x86: correct link to HPET timer specification
[linux/fpc-iii.git] / mm / slub.c
blob7ad489af95614602a2f5fec8756460108a1f6be1
1 /*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
8 * (C) 2007 SGI, Christoph Lameter
9 */
11 #include <linux/mm.h>
12 #include <linux/module.h>
13 #include <linux/bit_spinlock.h>
14 #include <linux/interrupt.h>
15 #include <linux/bitops.h>
16 #include <linux/slab.h>
17 #include <linux/proc_fs.h>
18 #include <linux/seq_file.h>
19 #include <linux/cpu.h>
20 #include <linux/cpuset.h>
21 #include <linux/mempolicy.h>
22 #include <linux/ctype.h>
23 #include <linux/debugobjects.h>
24 #include <linux/kallsyms.h>
25 #include <linux/memory.h>
26 #include <linux/math64.h>
29 * Lock order:
30 * 1. slab_lock(page)
31 * 2. slab->list_lock
33 * The slab_lock protects operations on the object of a particular
34 * slab and its metadata in the page struct. If the slab lock
35 * has been taken then no allocations nor frees can be performed
36 * on the objects in the slab nor can the slab be added or removed
37 * from the partial or full lists since this would mean modifying
38 * the page_struct of the slab.
40 * The list_lock protects the partial and full list on each node and
41 * the partial slab counter. If taken then no new slabs may be added or
42 * removed from the lists nor make the number of partial slabs be modified.
43 * (Note that the total number of slabs is an atomic value that may be
44 * modified without taking the list lock).
46 * The list_lock is a centralized lock and thus we avoid taking it as
47 * much as possible. As long as SLUB does not have to handle partial
48 * slabs, operations can continue without any centralized lock. F.e.
49 * allocating a long series of objects that fill up slabs does not require
50 * the list lock.
52 * The lock order is sometimes inverted when we are trying to get a slab
53 * off a list. We take the list_lock and then look for a page on the list
54 * to use. While we do that objects in the slabs may be freed. We can
55 * only operate on the slab if we have also taken the slab_lock. So we use
56 * a slab_trylock() on the slab. If trylock was successful then no frees
57 * can occur anymore and we can use the slab for allocations etc. If the
58 * slab_trylock() does not succeed then frees are in progress in the slab and
59 * we must stay away from it for a while since we may cause a bouncing
60 * cacheline if we try to acquire the lock. So go onto the next slab.
61 * If all pages are busy then we may allocate a new slab instead of reusing
62 * a partial slab. A new slab has noone operating on it and thus there is
63 * no danger of cacheline contention.
65 * Interrupts are disabled during allocation and deallocation in order to
66 * make the slab allocator safe to use in the context of an irq. In addition
67 * interrupts are disabled to ensure that the processor does not change
68 * while handling per_cpu slabs, due to kernel preemption.
70 * SLUB assigns one slab for allocation to each processor.
71 * Allocations only occur from these slabs called cpu slabs.
73 * Slabs with free elements are kept on a partial list and during regular
74 * operations no list for full slabs is used. If an object in a full slab is
75 * freed then the slab will show up again on the partial lists.
76 * We track full slabs for debugging purposes though because otherwise we
77 * cannot scan all objects.
79 * Slabs are freed when they become empty. Teardown and setup is
80 * minimal so we rely on the page allocators per cpu caches for
81 * fast frees and allocs.
83 * Overloading of page flags that are otherwise used for LRU management.
85 * PageActive The slab is frozen and exempt from list processing.
86 * This means that the slab is dedicated to a purpose
87 * such as satisfying allocations for a specific
88 * processor. Objects may be freed in the slab while
89 * it is frozen but slab_free will then skip the usual
90 * list operations. It is up to the processor holding
91 * the slab to integrate the slab into the slab lists
92 * when the slab is no longer needed.
94 * One use of this flag is to mark slabs that are
95 * used for allocations. Then such a slab becomes a cpu
96 * slab. The cpu slab may be equipped with an additional
97 * freelist that allows lockless access to
98 * free objects in addition to the regular freelist
99 * that requires the slab lock.
101 * PageError Slab requires special handling due to debug
102 * options set. This moves slab handling out of
103 * the fast path and disables lockless freelists.
