1 // SPDX-License-Identifier: GPL-2.0-only
3 * mm/percpu.c - percpu memory allocator
5 * Copyright (C) 2009 SUSE Linux Products GmbH
6 * Copyright (C) 2009 Tejun Heo <tj@kernel.org>
8 * Copyright (C) 2017 Facebook Inc.
9 * Copyright (C) 2017 Dennis Zhou <dennisszhou@gmail.com>
11 * The percpu allocator handles both static and dynamic areas. Percpu
12 * areas are allocated in chunks which are divided into units. There is
13 * a 1-to-1 mapping for units to possible cpus. These units are grouped
14 * based on NUMA properties of the machine.
17 * ------------------- ------------------- ------------
18 * | u0 | u1 | u2 | u3 | | u0 | u1 | u2 | u3 | | u0 | u1 | u
19 * ------------------- ...... ------------------- .... ------------
21 * Allocation is done by offsets into a unit's address space. Ie., an
22 * area of 512 bytes at 6k in c1 occupies 512 bytes at 6k in c1:u0,
23 * c1:u1, c1:u2, etc. On NUMA machines, the mapping may be non-linear
24 * and even sparse. Access is handled by configuring percpu base
25 * registers according to the cpu to unit mappings and offsetting the
26 * base address using pcpu_unit_size.
28 * There is special consideration for the first chunk which must handle
29 * the static percpu variables in the kernel image as allocation services
30 * are not online yet. In short, the first chunk is structured like so:
32 * <Static | [Reserved] | Dynamic>
34 * The static data is copied from the original section managed by the
35 * linker. The reserved section, if non-zero, primarily manages static
36 * percpu variables from kernel modules. Finally, the dynamic section
37 * takes care of normal allocations.
39 * The allocator organizes chunks into lists according to free size and
40 * tries to allocate from the fullest chunk first. Each chunk is managed
41 * by a bitmap with metadata blocks. The allocation map is updated on
42 * every allocation and free to reflect the current state while the boundary
43 * map is only updated on allocation. Each metadata block contains
44 * information to help mitigate the need to iterate over large portions
45 * of the bitmap. The reverse mapping from page to chunk is stored in
46 * the page's index. Lastly, units are lazily backed and grow in unison.
48 * There is a unique conversion that goes on here between bytes and bits.
49 * Each bit represents a fragment of size PCPU_MIN_ALLOC_SIZE. The chunk
50 * tracks the number of pages it is responsible for in nr_pages. Helper
51 * functions are used to convert from between the bytes, bits, and blocks.
52 * All hints are managed in bits unless explicitly stated.
54 * To use this allocator, arch code should do the following:
56 * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate
57 * regular address to percpu pointer and back if they need to be
58 * different from the default
60 * - use pcpu_setup_first_chunk() during percpu area initialization to
61 * setup the first chunk containing the kernel static percpu area
64 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
66 #include <linux/bitmap.h>
67 #include <linux/memblock.h>
68 #include <linux/err.h>
69 #include <linux/lcm.h>
70 #include <linux/list.h>
71 #include <linux/log2.h>
73 #include <linux/module.h>
74 #include <linux/mutex.h>
75 #include <linux/percpu.h>
76 #include <linux/pfn.h>
77 #include <linux/slab.h>
78 #include <linux/spinlock.h>
79 #include <linux/vmalloc.h>
80 #include <linux/workqueue.h>
81 #include <linux/kmemleak.h>
82 #include <linux/sched.h>
84 #include <asm/cacheflush.h>
85 #include <asm/sections.h>
86 #include <asm/tlbflush.h>
89 #define CREATE_TRACE_POINTS
90 #include <trace/events/percpu.h>
92 #include "percpu-internal.h"
94 /* the slots are sorted by free bytes left, 1-31 bytes share the same slot */
95 #define PCPU_SLOT_BASE_SHIFT 5
96 /* chunks in slots below this are subject to being sidelined on failed alloc */
97 #define PCPU_SLOT_FAIL_THRESHOLD 3
99 #define PCPU_EMPTY_POP_PAGES_LOW 2
100 #define PCPU_EMPTY_POP_PAGES_HIGH 4
103 /* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */
104 #ifndef __addr_to_pcpu_ptr
105 #define __addr_to_pcpu_ptr(addr) \
106 (void __percpu *)((unsigned long)(addr) - \
107 (unsigned long)pcpu_base_addr + \
108 (unsigned long)__per_cpu_start)
110 #ifndef __pcpu_ptr_to_addr
111 #define __pcpu_ptr_to_addr(ptr) \
112 (void __force *)((unsigned long)(ptr) + \
113 (unsigned long)pcpu_base_addr - \
114 (unsigned long)__per_cpu_start)
116 #else /* CONFIG_SMP */
117 /* on UP, it's always identity mapped */
118 #define __addr_to_pcpu_ptr(addr) (void __percpu *)(addr)
119 #define __pcpu_ptr_to_addr(ptr) (void __force *)(ptr)
120 #endif /* CONFIG_SMP */
122 static int pcpu_unit_pages __ro_after_init
;
123 static int pcpu_unit_size __ro_after_init
;
124 static int pcpu_nr_units __ro_after_init
;
125 static int pcpu_atom_size __ro_after_init
;
126 int pcpu_nr_slots __ro_after_init
;
127 static size_t pcpu_chunk_struct_size __ro_after_init
;
129 /* cpus with the lowest and highest unit addresses */
130 static unsigned int pcpu_low_unit_cpu __ro_after_init
;
131 static unsigned int pcpu_high_unit_cpu __ro_after_init
;
133 /* the address of the first chunk which starts with the kernel static area */
134 void *pcpu_base_addr __ro_after_init
;
135 EXPORT_SYMBOL_GPL(pcpu_base_addr
);
137 static const int *pcpu_unit_map __ro_after_init
; /* cpu -> unit */
138 const unsigned long *pcpu_unit_offsets __ro_after_init
; /* cpu -> unit offset */
140 /* group information, used for vm allocation */
141 static int pcpu_nr_groups __ro_after_init
;
142 static const unsigned long *pcpu_group_offsets __ro_after_init
;
143 static const size_t *pcpu_group_sizes __ro_after_init
;
146 * The first chunk which always exists. Note that unlike other
147 * chunks, this one can be allocated and mapped in several different
148 * ways and thus often doesn't live in the vmalloc area.
150 struct pcpu_chunk
*pcpu_first_chunk __ro_after_init
;
153 * Optional reserved chunk. This chunk reserves part of the first
154 * chunk and serves it for reserved allocations. When the reserved
155 * region doesn't exist, the following variable is NULL.
157 struct pcpu_chunk
*pcpu_reserved_chunk __ro_after_init
;
159 DEFINE_SPINLOCK(pcpu_lock
); /* all internal data structures */
160 static DEFINE_MUTEX(pcpu_alloc_mutex
); /* chunk create/destroy, [de]pop, map ext */
162 struct list_head
*pcpu_slot __ro_after_init
; /* chunk list slots */
164 /* chunks which need their map areas extended, protected by pcpu_lock */
165 static LIST_HEAD(pcpu_map_extend_chunks
);
168 * The number of empty populated pages, protected by pcpu_lock. The
169 * reserved chunk doesn't contribute to the count.
171 int pcpu_nr_empty_pop_pages
;
174 * The number of populated pages in use by the allocator, protected by
175 * pcpu_lock. This number is kept per a unit per chunk (i.e. when a page gets
176 * allocated/deallocated, it is allocated/deallocated in all units of a chunk
177 * and increments/decrements this count by 1).
179 static unsigned long pcpu_nr_populated
;
182 * Balance work is used to populate or destroy chunks asynchronously. We
183 * try to keep the number of populated free pages between
184 * PCPU_EMPTY_POP_PAGES_LOW and HIGH for atomic allocations and at most one
187 static void pcpu_balance_workfn(struct work_struct
*work
);
188 static DECLARE_WORK(pcpu_balance_work
, pcpu_balance_workfn
);
189 static bool pcpu_async_enabled __read_mostly
;
190 static bool pcpu_atomic_alloc_failed
;
192 static void pcpu_schedule_balance_work(void)
194 if (pcpu_async_enabled
)
195 schedule_work(&pcpu_balance_work
);
199 * pcpu_addr_in_chunk - check if the address is served from this chunk
200 * @chunk: chunk of interest
201 * @addr: percpu address
204 * True if the address is served from this chunk.
206 static bool pcpu_addr_in_chunk(struct pcpu_chunk
*chunk
, void *addr
)
208 void *start_addr
, *end_addr
;
213 start_addr
= chunk
->base_addr
+ chunk
->start_offset
;
214 end_addr
= chunk
->base_addr
+ chunk
->nr_pages
* PAGE_SIZE
-
217 return addr
>= start_addr
&& addr
< end_addr
;
220 static int __pcpu_size_to_slot(int size
)
222 int highbit
= fls(size
); /* size is in bytes */
223 return max(highbit
- PCPU_SLOT_BASE_SHIFT
+ 2, 1);
226 static int pcpu_size_to_slot(int size
)
228 if (size
== pcpu_unit_size
)
229 return pcpu_nr_slots
- 1;
230 return __pcpu_size_to_slot(size
);
233 static int pcpu_chunk_slot(const struct pcpu_chunk
*chunk
)
235 const struct pcpu_block_md
*chunk_md
= &chunk
->chunk_md
;
237 if (chunk
->free_bytes
< PCPU_MIN_ALLOC_SIZE
||
238 chunk_md
->contig_hint
== 0)
241 return pcpu_size_to_slot(chunk_md
->contig_hint
* PCPU_MIN_ALLOC_SIZE
);
244 /* set the pointer to a chunk in a page struct */
245 static void pcpu_set_page_chunk(struct page
*page
, struct pcpu_chunk
*pcpu
)
247 page
->index
= (unsigned long)pcpu
;
250 /* obtain pointer to a chunk from a page struct */
251 static struct pcpu_chunk
*pcpu_get_page_chunk(struct page
*page
)
253 return (struct pcpu_chunk
*)page
->index
;
256 static int __maybe_unused
pcpu_page_idx(unsigned int cpu
, int page_idx
)
258 return pcpu_unit_map
[cpu
] * pcpu_unit_pages
+ page_idx
;
261 static unsigned long pcpu_unit_page_offset(unsigned int cpu
, int page_idx
)
263 return pcpu_unit_offsets
[cpu
] + (page_idx
<< PAGE_SHIFT
);
266 static unsigned long pcpu_chunk_addr(struct pcpu_chunk
*chunk
,
267 unsigned int cpu
, int page_idx
)
269 return (unsigned long)chunk
->base_addr
+
270 pcpu_unit_page_offset(cpu
, page_idx
);
273 static void pcpu_next_unpop(unsigned long *bitmap
, int *rs
, int *re
, int end
)
275 *rs
= find_next_zero_bit(bitmap
, end
, *rs
);
276 *re
= find_next_bit(bitmap
, end
, *rs
+ 1);
279 static void pcpu_next_pop(unsigned long *bitmap
, int *rs
, int *re
, int end
)
281 *rs
= find_next_bit(bitmap
, end
, *rs
);
282 *re
= find_next_zero_bit(bitmap
, end
, *rs
+ 1);
286 * Bitmap region iterators. Iterates over the bitmap between
287 * [@start, @end) in @chunk. @rs and @re should be integer variables
288 * and will be set to start and end index of the current free region.
290 #define pcpu_for_each_unpop_region(bitmap, rs, re, start, end) \
291 for ((rs) = (start), pcpu_next_unpop((bitmap), &(rs), &(re), (end)); \
293 (rs) = (re) + 1, pcpu_next_unpop((bitmap), &(rs), &(re), (end)))
295 #define pcpu_for_each_pop_region(bitmap, rs, re, start, end) \
296 for ((rs) = (start), pcpu_next_pop((bitmap), &(rs), &(re), (end)); \
298 (rs) = (re) + 1, pcpu_next_pop((bitmap), &(rs), &(re), (end)))
301 * The following are helper functions to help access bitmaps and convert
302 * between bitmap offsets to address offsets.
304 static unsigned long *pcpu_index_alloc_map(struct pcpu_chunk
*chunk
, int index
)
306 return chunk
->alloc_map
+
307 (index
* PCPU_BITMAP_BLOCK_BITS
/ BITS_PER_LONG
);
310 static unsigned long pcpu_off_to_block_index(int off
)
312 return off
/ PCPU_BITMAP_BLOCK_BITS
;
315 static unsigned long pcpu_off_to_block_off(int off
)
317 return off
& (PCPU_BITMAP_BLOCK_BITS
- 1);
320 static unsigned long pcpu_block_off_to_off(int index
, int off
)
322 return index
* PCPU_BITMAP_BLOCK_BITS
+ off
;
326 * pcpu_next_hint - determine which hint to use
327 * @block: block of interest
328 * @alloc_bits: size of allocation
330 * This determines if we should scan based on the scan_hint or first_free.
331 * In general, we want to scan from first_free to fulfill allocations by
332 * first fit. However, if we know a scan_hint at position scan_hint_start
333 * cannot fulfill an allocation, we can begin scanning from there knowing
334 * the contig_hint will be our fallback.
336 static int pcpu_next_hint(struct pcpu_block_md
*block
, int alloc_bits
)
339 * The three conditions below determine if we can skip past the
340 * scan_hint. First, does the scan hint exist. Second, is the
341 * contig_hint after the scan_hint (possibly not true iff
342 * contig_hint == scan_hint). Third, is the allocation request
343 * larger than the scan_hint.
