy(vma
, addr
);
1710 } else if (vma
->vm_policy
) {
1711 pol
= vma
->vm_policy
;
1714 * shmem_alloc_page() passes MPOL_F_SHARED policy with
1715 * a pseudo vma whose vma->vm_ops=NULL. Take a reference
1716 * count on these policies which will be dropped by
1717 * mpol_cond_put() later
1719 if (mpol_needs_cond_ref(pol
))
1728 * get_vma_policy(@vma, @addr)
1729 * @vma: virtual memory area whose policy is sought
1730 * @addr: address in @vma for shared policy lookup
1732 * Returns effective policy for a VMA at specified address.
1733 * Falls back to current->mempolicy or system default policy, as necessary.
1734 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1735 * count--added by the get_policy() vm_op, as appropriate--to protect against
1736 * freeing by another task. It is the caller's responsibility to free the
1737 * extra reference for shared policies.
1739 static struct mempolicy
*get_vma_policy(struct vm_area_struct
*vma
,
1742 struct mempolicy
*pol
= __get_vma_policy(vma
, addr
);
1745 pol
= get_task_policy(current
);
1750 bool vma_policy_mof(struct vm_area_struct
*vma
)
1752 struct mempolicy
*pol
;
1754 if (vma
->vm_ops
&& vma
->vm_ops
->get_policy
) {
1757 pol
= vma
->vm_ops
->get_policy(vma
, vma
->vm_start
);
1758 if (pol
&& (pol
->flags
& MPOL_F_MOF
))
1765 pol
= vma
->vm_policy
;
1767 pol
= get_task_policy(current
);
1769 return pol
->flags
& MPOL_F_MOF
;
1772 static int apply_policy_zone(struct mempolicy
*policy
, enum zone_type zone
)
1774 enum zone_type dynamic_policy_zone
= policy_zone
;
1776 BUG_ON(dynamic_policy_zone
== ZONE_MOVABLE
);
1779 * if policy->v.nodes has movable memory only,
1780 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
1782 * policy->v.nodes is intersect with node_states[N_MEMORY].
1783 * so if the following test faile, it implies
1784 * policy->v.nodes has movable memory only.
1786 if (!nodes_intersects(policy
->v
.nodes
, node_states
[N_HIGH_MEMORY
]))
1787 dynamic_policy_zone
= ZONE_MOVABLE
;
1789 return zone
>= dynamic_policy_zone
;
1793 * Return a nodemask representing a mempolicy for filtering nodes for
1796 static nodemask_t
*policy_nodemask(gfp_t gfp
, struct mempolicy
*policy
)
1798 /* Lower zones don't get a nodemask applied for MPOL_BIND */
1799 if (unlikely(policy
->mode
== MPOL_BIND
) &&
1800 apply_policy_zone(policy
, gfp_zone(gfp
)) &&
1801 cpuset_nodemask_valid_mems_allowed(&policy
->v
.nodes
))
1802 return &policy
->v
.nodes
;
1807 /* Return the node id preferred by the given mempolicy, or the given id */
1808 static int policy_node(gfp_t gfp
, struct mempolicy
*policy
,
1811 if (policy
->mode
== MPOL_PREFERRED
&& !(policy
->flags
& MPOL_F_LOCAL
))
1812 nd
= policy
->v
.preferred_node
;
1815 * __GFP_THISNODE shouldn't even be used with the bind policy
1816 * because we might easily break the expectation to stay on the
1817 * requested node and not break the policy.
1819 WARN_ON_ONCE(policy
->mode
== MPOL_BIND
&& (gfp
& __GFP_THISNODE
));
1825 /* Do dynamic interleaving for a process */
1826 static unsigned interleave_nodes(struct mempolicy
*policy
)
1829 struct task_struct
*me
= current
;
1831 next
= next_node_in(me
->il_prev
, policy
->v
.nodes
);
1832 if (next
< MAX_NUMNODES
)
1838 * Depending on the memory policy provide a node from which to allocate the
1841 unsigned int mempolicy_slab_node(void)
1843 struct mempolicy
*policy
;
1844 int node
= numa_mem_id();
1849 policy
= current
->mempolicy
;
1850 if (!policy
|| policy
->flags
& MPOL_F_LOCAL
)
1853 switch (policy
->mode
) {
1854 case MPOL_PREFERRED
:
1856 * handled MPOL_F_LOCAL above
1858 return policy
->v
.preferred_node
;
1860 case MPOL_INTERLEAVE
:
1861 return interleave_nodes(policy
);
1867 * Follow bind policy behavior and start allocation at the
1870 struct zonelist
*zonelist
;
1871 enum zone_type highest_zoneidx
= gfp_zone(GFP_KERNEL
);
1872 zonelist
= &NODE_DATA(node
)->node_zonelists
[ZONELIST_FALLBACK
];
1873 z
= first_zones_zonelist(zonelist
, highest_zoneidx
,
1875 return z
->zone
? zone_to_nid(z
->zone
) : node
;
1884 * Do static interleaving for a VMA with known offset @n. Returns the n'th
1885 * node in pol->v.nodes (starting from n=0), wrapping around if n exceeds the
1886 * number of present nodes.