106 #ifdef CONFIG_SLUB_DEBUG
107 #define SLABDEBUG 1
108 #else
109 #define SLABDEBUG 0
110 #endif
113 * Issues still to be resolved:
115 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
117 * - Variable sizing of the per node arrays
120 /* Enable to test recovery from slab corruption on boot */
121 #undef SLUB_RESILIENCY_TEST
124 * Mininum number of partial slabs. These will be left on the partial
125 * lists even if they are empty. kmem_cache_shrink may reclaim them.
127 #define MIN_PARTIAL 5
130 * Maximum number of desirable partial slabs.
131 * The existence of more partial slabs makes kmem_cache_shrink
132 * sort the partial list by the number of objects in the.
134 #define MAX_PARTIAL 10
136 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
137 SLAB_POISON | SLAB_STORE_USER)
140 * Set of flags that will prevent slab merging
142 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
143 SLAB_TRACE | SLAB_DESTROY_BY_RCU)
145 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
146 SLAB_CACHE_DMA)
148 #ifndef ARCH_KMALLOC_MINALIGN
149 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
150 #endif
152 #ifndef ARCH_SLAB_MINALIGN
153 #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
154 #endif
156 /* Internal SLUB flags */
157 #define __OBJECT_POISON 0x80000000 /* Poison object */
158 #define __SYSFS_ADD_DEFERRED 0x40000000 /* Not yet visible via sysfs */
160 static int kmem_size = sizeof(struct kmem_cache);
162 #ifdef CONFIG_SMP
163 static struct notifier_block slab_notifier;
164 #endif
166 static enum {
167 DOWN, /* No slab functionality available */
168 PARTIAL, /* kmem_cache_open() works but kmalloc does not */
169 UP, /* Everything works but does not show up in sysfs */
170 SYSFS /* Sysfs up */
171 } slab_state = DOWN;
173 /* A list of all slab caches on the system */
174 static DECLARE_RWSEM(slub_lock);
175 static LIST_HEAD(slab_caches);
178 * Tracking user of a slab.
180 struct track {
181 void *addr; /* Called from address */
182 int cpu; /* Was running on cpu */
183 int pid; /* Pid context */
184 unsigned long when; /* When did the operation occur */
187 enum track_item { TRACK_ALLOC, TRACK_FREE };
189 #ifdef CONFIG_SLUB_DEBUG
190 static int sysfs_slab_add(struct kmem_cache *);
191 static int sysfs_slab_alias(struct kmem_cache *, const char *);
192 static void sysfs_slab_remove(struct kmem_cache *);
194 #else
195 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
196 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
197 { return 0; }
198 static inline void sysfs_slab_remove(struct kmem_cache *s)
200 kfree(s);
203 #endif
205 static inline void stat(struct kmem_cache_cpu *c, enum stat_item si)
207 #ifdef CONFIG_SLUB_STATS
208 c->stat[si]++;
209 #endif
212 /********************************************************************
213 * Core slab cache functions
214 *******************************************************************/
216 int slab_is_available(void)
218 return slab_state >= UP;
221 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
223 #ifdef CONFIG_NUMA
224 return s->node[node];
225 #else
226 return &s->local_node;
227 #endif
230 static inline struct kmem_cache_cpu *get_cpu_slab(struct kmem_cache *s, int cpu)
232 #ifdef CONFIG_SMP
233 return s->cpu_slab[cpu];
234 #else
235 return &s->cpu_slab;
236 #endif
239 /* Verify that a pointer has an address that is valid within a slab page */
240 static inline int check_valid_pointer(struct kmem_cache *s,
241 struct page *page, const void *object)
243 void *base;
245 if (!object)
246 return 1;
248 base = page_address(page);
249 if (object < base || object >= base + page->objects * s->size ||
250 (object - base) % s->size) {
251 return 0;
254 return 1;
258 * Slow version of get and set free pointer.
260 * This version requires touching the cache lines of kmem_cache which
261 * we avoid to do in the fast alloc free paths. There we obtain the offset
262 * from the page struct.