345 if (block
->scan_hint
&&
346 block
->contig_hint_start
> block
->scan_hint_start
&&
347 alloc_bits
> block
->scan_hint
)
348 return block
->scan_hint_start
+ block
->scan_hint
;
350 return block
->first_free
;
354 * pcpu_next_md_free_region - finds the next hint free area
355 * @chunk: chunk of interest
356 * @bit_off: chunk offset
357 * @bits: size of free area
359 * Helper function for pcpu_for_each_md_free_region. It checks
360 * block->contig_hint and performs aggregation across blocks to find the
361 * next hint. It modifies bit_off and bits in-place to be consumed in the
364 static void pcpu_next_md_free_region(struct pcpu_chunk
*chunk
, int *bit_off
,
367 int i
= pcpu_off_to_block_index(*bit_off
);
368 int block_off
= pcpu_off_to_block_off(*bit_off
);
369 struct pcpu_block_md
*block
;
372 for (block
= chunk
->md_blocks
+ i
; i
< pcpu_chunk_nr_blocks(chunk
);
374 /* handles contig area across blocks */
376 *bits
+= block
->left_free
;
377 if (block
->left_free
== PCPU_BITMAP_BLOCK_BITS
)
383 * This checks three things. First is there a contig_hint to
384 * check. Second, have we checked this hint before by
385 * comparing the block_off. Third, is this the same as the
386 * right contig hint. In the last case, it spills over into
387 * the next block and should be handled by the contig area
388 * across blocks code.
390 *bits
= block
->contig_hint
;
391 if (*bits
&& block
->contig_hint_start
>= block_off
&&
392 *bits
+ block
->contig_hint_start
< PCPU_BITMAP_BLOCK_BITS
) {
393 *bit_off
= pcpu_block_off_to_off(i
,
394 block
->contig_hint_start
);
397 /* reset to satisfy the second predicate above */
400 *bits
= block
->right_free
;
401 *bit_off
= (i
+ 1) * PCPU_BITMAP_BLOCK_BITS
- block
->right_free
;
406 * pcpu_next_fit_region - finds fit areas for a given allocation request
407 * @chunk: chunk of interest
408 * @alloc_bits: size of allocation
409 * @align: alignment of area (max PAGE_SIZE)
410 * @bit_off: chunk offset
411 * @bits: size of free area
413 * Finds the next free region that is viable for use with a given size and
414 * alignment. This only returns if there is a valid area to be used for this
415 * allocation. block->first_free is returned if the allocation request fits
416 * within the block to see if the request can be fulfilled prior to the contig
419 static void pcpu_next_fit_region(struct pcpu_chunk
*chunk
, int alloc_bits
,
420 int align
, int *bit_off
, int *bits
)
422 int i
= pcpu_off_to_block_index(*bit_off
);
423 int block_off
= pcpu_off_to_block_off(*bit_off
);
424 struct pcpu_block_md
*block
;
427 for (block
= chunk
->md_blocks
+ i
; i
< pcpu_chunk_nr_blocks(chunk
);
429 /* handles contig area across blocks */
431 *bits
+= block
->left_free
;
432 if (*bits
>= alloc_bits
)
434 if (block
->left_free
== PCPU_BITMAP_BLOCK_BITS
)
438 /* check block->contig_hint */
439 *bits
= ALIGN(block
->contig_hint_start
, align
) -
440 block
->contig_hint_start
;
442 * This uses the block offset to determine if this has been
443 * checked in the prior iteration.
445 if (block
->contig_hint
&&
446 block
->contig_hint_start
>= block_off
&&
447 block
->contig_hint
>= *bits
+ alloc_bits
) {
448 int start
= pcpu_next_hint(block
, alloc_bits
);
450 *bits
+= alloc_bits
+ block
->contig_hint_start
-
452 *bit_off
= pcpu_block_off_to_off(i
, start
);
455 /* reset to satisfy the second predicate above */
458 *bit_off
= ALIGN(PCPU_BITMAP_BLOCK_BITS
- block
->right_free
,
460 *bits
= PCPU_BITMAP_BLOCK_BITS
- *bit_off
;
461 *bit_off
= pcpu_block_off_to_off(i
, *bit_off
);
462 if (*bits
>= alloc_bits
)
466 /* no valid offsets were found - fail condition */
467 *bit_off
= pcpu_chunk_map_bits(chunk
);
471 * Metadata free area iterators. These perform aggregation of free areas
472 * based on the metadata blocks and return the offset @bit_off and size in
473 * bits of the free area @bits. pcpu_for_each_fit_region only returns when
474 * a fit is found for the allocation request.
476 #define pcpu_for_each_md_free_region(chunk, bit_off, bits) \
477 for (pcpu_next_md_free_region((chunk), &(bit_off), &(bits)); \
478 (bit_off) < pcpu_chunk_map_bits((chunk)); \
479 (bit_off) += (bits) + 1, \
480 pcpu_next_md_free_region((chunk), &(bit_off), &(bits)))
482 #define pcpu_for_each_fit_region(chunk, alloc_bits, align, bit_off, bits) \
483 for (pcpu_next_fit_region((chunk), (alloc_bits), (align), &(bit_off), \
485 (bit_off) < pcpu_chunk_map_bits((chunk)); \
486 (bit_off) += (bits), \
487 pcpu_next_fit_region((chunk), (alloc_bits), (align), &(bit_off), \
491 * pcpu_mem_zalloc - allocate memory
492 * @size: bytes to allocate
493 * @gfp: allocation flags
495 * Allocate @size bytes. If @size is smaller than PAGE_SIZE,
496 * kzalloc() is used; otherwise, the equivalent of vzalloc() is used.
497 * This is to facilitate passing through whitelisted flags. The
498 * returned memory is always zeroed.
501 * Pointer to the allocated area on success, NULL on failure.
503 static void *pcpu_mem_zalloc(size_t size
, gfp_t gfp
)
505 if (WARN_ON_ONCE(!slab_is_available()))
508 if (size
<= PAGE_SIZE
)
509 return kzalloc(size
, gfp
);
511 return __vmalloc(size
, gfp
| __GFP_ZERO
, PAGE_KERNEL
);
515 * pcpu_mem_free - free memory
516 * @ptr: memory to free
518 * Free @ptr. @ptr should have been allocated using pcpu_mem_zalloc().
520 static void pcpu_mem_free(void *ptr
)
525 static void __pcpu_chunk_move(struct pcpu_chunk
*chunk
, int slot
,
528 if (chunk
!= pcpu_reserved_chunk
) {
530 list_move(&chunk
->list
, &pcpu_slot
[slot
]);
532 list_move_tail(&chunk
->list
, &pcpu_slot
[slot
]);
536 static void pcpu_chunk_move(struct pcpu_chunk
*chunk
, int slot
)
538 __pcpu_chunk_move(chunk
, slot
, true);
542 * pcpu_chunk_relocate - put chunk in the appropriate chunk slot
543 * @chunk: chunk of interest
544 * @oslot: the previous slot it was on
546 * This function is called after an allocation or free changed @chunk.
547 * New slot according to the changed state is determined and @chunk is
548 * moved to the slot. Note that the reserved chunk is never put on
554 static void pcpu_chunk_relocate(struct pcpu_chunk
*chunk
, int oslot
)
556 int nslot
= pcpu_chunk_slot(chunk
);
559 __pcpu_chunk_move(chunk
, nslot
, oslot
< nslot
);
563 * pcpu_update_empty_pages - update empty page counters
564 * @chunk: chunk of interest
565 * @nr: nr of empty pages
567 * This is used to keep track of the empty pages now based on the premise
568 * a md_block covers a page. The hint update functions recognize if a block
569 * is made full or broken to calculate deltas for keeping track of free pages.
571 static inline void pcpu_update_empty_pages(struct pcpu_chunk
*chunk
, int nr
)
573 chunk
->nr_empty_pop_pages
+= nr
;
574 if (chunk
!= pcpu_reserved_chunk
)
575 pcpu_nr_empty_pop_pages
+= nr
;
579 * pcpu_region_overlap - determines if two regions overlap
580 * @a: start of first region, inclusive
581 * @b: end of first region, exclusive
582 * @x: start of second region, inclusive
583 * @y: end of second region, exclusive
585 * This is used to determine if the hint region [a, b) overlaps with the
586 * allocated region [x, y).
588 static inline bool pcpu_region_overlap(int a
, int b
, int x
, int y
)
590 return (a
< y
) && (x
< b
);
594 * pcpu_block_update - updates a block given a free area
595 * @block: block of interest
596 * @start: start offset in block
597 * @end: end offset in block
599 * Updates a block given a known free area. The region [start, end) is
600 * expected to be the entirety of the free area within a block. Chooses
601 * the best starting offset if the contig hints are equal.
603 static void pcpu_block_update(struct pcpu_block_md
*block
, int start
, int end
)
605 int contig
= end
- start
;
607 block
->first_free
= min(block
->first_free
, start
);
609 block
->left_free
= contig
;
611 if (end
== block
->nr_bits
)
612 block
->right_free
= contig
;
614 if (contig
> block
->contig_hint
) {
615 /* promote the old contig_hint to be the new scan_hint */
616 if (start
> block
->contig_hint_start
) {
617 if (block
->contig_hint
> block
->scan_hint
) {
618 block
->scan_hint_start
=
619 block
->contig_hint_start
;
620 block
->scan_hint
= block
->contig_hint
;
621 } else if (start
< block
->scan_hint_start
) {
623 * The old contig_hint == scan_hint. But, the
624 * new contig is larger so hold the invariant
625 * scan_hint_start < contig_hint_start.
627 block
->scan_hint
= 0;
630 block
->scan_hint
= 0;
632 block
->contig_hint_start
= start
;
633 block
->contig_hint
= contig
;
634 } else if (contig
== block
->contig_hint
) {
635 if (block
->contig_hint_start
&&
637 __ffs(start
) > __ffs(block
->contig_hint_start
))) {
638 /* start has a better alignment so use it */
639 block
->contig_hint_start
= start
;
640 if (start
< block
->scan_hint_start
&&
641 block
->contig_hint
> block
->scan_hint
)
642 block
->scan_hint
= 0;
643 } else if (start
> block
->scan_hint_start
||
644 block
->contig_hint
> block
->scan_hint
) {
646 * Knowing contig == contig_hint, update the scan_hint
647 * if it is farther than or larger than the current
650 block
->scan_hint_start
= start
;
651 block
->scan_hint
= contig
;
655 * The region is smaller than the contig_hint. So only update
656 * the scan_hint if it is larger than or equal and farther than
657 * the current scan_hint.
659 if ((start
< block
->contig_hint_start
&&
660 (contig
> block
->scan_hint
||
661 (contig
== block
->scan_hint
&&
662 start
> block
->scan_hint_start
)))) {
663 block
->scan_hint_start
= start
;
664 block
->scan_hint
= contig
;
670 * pcpu_block_update_scan - update a block given a free area from a scan
671 * @chunk: chunk of interest
672 * @bit_off: chunk offset
673 * @bits: size of free area
675 * Finding the final allocation spot first goes through pcpu_find_block_fit()
676 * to find a block that can hold the allocation and then pcpu_alloc_area()
677 * where a scan is used. When allocations require specific alignments,
678 * we can inadvertently create holes which will not be seen in the alloc
681 * This takes a given free area hole and updates a block as it may change the
682 * scan_hint. We need to scan backwards to ensure we don't miss free bits
685 static void pcpu_block_update_scan(struct pcpu_chunk
*chunk
, int bit_off
,
688 int s_off
= pcpu_off_to_block_off(bit_off
);
689 int e_off
= s_off
+ bits
;
691 struct pcpu_block_md
*block
;
693 if (e_off
> PCPU_BITMAP_BLOCK_BITS
)
696 s_index
= pcpu_off_to_block_index(bit_off
);
697 block
= chunk
->md_blocks
+ s_index
;
699 /* scan backwards in case of alignment skipping free bits */
700 l_bit
= find_last_bit(pcpu_index_alloc_map(chunk
, s_index
), s_off
);
701 s_off
= (s_off
== l_bit
) ? 0 : l_bit
+ 1;
703 pcpu_block_update(block
, s_off
, e_off
);
707 * pcpu_chunk_refresh_hint - updates metadata about a chunk
708 * @chunk: chunk of interest
709 * @full_scan: if we should scan from the beginning
711 * Iterates over the metadata blocks to find the largest contig area.
712 * A full scan can be avoided on the allocation path as this is triggered
713 * if we broke the contig_hint. In doing so, the scan_hint will be before
714 * the contig_hint or after if the scan_hint == contig_hint. This cannot
715 * be prevented on freeing as we want to find the largest area possibly
718 static void pcpu_chunk_refresh_hint(struct pcpu_chunk
*chunk
, bool full_scan
)
720 struct pcpu_block_md
*chunk_md
= &chunk
->chunk_md
;
723 /* promote scan_hint to contig_hint */
724 if (!full_scan
&& chunk_md
->scan_hint
) {
725 bit_off
= chunk_md
->scan_hint_start
+ chunk_md
->scan_hint
;
726 chunk_md
->contig_hint_start
= chunk_md
->scan_hint_start
;
727 chunk_md
->contig_hint
= chunk_md
->scan_hint
;
728 chunk_md
->scan_hint
= 0;
730 bit_off
= chunk_md
->first_free
;
731 chunk_md
->contig_hint
= 0;
735 pcpu_for_each_md_free_region(chunk
, bit_off
, bits
) {
736 pcpu_block_update(chunk_md
, bit_off
, bit_off
+ bits
);
741 * pcpu_block_refresh_hint
742 * @chunk: chunk of interest
743 * @index: index of the metadata block
745 * Scans over the block beginning at first_free and updates the block
746 * metadata accordingly.
748 static void pcpu_block_refresh_hint(struct pcpu_chunk
*chunk
, int index
)
750 struct pcpu_block_md
*block
= chunk
->md_blocks
+ index
;
751 unsigned long *alloc_map
= pcpu_index_alloc_map(chunk
, index
);
752 int rs
, re
, start
; /* region start, region end */
754 /* promote scan_hint to contig_hint */
755 if (block
->scan_hint
) {
756 start
= block
->scan_hint_start
+ block
->scan_hint
;
757 block
->contig_hint_start
= block
->scan_hint_start
;
758 block
->contig_hint
= block
->scan_hint
;
759 block
->scan_hint
= 0;
761 start
= block
->first_free
;
762 block
->contig_hint
= 0;
765 block
->right_free
= 0;
767 /* iterate over free areas and update the contig hints */
768 pcpu_for_each_unpop_region(alloc_map
, rs
, re
, start
,
769 PCPU_BITMAP_BLOCK_BITS
) {
770 pcpu_block_update(block
, rs
, re
);
775 * pcpu_block_update_hint_alloc - update hint on allocation path
776 * @chunk: chunk of interest
777 * @bit_off: chunk offset
778 * @bits: size of request
780 * Updates metadata for the allocation path. The metadata only has to be
781 * refreshed by a full scan iff the chunk's contig hint is broken. Block level
782 * scans are required if the block's contig hint is broken.