1888 static unsigned offset_il_node(struct mempolicy
*pol
, unsigned long n
)
1890 unsigned nnodes
= nodes_weight(pol
->v
.nodes
);
1896 return numa_node_id();
1897 target
= (unsigned int)n
% nnodes
;
1898 nid
= first_node(pol
->v
.nodes
);
1899 for (i
= 0; i
< target
; i
++)
1900 nid
= next_node(nid
, pol
->v
.nodes
);
1904 /* Determine a node number for interleave */
1905 static inline unsigned interleave_nid(struct mempolicy
*pol
,
1906 struct vm_area_struct
*vma
, unsigned long addr
, int shift
)
1912 * for small pages, there is no difference between
1913 * shift and PAGE_SHIFT, so the bit-shift is safe.
1914 * for huge pages, since vm_pgoff is in units of small
1915 * pages, we need to shift off the always 0 bits to get
1918 BUG_ON(shift
< PAGE_SHIFT
);
1919 off
= vma
->vm_pgoff
>> (shift
- PAGE_SHIFT
);
1920 off
+= (addr
- vma
->vm_start
) >> shift
;
1921 return offset_il_node(pol
, off
);
1923 return interleave_nodes(pol
);
1926 #ifdef CONFIG_HUGETLBFS
1928 * huge_node(@vma, @addr, @gfp_flags, @mpol)
1929 * @vma: virtual memory area whose policy is sought
1930 * @addr: address in @vma for shared policy lookup and interleave policy
1931 * @gfp_flags: for requested zone
1932 * @mpol: pointer to mempolicy pointer for reference counted mempolicy
1933 * @nodemask: pointer to nodemask pointer for MPOL_BIND nodemask
1935 * Returns a nid suitable for a huge page allocation and a pointer
1936 * to the struct mempolicy for conditional unref after allocation.
1937 * If the effective policy is 'BIND, returns a pointer to the mempolicy's
1938 * @nodemask for filtering the zonelist.
1940 * Must be protected by read_mems_allowed_begin()
1942 int huge_node(struct vm_area_struct
*vma
, unsigned long addr
, gfp_t gfp_flags
,
1943 struct mempolicy
**mpol
, nodemask_t
**nodemask
)
1947 *mpol
= get_vma_policy(vma
, addr
);
1948 *nodemask
= NULL
; /* assume !MPOL_BIND */
1950 if (unlikely((*mpol
)->mode
== MPOL_INTERLEAVE
)) {
1951 nid
= interleave_nid(*mpol
, vma
, addr
,
1952 huge_page_shift(hstate_vma(vma
)));
1954 nid
= policy_node(gfp_flags
, *mpol
, numa_node_id());
1955 if ((*mpol
)->mode
== MPOL_BIND
)
1956 *nodemask
= &(*mpol
)->v
.nodes
;
1962 * init_nodemask_of_mempolicy
1964 * If the current task's mempolicy is "default" [NULL], return 'false'
1965 * to indicate default policy. Otherwise, extract the policy nodemask
1966 * for 'bind' or 'interleave' policy into the argument nodemask, or
1967 * initialize the argument nodemask to contain the single node for
1968 * 'preferred' or 'local' policy and return 'true' to indicate presence
1969 * of non-default mempolicy.
1971 * We don't bother with reference counting the mempolicy [mpol_get/put]
1972 * because the current task is examining it's own mempolicy and a task's
1973 * mempolicy is only ever changed by the task itself.
1975 * N.B., it is the caller's responsibility to free a returned nodemask.