264 static inline void *get_freepointer(struct kmem_cache *s, void *object)
266 return *(void **)(object + s->offset);
269 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
271 *(void **)(object + s->offset) = fp;
274 /* Loop over all objects in a slab */
275 #define for_each_object(__p, __s, __addr, __objects) \
276 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
277 __p += (__s)->size)
279 /* Scan freelist */
280 #define for_each_free_object(__p, __s, __free) \
281 for (__p = (__free); __p; __p = get_freepointer((__s), __p))
283 /* Determine object index from a given position */
284 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
286 return (p - addr) / s->size;
289 static inline struct kmem_cache_order_objects oo_make(int order,
290 unsigned long size)
292 struct kmem_cache_order_objects x = {
293 (order << 16) + (PAGE_SIZE << order) / size
296 return x;
299 static inline int oo_order(struct kmem_cache_order_objects x)
301 return x.x >> 16;
304 static inline int oo_objects(struct kmem_cache_order_objects x)
306 return x.x & ((1 << 16) - 1);
309 #ifdef CONFIG_SLUB_DEBUG
311 * Debug settings:
313 #ifdef CONFIG_SLUB_DEBUG_ON
314 static int slub_debug = DEBUG_DEFAULT_FLAGS;
315 #else
316 static int slub_debug;
317 #endif
319 static char *slub_debug_slabs;
322 * Object debugging
324 static void print_section(char *text, u8 *addr, unsigned int length)
326 int i, offset;
327 int newline = 1;
328 char ascii[17];
330 ascii[16] = 0;
332 for (i = 0; i < length; i++) {
333 if (newline) {
334 printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
335 newline = 0;
337 printk(KERN_CONT " %02x", addr[i]);
338 offset = i % 16;
339 ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
340 if (offset == 15) {
341 printk(KERN_CONT " %s\n", ascii);
342 newline = 1;
345 if (!newline) {
346 i %= 16;
347 while (i < 16) {
348 printk(KERN_CONT " ");
349 ascii[i] = ' ';
350 i++;
352 printk(KERN_CONT " %s\n", ascii);
356 static struct track *get_track(struct kmem_cache *s, void *object,
357 enum track_item alloc)
359 struct track *p;
361 if (s->offset)
362 p = object + s->offset + sizeof(void *);
363 else
364 p = object + s->inuse;
366 return p + alloc;
369 static void set_track(struct kmem_cache *s, void *object,
370 enum track_item alloc, void *addr)
372 struct track *p;
374 if (s->offset)
375 p = object + s->offset + sizeof(void *);
376 else
377 p = object + s->inuse;
379 p += alloc;
380 if (addr) {
381 p->addr = addr;
382 p->cpu = smp_processor_id();
383 p->pid = current->pid;
384 p->when = jiffies;
385 } else
386 memset(p, 0, sizeof(struct track));
389 static void init_tracking(struct kmem_cache *s, void *object)
391 if (!(s->flags & SLAB_STORE_USER))
392 return;
394 set_track(s, object, TRACK_FREE, NULL);
395 set_track(s, object, TRACK_ALLOC, NULL);
398 static void print_track(const char *s, struct track *t)
400 if (!t->addr)
401 return;
403 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
404 s, t->addr, jiffies - t->when, t->cpu, t->pid);
407 static void print_tracking(struct kmem_cache *s, void *object)
409 if (!(s->flags & SLAB_STORE_USER))
410 return;
412 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
413 print_track("Freed", get_track(s, object, TRACK_FREE));
416 static void print_page_info(struct page *page)
418 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
419 page, page->objects, page->inuse, page->freelist, page->flags);
423 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
425 va_list args;
426 char buf[100];
428 va_start(args, fmt);
429 vsnprintf(buf, sizeof(buf), fmt, args);
430 va_end(args);
431 printk(KERN_ERR "========================================"
432 "=====================================\n");
433 printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
434 printk(KERN_ERR "----------------------------------------"
435 "-------------------------------------\n\n");
438 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
440 va_list args;
441 char buf[100];
443 va_start(args, fmt);
444 vsnprintf(buf, sizeof(buf), fmt, args);
445 va_end(args);
446 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
449 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
451 unsigned int off; /* Offset of last byte */
452 u8 *addr = page_address(page);
454 print_tracking(s, p);
456 print_page_info(page);
458 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
459 p, p - addr, get_freepointer(s, p));
461 if (p > addr + 16)
462 print_section("Bytes b4", p - 16, 16);
464 print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE));
466 if (s->flags & SLAB_RED_ZONE)
467 print_section("Redzone", p + s->objsize,
468 s->inuse - s->objsize);
470 if (s->offset)
471 off = s->offset + sizeof(void *);
472 else
473 off = s->inuse;
475 if (s->flags & SLAB_STORE_USER)
476 off += 2 * sizeof(struct track);
478 if (off != s->size)
479 /* Beginning of the filler is the free pointer */
480 print_section("Padding", p + off, s->size - off);
482 dump_stack();
485 static void object_err(struct kmem_cache *s, struct page *page,