784 static void pcpu_block_update_hint_alloc(struct pcpu_chunk
*chunk
, int bit_off
,
787 struct pcpu_block_md
*chunk_md
= &chunk
->chunk_md
;
788 int nr_empty_pages
= 0;
789 struct pcpu_block_md
*s_block
, *e_block
, *block
;
790 int s_index
, e_index
; /* block indexes of the freed allocation */
791 int s_off
, e_off
; /* block offsets of the freed allocation */
794 * Calculate per block offsets.
795 * The calculation uses an inclusive range, but the resulting offsets
796 * are [start, end). e_index always points to the last block in the
799 s_index
= pcpu_off_to_block_index(bit_off
);
800 e_index
= pcpu_off_to_block_index(bit_off
+ bits
- 1);
801 s_off
= pcpu_off_to_block_off(bit_off
);
802 e_off
= pcpu_off_to_block_off(bit_off
+ bits
- 1) + 1;
804 s_block
= chunk
->md_blocks
+ s_index
;
805 e_block
= chunk
->md_blocks
+ e_index
;
809 * block->first_free must be updated if the allocation takes its place.
810 * If the allocation breaks the contig_hint, a scan is required to
813 if (s_block
->contig_hint
== PCPU_BITMAP_BLOCK_BITS
)
816 if (s_off
== s_block
->first_free
)
817 s_block
->first_free
= find_next_zero_bit(
818 pcpu_index_alloc_map(chunk
, s_index
),
819 PCPU_BITMAP_BLOCK_BITS
,
822 if (pcpu_region_overlap(s_block
->scan_hint_start
,
823 s_block
->scan_hint_start
+ s_block
->scan_hint
,
826 s_block
->scan_hint
= 0;
828 if (pcpu_region_overlap(s_block
->contig_hint_start
,
829 s_block
->contig_hint_start
+
830 s_block
->contig_hint
,
833 /* block contig hint is broken - scan to fix it */
835 s_block
->left_free
= 0;
836 pcpu_block_refresh_hint(chunk
, s_index
);
838 /* update left and right contig manually */
839 s_block
->left_free
= min(s_block
->left_free
, s_off
);
840 if (s_index
== e_index
)
841 s_block
->right_free
= min_t(int, s_block
->right_free
,
842 PCPU_BITMAP_BLOCK_BITS
- e_off
);
844 s_block
->right_free
= 0;
850 if (s_index
!= e_index
) {
851 if (e_block
->contig_hint
== PCPU_BITMAP_BLOCK_BITS
)
855 * When the allocation is across blocks, the end is along
856 * the left part of the e_block.
858 e_block
->first_free
= find_next_zero_bit(
859 pcpu_index_alloc_map(chunk
, e_index
),
860 PCPU_BITMAP_BLOCK_BITS
, e_off
);
862 if (e_off
== PCPU_BITMAP_BLOCK_BITS
) {
863 /* reset the block */
866 if (e_off
> e_block
->scan_hint_start
)
867 e_block
->scan_hint
= 0;
869 e_block
->left_free
= 0;
870 if (e_off
> e_block
->contig_hint_start
) {
871 /* contig hint is broken - scan to fix it */
872 pcpu_block_refresh_hint(chunk
, e_index
);
874 e_block
->right_free
=
875 min_t(int, e_block
->right_free
,
876 PCPU_BITMAP_BLOCK_BITS
- e_off
);
880 /* update in-between md_blocks */
881 nr_empty_pages
+= (e_index
- s_index
- 1);
882 for (block
= s_block
+ 1; block
< e_block
; block
++) {
883 block
->scan_hint
= 0;
884 block
->contig_hint
= 0;
885 block
->left_free
= 0;
886 block
->right_free
= 0;
891 pcpu_update_empty_pages(chunk
, -nr_empty_pages
);
893 if (pcpu_region_overlap(chunk_md
->scan_hint_start
,
894 chunk_md
->scan_hint_start
+
898 chunk_md
->scan_hint
= 0;
901 * The only time a full chunk scan is required is if the chunk
902 * contig hint is broken. Otherwise, it means a smaller space
903 * was used and therefore the chunk contig hint is still correct.
905 if (pcpu_region_overlap(chunk_md
->contig_hint_start
,
906 chunk_md
->contig_hint_start
+
907 chunk_md
->contig_hint
,
910 pcpu_chunk_refresh_hint(chunk
, false);
914 * pcpu_block_update_hint_free - updates the block hints on the free path
915 * @chunk: chunk of interest
916 * @bit_off: chunk offset
917 * @bits: size of request
919 * Updates metadata for the allocation path. This avoids a blind block
920 * refresh by making use of the block contig hints. If this fails, it scans
921 * forward and backward to determine the extent of the free area. This is
922 * capped at the boundary of blocks.
924 * A chunk update is triggered if a page becomes free, a block becomes free,
925 * or the free spans across blocks. This tradeoff is to minimize iterating
926 * over the block metadata to update chunk_md->contig_hint.
927 * chunk_md->contig_hint may be off by up to a page, but it will never be more
928 * than the available space. If the contig hint is contained in one block, it
931 static void pcpu_block_update_hint_free(struct pcpu_chunk
*chunk
, int bit_off
,
934 int nr_empty_pages
= 0;
935 struct pcpu_block_md
*s_block
, *e_block
, *block
;
936 int s_index
, e_index
; /* block indexes of the freed allocation */
937 int s_off
, e_off
; /* block offsets of the freed allocation */
938 int start
, end
; /* start and end of the whole free area */
941 * Calculate per block offsets.
942 * The calculation uses an inclusive range, but the resulting offsets
943 * are [start, end). e_index always points to the last block in the
946 s_index
= pcpu_off_to_block_index(bit_off
);
947 e_index
= pcpu_off_to_block_index(bit_off
+ bits
- 1);
948 s_off
= pcpu_off_to_block_off(bit_off
);
949 e_off
= pcpu_off_to_block_off(bit_off
+ bits
- 1) + 1;
951 s_block
= chunk
->md_blocks
+ s_index
;
952 e_block
= chunk
->md_blocks
+ e_index
;
955 * Check if the freed area aligns with the block->contig_hint.
956 * If it does, then the scan to find the beginning/end of the
957 * larger free area can be avoided.
959 * start and end refer to beginning and end of the free area
960 * within each their respective blocks. This is not necessarily
961 * the entire free area as it may span blocks past the beginning
962 * or end of the block.
965 if (s_off
== s_block
->contig_hint
+ s_block
->contig_hint_start
) {
966 start
= s_block
->contig_hint_start
;
969 * Scan backwards to find the extent of the free area.
970 * find_last_bit returns the starting bit, so if the start bit
971 * is returned, that means there was no last bit and the
972 * remainder of the chunk is free.
974 int l_bit
= find_last_bit(pcpu_index_alloc_map(chunk
, s_index
),
976 start
= (start
== l_bit
) ? 0 : l_bit
+ 1;
980 if (e_off
== e_block
->contig_hint_start
)
981 end
= e_block
->contig_hint_start
+ e_block
->contig_hint
;
983 end
= find_next_bit(pcpu_index_alloc_map(chunk
, e_index
),
984 PCPU_BITMAP_BLOCK_BITS
, end
);
987 e_off
= (s_index
== e_index
) ? end
: PCPU_BITMAP_BLOCK_BITS
;
988 if (!start
&& e_off
== PCPU_BITMAP_BLOCK_BITS
)
990 pcpu_block_update(s_block
, start
, e_off
);
992 /* freeing in the same block */
993 if (s_index
!= e_index
) {
995 if (end
== PCPU_BITMAP_BLOCK_BITS
)
997 pcpu_block_update(e_block
, 0, end
);
999 /* reset md_blocks in the middle */
1000 nr_empty_pages
+= (e_index
- s_index
- 1);
1001 for (block
= s_block
+ 1; block
< e_block
; block
++) {
1002 block
->first_free
= 0;
1003 block
->scan_hint
= 0;
1004 block
->contig_hint_start
= 0;
1005 block
->contig_hint
= PCPU_BITMAP_BLOCK_BITS
;
1006 block
->left_free
= PCPU_BITMAP_BLOCK_BITS
;
1007 block
->right_free
= PCPU_BITMAP_BLOCK_BITS
;
1012 pcpu_update_empty_pages(chunk
, nr_empty_pages
);
1015 * Refresh chunk metadata when the free makes a block free or spans
1016 * across blocks. The contig_hint may be off by up to a page, but if
1017 * the contig_hint is contained in a block, it will be accurate with
1018 * the else condition below.
1020 if (((end
- start
) >= PCPU_BITMAP_BLOCK_BITS
) || s_index
!= e_index
)
1021 pcpu_chunk_refresh_hint(chunk
, true);
1023 pcpu_block_update(&chunk
->chunk_md
,
1024 pcpu_block_off_to_off(s_index
, start
),
1029 * pcpu_is_populated - determines if the region is populated
1030 * @chunk: chunk of interest
1031 * @bit_off: chunk offset
1032 * @bits: size of area
1033 * @next_off: return value for the next offset to start searching
1035 * For atomic allocations, check if the backing pages are populated.
1038 * Bool if the backing pages are populated.
1039 * next_index is to skip over unpopulated blocks in pcpu_find_block_fit.
1041 static bool pcpu_is_populated(struct pcpu_chunk
*chunk
, int bit_off
, int bits
,
1044 int page_start
, page_end
, rs
, re
;
1046 page_start
= PFN_DOWN(bit_off
* PCPU_MIN_ALLOC_SIZE
);
1047 page_end
= PFN_UP((bit_off
+ bits
) * PCPU_MIN_ALLOC_SIZE
);
1050 pcpu_next_unpop(chunk
->populated
, &rs
, &re
, page_end
);
1054 *next_off
= re
* PAGE_SIZE
/ PCPU_MIN_ALLOC_SIZE
;
1059 * pcpu_find_block_fit - finds the block index to start searching
1060 * @chunk: chunk of interest
1061 * @alloc_bits: size of request in allocation units
1062 * @align: alignment of area (max PAGE_SIZE bytes)
1063 * @pop_only: use populated regions only
1065 * Given a chunk and an allocation spec, find the offset to begin searching
1066 * for a free region. This iterates over the bitmap metadata blocks to
1067 * find an offset that will be guaranteed to fit the requirements. It is
1068 * not quite first fit as if the allocation does not fit in the contig hint
1069 * of a block or chunk, it is skipped. This errs on the side of caution
1070 * to prevent excess iteration. Poor alignment can cause the allocator to
1071 * skip over blocks and chunks that have valid free areas.
1074 * The offset in the bitmap to begin searching.
1075 * -1 if no offset is found.
1077 static int pcpu_find_block_fit(struct pcpu_chunk
*chunk
, int alloc_bits
,
1078 size_t align
, bool pop_only
)
1080 struct pcpu_block_md
*chunk_md
= &chunk
->chunk_md
;
1081 int bit_off
, bits
, next_off
;
1084 * Check to see if the allocation can fit in the chunk's contig hint.
1085 * This is an optimization to prevent scanning by assuming if it
1086 * cannot fit in the global hint, there is memory pressure and creating
1087 * a new chunk would happen soon.
1089 bit_off
= ALIGN(chunk_md
->contig_hint_start
, align
) -
1090 chunk_md
->contig_hint_start
;
1091 if (bit_off
+ alloc_bits
> chunk_md
->contig_hint
)
1094 bit_off
= pcpu_next_hint(chunk_md
, alloc_bits
);
1096 pcpu_for_each_fit_region(chunk
, alloc_bits
, align
, bit_off
, bits
) {
1097 if (!pop_only
|| pcpu_is_populated(chunk
, bit_off
, bits
,
1105 if (bit_off
== pcpu_chunk_map_bits(chunk
))
1112 * pcpu_find_zero_area - modified from bitmap_find_next_zero_area_off()
1113 * @map: the address to base the search on
1114 * @size: the bitmap size in bits
1115 * @start: the bitnumber to start searching at
1116 * @nr: the number of zeroed bits we're looking for
1117 * @align_mask: alignment mask for zero area
1118 * @largest_off: offset of the largest area skipped
1119 * @largest_bits: size of the largest area skipped
1121 * The @align_mask should be one less than a power of 2.
1123 * This is a modified version of bitmap_find_next_zero_area_off() to remember
1124 * the largest area that was skipped. This is imperfect, but in general is
1125 * good enough. The largest remembered region is the largest failed region
1126 * seen. This does not include anything we possibly skipped due to alignment.
1127 * pcpu_block_update_scan() does scan backwards to try and recover what was
1128 * lost to alignment. While this can cause scanning to miss earlier possible
1129 * free areas, smaller allocations will eventually fill those holes.
1131 static unsigned long pcpu_find_zero_area(unsigned long *map
,
1133 unsigned long start
,
1135 unsigned long align_mask
,
1136 unsigned long *largest_off
,
1137 unsigned long *largest_bits
)
1139 unsigned long index
, end
, i
, area_off
, area_bits
;
1141 index
= find_next_zero_bit(map
, size
, start
);
1143 /* Align allocation */
1144 index
= __ALIGN_MASK(index
, align_mask
);
1150 i
= find_next_bit(map
, end
, index
);
1152 area_bits
= i
- area_off
;
1153 /* remember largest unused area with best alignment */
1154 if (area_bits
> *largest_bits
||
1155 (area_bits
== *largest_bits
&& *largest_off
&&
1156 (!area_off
|| __ffs(area_off
) > __ffs(*largest_off
)))) {
1157 *largest_off
= area_off
;
1158 *largest_bits
= area_bits
;
1168 * pcpu_alloc_area - allocates an area from a pcpu_chunk
1169 * @chunk: chunk of interest
1170 * @alloc_bits: size of request in allocation units
1171 * @align: alignment of area (max PAGE_SIZE)
1172 * @start: bit_off to start searching
1174 * This function takes in a @start offset to begin searching to fit an
1175 * allocation of @alloc_bits with alignment @align. It needs to scan
1176 * the allocation map because if it fits within the block's contig hint,
1177 * @start will be block->first_free. This is an attempt to fill the
1178 * allocation prior to breaking the contig hint. The allocation and
1179 * boundary maps are updated accordingly if it confirms a valid
1183 * Allocated addr offset in @chunk on success.