1977 bool init_nodemask_of_mempolicy(nodemask_t
*mask
)
1979 struct mempolicy
*mempolicy
;
1982 if (!(mask
&& current
->mempolicy
))
1986 mempolicy
= current
->mempolicy
;
1987 switch (mempolicy
->mode
) {
1988 case MPOL_PREFERRED
:
1989 if (mempolicy
->flags
& MPOL_F_LOCAL
)
1990 nid
= numa_node_id();
1992 nid
= mempolicy
->v
.preferred_node
;
1993 init_nodemask_of_node(mask
, nid
);
1998 case MPOL_INTERLEAVE
:
1999 *mask
= mempolicy
->v
.nodes
;
2005 task_unlock(current
);
2012 * mempolicy_nodemask_intersects
2014 * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default
2015 * policy. Otherwise, check for intersection between mask and the policy
2016 * nodemask for 'bind' or 'interleave' policy. For 'perferred' or 'local'
2017 * policy, always return true since it may allocate elsewhere on fallback.
2019 * Takes task_lock(tsk) to prevent freeing of its mempolicy.
2021 bool mempolicy_nodemask_intersects(struct task_struct
*tsk
,
2022 const nodemask_t
*mask
)
2024 struct mempolicy
*mempolicy
;
2030 mempolicy
= tsk
->mempolicy
;
2034 switch (mempolicy
->mode
) {
2035 case MPOL_PREFERRED
:
2037 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to
2038 * allocate from, they may fallback to other nodes when oom.
2039 * Thus, it's possible for tsk to have allocated memory from
2044 case MPOL_INTERLEAVE
:
2045 ret
= nodes_intersects(mempolicy
->v
.nodes
, *mask
);
2055 /* Allocate a page in interleaved policy.
2056 Own path because it needs to do special accounting. */
2057 static struct page
*alloc_page_interleave(gfp_t gfp
, unsigned order
,
2062 page
= __alloc_pages(gfp
, order
, nid
);
2063 /* skip NUMA_INTERLEAVE_HIT counter update if numa stats is disabled */
2064 if (!static_branch_likely(&vm_numa_stat_key
))
2066 if (page
&& page_to_nid(page
) == nid
) {
2068 __inc_numa_state(page_zone(page
), NUMA_INTERLEAVE_HIT
);
2075 * alloc_pages_vma - Allocate a page for a VMA.
2078 * %GFP_USER user allocation.
2079 * %GFP_KERNEL kernel allocations,
2080 * %GFP_HIGHMEM highmem/user allocations,
2081 * %GFP_FS allocation should not call back into a file system.
2082 * %GFP_ATOMIC don't sleep.
2084 * @order:Order of the GFP allocation.
2085 * @vma: Pointer to VMA or NULL if not available.
2086 * @addr: Virtual Address of the allocation. Must be inside the VMA.
2087 * @node: Which node to prefer for allocation (modulo policy).
2088 * @hugepage: for hugepages try only the preferred node if possible
2090 * This function allocates a page from the kernel page pool and applies
2091 * a NUMA policy associated with the VMA or the current process.
2092 * When VMA is not NULL caller must hold down_read on the mmap_sem of the
2093 * mm_struct of the VMA to prevent it from going away. Should be used for
2094 * all allocations for pages that will be mapped into user space. Returns
2095 * NULL when no page can be allocated.
2098 alloc_pages_vma(gfp_t gfp
, int order
, struct vm_area_struct
*vma
,
2099 unsigned long addr
, int node
, bool hugepage
)
2101 struct mempolicy
*pol
;
2106 pol
= get_vma_policy(vma
, addr
);
2108 if (pol
->mode
== MPOL_INTERLEAVE
) {
2111 nid
= interleave_nid(pol
, vma
, addr
, PAGE_SHIFT
+ order
);
2113 page
= alloc_page_interleave(gfp
, order
, nid
);
2117 if (unlikely(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE
) && hugepage
)) {
2118 int hpage_node
= node
;
2121 * For hugepage allocation and non-interleave policy which
2122 * allows the current node (or other explicitly preferred
2123 * node) we only try to allocate from the current/preferred
2124 * node and don't fall back to other nodes, as the cost of
2125 * remote accesses would likely offset THP benefits.
2127 * If the policy is interleave, or does not allow the current
2128 * node in its nodemask, we allocate the standard way.