486 u8 *object, char *reason)
488 slab_bug(s, "%s", reason);
489 print_trailer(s, page, object);
492 static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
494 va_list args;
495 char buf[100];
497 va_start(args, fmt);
498 vsnprintf(buf, sizeof(buf), fmt, args);
499 va_end(args);
500 slab_bug(s, "%s", buf);
501 print_page_info(page);
502 dump_stack();
505 static void init_object(struct kmem_cache *s, void *object, int active)
507 u8 *p = object;
509 if (s->flags & __OBJECT_POISON) {
510 memset(p, POISON_FREE, s->objsize - 1);
511 p[s->objsize - 1] = POISON_END;
514 if (s->flags & SLAB_RED_ZONE)
515 memset(p + s->objsize,
516 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
517 s->inuse - s->objsize);
520 static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
522 while (bytes) {
523 if (*start != (u8)value)
524 return start;
525 start++;
526 bytes--;
528 return NULL;
531 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
532 void *from, void *to)
534 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
535 memset(from, data, to - from);
538 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
539 u8 *object, char *what,
540 u8 *start, unsigned int value, unsigned int bytes)
542 u8 *fault;
543 u8 *end;
545 fault = check_bytes(start, value, bytes);
546 if (!fault)
547 return 1;
549 end = start + bytes;
550 while (end > fault && end[-1] == value)
551 end--;
553 slab_bug(s, "%s overwritten", what);
554 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
555 fault, end - 1, fault[0], value);
556 print_trailer(s, page, object);
558 restore_bytes(s, what, value, fault, end);
559 return 0;
563 * Object layout:
565 * object address
566 * Bytes of the object to be managed.
567 * If the freepointer may overlay the object then the free
568 * pointer is the first word of the object.
570 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
571 * 0xa5 (POISON_END)
573 * object + s->objsize
574 * Padding to reach word boundary. This is also used for Redzoning.
575 * Padding is extended by another word if Redzoning is enabled and
576 * objsize == inuse.
578 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
579 * 0xcc (RED_ACTIVE) for objects in use.
581 * object + s->inuse
582 * Meta data starts here.
584 * A. Free pointer (if we cannot overwrite object on free)
585 * B. Tracking data for SLAB_STORE_USER
586 * C. Padding to reach required alignment boundary or at mininum
587 * one word if debugging is on to be able to detect writes
588 * before the word boundary.
590 * Padding is done using 0x5a (POISON_INUSE)
592 * object + s->size
593 * Nothing is used beyond s->size.
595 * If slabcaches are merged then the objsize and inuse boundaries are mostly
596 * ignored. And therefore no slab options that rely on these boundaries
597 * may be used with merged slabcaches.
600 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
602 unsigned long off = s->inuse; /* The end of info */
604 if (s->offset)
605 /* Freepointer is placed after the object. */
606 off += sizeof(void *);
608 if (s->flags & SLAB_STORE_USER)
609 /* We also have user information there */
610 off += 2 * sizeof(struct track);
612 if (s->size == off)
613 return 1;
615 return check_bytes_and_report(s, page, p, "Object padding",
616 p + off, POISON_INUSE, s->size - off);
619 /* Check the pad bytes at the end of a slab page */
620 static int slab_pad_check(struct kmem_cache *s, struct page *page)
622 u8 *start;
623 u8 *fault;
624 u8 *end;
625 int length;
626 int remainder;
628 if (!(s->flags & SLAB_POISON))
629 return 1;
631 start = page_address(page);
632 length = (PAGE_SIZE << compound_order(page));
633 end = start + length;
634 remainder = length % s->size;
635 if (!remainder)
636 return 1;
638 fault = check_bytes(end - remainder, POISON_INUSE, remainder);
639 if (!fault)
640 return 1;
641 while (end > fault && end[-1] == POISON_INUSE)
642 end--;
644 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
645 print_section("Padding", end - remainder, remainder);
647 restore_bytes(s, "slab padding", POISON_INUSE, start, end);
648 return 0;
651 static int check_object(struct kmem_cache *s, struct page *page,
652 void *object, int active)
654 u8 *p = object;
655 u8 *endobject = object + s->objsize;
657 if (s->flags & SLAB_RED_ZONE) {
658 unsigned int red =
659 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
661 if (!check_bytes_and_report(s, page, object, "Redzone",
662 endobject, red, s->inuse - s->objsize))
663 return 0;
664 } else {
665 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
666 check_bytes_and_report(s, page, p, "Alignment padding",
667 endobject, POISON_INUSE, s->inuse - s->objsize);
671 if (s->flags & SLAB_POISON) {
672 if (!active && (s->flags & __OBJECT_POISON) &&
673 (!check_bytes_and_report(s, page, p, "Poison", p,
674 POISON_FREE, s->objsize - 1) ||
675 !check_bytes_and_report(s, page, p, "Poison",
676 p + s->objsize - 1, POISON_END, 1)))
677 return 0;
679 * check_pad_bytes cleans up on its own.