1184 * -1 if no matching area is found.
1186 static int pcpu_alloc_area(struct pcpu_chunk
*chunk
, int alloc_bits
,
1187 size_t align
, int start
)
1189 struct pcpu_block_md
*chunk_md
= &chunk
->chunk_md
;
1190 size_t align_mask
= (align
) ? (align
- 1) : 0;
1191 unsigned long area_off
= 0, area_bits
= 0;
1192 int bit_off
, end
, oslot
;
1194 lockdep_assert_held(&pcpu_lock
);
1196 oslot
= pcpu_chunk_slot(chunk
);
1199 * Search to find a fit.
1201 end
= min_t(int, start
+ alloc_bits
+ PCPU_BITMAP_BLOCK_BITS
,
1202 pcpu_chunk_map_bits(chunk
));
1203 bit_off
= pcpu_find_zero_area(chunk
->alloc_map
, end
, start
, alloc_bits
,
1204 align_mask
, &area_off
, &area_bits
);
1209 pcpu_block_update_scan(chunk
, area_off
, area_bits
);
1211 /* update alloc map */
1212 bitmap_set(chunk
->alloc_map
, bit_off
, alloc_bits
);
1214 /* update boundary map */
1215 set_bit(bit_off
, chunk
->bound_map
);
1216 bitmap_clear(chunk
->bound_map
, bit_off
+ 1, alloc_bits
- 1);
1217 set_bit(bit_off
+ alloc_bits
, chunk
->bound_map
);
1219 chunk
->free_bytes
-= alloc_bits
* PCPU_MIN_ALLOC_SIZE
;
1221 /* update first free bit */
1222 if (bit_off
== chunk_md
->first_free
)
1223 chunk_md
->first_free
= find_next_zero_bit(
1225 pcpu_chunk_map_bits(chunk
),
1226 bit_off
+ alloc_bits
);
1228 pcpu_block_update_hint_alloc(chunk
, bit_off
, alloc_bits
);
1230 pcpu_chunk_relocate(chunk
, oslot
);
1232 return bit_off
* PCPU_MIN_ALLOC_SIZE
;
1236 * pcpu_free_area - frees the corresponding offset
1237 * @chunk: chunk of interest
1238 * @off: addr offset into chunk
1240 * This function determines the size of an allocation to free using
1241 * the boundary bitmap and clears the allocation map.
1243 static void pcpu_free_area(struct pcpu_chunk
*chunk
, int off
)
1245 struct pcpu_block_md
*chunk_md
= &chunk
->chunk_md
;
1246 int bit_off
, bits
, end
, oslot
;
1248 lockdep_assert_held(&pcpu_lock
);
1249 pcpu_stats_area_dealloc(chunk
);
1251 oslot
= pcpu_chunk_slot(chunk
);
1253 bit_off
= off
/ PCPU_MIN_ALLOC_SIZE
;
1255 /* find end index */
1256 end
= find_next_bit(chunk
->bound_map
, pcpu_chunk_map_bits(chunk
),
1258 bits
= end
- bit_off
;
1259 bitmap_clear(chunk
->alloc_map
, bit_off
, bits
);
1261 /* update metadata */
1262 chunk
->free_bytes
+= bits
* PCPU_MIN_ALLOC_SIZE
;
1264 /* update first free bit */
1265 chunk_md
->first_free
= min(chunk_md
->first_free
, bit_off
);
1267 pcpu_block_update_hint_free(chunk
, bit_off
, bits
);
1269 pcpu_chunk_relocate(chunk
, oslot
);
1272 static void pcpu_init_md_block(struct pcpu_block_md
*block
, int nr_bits
)
1274 block
->scan_hint
= 0;
1275 block
->contig_hint
= nr_bits
;
1276 block
->left_free
= nr_bits
;
1277 block
->right_free
= nr_bits
;
1278 block
->first_free
= 0;
1279 block
->nr_bits
= nr_bits
;
1282 static void pcpu_init_md_blocks(struct pcpu_chunk
*chunk
)
1284 struct pcpu_block_md
*md_block
;
1286 /* init the chunk's block */
1287 pcpu_init_md_block(&chunk
->chunk_md
, pcpu_chunk_map_bits(chunk
));
1289 for (md_block
= chunk
->md_blocks
;
1290 md_block
!= chunk
->md_blocks
+ pcpu_chunk_nr_blocks(chunk
);
1292 pcpu_init_md_block(md_block
, PCPU_BITMAP_BLOCK_BITS
);
1296 * pcpu_alloc_first_chunk - creates chunks that serve the first chunk
1297 * @tmp_addr: the start of the region served
1298 * @map_size: size of the region served
1300 * This is responsible for creating the chunks that serve the first chunk. The
1301 * base_addr is page aligned down of @tmp_addr while the region end is page
1302 * aligned up. Offsets are kept track of to determine the region served. All
1303 * this is done to appease the bitmap allocator in avoiding partial blocks.
1306 * Chunk serving the region at @tmp_addr of @map_size.
1308 static struct pcpu_chunk
* __init
pcpu_alloc_first_chunk(unsigned long tmp_addr
,
1311 struct pcpu_chunk
*chunk
;
1312 unsigned long aligned_addr
, lcm_align
;
1313 int start_offset
, offset_bits
, region_size
, region_bits
;
1316 /* region calculations */
1317 aligned_addr
= tmp_addr
& PAGE_MASK
;
1319 start_offset
= tmp_addr
- aligned_addr
;
1322 * Align the end of the region with the LCM of PAGE_SIZE and
1323 * PCPU_BITMAP_BLOCK_SIZE. One of these constants is a multiple of
1326 lcm_align
= lcm(PAGE_SIZE
, PCPU_BITMAP_BLOCK_SIZE
);
1327 region_size
= ALIGN(start_offset
+ map_size
, lcm_align
);
1329 /* allocate chunk */
1330 alloc_size
= sizeof(struct pcpu_chunk
) +
1331 BITS_TO_LONGS(region_size
>> PAGE_SHIFT
) * sizeof(unsigned long);
1332 chunk
= memblock_alloc(alloc_size
, SMP_CACHE_BYTES
);
1334 panic("%s: Failed to allocate %zu bytes\n", __func__
,
1337 INIT_LIST_HEAD(&chunk
->list
);
1339 chunk
->base_addr
= (void *)aligned_addr
;
1340 chunk
->start_offset
= start_offset
;
1341 chunk
->end_offset
= region_size
- chunk
->start_offset
- map_size
;
1343 chunk
->nr_pages
= region_size
>> PAGE_SHIFT
;
1344 region_bits
= pcpu_chunk_map_bits(chunk
);
1346 alloc_size
= BITS_TO_LONGS(region_bits
) * sizeof(chunk
->alloc_map
[0]);
1347 chunk
->alloc_map
= memblock_alloc(alloc_size
, SMP_CACHE_BYTES
);
1348 if (!chunk
->alloc_map
)
1349 panic("%s: Failed to allocate %zu bytes\n", __func__
,
1353 BITS_TO_LONGS(region_bits
+ 1) * sizeof(chunk
->bound_map
[0]);
1354 chunk
->bound_map
= memblock_alloc(alloc_size
, SMP_CACHE_BYTES
);
1355 if (!chunk
->bound_map
)
1356 panic("%s: Failed to allocate %zu bytes\n", __func__
,
1359 alloc_size
= pcpu_chunk_nr_blocks(chunk
) * sizeof(chunk
->md_blocks
[0]);
1360 chunk
->md_blocks
= memblock_alloc(alloc_size
, SMP_CACHE_BYTES
);
1361 if (!chunk
->md_blocks
)
1362 panic("%s: Failed to allocate %zu bytes\n", __func__
,
1365 pcpu_init_md_blocks(chunk
);
1367 /* manage populated page bitmap */
1368 chunk
->immutable
= true;
1369 bitmap_fill(chunk
->populated
, chunk
->nr_pages
);
1370 chunk
->nr_populated
= chunk
->nr_pages
;
1371 chunk
->nr_empty_pop_pages
= chunk
->nr_pages
;
1373 chunk
->free_bytes
= map_size
;
1375 if (chunk
->start_offset
) {
1376 /* hide the beginning of the bitmap */
1377 offset_bits
= chunk
->start_offset
/ PCPU_MIN_ALLOC_SIZE
;
1378 bitmap_set(chunk
->alloc_map
, 0, offset_bits
);
1379 set_bit(0, chunk
->bound_map
);
1380 set_bit(offset_bits
, chunk
->bound_map
);
1382 chunk
->chunk_md
.first_free
= offset_bits
;
1384 pcpu_block_update_hint_alloc(chunk
, 0, offset_bits
);
1387 if (chunk
->end_offset
) {
1388 /* hide the end of the bitmap */
1389 offset_bits
= chunk
->end_offset
/ PCPU_MIN_ALLOC_SIZE
;
1390 bitmap_set(chunk
->alloc_map
,
1391 pcpu_chunk_map_bits(chunk
) - offset_bits
,
1393 set_bit((start_offset
+ map_size
) / PCPU_MIN_ALLOC_SIZE
,
1395 set_bit(region_bits
, chunk
->bound_map
);
1397 pcpu_block_update_hint_alloc(chunk
, pcpu_chunk_map_bits(chunk
)
1398 - offset_bits
, offset_bits
);
1404 static struct pcpu_chunk
*pcpu_alloc_chunk(gfp_t gfp
)
1406 struct pcpu_chunk
*chunk
;
1409 chunk
= pcpu_mem_zalloc(pcpu_chunk_struct_size
, gfp
);
1413 INIT_LIST_HEAD(&chunk
->list
);
1414 chunk
->nr_pages
= pcpu_unit_pages
;
1415 region_bits
= pcpu_chunk_map_bits(chunk
);
1417 chunk
->alloc_map
= pcpu_mem_zalloc(BITS_TO_LONGS(region_bits
) *
1418 sizeof(chunk
->alloc_map
[0]), gfp
);
1419 if (!chunk
->alloc_map
)
1420 goto alloc_map_fail
;
1422 chunk
->bound_map
= pcpu_mem_zalloc(BITS_TO_LONGS(region_bits
+ 1) *
1423 sizeof(chunk
->bound_map
[0]), gfp
);
1424 if (!chunk
->bound_map
)
1425 goto bound_map_fail
;
1427 chunk
->md_blocks
= pcpu_mem_zalloc(pcpu_chunk_nr_blocks(chunk
) *
1428 sizeof(chunk
->md_blocks
[0]), gfp
);
1429 if (!chunk
->md_blocks
)
1430 goto md_blocks_fail
;
1432 pcpu_init_md_blocks(chunk
);
1435 chunk
->free_bytes
= chunk
->nr_pages
* PAGE_SIZE
;
1440 pcpu_mem_free(chunk
->bound_map
);
1442 pcpu_mem_free(chunk
->alloc_map
);
1444 pcpu_mem_free(chunk
);
1449 static void pcpu_free_chunk(struct pcpu_chunk
*chunk
)
1453 pcpu_mem_free(chunk
->md_blocks
);
1454 pcpu_mem_free(chunk
->bound_map
);
1455 pcpu_mem_free(chunk
->alloc_map
);
1456 pcpu_mem_free(chunk
);
1460 * pcpu_chunk_populated - post-population bookkeeping
1461 * @chunk: pcpu_chunk which got populated
1462 * @page_start: the start page
1463 * @page_end: the end page
1465 * Pages in [@page_start,@page_end) have been populated to @chunk. Update
1466 * the bookkeeping information accordingly. Must be called after each
1467 * successful population.
1469 * If this is @for_alloc, do not increment pcpu_nr_empty_pop_pages because it
1470 * is to serve an allocation in that area.
1472 static void pcpu_chunk_populated(struct pcpu_chunk
*chunk
, int page_start
,
1475 int nr
= page_end
- page_start
;
1477 lockdep_assert_held(&pcpu_lock
);
1479 bitmap_set(chunk
->populated
, page_start
, nr
);
1480 chunk
->nr_populated
+= nr
;
1481 pcpu_nr_populated
+= nr
;
1483 pcpu_update_empty_pages(chunk
, nr
);
1487 * pcpu_chunk_depopulated - post-depopulation bookkeeping
1488 * @chunk: pcpu_chunk which got depopulated
1489 * @page_start: the start page
1490 * @page_end: the end page
1492 * Pages in [@page_start,@page_end) have been depopulated from @chunk.
1493 * Update the bookkeeping information accordingly. Must be called after
1494 * each successful depopulation.
1496 static void pcpu_chunk_depopulated(struct pcpu_chunk
*chunk
,
1497 int page_start
, int page_end
)
1499 int nr
= page_end
- page_start
;
1501 lockdep_assert_held(&pcpu_lock
);
1503 bitmap_clear(chunk
->populated
, page_start
, nr
);
1504 chunk
->nr_populated
-= nr
;
1505 pcpu_nr_populated
-= nr
;
1507 pcpu_update_empty_pages(chunk
, -nr
);
1511 * Chunk management implementation.
1513 * To allow different implementations, chunk alloc/free and
1514 * [de]population are implemented in a separate file which is pulled
1515 * into this file and compiled together. The following functions
1516 * should be implemented.
1518 * pcpu_populate_chunk - populate the specified range of a chunk
1519 * pcpu_depopulate_chunk - depopulate the specified range of a chunk
1520 * pcpu_create_chunk - create a new chunk
1521 * pcpu_destroy_chunk - destroy a chunk, always preceded by full depop
1522 * pcpu_addr_to_page - translate address to physical address
1523 * pcpu_verify_alloc_info - check alloc_info is acceptable during init
1525 static int pcpu_populate_chunk(struct pcpu_chunk
*chunk
,
1526 int page_start
, int page_end
, gfp_t gfp
);
1527 static void pcpu_depopulate_chunk(struct pcpu_chunk
*chunk
,
1528 int page_start
, int page_end
);
1529 static struct pcpu_chunk
*pcpu_create_chunk(gfp_t gfp
);
1530 static void pcpu_destroy_chunk(struct pcpu_chunk
*chunk
);
1531 static struct page
*pcpu_addr_to_page(void *addr
);
1532 static int __init
pcpu_verify_alloc_info(const struct pcpu_alloc_info
*ai
);
1534 #ifdef CONFIG_NEED_PER_CPU_KM
1535 #include "percpu-km.c"
1537 #include "percpu-vm.c"
1541 * pcpu_chunk_addr_search - determine chunk containing specified address
1542 * @addr: address for which the chunk needs to be determined.