2130 if (pol
->mode
== MPOL_PREFERRED
&& !(pol
->flags
& MPOL_F_LOCAL
))
2131 hpage_node
= pol
->v
.preferred_node
;
2133 nmask
= policy_nodemask(gfp
, pol
);
2134 if (!nmask
|| node_isset(hpage_node
, *nmask
)) {
2136 page
= __alloc_pages_node(hpage_node
,
2137 gfp
| __GFP_THISNODE
, order
);
2140 * If hugepage allocations are configured to always
2141 * synchronous compact or the vma has been madvised
2142 * to prefer hugepage backing, retry allowing remote
2145 if (!page
&& (gfp
& __GFP_DIRECT_RECLAIM
))
2146 page
= __alloc_pages_node(hpage_node
,
2147 gfp
| __GFP_NORETRY
, order
);
2153 nmask
= policy_nodemask(gfp
, pol
);
2154 preferred_nid
= policy_node(gfp
, pol
, node
);
2155 page
= __alloc_pages_nodemask(gfp
, order
, preferred_nid
, nmask
);
2160 EXPORT_SYMBOL(alloc_pages_vma
);
2163 * alloc_pages_current - Allocate pages.
2166 * %GFP_USER user allocation,
2167 * %GFP_KERNEL kernel allocation,
2168 * %GFP_HIGHMEM highmem allocation,
2169 * %GFP_FS don't call back into a file system.
2170 * %GFP_ATOMIC don't sleep.
2171 * @order: Power of two of allocation size in pages. 0 is a single page.
2173 * Allocate a page from the kernel page pool. When not in
2174 * interrupt context and apply the current process NUMA policy.
2175 * Returns NULL when no page can be allocated.
2177 struct page
*alloc_pages_current(gfp_t gfp
, unsigned order
)
2179 struct mempolicy
*pol
= &default_policy
;
2182 if (!in_interrupt() && !(gfp
& __GFP_THISNODE
))
2183 pol
= get_task_policy(current
);
2186 * No reference counting needed for current->mempolicy
2187 * nor system default_policy
2189 if (pol
->mode
== MPOL_INTERLEAVE
)
2190 page
= alloc_page_interleave(gfp
, order
, interleave_nodes(pol
));
2192 page
= __alloc_pages_nodemask(gfp
, order
,
2193 policy_node(gfp
, pol
, numa_node_id()),
2194 policy_nodemask(gfp
, pol
));
2198 EXPORT_SYMBOL(alloc_pages_current
);
2200 int vma_dup_policy(struct vm_area_struct
*src
, struct vm_area_struct
*dst
)
2202 struct mempolicy
*pol
= mpol_dup(vma_policy(src
));
2205 return PTR_ERR(pol
);
2206 dst
->vm_policy
= pol
;
2211 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2212 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2213 * with the mems_allowed returned by cpuset_mems_allowed(). This
2214 * keeps mempolicies cpuset relative after its cpuset moves. See
2215 * further kernel/cpuset.c update_nodemask().
2217 * current's mempolicy may be rebinded by the other task(the task that changes
2218 * cpuset's mems), so we needn't do rebind work for current task.
2221 /* Slow path of a mempolicy duplicate */
2222 struct mempolicy
*__mpol_dup(struct mempolicy
*old
)
2224 struct mempolicy
*new = kmem_cache_alloc(policy_cache
, GFP_KERNEL
);
2227 return ERR_PTR(-ENOMEM
);
2229 /* task's mempolicy is protected by alloc_lock */
2230 if (old
== current
->mempolicy
) {
2233 task_unlock(current
);
2237 if (current_cpuset_is_being_rebound()) {
2238 nodemask_t mems
= cpuset_mems_allowed(current
);
2239 mpol_rebind_policy(new, &mems
);
2241 atomic_set(&new->refcnt
, 1);
2245 /* Slow path of a mempolicy comparison */
2246 bool __mpol_equal(struct mempolicy
*a
, struct mempolicy
*b
)
2250 if (a
->mode
!= b
->mode
)
2252 if (a
->flags
!= b
->flags
)
2254 if (mpol_store_user_nodemask(a
))
2255 if (!nodes_equal(a
->w
.user_nodemask
, b
->w
.user_nodemask
))
2261 case MPOL_INTERLEAVE
:
2262 return !!nodes_equal(a
->v
.nodes
, b
->v
.nodes
);
2263 case MPOL_PREFERRED
:
2264 /* a's ->flags is the same as b's */
2265 if (a
->flags
& MPOL_F_LOCAL
)
2267 return a
->v
.preferred_node
== b
->v
.preferred_node
;
2275 * Shared memory backing store policy support.
2277 * Remember policies even when nobody has shared memory mapped.
2278 * The policies are kept in Red-Black tree linked from the inode.
2279 * They are protected by the sp->lock rwlock, which should be held
2280 * for any accesses to the tree.