681 check_pad_bytes(s, page, p);
684 if (!s->offset && active)
686 * Object and freepointer overlap. Cannot check
687 * freepointer while object is allocated.
689 return 1;
691 /* Check free pointer validity */
692 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
693 object_err(s, page, p, "Freepointer corrupt");
695 * No choice but to zap it and thus loose the remainder
696 * of the free objects in this slab. May cause
697 * another error because the object count is now wrong.
699 set_freepointer(s, p, NULL);
700 return 0;
702 return 1;
705 static int check_slab(struct kmem_cache *s, struct page *page)
707 int maxobj;
709 VM_BUG_ON(!irqs_disabled());
711 if (!PageSlab(page)) {
712 slab_err(s, page, "Not a valid slab page");
713 return 0;
716 maxobj = (PAGE_SIZE << compound_order(page)) / s->size;
717 if (page->objects > maxobj) {
718 slab_err(s, page, "objects %u > max %u",
719 s->name, page->objects, maxobj);
720 return 0;
722 if (page->inuse > page->objects) {
723 slab_err(s, page, "inuse %u > max %u",
724 s->name, page->inuse, page->objects);
725 return 0;
727 /* Slab_pad_check fixes things up after itself */
728 slab_pad_check(s, page);
729 return 1;
733 * Determine if a certain object on a page is on the freelist. Must hold the
734 * slab lock to guarantee that the chains are in a consistent state.
736 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
738 int nr = 0;
739 void *fp = page->freelist;
740 void *object = NULL;
741 unsigned long max_objects;
743 while (fp && nr <= page->objects) {
744 if (fp == search)
745 return 1;
746 if (!check_valid_pointer(s, page, fp)) {
747 if (object) {
748 object_err(s, page, object,
749 "Freechain corrupt");
750 set_freepointer(s, object, NULL);
751 break;
752 } else {
753 slab_err(s, page, "Freepointer corrupt");
754 page->freelist = NULL;
755 page->inuse = page->objects;
756 slab_fix(s, "Freelist cleared");
757 return 0;
759 break;
761 object = fp;
762 fp = get_freepointer(s, object);
763 nr++;
766 max_objects = (PAGE_SIZE << compound_order(page)) / s->size;
767 if (max_objects > 65535)
768 max_objects = 65535;
770 if (page->objects != max_objects) {
771 slab_err(s, page, "Wrong number of objects. Found %d but "
772 "should be %d", page->objects, max_objects);
773 page->objects = max_objects;
774 slab_fix(s, "Number of objects adjusted.");
776 if (page->inuse != page->objects - nr) {
777 slab_err(s, page, "Wrong object count. Counter is %d but "
778 "counted were %d", page->inuse, page->objects - nr);
779 page->inuse = page->objects - nr;
780 slab_fix(s, "Object count adjusted.");
782 return search == NULL;
785 static void trace(struct kmem_cache *s, struct page *page, void *object,
786 int alloc)
788 if (s->flags & SLAB_TRACE) {
789 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
790 s->name,
791 alloc ? "alloc" : "free",
792 object, page->inuse,
793 page->freelist);
795 if (!alloc)
796 print_section("Object", (void *)object, s->objsize);
798 dump_stack();
803 * Tracking of fully allocated slabs for debugging purposes.
805 static void add_full(struct kmem_cache_node *n, struct page *page)
807 spin_lock(&n->list_lock);
808 list_add(&page->lru, &n->full);
809 spin_unlock(&n->list_lock);
812 static void remove_full(struct kmem_cache *s, struct page *page)
814 struct kmem_cache_node *n;
816 if (!(s->flags & SLAB_STORE_USER))
817 return;
819 n = get_node(s, page_to_nid(page));
821 spin_lock(&n->list_lock);
822 list_del(&page->lru);
823 spin_unlock(&n->list_lock);
826 /* Tracking of the number of slabs for debugging purposes */
827 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
829 struct kmem_cache_node *n = get_node(s, node);
831 return atomic_long_read(&n->nr_slabs);
834 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
836 struct kmem_cache_node *n = get_node(s, node);
839 * May be called early in order to allocate a slab for the
840 * kmem_cache_node structure. Solve the chicken-egg
841 * dilemma by deferring the increment of the count during
842 * bootstrap (see early_kmem_cache_node_alloc).