1544 * This is an internal function that handles all but static allocations.
1545 * Static percpu address values should never be passed into the allocator.
1548 * The address of the found chunk.
1550 static struct pcpu_chunk
*pcpu_chunk_addr_search(void *addr
)
1552 /* is it in the dynamic region (first chunk)? */
1553 if (pcpu_addr_in_chunk(pcpu_first_chunk
, addr
))
1554 return pcpu_first_chunk
;
1556 /* is it in the reserved region? */
1557 if (pcpu_addr_in_chunk(pcpu_reserved_chunk
, addr
))
1558 return pcpu_reserved_chunk
;
1561 * The address is relative to unit0 which might be unused and
1562 * thus unmapped. Offset the address to the unit space of the
1563 * current processor before looking it up in the vmalloc
1564 * space. Note that any possible cpu id can be used here, so
1565 * there's no need to worry about preemption or cpu hotplug.
1567 addr
+= pcpu_unit_offsets
[raw_smp_processor_id()];
1568 return pcpu_get_page_chunk(pcpu_addr_to_page(addr
));
1572 * pcpu_alloc - the percpu allocator
1573 * @size: size of area to allocate in bytes
1574 * @align: alignment of area (max PAGE_SIZE)
1575 * @reserved: allocate from the reserved chunk if available
1576 * @gfp: allocation flags
1578 * Allocate percpu area of @size bytes aligned at @align. If @gfp doesn't
1579 * contain %GFP_KERNEL, the allocation is atomic. If @gfp has __GFP_NOWARN
1580 * then no warning will be triggered on invalid or failed allocation
1584 * Percpu pointer to the allocated area on success, NULL on failure.
1586 static void __percpu
*pcpu_alloc(size_t size
, size_t align
, bool reserved
,
1589 /* whitelisted flags that can be passed to the backing allocators */
1590 gfp_t pcpu_gfp
= gfp
& (GFP_KERNEL
| __GFP_NORETRY
| __GFP_NOWARN
);
1591 bool is_atomic
= (gfp
& GFP_KERNEL
) != GFP_KERNEL
;
1592 bool do_warn
= !(gfp
& __GFP_NOWARN
);
1593 static int warn_limit
= 10;
1594 struct pcpu_chunk
*chunk
, *next
;
1596 int slot
, off
, cpu
, ret
;
1597 unsigned long flags
;
1599 size_t bits
, bit_align
;
1602 * There is now a minimum allocation size of PCPU_MIN_ALLOC_SIZE,
1603 * therefore alignment must be a minimum of that many bytes.
1604 * An allocation may have internal fragmentation from rounding up
1605 * of up to PCPU_MIN_ALLOC_SIZE - 1 bytes.
1607 if (unlikely(align
< PCPU_MIN_ALLOC_SIZE
))
1608 align
= PCPU_MIN_ALLOC_SIZE
;
1610 size
= ALIGN(size
, PCPU_MIN_ALLOC_SIZE
);
1611 bits
= size
>> PCPU_MIN_ALLOC_SHIFT
;
1612 bit_align
= align
>> PCPU_MIN_ALLOC_SHIFT
;
1614 if (unlikely(!size
|| size
> PCPU_MIN_UNIT_SIZE
|| align
> PAGE_SIZE
||
1615 !is_power_of_2(align
))) {
1616 WARN(do_warn
, "illegal size (%zu) or align (%zu) for percpu allocation\n",
1623 * pcpu_balance_workfn() allocates memory under this mutex,
1624 * and it may wait for memory reclaim. Allow current task
1625 * to become OOM victim, in case of memory pressure.
1627 if (gfp
& __GFP_NOFAIL
)
1628 mutex_lock(&pcpu_alloc_mutex
);
1629 else if (mutex_lock_killable(&pcpu_alloc_mutex
))
1633 spin_lock_irqsave(&pcpu_lock
, flags
);
1635 /* serve reserved allocations from the reserved chunk if available */
1636 if (reserved
&& pcpu_reserved_chunk
) {
1637 chunk
= pcpu_reserved_chunk
;
1639 off
= pcpu_find_block_fit(chunk
, bits
, bit_align
, is_atomic
);
1641 err
= "alloc from reserved chunk failed";
1645 off
= pcpu_alloc_area(chunk
, bits
, bit_align
, off
);
1649 err
= "alloc from reserved chunk failed";
1654 /* search through normal chunks */
1655 for (slot
= pcpu_size_to_slot(size
); slot
< pcpu_nr_slots
; slot
++) {
1656 list_for_each_entry_safe(chunk
, next
, &pcpu_slot
[slot
], list
) {
1657 off
= pcpu_find_block_fit(chunk
, bits
, bit_align
,
1660 if (slot
< PCPU_SLOT_FAIL_THRESHOLD
)
1661 pcpu_chunk_move(chunk
, 0);
1665 off
= pcpu_alloc_area(chunk
, bits
, bit_align
, off
);
1672 spin_unlock_irqrestore(&pcpu_lock
, flags
);
1675 * No space left. Create a new chunk. We don't want multiple
1676 * tasks to create chunks simultaneously. Serialize and create iff
1677 * there's still no empty chunk after grabbing the mutex.
1680 err
= "atomic alloc failed, no space left";
1684 if (list_empty(&pcpu_slot
[pcpu_nr_slots
- 1])) {
1685 chunk
= pcpu_create_chunk(pcpu_gfp
);
1687 err
= "failed to allocate new chunk";
1691 spin_lock_irqsave(&pcpu_lock
, flags
);
1692 pcpu_chunk_relocate(chunk
, -1);
1694 spin_lock_irqsave(&pcpu_lock
, flags
);
1700 pcpu_stats_area_alloc(chunk
, size
);
1701 spin_unlock_irqrestore(&pcpu_lock
, flags
);
1703 /* populate if not all pages are already there */
1705 int page_start
, page_end
, rs
, re
;
1707 page_start
= PFN_DOWN(off
);
1708 page_end
= PFN_UP(off
+ size
);
1710 pcpu_for_each_unpop_region(chunk
->populated
, rs
, re
,
1711 page_start
, page_end
) {
1712 WARN_ON(chunk
->immutable
);
1714 ret
= pcpu_populate_chunk(chunk
, rs
, re
, pcpu_gfp
);
1716 spin_lock_irqsave(&pcpu_lock
, flags
);
1718 pcpu_free_area(chunk
, off
);
1719 err
= "failed to populate";
1722 pcpu_chunk_populated(chunk
, rs
, re
);
1723 spin_unlock_irqrestore(&pcpu_lock
, flags
);
1726 mutex_unlock(&pcpu_alloc_mutex
);
1729 if (pcpu_nr_empty_pop_pages
< PCPU_EMPTY_POP_PAGES_LOW
)
1730 pcpu_schedule_balance_work();
1732 /* clear the areas and return address relative to base address */
1733 for_each_possible_cpu(cpu
)
1734 memset((void *)pcpu_chunk_addr(chunk
, cpu
, 0) + off
, 0, size
);
1736 ptr
= __addr_to_pcpu_ptr(chunk
->base_addr
+ off
);
1737 kmemleak_alloc_percpu(ptr
, size
, gfp
);
1739 trace_percpu_alloc_percpu(reserved
, is_atomic
, size
, align
,
1740 chunk
->base_addr
, off
, ptr
);
1745 spin_unlock_irqrestore(&pcpu_lock
, flags
);
1747 trace_percpu_alloc_percpu_fail(reserved
, is_atomic
, size
, align
);
1749 if (!is_atomic
&& do_warn
&& warn_limit
) {
1750 pr_warn("allocation failed, size=%zu align=%zu atomic=%d, %s\n",
1751 size
, align
, is_atomic
, err
);
1754 pr_info("limit reached, disable warning\n");
1757 /* see the flag handling in pcpu_blance_workfn() */
1758 pcpu_atomic_alloc_failed
= true;
1759 pcpu_schedule_balance_work();
1761 mutex_unlock(&pcpu_alloc_mutex
);
1767 * __alloc_percpu_gfp - allocate dynamic percpu area
1768 * @size: size of area to allocate in bytes
1769 * @align: alignment of area (max PAGE_SIZE)
1770 * @gfp: allocation flags
1772 * Allocate zero-filled percpu area of @size bytes aligned at @align. If
1773 * @gfp doesn't contain %GFP_KERNEL, the allocation doesn't block and can
1774 * be called from any context but is a lot more likely to fail. If @gfp
1775 * has __GFP_NOWARN then no warning will be triggered on invalid or failed
1776 * allocation requests.
1779 * Percpu pointer to the allocated area on success, NULL on failure.
1781 void __percpu
*__alloc_percpu_gfp(size_t size
, size_t align
, gfp_t gfp
)
1783 return pcpu_alloc(size
, align
, false, gfp
);
1785 EXPORT_SYMBOL_GPL(__alloc_percpu_gfp
);
1788 * __alloc_percpu - allocate dynamic percpu area
1789 * @size: size of area to allocate in bytes
1790 * @align: alignment of area (max PAGE_SIZE)
1792 * Equivalent to __alloc_percpu_gfp(size, align, %GFP_KERNEL).
1794 void __percpu
*__alloc_percpu(size_t size
, size_t align
)
1796 return pcpu_alloc(size
, align
, false, GFP_KERNEL
);
1798 EXPORT_SYMBOL_GPL(__alloc_percpu
);
1801 * __alloc_reserved_percpu - allocate reserved percpu area
1802 * @size: size of area to allocate in bytes
1803 * @align: alignment of area (max PAGE_SIZE)
1805 * Allocate zero-filled percpu area of @size bytes aligned at @align
1806 * from reserved percpu area if arch has set it up; otherwise,
1807 * allocation is served from the same dynamic area. Might sleep.
1808 * Might trigger writeouts.
1811 * Does GFP_KERNEL allocation.
1814 * Percpu pointer to the allocated area on success, NULL on failure.
1816 void __percpu
*__alloc_reserved_percpu(size_t size
, size_t align
)
1818 return pcpu_alloc(size
, align
, true, GFP_KERNEL
);
1822 * pcpu_balance_workfn - manage the amount of free chunks and populated pages
1825 * Reclaim all fully free chunks except for the first one. This is also
1826 * responsible for maintaining the pool of empty populated pages. However,
1827 * it is possible that this is called when physical memory is scarce causing
1828 * OOM killer to be triggered. We should avoid doing so until an actual
1829 * allocation causes the failure as it is possible that requests can be
1830 * serviced from already backed regions.
1832 static void pcpu_balance_workfn(struct work_struct
*work
)
1834 /* gfp flags passed to underlying allocators */
1835 const gfp_t gfp
= GFP_KERNEL
| __GFP_NORETRY
| __GFP_NOWARN
;
1837 struct list_head
*free_head
= &pcpu_slot
[pcpu_nr_slots
- 1];
1838 struct pcpu_chunk
*chunk
, *next
;
1839 int slot
, nr_to_pop
, ret
;
1842 * There's no reason to keep around multiple unused chunks and VM
1843 * areas can be scarce. Destroy all free chunks except for one.
1845 mutex_lock(&pcpu_alloc_mutex
);
1846 spin_lock_irq(&pcpu_lock
);
1848 list_for_each_entry_safe(chunk
, next
, free_head
, list
) {
1849 WARN_ON(chunk
->immutable
);
1851 /* spare the first one */
1852 if (chunk
== list_first_entry(free_head
, struct pcpu_chunk
, list
))
1855 list_move(&chunk
->list
, &to_free
);
1858 spin_unlock_irq(&pcpu_lock
);
1860 list_for_each_entry_safe(chunk
, next
, &to_free
, list
) {
1863 pcpu_for_each_pop_region(chunk
->populated
, rs
, re
, 0,
1865 pcpu_depopulate_chunk(chunk
, rs
, re
);
1866 spin_lock_irq(&pcpu_lock
);
1867 pcpu_chunk_depopulated(chunk
, rs
, re
);
1868 spin_unlock_irq(&pcpu_lock
);
1870 pcpu_destroy_chunk(chunk
);
1875 * Ensure there are certain number of free populated pages for
1876 * atomic allocs. Fill up from the most packed so that atomic
1877 * allocs don't increase fragmentation. If atomic allocation
1878 * failed previously, always populate the maximum amount. This
1879 * should prevent atomic allocs larger than PAGE_SIZE from keeping
1880 * failing indefinitely; however, large atomic allocs are not
1881 * something we support properly and can be highly unreliable and
1885 if (pcpu_atomic_alloc_failed
) {
1886 nr_to_pop
= PCPU_EMPTY_POP_PAGES_HIGH
;
1887 /* best effort anyway, don't worry about synchronization */
1888 pcpu_atomic_alloc_failed
= false;
1890 nr_to_pop
= clamp(PCPU_EMPTY_POP_PAGES_HIGH
-
1891 pcpu_nr_empty_pop_pages
,
1892 0, PCPU_EMPTY_POP_PAGES_HIGH
);
1895 for (slot
= pcpu_size_to_slot(PAGE_SIZE
); slot
< pcpu_nr_slots
; slot
++) {
1896 int nr_unpop
= 0, rs
, re
;
1901 spin_lock_irq(&pcpu_lock
);
1902 list_for_each_entry(chunk
, &pcpu_slot
[slot
], list
) {
1903 nr_unpop
= chunk
->nr_pages
- chunk
->nr_populated
;
1907 spin_unlock_irq(&pcpu_lock
);
1912 /* @chunk can't go away while pcpu_alloc_mutex is held */
1913 pcpu_for_each_unpop_region(chunk
->populated
, rs
, re
, 0,
1915 int nr
= min(re
- rs
, nr_to_pop
);
1917 ret
= pcpu_populate_chunk(chunk
, rs
, rs
+ nr
, gfp
);
1920 spin_lock_irq(&pcpu_lock
);
1921 pcpu_chunk_populated(chunk
, rs
, rs
+ nr
);
1922 spin_unlock_irq(&pcpu_lock
);
1933 /* ran out of chunks to populate, create a new one and retry */
1934 chunk
= pcpu_create_chunk(gfp
);
1936 spin_lock_irq(&pcpu_lock
);
1937 pcpu_chunk_relocate(chunk
, -1);
1938 spin_unlock_irq(&pcpu_lock
);
1943 mutex_unlock(&pcpu_alloc_mutex
);
1947 * free_percpu - free percpu area
1948 * @ptr: pointer to area to free
1950 * Free percpu area @ptr.