2284 * lookup first element intersecting start-end. Caller holds sp->lock for
2285 * reading or for writing
2287 static struct sp_node
*
2288 sp_lookup(struct shared_policy
*sp
, unsigned long start
, unsigned long end
)
2290 struct rb_node
*n
= sp
->root
.rb_node
;
2293 struct sp_node
*p
= rb_entry(n
, struct sp_node
, nd
);
2295 if (start
>= p
->end
)
2297 else if (end
<= p
->start
)
2305 struct sp_node
*w
= NULL
;
2306 struct rb_node
*prev
= rb_prev(n
);
2309 w
= rb_entry(prev
, struct sp_node
, nd
);
2310 if (w
->end
<= start
)
2314 return rb_entry(n
, struct sp_node
, nd
);
2318 * Insert a new shared policy into the list. Caller holds sp->lock for
2321 static void sp_insert(struct shared_policy
*sp
, struct sp_node
*new)
2323 struct rb_node
**p
= &sp
->root
.rb_node
;
2324 struct rb_node
*parent
= NULL
;
2329 nd
= rb_entry(parent
, struct sp_node
, nd
);
2330 if (new->start
< nd
->start
)
2332 else if (new->end
> nd
->end
)
2333 p
= &(*p
)->rb_right
;
2337 rb_link_node(&new->nd
, parent
, p
);
2338 rb_insert_color(&new->nd
, &sp
->root
);
2339 pr_debug("inserting %lx-%lx: %d\n", new->start
, new->end
,
2340 new->policy
? new->policy
->mode
: 0);
2343 /* Find shared policy intersecting idx */
2345 mpol_shared_policy_lookup(struct shared_policy
*sp
, unsigned long idx
)
2347 struct mempolicy
*pol
= NULL
;
2350 if (!sp
->root
.rb_node
)
2352 read_lock(&sp
->lock
);
2353 sn
= sp_lookup(sp
, idx
, idx
+1);
2355 mpol_get(sn
->policy
);
2358 read_unlock(&sp
->lock
);
2362 static void sp_free(struct sp_node
*n
)
2364 mpol_put(n
->policy
);
2365 kmem_cache_free(sn_cache
, n
);
2369 * mpol_misplaced - check whether current page node is valid in policy
2371 * @page: page to be checked
2372 * @vma: vm area where page mapped
2373 * @addr: virtual address where page mapped
2375 * Lookup current policy node id for vma,addr and "compare to" page's
2379 * -1 - not misplaced, page is in the right node
2380 * node - node id where the page should be
2382 * Policy determination "mimics" alloc_page_vma().
2383 * Called from fault path where we know the vma and faulting address.
2385 int mpol_misplaced(struct page
*page
, struct vm_area_struct
*vma
, unsigned long addr
)
2387 struct mempolicy
*pol
;
2389 int curnid
= page_to_nid(page
);
2390 unsigned long pgoff
;
2391 int thiscpu
= raw_smp_processor_id();
2392 int thisnid
= cpu_to_node(thiscpu
);
2393 int polnid
= NUMA_NO_NODE
;
2396 pol
= get_vma_policy(vma
, addr
);
2397 if (!(pol
->flags
& MPOL_F_MOF
))
2400 switch (pol
->mode
) {
2401 case MPOL_INTERLEAVE
:
2402 pgoff
= vma
->vm_pgoff
;
2403 pgoff
+= (addr
- vma
->vm_start
) >> PAGE_SHIFT
;
2404 polnid
= offset_il_node(pol
, pgoff
);
2407 case MPOL_PREFERRED
:
2408 if (pol
->flags
& MPOL_F_LOCAL
)
2409 polnid
= numa_node_id();
2411 polnid
= pol
->v
.preferred_node
;
2417 * allows binding to multiple nodes.
2418 * use current page if in policy nodemask,
2419 * else select nearest allowed node, if any.
2420 * If no allowed nodes, use current [!misplaced].