844 if (!NUMA_BUILD || n) {
845 atomic_long_inc(&n->nr_slabs);
846 atomic_long_add(objects, &n->total_objects);
849 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
851 struct kmem_cache_node *n = get_node(s, node);
853 atomic_long_dec(&n->nr_slabs);
854 atomic_long_sub(objects, &n->total_objects);
857 /* Object debug checks for alloc/free paths */
858 static void setup_object_debug(struct kmem_cache *s, struct page *page,
859 void *object)
861 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
862 return;
864 init_object(s, object, 0);
865 init_tracking(s, object);
868 static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
869 void *object, void *addr)
871 if (!check_slab(s, page))
872 goto bad;
874 if (!on_freelist(s, page, object)) {
875 object_err(s, page, object, "Object already allocated");
876 goto bad;
879 if (!check_valid_pointer(s, page, object)) {
880 object_err(s, page, object, "Freelist Pointer check fails");
881 goto bad;
884 if (!check_object(s, page, object, 0))
885 goto bad;
887 /* Success perform special debug activities for allocs */
888 if (s->flags & SLAB_STORE_USER)
889 set_track(s, object, TRACK_ALLOC, addr);
890 trace(s, page, object, 1);
891 init_object(s, object, 1);
892 return 1;
894 bad:
895 if (PageSlab(page)) {
897 * If this is a slab page then lets do the best we can
898 * to avoid issues in the future. Marking all objects
899 * as used avoids touching the remaining objects.
901 slab_fix(s, "Marking all objects used");
902 page->inuse = page->objects;
903 page->freelist = NULL;
905 return 0;
908 static int free_debug_processing(struct kmem_cache *s, struct page *page,
909 void *object, void *addr)
911 if (!check_slab(s, page))
912 goto fail;
914 if (!check_valid_pointer(s, page, object)) {
915 slab_err(s, page, "Invalid object pointer 0x%p", object);
916 goto fail;
919 if (on_freelist(s, page, object)) {
920 object_err(s, page, object, "Object already free");
921 goto fail;
924 if (!check_object(s, page, object, 1))
925 return 0;
927 if (unlikely(s != page->slab)) {
928 if (!PageSlab(page)) {
929 slab_err(s, page, "Attempt to free object(0x%p) "
930 "outside of slab", object);
931 } else if (!page->slab) {
932 printk(KERN_ERR
933 "SLUB <none>: no slab for object 0x%p.\n",
934 object);
935 dump_stack();
936 } else
937 object_err(s, page, object,
938 "page slab pointer corrupt.");
939 goto fail;
942 /* Special debug activities for freeing objects */
943 if (!PageSlubFrozen(page) && !page->freelist)
944 remove_full(s, page);
945 if (s->flags & SLAB_STORE_USER)
946 set_track(s, object, TRACK_FREE, addr);
947 trace(s, page, object, 0);
948 init_object(s, object, 0);
949 return 1;
951 fail:
952 slab_fix(s, "Object at 0x%p not freed", object);
953 return 0;
956 static int __init setup_slub_debug(char *str)
958 slub_debug = DEBUG_DEFAULT_FLAGS;
959 if (*str++ != '=' || !*str)
961 * No options specified. Switch on full debugging.
963 goto out;
965 if (*str == ',')
967 * No options but restriction on slabs. This means full
968 * debugging for slabs matching a pattern.
970 goto check_slabs;
972 slub_debug = 0;
973 if (*str == '-')
975 * Switch off all debugging measures.
977 goto out;
980 * Determine which debug features should be switched on
982 for (; *str && *str != ','; str++) {
983 switch (tolower(*str)) {
984 case 'f':
985 slub_debug |= SLAB_DEBUG_FREE;
986 break;
987 case 'z':
988 slub_debug |= SLAB_RED_ZONE;
989 break;
990 case 'p':
991 slub_debug |= SLAB_POISON;
992 break;
993 case 'u':
994 slub_debug |= SLAB_STORE_USER;
995 break;
996 case 't':
997 slub_debug |= SLAB_TRACE;
998 break;
999 default:
1000 printk(KERN_ERR "slub_debug option '%c' "
1001 "unknown. skipped\n", *str);
1005 check_slabs:
1006 if (*str == ',')
1007 slub_debug_slabs = str + 1;
1008 out:
1009 return 1;
1012 __setup("slub_debug", setup_slub_debug);
1014 static unsigned long kmem_cache_flags(unsigned long objsize,
1015 unsigned long flags, const char *name,
1016 void (*ctor)(void *))
1019 * Enable debugging if selected on the kernel commandline.