1953 * Can be called from atomic context.
1955 void free_percpu(void __percpu
*ptr
)
1958 struct pcpu_chunk
*chunk
;
1959 unsigned long flags
;
1961 bool need_balance
= false;
1966 kmemleak_free_percpu(ptr
);
1968 addr
= __pcpu_ptr_to_addr(ptr
);
1970 spin_lock_irqsave(&pcpu_lock
, flags
);
1972 chunk
= pcpu_chunk_addr_search(addr
);
1973 off
= addr
- chunk
->base_addr
;
1975 pcpu_free_area(chunk
, off
);
1977 /* if there are more than one fully free chunks, wake up grim reaper */
1978 if (chunk
->free_bytes
== pcpu_unit_size
) {
1979 struct pcpu_chunk
*pos
;
1981 list_for_each_entry(pos
, &pcpu_slot
[pcpu_nr_slots
- 1], list
)
1983 need_balance
= true;
1988 trace_percpu_free_percpu(chunk
->base_addr
, off
, ptr
);
1990 spin_unlock_irqrestore(&pcpu_lock
, flags
);
1993 pcpu_schedule_balance_work();
1995 EXPORT_SYMBOL_GPL(free_percpu
);
1997 bool __is_kernel_percpu_address(unsigned long addr
, unsigned long *can_addr
)
2000 const size_t static_size
= __per_cpu_end
- __per_cpu_start
;
2001 void __percpu
*base
= __addr_to_pcpu_ptr(pcpu_base_addr
);
2004 for_each_possible_cpu(cpu
) {
2005 void *start
= per_cpu_ptr(base
, cpu
);
2006 void *va
= (void *)addr
;
2008 if (va
>= start
&& va
< start
+ static_size
) {
2010 *can_addr
= (unsigned long) (va
- start
);
2011 *can_addr
+= (unsigned long)
2012 per_cpu_ptr(base
, get_boot_cpu_id());
2018 /* on UP, can't distinguish from other static vars, always false */
2023 * is_kernel_percpu_address - test whether address is from static percpu area
2024 * @addr: address to test
2026 * Test whether @addr belongs to in-kernel static percpu area. Module
2027 * static percpu areas are not considered. For those, use
2028 * is_module_percpu_address().
2031 * %true if @addr is from in-kernel static percpu area, %false otherwise.
2033 bool is_kernel_percpu_address(unsigned long addr
)
2035 return __is_kernel_percpu_address(addr
, NULL
);
2039 * per_cpu_ptr_to_phys - convert translated percpu address to physical address
2040 * @addr: the address to be converted to physical address
2042 * Given @addr which is dereferenceable address obtained via one of
2043 * percpu access macros, this function translates it into its physical
2044 * address. The caller is responsible for ensuring @addr stays valid
2045 * until this function finishes.
2047 * percpu allocator has special setup for the first chunk, which currently
2048 * supports either embedding in linear address space or vmalloc mapping,
2049 * and, from the second one, the backing allocator (currently either vm or
2050 * km) provides translation.
2052 * The addr can be translated simply without checking if it falls into the
2053 * first chunk. But the current code reflects better how percpu allocator
2054 * actually works, and the verification can discover both bugs in percpu
2055 * allocator itself and per_cpu_ptr_to_phys() callers. So we keep current
2059 * The physical address for @addr.
2061 phys_addr_t
per_cpu_ptr_to_phys(void *addr
)
2063 void __percpu
*base
= __addr_to_pcpu_ptr(pcpu_base_addr
);
2064 bool in_first_chunk
= false;
2065 unsigned long first_low
, first_high
;
2069 * The following test on unit_low/high isn't strictly
2070 * necessary but will speed up lookups of addresses which
2071 * aren't in the first chunk.
2073 * The address check is against full chunk sizes. pcpu_base_addr
2074 * points to the beginning of the first chunk including the
2075 * static region. Assumes good intent as the first chunk may
2076 * not be full (ie. < pcpu_unit_pages in size).
2078 first_low
= (unsigned long)pcpu_base_addr
+
2079 pcpu_unit_page_offset(pcpu_low_unit_cpu
, 0);
2080 first_high
= (unsigned long)pcpu_base_addr
+
2081 pcpu_unit_page_offset(pcpu_high_unit_cpu
, pcpu_unit_pages
);
2082 if ((unsigned long)addr
>= first_low
&&
2083 (unsigned long)addr
< first_high
) {
2084 for_each_possible_cpu(cpu
) {
2085 void *start
= per_cpu_ptr(base
, cpu
);
2087 if (addr
>= start
&& addr
< start
+ pcpu_unit_size
) {
2088 in_first_chunk
= true;
2094 if (in_first_chunk
) {
2095 if (!is_vmalloc_addr(addr
))
2098 return page_to_phys(vmalloc_to_page(addr
)) +
2099 offset_in_page(addr
);
2101 return page_to_phys(pcpu_addr_to_page(addr
)) +
2102 offset_in_page(addr
);
2106 * pcpu_alloc_alloc_info - allocate percpu allocation info
2107 * @nr_groups: the number of groups
2108 * @nr_units: the number of units
2110 * Allocate ai which is large enough for @nr_groups groups containing
2111 * @nr_units units. The returned ai's groups[0].cpu_map points to the
2112 * cpu_map array which is long enough for @nr_units and filled with
2113 * NR_CPUS. It's the caller's responsibility to initialize cpu_map
2114 * pointer of other groups.
2117 * Pointer to the allocated pcpu_alloc_info on success, NULL on
2120 struct pcpu_alloc_info
* __init
pcpu_alloc_alloc_info(int nr_groups
,
2123 struct pcpu_alloc_info
*ai
;
2124 size_t base_size
, ai_size
;
2128 base_size
= ALIGN(struct_size(ai
, groups
, nr_groups
),
2129 __alignof__(ai
->groups
[0].cpu_map
[0]));
2130 ai_size
= base_size
+ nr_units
* sizeof(ai
->groups
[0].cpu_map
[0]);
2132 ptr
= memblock_alloc(PFN_ALIGN(ai_size
), PAGE_SIZE
);
2138 ai
->groups
[0].cpu_map
= ptr
;
2140 for (unit
= 0; unit
< nr_units
; unit
++)
2141 ai
->groups
[0].cpu_map
[unit
] = NR_CPUS
;
2143 ai
->nr_groups
= nr_groups
;
2144 ai
->__ai_size
= PFN_ALIGN(ai_size
);
2150 * pcpu_free_alloc_info - free percpu allocation info
2151 * @ai: pcpu_alloc_info to free
2153 * Free @ai which was allocated by pcpu_alloc_alloc_info().
2155 void __init
pcpu_free_alloc_info(struct pcpu_alloc_info
*ai
)
2157 memblock_free_early(__pa(ai
), ai
->__ai_size
);
2161 * pcpu_dump_alloc_info - print out information about pcpu_alloc_info
2163 * @ai: allocation info to dump
2165 * Print out information about @ai using loglevel @lvl.
2167 static void pcpu_dump_alloc_info(const char *lvl
,
2168 const struct pcpu_alloc_info
*ai
)
2170 int group_width
= 1, cpu_width
= 1, width
;
2171 char empty_str
[] = "--------";
2172 int alloc
= 0, alloc_end
= 0;
2174 int upa
, apl
; /* units per alloc, allocs per line */
2180 v
= num_possible_cpus();
2183 empty_str
[min_t(int, cpu_width
, sizeof(empty_str
) - 1)] = '\0';
2185 upa
= ai
->alloc_size
/ ai
->unit_size
;
2186 width
= upa
* (cpu_width
+ 1) + group_width
+ 3;
2187 apl
= rounddown_pow_of_two(max(60 / width
, 1));
2189 printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu",
2190 lvl
, ai
->static_size
, ai
->reserved_size
, ai
->dyn_size
,
2191 ai
->unit_size
, ai
->alloc_size
/ ai
->atom_size
, ai
->atom_size
);
2193 for (group
= 0; group
< ai
->nr_groups
; group
++) {
2194 const struct pcpu_group_info
*gi
= &ai
->groups
[group
];
2195 int unit
= 0, unit_end
= 0;
2197 BUG_ON(gi
->nr_units
% upa
);
2198 for (alloc_end
+= gi
->nr_units
/ upa
;
2199 alloc
< alloc_end
; alloc
++) {
2200 if (!(alloc
% apl
)) {
2202 printk("%spcpu-alloc: ", lvl
);
2204 pr_cont("[%0*d] ", group_width
, group
);
2206 for (unit_end
+= upa
; unit
< unit_end
; unit
++)
2207 if (gi
->cpu_map
[unit
] != NR_CPUS
)
2209 cpu_width
, gi
->cpu_map
[unit
]);
2211 pr_cont("%s ", empty_str
);
2218 * pcpu_setup_first_chunk - initialize the first percpu chunk
2219 * @ai: pcpu_alloc_info describing how to percpu area is shaped
2220 * @base_addr: mapped address
2222 * Initialize the first percpu chunk which contains the kernel static
2223 * percpu area. This function is to be called from arch percpu area
2226 * @ai contains all information necessary to initialize the first
2227 * chunk and prime the dynamic percpu allocator.
2229 * @ai->static_size is the size of static percpu area.
2231 * @ai->reserved_size, if non-zero, specifies the amount of bytes to
2232 * reserve after the static area in the first chunk. This reserves
2233 * the first chunk such that it's available only through reserved
2234 * percpu allocation. This is primarily used to serve module percpu
2235 * static areas on architectures where the addressing model has
2236 * limited offset range for symbol relocations to guarantee module
2237 * percpu symbols fall inside the relocatable range.
2239 * @ai->dyn_size determines the number of bytes available for dynamic
2240 * allocation in the first chunk. The area between @ai->static_size +
2241 * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused.
2243 * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE
2244 * and equal to or larger than @ai->static_size + @ai->reserved_size +
2247 * @ai->atom_size is the allocation atom size and used as alignment
2250 * @ai->alloc_size is the allocation size and always multiple of
2251 * @ai->atom_size. This is larger than @ai->atom_size if
2252 * @ai->unit_size is larger than @ai->atom_size.
2254 * @ai->nr_groups and @ai->groups describe virtual memory layout of
2255 * percpu areas. Units which should be colocated are put into the
2256 * same group. Dynamic VM areas will be allocated according to these
2257 * groupings. If @ai->nr_groups is zero, a single group containing
2258 * all units is assumed.
2260 * The caller should have mapped the first chunk at @base_addr and
2261 * copied static data to each unit.
2263 * The first chunk will always contain a static and a dynamic region.
2264 * However, the static region is not managed by any chunk. If the first
2265 * chunk also contains a reserved region, it is served by two chunks -
2266 * one for the reserved region and one for the dynamic region. They
2267 * share the same vm, but use offset regions in the area allocation map.
2268 * The chunk serving the dynamic region is circulated in the chunk slots
2269 * and available for dynamic allocation like any other chunk.