2422 if (node_isset(curnid
, pol
->v
.nodes
))
2424 z
= first_zones_zonelist(
2425 node_zonelist(numa_node_id(), GFP_HIGHUSER
),
2426 gfp_zone(GFP_HIGHUSER
),
2428 polnid
= zone_to_nid(z
->zone
);
2435 /* Migrate the page towards the node whose CPU is referencing it */
2436 if (pol
->flags
& MPOL_F_MORON
) {
2439 if (!should_numa_migrate_memory(current
, page
, curnid
, thiscpu
))
2443 if (curnid
!= polnid
)
2452 * Drop the (possibly final) reference to task->mempolicy. It needs to be
2453 * dropped after task->mempolicy is set to NULL so that any allocation done as
2454 * part of its kmem_cache_free(), such as by KASAN, doesn't reference a freed
2457 void mpol_put_task_policy(struct task_struct
*task
)
2459 struct mempolicy
*pol
;
2462 pol
= task
->mempolicy
;
2463 task
->mempolicy
= NULL
;
2468 static void sp_delete(struct shared_policy
*sp
, struct sp_node
*n
)
2470 pr_debug("deleting %lx-l%lx\n", n
->start
, n
->end
);
2471 rb_erase(&n
->nd
, &sp
->root
);
2475 static void sp_node_init(struct sp_node
*node
, unsigned long start
,
2476 unsigned long end
, struct mempolicy
*pol
)
2478 node
->start
= start
;
2483 static struct sp_node
*sp_alloc(unsigned long start
, unsigned long end
,
2484 struct mempolicy
*pol
)
2487 struct mempolicy
*newpol
;
2489 n
= kmem_cache_alloc(sn_cache
, GFP_KERNEL
);
2493 newpol
= mpol_dup(pol
);
2494 if (IS_ERR(newpol
)) {
2495 kmem_cache_free(sn_cache
, n
);
2498 newpol
->flags
|= MPOL_F_SHARED
;
2499 sp_node_init(n
, start
, end
, newpol
);
2504 /* Replace a policy range. */
2505 static int shared_policy_replace(struct shared_policy
*sp
, unsigned long start
,
2506 unsigned long end
, struct sp_node
*new)
2509 struct sp_node
*n_new
= NULL
;
2510 struct mempolicy
*mpol_new
= NULL
;
2514 write_lock(&sp
->lock
);
2515 n
= sp_lookup(sp
, start
, end
);
2516 /* Take care of old policies in the same range. */
2517 while (n
&& n
->start
< end
) {
2518 struct rb_node
*next
= rb_next(&n
->nd
);
2519 if (n
->start
>= start
) {
2525 /* Old policy spanning whole new range. */
2530 *mpol_new
= *n
->policy
;
2531 atomic_set(&mpol_new
->refcnt
, 1);
2532 sp_node_init(n_new
, end
, n
->end
, mpol_new
);
2534 sp_insert(sp
, n_new
);
2543 n
= rb_entry(next
, struct sp_node
, nd
);
2547 write_unlock(&sp
->lock
);
2554 kmem_cache_free(sn_cache
, n_new
);
2559 write_unlock(&sp
->lock
);
2561 n_new
= kmem_cache_alloc(sn_cache
, GFP_KERNEL
);
2564 mpol_new
= kmem_cache_alloc(policy_cache
, GFP_KERNEL
);
2571 * mpol_shared_policy_init - initialize shared policy for inode
2572 * @sp: pointer to inode shared policy
2573 * @mpol: struct mempolicy to install
2575 * Install non-NULL @mpol in inode's shared policy rb-tree.
2576 * On entry, the current task has a reference on a non-NULL @mpol.
2577 * This must be released on exit.
2578 * This is called at get_inode() calls and we can use GFP_KERNEL.
2580 void mpol_shared_policy_init(struct shared_policy
*sp
, struct mempolicy
*mpol
)
2584 sp
->root
= RB_ROOT
; /* empty tree == default mempolicy */
2585 rwlock_init(&sp
->lock
);
2588 struct vm_area_struct pvma
;
2589 struct mempolicy
*new;
2590 NODEMASK_SCRATCH(scratch
);
2594 /* contextualize the tmpfs mount point mempolicy */
2595 new = mpol_new(mpol
->mode
, mpol
->flags
, &mpol
->w
.user_nodemask
);
2597 goto free_scratch
; /* no valid nodemask intersection */
2600 ret
= mpol_set_nodemask(new, &mpol
->w
.user_nodemask
, scratch
);
2601 task_unlock(current
);
2605 /* Create pseudo-vma that contains just the policy */
2606 vma_init(&pvma
, NULL
);
2607 pvma
.vm_end
= TASK_SIZE
; /* policy covers entire file */
2608 mpol_set_shared_policy(sp
, &pvma
, new); /* adds ref */
2611 mpol_put(new); /* drop initial ref */
2613 NODEMASK_SCRATCH_FREE(scratch
);
2615 mpol_put(mpol
); /* drop our incoming ref on sb mpol */
2619 int mpol_set_shared_policy(struct shared_policy
*info
,
2620 struct vm_area_struct
*vma
, struct mempolicy
*npol
)
2623 struct sp_node
*new = NULL
;
2624 unsigned long sz