1021 if (slub_debug && (!slub_debug_slabs ||
1022 strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)) == 0))
1023 flags |= slub_debug;
1025 return flags;
1027 #else
1028 static inline void setup_object_debug(struct kmem_cache *s,
1029 struct page *page, void *object) {}
1031 static inline int alloc_debug_processing(struct kmem_cache *s,
1032 struct page *page, void *object, void *addr) { return 0; }
1034 static inline int free_debug_processing(struct kmem_cache *s,
1035 struct page *page, void *object, void *addr) { return 0; }
1037 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1038 { return 1; }
1039 static inline int check_object(struct kmem_cache *s, struct page *page,
1040 void *object, int active) { return 1; }
1041 static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
1042 static inline unsigned long kmem_cache_flags(unsigned long objsize,
1043 unsigned long flags, const char *name,
1044 void (*ctor)(void *))
1046 return flags;
1048 #define slub_debug 0
1050 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1051 { return 0; }
1052 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1053 int objects) {}
1054 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1055 int objects) {}
1056 #endif
1059 * Slab allocation and freeing
1061 static inline struct page *alloc_slab_page(gfp_t flags, int node,
1062 struct kmem_cache_order_objects oo)
1064 int order = oo_order(oo);
1066 if (node == -1)
1067 return alloc_pages(flags, order);
1068 else
1069 return alloc_pages_node(node, flags, order);
1072 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1074 struct page *page;
1075 struct kmem_cache_order_objects oo = s->oo;
1077 flags |= s->allocflags;
1079 page = alloc_slab_page(flags | __GFP_NOWARN | __GFP_NORETRY, node,
1080 oo);
1081 if (unlikely(!page)) {
1082 oo = s->min;
1084 * Allocation may have failed due to fragmentation.
1085 * Try a lower order alloc if possible
1087 page = alloc_slab_page(flags, node, oo);
1088 if (!page)
1089 return NULL;
1091 stat(get_cpu_slab(s, raw_smp_processor_id()), ORDER_FALLBACK);
1093 page->objects = oo_objects(oo);
1094 mod_zone_page_state(page_zone(page),
1095 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1096 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1097 1 << oo_order(oo));
1099 return page;
1102 static void setup_object(struct kmem_cache *s, struct page *page,
1103 void *object)
1105 setup_object_debug(s, page, object);
1106 if (unlikely(s->ctor))
1107 s->ctor(object);
1110 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1112 struct page *page;
1113 void *start;
1114 void *last;
1115 void *p;
1117 BUG_ON(flags & GFP_SLAB_BUG_MASK);
1119 page = allocate_slab(s,
1120 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1121 if (!page)
1122 goto out;
1124 inc_slabs_node(s, page_to_nid(page), page->objects);
1125 page->slab = s;
1126 page->flags |= 1 << PG_slab;
1127 if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
1128 SLAB_STORE_USER | SLAB_TRACE))
1129 __SetPageSlubDebug(page);
1131 start = page_address(page);
1133 if (unlikely(s->flags & SLAB_POISON))
1134 memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
1136 last = start;
1137 for_each_object(p, s, start, page->objects) {
1138 setup_object(s, page, last);
1139 set_freepointer(s, last, p);
1140 last = p;
1142 setup_object(s, page, last);
1143 set_freepointer(s, last, NULL);
1145 page->freelist = start;
1146 page->inuse = 0;
1147 out:
1148 return page;
1151 static void __free_slab(struct kmem_cache *s, struct page *page)
1153 int order = compound_order(page);
1154 int pages = 1 << order;
1156 if (unlikely(SLABDEBUG && PageSlubDebug(page))) {
1157 void *p;
1159 slab_pad_check(s, page);
1160 for_each_object(p, s, page_address(page),
1161 page->objects)
1162 check_object(s, page, p, 0);
1163 __ClearPageSlubDebug(page);
1166 mod_zone_page_state(page_zone(page),
1167 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1168 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1169 -pages);
1171 __ClearPageSlab(page);
1172 reset_page_mapcount(page);
1173 __free_pages(page, order);
1176 static void rcu_free_slab(struct rcu_head *h)