2271 void __init
pcpu_setup_first_chunk(const struct pcpu_alloc_info
*ai
,
2274 size_t size_sum
= ai
->static_size
+ ai
->reserved_size
+ ai
->dyn_size
;
2275 size_t static_size
, dyn_size
;
2276 struct pcpu_chunk
*chunk
;
2277 unsigned long *group_offsets
;
2278 size_t *group_sizes
;
2279 unsigned long *unit_off
;
2284 unsigned long tmp_addr
;
2287 #define PCPU_SETUP_BUG_ON(cond) do { \
2288 if (unlikely(cond)) { \
2289 pr_emerg("failed to initialize, %s\n", #cond); \
2290 pr_emerg("cpu_possible_mask=%*pb\n", \
2291 cpumask_pr_args(cpu_possible_mask)); \
2292 pcpu_dump_alloc_info(KERN_EMERG, ai); \
2298 PCPU_SETUP_BUG_ON(ai
->nr_groups
<= 0);
2300 PCPU_SETUP_BUG_ON(!ai
->static_size
);
2301 PCPU_SETUP_BUG_ON(offset_in_page(__per_cpu_start
));
2303 PCPU_SETUP_BUG_ON(!base_addr
);
2304 PCPU_SETUP_BUG_ON(offset_in_page(base_addr
));
2305 PCPU_SETUP_BUG_ON(ai
->unit_size
< size_sum
);
2306 PCPU_SETUP_BUG_ON(offset_in_page(ai
->unit_size
));
2307 PCPU_SETUP_BUG_ON(ai
->unit_size
< PCPU_MIN_UNIT_SIZE
);
2308 PCPU_SETUP_BUG_ON(!IS_ALIGNED(ai
->unit_size
, PCPU_BITMAP_BLOCK_SIZE
));
2309 PCPU_SETUP_BUG_ON(ai
->dyn_size
< PERCPU_DYNAMIC_EARLY_SIZE
);
2310 PCPU_SETUP_BUG_ON(!ai
->dyn_size
);
2311 PCPU_SETUP_BUG_ON(!IS_ALIGNED(ai
->reserved_size
, PCPU_MIN_ALLOC_SIZE
));
2312 PCPU_SETUP_BUG_ON(!(IS_ALIGNED(PCPU_BITMAP_BLOCK_SIZE
, PAGE_SIZE
) ||
2313 IS_ALIGNED(PAGE_SIZE
, PCPU_BITMAP_BLOCK_SIZE
)));
2314 PCPU_SETUP_BUG_ON(pcpu_verify_alloc_info(ai
) < 0);
2316 /* process group information and build config tables accordingly */
2317 alloc_size
= ai
->nr_groups
* sizeof(group_offsets
[0]);
2318 group_offsets
= memblock_alloc(alloc_size
, SMP_CACHE_BYTES
);
2320 panic("%s: Failed to allocate %zu bytes\n", __func__
,
2323 alloc_size
= ai
->nr_groups
* sizeof(group_sizes
[0]);
2324 group_sizes
= memblock_alloc(alloc_size
, SMP_CACHE_BYTES
);
2326 panic("%s: Failed to allocate %zu bytes\n", __func__
,
2329 alloc_size
= nr_cpu_ids
* sizeof(unit_map
[0]);
2330 unit_map
= memblock_alloc(alloc_size
, SMP_CACHE_BYTES
);
2332 panic("%s: Failed to allocate %zu bytes\n", __func__
,
2335 alloc_size
= nr_cpu_ids
* sizeof(unit_off
[0]);
2336 unit_off
= memblock_alloc(alloc_size
, SMP_CACHE_BYTES
);
2338 panic("%s: Failed to allocate %zu bytes\n", __func__
,
2341 for (cpu
= 0; cpu
< nr_cpu_ids
; cpu
++)
2342 unit_map
[cpu
] = UINT_MAX
;
2344 pcpu_low_unit_cpu
= NR_CPUS
;
2345 pcpu_high_unit_cpu
= NR_CPUS
;
2347 for (group
= 0, unit
= 0; group
< ai
->nr_groups
; group
++, unit
+= i
) {
2348 const struct pcpu_group_info
*gi
= &ai
->groups
[group
];
2350 group_offsets
[group
] = gi
->base_offset
;
2351 group_sizes
[group
] = gi
->nr_units
* ai
->unit_size
;
2353 for (i
= 0; i
< gi
->nr_units
; i
++) {
2354 cpu
= gi
->cpu_map
[i
];
2358 PCPU_SETUP_BUG_ON(cpu
>= nr_cpu_ids
);
2359 PCPU_SETUP_BUG_ON(!cpu_possible(cpu
));
2360 PCPU_SETUP_BUG_ON(unit_map
[cpu
] != UINT_MAX
);
2362 unit_map
[cpu
] = unit
+ i
;
2363 unit_off
[cpu
] = gi
->base_offset
+ i
* ai
->unit_size
;
2365 /* determine low/high unit_cpu */
2366 if (pcpu_low_unit_cpu
== NR_CPUS
||
2367 unit_off
[cpu
] < unit_off
[pcpu_low_unit_cpu
])
2368 pcpu_low_unit_cpu
= cpu
;
2369 if (pcpu_high_unit_cpu
== NR_CPUS
||
2370 unit_off
[cpu
] > unit_off
[pcpu_high_unit_cpu
])
2371 pcpu_high_unit_cpu
= cpu
;
2374 pcpu_nr_units
= unit
;
2376 for_each_possible_cpu(cpu
)
2377 PCPU_SETUP_BUG_ON(unit_map
[cpu
] == UINT_MAX
);
2379 /* we're done parsing the input, undefine BUG macro and dump config */
2380 #undef PCPU_SETUP_BUG_ON
2381 pcpu_dump_alloc_info(KERN_DEBUG
, ai
);
2383 pcpu_nr_groups
= ai
->nr_groups
;
2384 pcpu_group_offsets
= group_offsets
;
2385 pcpu_group_sizes
= group_sizes
;
2386 pcpu_unit_map
= unit_map
;
2387 pcpu_unit_offsets
= unit_off
;
2389 /* determine basic parameters */
2390 pcpu_unit_pages
= ai
->unit_size
>> PAGE_SHIFT
;
2391 pcpu_unit_size
= pcpu_unit_pages
<< PAGE_SHIFT
;
2392 pcpu_atom_size
= ai
->atom_size
;
2393 pcpu_chunk_struct_size
= sizeof(struct pcpu_chunk
) +
2394 BITS_TO_LONGS(pcpu_unit_pages
) * sizeof(unsigned long);
2396 pcpu_stats_save_ai(ai
);
2399 * Allocate chunk slots. The additional last slot is for
2402 pcpu_nr_slots
= __pcpu_size_to_slot(pcpu_unit_size
) + 2;
2403 pcpu_slot
= memblock_alloc(pcpu_nr_slots
* sizeof(pcpu_slot
[0]),
2406 panic("%s: Failed to allocate %zu bytes\n", __func__
,
2407 pcpu_nr_slots
* sizeof(pcpu_slot
[0]));
2408 for (i
= 0; i
< pcpu_nr_slots
; i
++)
2409 INIT_LIST_HEAD(&pcpu_slot
[i
]);
2412 * The end of the static region needs to be aligned with the
2413 * minimum allocation size as this offsets the reserved and
2414 * dynamic region. The first chunk ends page aligned by
2415 * expanding the dynamic region, therefore the dynamic region
2416 * can be shrunk to compensate while still staying above the
2419 static_size
= ALIGN(ai
->static_size
, PCPU_MIN_ALLOC_SIZE
);
2420 dyn_size
= ai
->dyn_size
- (static_size
- ai
->static_size
);
2423 * Initialize first chunk.
2424 * If the reserved_size is non-zero, this initializes the reserved
2425 * chunk. If the reserved_size is zero, the reserved chunk is NULL
2426 * and the dynamic region is initialized here. The first chunk,
2427 * pcpu_first_chunk, will always point to the chunk that serves
2428 * the dynamic region.
2430 tmp_addr
= (unsigned long)base_addr
+ static_size
;
2431 map_size
= ai
->reserved_size
?: dyn_size
;
2432 chunk
= pcpu_alloc_first_chunk(tmp_addr
, map_size
);
2434 /* init dynamic chunk if necessary */
2435 if (ai
->reserved_size
) {
2436 pcpu_reserved_chunk
= chunk
;
2438 tmp_addr
= (unsigned long)base_addr
+ static_size
+
2440 map_size
= dyn_size
;
2441 chunk
= pcpu_alloc_first_chunk(tmp_addr
, map_size
);
2444 /* link the first chunk in */
2445 pcpu_first_chunk
= chunk
;
2446 pcpu_nr_empty_pop_pages
= pcpu_first_chunk
->nr_empty_pop_pages
;
2447 pcpu_chunk_relocate(pcpu_first_chunk
, -1);
2449 /* include all regions of the first chunk */
2450 pcpu_nr_populated
+= PFN_DOWN(size_sum
);
2452 pcpu_stats_chunk_alloc();
2453 trace_percpu_create_chunk(base_addr
);
2456 pcpu_base_addr
= base_addr
;
2461 const char * const pcpu_fc_names
[PCPU_FC_NR
] __initconst
= {
2462 [PCPU_FC_AUTO
] = "auto",
2463 [PCPU_FC_EMBED
] = "embed",
2464 [PCPU_FC_PAGE
] = "page",
2467 enum pcpu_fc pcpu_chosen_fc __initdata
= PCPU_FC_AUTO
;
2469 static int __init
percpu_alloc_setup(char *str
)
2476 #ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
2477 else if (!strcmp(str
, "embed"))
2478 pcpu_chosen_fc
= PCPU_FC_EMBED
;
2480 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
2481 else if (!strcmp(str
, "page"))
2482 pcpu_chosen_fc
= PCPU_FC_PAGE
;
2485 pr_warn("unknown allocator %s specified\n", str
);
2489 early_param("percpu_alloc", percpu_alloc_setup
);
2492 * pcpu_embed_first_chunk() is used by the generic percpu setup.
2493 * Build it if needed by the arch config or the generic setup is going
2496 #if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \
2497 !defined(CONFIG_HAVE_SETUP_PER_CPU_AREA)
2498 #define BUILD_EMBED_FIRST_CHUNK
2501 /* build pcpu_page_first_chunk() iff needed by the arch config */
2502 #if defined(CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK)
2503 #define BUILD_PAGE_FIRST_CHUNK
2506 /* pcpu_build_alloc_info() is used by both embed and page first chunk */
2507 #if defined(BUILD_EMBED_FIRST_CHUNK) || defined(BUILD_PAGE_FIRST_CHUNK)
2509 * pcpu_build_alloc_info - build alloc_info considering distances between CPUs
2510 * @reserved_size: the size of reserved percpu area in bytes
2511 * @dyn_size: minimum free size for dynamic allocation in bytes
2512 * @atom_size: allocation atom size
2513 * @cpu_distance_fn: callback to determine distance between cpus, optional
2515 * This function determines grouping of units, their mappings to cpus
2516 * and other parameters considering needed percpu size, allocation
2517 * atom size and distances between CPUs.
2519 * Groups are always multiples of atom size and CPUs which are of
2520 * LOCAL_DISTANCE both ways are grouped together and share space for
2521 * units in the same group. The returned configuration is guaranteed
2522 * to have CPUs on different nodes on different groups and >=75% usage
2523 * of allocated virtual address space.
2526 * On success, pointer to the new allocation_info is returned. On
2527 * failure, ERR_PTR value is returned.
2529 static struct pcpu_alloc_info
* __init
pcpu_build_alloc_info(
2530 size_t reserved_size
, size_t dyn_size
,
2532 pcpu_fc_cpu_distance_fn_t cpu_distance_fn
)
2534 static int group_map
[NR_CPUS
] __initdata
;
2535 static int group_cnt
[NR_CPUS
] __initdata
;
2536 const size_t static_size
= __per_cpu_end
- __per_cpu_start
;
2537 int nr_groups
= 1, nr_units
= 0;
2538 size_t size_sum
, min_unit_size
, alloc_size
;
2539 int upa
, max_upa
, uninitialized_var(best_upa
); /* units_per_alloc */
2540 int last_allocs
, group
, unit
;
2541 unsigned int cpu
, tcpu
;
2542 struct pcpu_alloc_info
*ai
;
2543 unsigned int *cpu_map
;
2545 /* this function may be called multiple times */
2546 memset(group_map
, 0, sizeof(group_map
));
2547 memset(group_cnt
, 0, sizeof(group_cnt
));
2549 /* calculate size_sum and ensure dyn_size is enough for early alloc */
2550 size_sum
= PFN_ALIGN(static_size
+ reserved_size
+
2551 max_t(size_t, dyn_size
, PERCPU_DYNAMIC_EARLY_SIZE
));
2552 dyn_size
= size_sum
- static_size
- reserved_size
;
2555 * Determine min_unit_size, alloc_size and max_upa such that
2556 * alloc_size is multiple of atom_size and is the smallest
2557 * which can accommodate 4k aligned segments which are equal to
2558 * or larger than min_unit_size.
2560 min_unit_size
= max_t(size_t, size_sum
, PCPU_MIN_UNIT_SIZE
);
2562 /* determine the maximum # of units that can fit in an allocation */
2563 alloc_size
= roundup(min_unit_size
, atom_size
);
2564 upa
= alloc_size
/ min_unit_size
;
2565 while (alloc_size
% upa
|| (offset_in_page(alloc_size
/ upa
)))
2569 /* group cpus according to their proximity */
2570 for_each_possible_cpu(cpu
) {
2573 for_each_possible_cpu(tcpu
) {
2576 if (group_map
[tcpu
] == group
&& cpu_distance_fn
&&
2577 (cpu_distance_fn(cpu
, tcpu
) > LOCAL_DISTANCE
||
2578 cpu_distance_fn(tcpu
, cpu
) > LOCAL_DISTANCE
)) {
2580 nr_groups
= max(nr_groups
, group
+ 1);
2584 group_map
[cpu
] = group
;
2589 * Wasted space is caused by a ratio imbalance of upa to group_cnt.
2590 * Expand the unit_size until we use >= 75% of the units allocated.
2591 * Related to atom_size, which could be much larger than the unit_size.
2593 last_allocs
= INT_MAX
;
2594 for (upa
= max_upa
; upa
; upa
--) {
2595 int allocs
= 0, wasted
= 0;
2597 if (alloc_size
% upa
|| (offset_in_page(alloc_size
/ upa
)))
2600 for (group
= 0; group
< nr_groups
; group
++) {
2601 int this_allocs
= DIV_ROUND_UP(group_cnt
[group
], upa
);
2602 allocs
+= this_allocs
;
2603 wasted
+= this_allocs
* upa
- group_cnt
[group
];
2607 * Don't accept if wastage is over 1/3. The
2608 * greater-than comparison ensures upa==1 always
2609 * passes the following check.
2611 if (wasted
> num_possible_cpus() / 3)
2614 /* and then don't consume more memory */
2615 if (allocs
> last_allocs
)
2617 last_allocs
= allocs
;
2622 /* allocate and fill alloc_info */
2623 for (group
= 0; group
< nr_groups
; group
++)
2624 nr_units
+= roundup(group_cnt
[group
], upa
);
2626 ai
= pcpu_alloc_alloc_info(nr_groups
, nr_units
);
2628 return ERR_PTR(-ENOMEM
);
2629 cpu_map
= ai
->groups
[0].cpu_map
;
2631 for (group
= 0; group
< nr_groups
; group
++) {
2632 ai
->groups
[group
].cpu_map
= cpu_map
;
2633 cpu_map
+= roundup(group_cnt
[group
], upa
);
2636 ai
->static_size
= static_size
;
2637 ai
->reserved_size
= reserved_size
;
2638 ai
->dyn_size
= dyn_size
;
2639 ai
->unit_size
= alloc_size
/ upa
;
2640 ai
->atom_size
= atom_size
;
2641 ai
->alloc_size
= alloc_size
;
2643 for (group
= 0, unit
= 0; group
< nr_groups
; group
++) {
2644 struct pcpu_group_info
*gi
= &ai
->groups
[group
];
2647 * Initialize base_offset as if all groups are located
2648 * back-to-back. The caller should update this to
2649 * reflect actual allocation.