= vma_pages(vma
);
2626 pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2628 sz
, npol
? npol
->mode
: -1,
2629 npol
? npol
->flags
: -1,
2630 npol
? nodes_addr(npol
->v
.nodes
)[0] : NUMA_NO_NODE
);
2633 new = sp_alloc(vma
->vm_pgoff
, vma
->vm_pgoff
+ sz
, npol
);
2637 err
= shared_policy_replace(info
, vma
->vm_pgoff
, vma
->vm_pgoff
+sz
, new);
2643 /* Free a backing policy store on inode delete. */
2644 void mpol_free_shared_policy(struct shared_policy
*p
)
2647 struct rb_node
*next
;
2649 if (!p
->root
.rb_node
)
2651 write_lock(&p
->lock
);
2652 next
= rb_first(&p
->root
);
2654 n
= rb_entry(next
, struct sp_node
, nd
);
2655 next
= rb_next(&n
->nd
);
2658 write_unlock(&p
->lock
);
2661 #ifdef CONFIG_NUMA_BALANCING
2662 static int __initdata numabalancing_override
;
2664 static void __init
check_numabalancing_enable(void)
2666 bool numabalancing_default
= false;
2668 if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED
))
2669 numabalancing_default
= true;
2671 /* Parsed by setup_numabalancing. override == 1 enables, -1 disables */
2672 if (numabalancing_override
)
2673 set_numabalancing_state(numabalancing_override
== 1);
2675 if (num_online_nodes() > 1 && !numabalancing_override
) {
2676 pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n",
2677 numabalancing_default
? "Enabling" : "Disabling");
2678 set_numabalancing_state(numabalancing_default
);
2682 static int __init
setup_numabalancing(char *str
)
2688 if (!strcmp(str
, "enable")) {
2689 numabalancing_override
= 1;
2691 } else if (!strcmp(str
, "disable")) {
2692 numabalancing_override
= -1;
2697 pr_warn("Unable to parse numa_balancing=\n");
2701 __setup("numa_balancing=", setup_numabalancing
);
2703 static inline void __init
check_numabalancing_enable(void)
2706 #endif /* CONFIG_NUMA_BALANCING */
2708 /* assumes fs == KERNEL_DS */
2709 void __init
numa_policy_init(void)
2711 nodemask_t interleave_nodes
;
2712 unsigned long largest
= 0;
2713 int nid
, prefer
= 0;
2715 policy_cache
= kmem_cache_create("numa_policy",
2716 sizeof(struct mempolicy
),
2717 0, SLAB_PANIC
, NULL
);
2719 sn_cache
= kmem_cache_create("shared_policy_node",
2720 sizeof(struct sp_node
),
2721 0, SLAB_PANIC
, NULL
);
2723 for_each_node(nid
) {
2724 preferred_node_policy
[nid
] = (struct mempolicy
) {
2725 .refcnt
= ATOMIC_INIT(1),
2726 .mode
= MPOL_PREFERRED
,
2727 .flags
= MPOL_F_MOF
| MPOL_F_MORON
,
2728 .v
= { .preferred_node
= nid
, },
2733 * Set interleaving policy for system init. Interleaving is only
2734 * enabled across suitably sized nodes (default is >= 16MB), or
2735 * fall back to the largest node if they're all smaller.
2737 nodes_clear(interleave_nodes
);
2738 for_each_node_state(nid
, N_MEMORY
) {
2739 unsigned long total_pages
= node_present_pages(nid
);
2741 /* Preserve the largest node */
2742 if (largest
< total_pages
) {
2743 largest
= total_pages
;
2747 /* Interleave this node? */
2748 if ((total_pages
<< PAGE_SHIFT
) >= (16 << 20))
2749 node_set(nid
, interleave_nodes
);
2752 /* All too small, use the largest */
2753 if (unlikely(nodes_empty(interleave_nodes
)))
2754 node_set(prefer
, interleave_nodes
);
2756 if (do_set_mempolicy(MPOL_INTERLEAVE
, 0, &interleave_nodes
))
2757 pr_err("%s: interleaving failed\n", __func__
);
2759 check_numabalancing_enable();
2762 /* Reset policy of current process to default */
2763 void numa_default_policy(void)
2765 do_set_mempolicy(MPOL_DEFAULT
, 0, NULL
);
2769 * Parse and format mempolicy from/to strings
2773 * "local" is implemented internally by MPOL_PREFERRED with MPOL_F_LOCAL flag.
2775 static const char * const policy_modes
[] =
2777 [MPOL_DEFAULT
] = "default",
2778 [MPOL_PREFERRED
] = "prefer",
2779 [MPOL_BIND
] = "bind",
2780 [MPOL_INTERLEAVE
] = "interleave",
2781 [MPOL_LOCAL
] = "local",
2787 * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
2788 * @str: string containing mempolicy to parse
2789 * @mpol: pointer to struct mempolicy pointer, returned on success.