2651 gi
->base_offset
= unit
* ai
->unit_size
;
2653 for_each_possible_cpu(cpu
)
2654 if (group_map
[cpu
] == group
)
2655 gi
->cpu_map
[gi
->nr_units
++] = cpu
;
2656 gi
->nr_units
= roundup(gi
->nr_units
, upa
);
2657 unit
+= gi
->nr_units
;
2659 BUG_ON(unit
!= nr_units
);
2663 #endif /* BUILD_EMBED_FIRST_CHUNK || BUILD_PAGE_FIRST_CHUNK */
2665 #if defined(BUILD_EMBED_FIRST_CHUNK)
2667 * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem
2668 * @reserved_size: the size of reserved percpu area in bytes
2669 * @dyn_size: minimum free size for dynamic allocation in bytes
2670 * @atom_size: allocation atom size
2671 * @cpu_distance_fn: callback to determine distance between cpus, optional
2672 * @alloc_fn: function to allocate percpu page
2673 * @free_fn: function to free percpu page
2675 * This is a helper to ease setting up embedded first percpu chunk and
2676 * can be called where pcpu_setup_first_chunk() is expected.
2678 * If this function is used to setup the first chunk, it is allocated
2679 * by calling @alloc_fn and used as-is without being mapped into
2680 * vmalloc area. Allocations are always whole multiples of @atom_size
2681 * aligned to @atom_size.
2683 * This enables the first chunk to piggy back on the linear physical
2684 * mapping which often uses larger page size. Please note that this
2685 * can result in very sparse cpu->unit mapping on NUMA machines thus
2686 * requiring large vmalloc address space. Don't use this allocator if
2687 * vmalloc space is not orders of magnitude larger than distances
2688 * between node memory addresses (ie. 32bit NUMA machines).
2690 * @dyn_size specifies the minimum dynamic area size.
2692 * If the needed size is smaller than the minimum or specified unit
2693 * size, the leftover is returned using @free_fn.
2696 * 0 on success, -errno on failure.
2698 int __init
pcpu_embed_first_chunk(size_t reserved_size
, size_t dyn_size
,
2700 pcpu_fc_cpu_distance_fn_t cpu_distance_fn
,
2701 pcpu_fc_alloc_fn_t alloc_fn
,
2702 pcpu_fc_free_fn_t free_fn
)
2704 void *base
= (void *)ULONG_MAX
;
2705 void **areas
= NULL
;
2706 struct pcpu_alloc_info
*ai
;
2707 size_t size_sum
, areas_size
;
2708 unsigned long max_distance
;
2709 int group
, i
, highest_group
, rc
= 0;
2711 ai
= pcpu_build_alloc_info(reserved_size
, dyn_size
, atom_size
,
2716 size_sum
= ai
->static_size
+ ai
->reserved_size
+ ai
->dyn_size
;
2717 areas_size
= PFN_ALIGN(ai
->nr_groups
* sizeof(void *));
2719 areas
= memblock_alloc(areas_size
, SMP_CACHE_BYTES
);
2725 /* allocate, copy and determine base address & max_distance */
2727 for (group
= 0; group
< ai
->nr_groups
; group
++) {
2728 struct pcpu_group_info
*gi
= &ai
->groups
[group
];
2729 unsigned int cpu
= NR_CPUS
;
2732 for (i
= 0; i
< gi
->nr_units
&& cpu
== NR_CPUS
; i
++)
2733 cpu
= gi
->cpu_map
[i
];
2734 BUG_ON(cpu
== NR_CPUS
);
2736 /* allocate space for the whole group */
2737 ptr
= alloc_fn(cpu
, gi
->nr_units
* ai
->unit_size
, atom_size
);
2740 goto out_free_areas
;
2742 /* kmemleak tracks the percpu allocations separately */
2746 base
= min(ptr
, base
);
2747 if (ptr
> areas
[highest_group
])
2748 highest_group
= group
;
2750 max_distance
= areas
[highest_group
] - base
;
2751 max_distance
+= ai
->unit_size
* ai
->groups
[highest_group
].nr_units
;
2753 /* warn if maximum distance is further than 75% of vmalloc space */
2754 if (max_distance
> VMALLOC_TOTAL
* 3 / 4) {
2755 pr_warn("max_distance=0x%lx too large for vmalloc space 0x%lx\n",
2756 max_distance
, VMALLOC_TOTAL
);
2757 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
2758 /* and fail if we have fallback */
2760 goto out_free_areas
;
2765 * Copy data and free unused parts. This should happen after all
2766 * allocations are complete; otherwise, we may end up with
2767 * overlapping groups.
2769 for (group
= 0; group
< ai
->nr_groups
; group
++) {
2770 struct pcpu_group_info
*gi
= &ai
->groups
[group
];
2771 void *ptr
= areas
[group
];
2773 for (i
= 0; i
< gi
->nr_units
; i
++, ptr
+= ai
->unit_size
) {
2774 if (gi
->cpu_map
[i
] == NR_CPUS
) {
2775 /* unused unit, free whole */
2776 free_fn(ptr
, ai
->unit_size
);
2779 /* copy and return the unused part */
2780 memcpy(ptr
, __per_cpu_load
, ai
->static_size
);
2781 free_fn(ptr
+ size_sum
, ai
->unit_size
- size_sum
);
2785 /* base address is now known, determine group base offsets */
2786 for (group
= 0; group
< ai
->nr_groups
; group
++) {
2787 ai
->groups
[group
].base_offset
= areas
[group
] - base
;
2790 pr_info("Embedded %zu pages/cpu s%zu r%zu d%zu u%zu\n",
2791 PFN_DOWN(size_sum
), ai
->static_size
, ai
->reserved_size
,
2792 ai
->dyn_size
, ai
->unit_size
);
2794 pcpu_setup_first_chunk(ai
, base
);
2798 for (group
= 0; group
< ai
->nr_groups
; group
++)
2800 free_fn(areas
[group
],
2801 ai
->groups
[group
].nr_units
* ai
->unit_size
);
2803 pcpu_free_alloc_info(ai
);
2805 memblock_free_early(__pa(areas
), areas_size
);
2808 #endif /* BUILD_EMBED_FIRST_CHUNK */
2810 #ifdef BUILD_PAGE_FIRST_CHUNK
2812 * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages
2813 * @reserved_size: the size of reserved percpu area in bytes
2814 * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE
2815 * @free_fn: function to free percpu page, always called with PAGE_SIZE
2816 * @populate_pte_fn: function to populate pte
2818 * This is a helper to ease setting up page-remapped first percpu
2819 * chunk and can be called where pcpu_setup_first_chunk() is expected.
2821 * This is the basic allocator. Static percpu area is allocated
2822 * page-by-page into vmalloc area.
2825 * 0 on success, -errno on failure.
2827 int __init
pcpu_page_first_chunk(size_t reserved_size
,
2828 pcpu_fc_alloc_fn_t alloc_fn
,
2829 pcpu_fc_free_fn_t free_fn
,
2830 pcpu_fc_populate_pte_fn_t populate_pte_fn
)
2832 static struct vm_struct vm
;
2833 struct pcpu_alloc_info
*ai
;
2837 struct page
**pages
;
2838 int unit
, i
, j
, rc
= 0;
2842 snprintf(psize_str
, sizeof(psize_str
), "%luK", PAGE_SIZE
>> 10);
2844 ai
= pcpu_build_alloc_info(reserved_size
, 0, PAGE_SIZE
, NULL
);
2847 BUG_ON(ai
->nr_groups
!= 1);
2848 upa
= ai
->alloc_size
/ai
->unit_size
;
2849 nr_g0_units
= roundup(num_possible_cpus(), upa
);
2850 if (WARN_ON(ai
->groups
[0].nr_units
!= nr_g0_units
)) {
2851 pcpu_free_alloc_info(ai
);
2855 unit_pages
= ai
->unit_size
>> PAGE_SHIFT
;
2857 /* unaligned allocations can't be freed, round up to page size */
2858 pages_size
= PFN_ALIGN(unit_pages
* num_possible_cpus() *
2860 pages
= memblock_alloc(pages_size
, SMP_CACHE_BYTES
);
2862 panic("%s: Failed to allocate %zu bytes\n", __func__
,
2865 /* allocate pages */
2867 for (unit
= 0; unit
< num_possible_cpus(); unit
++) {
2868 unsigned int cpu
= ai
->groups
[0].cpu_map
[unit
];
2869 for (i
= 0; i
< unit_pages
; i
++) {
2872 ptr
= alloc_fn(cpu
, PAGE_SIZE
, PAGE_SIZE
);
2874 pr_warn("failed to allocate %s page for cpu%u\n",
2878 /* kmemleak tracks the percpu allocations separately */
2880 pages
[j
++] = virt_to_page(ptr
);
2884 /* allocate vm area, map the pages and copy static data */
2885 vm
.flags
= VM_ALLOC
;
2886 vm
.size
= num_possible_cpus() * ai
->unit_size
;
2887 vm_area_register_early(&vm
, PAGE_SIZE
);
2889 for (unit
= 0; unit
< num_possible_cpus(); unit
++) {
2890 unsigned long unit_addr
=
2891 (unsigned long)vm
.addr
+ unit
* ai
->unit_size
;
2893 for (i
= 0; i
< unit_pages
; i
++)
2894 populate_pte_fn(unit_addr
+ (i
<< PAGE_SHIFT
));
2896 /* pte already populated, the following shouldn't fail */
2897 rc
= __pcpu_map_pages(unit_addr
, &pages
[unit
* unit_pages
],
2900 panic("failed to map percpu area, err=%d\n", rc
);
2903 * FIXME: Archs with virtual cache should flush local
2904 * cache for the linear mapping here - something
2905 * equivalent to flush_cache_vmap() on the local cpu.
2906 * flush_cache_vmap() can't be used as most supporting
2907 * data structures are not set up yet.
2910 /* copy static data */
2911 memcpy((void *)unit_addr
, __per_cpu_load
, ai
->static_size
);
2914 /* we're ready, commit */
2915 pr_info("%d %s pages/cpu s%zu r%zu d%zu\n",
2916 unit_pages
, psize_str
, ai
->static_size
,
2917 ai
->reserved_size
, ai
->dyn_size
);
2919 pcpu_setup_first_chunk(ai
, vm
.addr
);
2924 free_fn(page_address(pages
[j
]), PAGE_SIZE
);
2927 memblock_free_early(__pa(pages
), pages_size
);
2928 pcpu_free_alloc_info(ai
);
2931 #endif /* BUILD_PAGE_FIRST_CHUNK */
2933 #ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA
2935 * Generic SMP percpu area setup.
2937 * The embedding helper is used because its behavior closely resembles
2938 * the original non-dynamic generic percpu area setup. This is
2939 * important because many archs have addressing restrictions and might
2940 * fail if the percpu area is located far away from the previous
2941 * location. As an added bonus, in non-NUMA cases, embedding is
2942 * generally a good idea TLB-wise because percpu area can piggy back
2943 * on the physical linear memory mapping which uses large page
2944 * mappings on applicable archs.
2946 unsigned long __per_cpu_offset
[NR_CPUS
] __read_mostly
;
2947 EXPORT_SYMBOL(__per_cpu_offset
);
2949 static void * __init
pcpu_dfl_fc_alloc(unsigned int cpu
, size_t size
,
2952 return memblock_alloc_from(size
, align
, __pa(MAX_DMA_ADDRESS
));
2955 static void __init
pcpu_dfl_fc_free(void *ptr
, size_t size
)
2957 memblock_free_early(__pa(ptr
), size
);
2960 void __init
setup_per_cpu_areas(void)
2962 unsigned long delta
;
2967 * Always reserve area for module percpu variables. That's
2968 * what the legacy allocator did.
2970 rc
= pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE
,
2971 PERCPU_DYNAMIC_RESERVE
, PAGE_SIZE
, NULL
,
2972 pcpu_dfl_fc_alloc
, pcpu_dfl_fc_free
);
2974 panic("Failed to initialize percpu areas.");
2976 delta
= (unsigned long)pcpu_base_addr
- (unsigned long)__per_cpu_start
;
2977 for_each_possible_cpu(cpu
)
2978 __per_cpu_offset
[cpu
] = delta
+ pcpu_unit_offsets
[cpu
];
2980 #endif /* CONFIG_HAVE_SETUP_PER_CPU_AREA */
2982 #else /* CONFIG_SMP */
2985 * UP percpu area setup.
2987 * UP always uses km-based percpu allocator with identity mapping.
2988 * Static percpu variables are indistinguishable from the usual static
2989 * variables and don't require any special preparation.
2991 void __init
setup_per_cpu_areas(void)
2993 const size_t unit_size
=
2994 roundup_pow_of_two(max_t(size_t, PCPU_MIN_UNIT_SIZE
,
2995 PERCPU_DYNAMIC_RESERVE
));
2996 struct pcpu_alloc_info
*ai
;
2999 ai
= pcpu_alloc_alloc_info(1, 1);
3000 fc
= memblock_alloc_from(unit_size
, PAGE_SIZE
, __pa(MAX_DMA_ADDRESS
));
3002 panic("Failed to allocate memory for percpu areas.");
3003 /* kmemleak tracks the percpu allocations separately */
3006 ai
->dyn_size
= unit_size
;
3007 ai
->unit_size
= unit_size
;
3008 ai
->atom_size
= unit_size
;
3009 ai
->alloc_size
= unit_size
;
3010 ai
->groups
[0].nr_units
= 1;
3011 ai
->groups
[0].cpu_map
[0] = 0;
3013 pcpu_setup_first_chunk(ai
, fc
);
3014 pcpu_free_alloc_info(ai
);
3017 #endif /* CONFIG_SMP */
3020 * pcpu_nr_pages - calculate total number of populated backing pages
3022 * This reflects the number of pages populated to back chunks. Metadata is
3023 * excluded in the number exposed in meminfo as the number of backing pages
3024 * scales with the number of cpus and can quickly outweigh the memory used for
3025 * metadata. It also keeps this calculation nice and simple.
3028 * Total number of populated backing pages in use by the allocator.
3030 unsigned long pcpu_nr_pages(void)
3032 return pcpu_nr_populated
* pcpu_nr_units
;
3036 * Percpu allocator is initialized early during boot when neither slab or
3037 * workqueue is available. Plug async management until everything is up
3040 static int __init
percpu_enable_async(void)
3042 pcpu_async_enabled
= true;
3045 subsys_initcall(percpu_enable_async
);