2792 * <mode>[=<flags>][:<nodelist>]
2794 * On success, returns 0, else 1
2796 int mpol_parse_str(char *str
, struct mempolicy
**mpol
)
2798 struct mempolicy
*new = NULL
;
2799 unsigned short mode_flags
;
2801 char *nodelist
= strchr(str
, ':');
2802 char *flags
= strchr(str
, '=');
2806 *flags
++ = '\0'; /* terminate mode string */
2809 /* NUL-terminate mode or flags string */
2811 if (nodelist_parse(nodelist
, nodes
))
2813 if (!nodes_subset(nodes
, node_states
[N_MEMORY
]))
2818 mode
= match_string(policy_modes
, MPOL_MAX
, str
);
2823 case MPOL_PREFERRED
:
2825 * Insist on a nodelist of one node only, although later
2826 * we use first_node(nodes) to grab a single node, so here
2827 * nodelist (or nodes) cannot be empty.
2830 char *rest
= nodelist
;
2831 while (isdigit(*rest
))
2835 if (nodes_empty(nodes
))
2839 case MPOL_INTERLEAVE
:
2841 * Default to online nodes with memory if no nodelist
2844 nodes
= node_states
[N_MEMORY
];
2848 * Don't allow a nodelist; mpol_new() checks flags
2852 mode
= MPOL_PREFERRED
;
2856 * Insist on a empty nodelist
2863 * Insist on a nodelist
2872 * Currently, we only support two mutually exclusive
2875 if (!strcmp(flags
, "static"))
2876 mode_flags
|= MPOL_F_STATIC_NODES
;
2877 else if (!strcmp(flags
, "relative"))
2878 mode_flags
|= MPOL_F_RELATIVE_NODES
;
2883 new = mpol_new(mode
, mode_flags
, &nodes
);
2888 * Save nodes for mpol_to_str() to show the tmpfs mount options
2889 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
2891 if (mode
!= MPOL_PREFERRED
)
2892 new->v
.nodes
= nodes
;
2894 new->v
.preferred_node
= first_node(nodes
);
2896 new->flags
|= MPOL_F_LOCAL
;
2899 * Save nodes for contextualization: this will be used to "clone"
2900 * the mempolicy in a specific context [cpuset] at a later time.
2902 new->w
.user_nodemask
= nodes
;
2907 /* Restore string for error message */
2916 #endif /* CONFIG_TMPFS */
2919 * mpol_to_str - format a mempolicy structure for printing
2920 * @buffer: to contain formatted mempolicy string
2921 * @maxlen: length of @buffer
2922 * @pol: pointer to mempolicy to be formatted
2924 * Convert @pol into a string. If @buffer is too short, truncate the string.
2925 * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the
2926 * longest flag, "relative", and to display at least a few node ids.
2928 void mpol_to_str(char *buffer
, int maxlen
, struct mempolicy
*pol
)
2931 nodemask_t nodes
= NODE_MASK_NONE
;
2932 unsigned short mode
= MPOL_DEFAULT
;
2933 unsigned short flags
= 0;
2935 if (pol
&& pol
!= &default_policy
&& !(pol
->flags
& MPOL_F_MORON
)) {
2943 case MPOL_PREFERRED
:
2944 if (flags
& MPOL_F_LOCAL
)
2947 node_set(pol
->v
.preferred_node
, nodes
);
2950 case MPOL_INTERLEAVE
:
2951 nodes
= pol
->v
.nodes
;
2955 snprintf(p
, maxlen
, "unknown");
2959 p
+= snprintf(p
, maxlen
, "%s", policy_modes
[mode
]);
2961 if (flags
& MPOL_MODE_FLAGS
) {
2962 p
+= snprintf(p
, buffer
+ maxlen
- p
, "=");
2965 * Currently, the only defined flags are mutually exclusive
2967 if (flags
& MPOL_F_STATIC_NODES
)
2968 p
+= snprintf(p
, buffer
+ maxlen
- p
, "static");
2969 else if (flags
& MPOL_F_RELATIVE_NODES
)
2970 p
+= snprintf(p
, buffer
+ maxlen
- p
, "relative");
2973 if (!nodes_empty(nodes
))
2974 p
+= scnprintf(p
, buffer
+ maxlen
- p
, ":%*pbl",
2975 nodemask_pr_args(&nodes
));