1178 struct page *page;
1180 page = container_of((struct list_head *)h, struct page, lru);
1181 __free_slab(page->slab, page);
1184 static void free_slab(struct kmem_cache *s, struct page *page)
1186 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1188 * RCU free overloads the RCU head over the LRU
1190 struct rcu_head *head = (void *)&page->lru;
1192 call_rcu(head, rcu_free_slab);
1193 } else
1194 __free_slab(s, page);
1197 static void discard_slab(struct kmem_cache *s, struct page *page)
1199 dec_slabs_node(s, page_to_nid(page), page->objects);
1200 free_slab(s, page);
1204 * Per slab locking using the pagelock
1206 static __always_inline void slab_lock(struct page *page)
1208 bit_spin_lock(PG_locked, &page->flags);
1211 static __always_inline void slab_unlock(struct page *page)
1213 __bit_spin_unlock(PG_locked, &page->flags);
1216 static __always_inline int slab_trylock(struct page *page)
1218 int rc = 1;
1220 rc = bit_spin_trylock(PG_locked, &page->flags);
1221 return rc;
1225 * Management of partially allocated slabs
1227 static void add_partial(struct kmem_cache_node *n,
1228 struct page *page, int tail)
1230 spin_lock(&n->list_lock);
1231 n->nr_partial++;
1232 if (tail)
1233 list_add_tail(&page->lru, &n->partial);
1234 else
1235 list_add(&page->lru, &n->partial);
1236 spin_unlock(&n->list_lock);
1239 static void remove_partial(struct kmem_cache *s, struct page *page)
1241 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1243 spin_lock(&n->list_lock);
1244 list_del(&page->lru);
1245 n->nr_partial--;
1246 spin_unlock(&n->list_lock);
1250 * Lock slab and remove from the partial list.
1252 * Must hold list_lock.
1254 static inline int lock_and_freeze_slab(struct kmem_cache_node *n,
1255 struct page *page)
1257 if (slab_trylock(page)) {
1258 list_del(&page->lru);
1259 n->nr_partial--;
1260 __SetPageSlubFrozen(page);
1261 return 1;
1263 return 0;
1267 * Try to allocate a partial slab from a specific node.
1269 static struct page *get_partial_node(struct kmem_cache_node *n)
1271 struct page *page;
1274 * Racy check. If we mistakenly see no partial slabs then we
1275 * just allocate an empty slab. If we mistakenly try to get a
1276 * partial slab and there is none available then get_partials()
1277 * will return NULL.
1279 if (!n || !n->nr_partial)
1280 return NULL;
1282 spin_lock(&n->list_lock);
1283 list_for_each_entry(page, &n->partial, lru)
1284 if (lock_and_freeze_slab(n, page))
1285 goto out;
1286 page = NULL;
1287 out:
1288 spin_unlock(&n->list_lock);
1289 return page;
1293 * Get a page from somewhere. Search in increasing NUMA distances.
1295 static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1297 #ifdef CONFIG_NUMA
1298 struct zonelist *zonelist;
1299 struct zoneref *z;
1300 struct zone *zone;
1301 enum zone_type high_zoneidx = gfp_zone(flags);
1302 struct page *page;
1305 * The defrag ratio allows a configuration of the tradeoffs between
1306 * inter node defragmentation and node local allocations. A lower
1307 * defrag_ratio increases the tendency to do local allocations
1308 * instead of attempting to obtain partial slabs from other nodes.
1310 * If the defrag_ratio is set to 0 then kmalloc() always
1311 * returns node local objects. If the ratio is higher then kmalloc()
1312 * may return off node objects because partial slabs are obtained
1313 * from other nodes and filled up.
1315 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1316 * defrag_ratio = 1000) then every (well almost) allocation will
1317 * first attempt to defrag slab caches on other nodes. This means
1318 * scanning over all nodes to look for partial slabs which may be
1319 * expensive if we do it every time we are trying to find a slab
1320 * with available objects.
1322 if (!s->remote_node_defrag_ratio ||
1323 get_cycles() % 1024 > s->remote_node_defrag_ratio)
1324 return NULL;
1326 zonelist = node_zonelist(slab_node(current->mempolicy), flags);
1327 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1328 struct kmem_cache_node *n;
1330 n = get_node(s, zone_to_nid(zone));
1332 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1333 n->nr_partial > n->min_partial) {
1334 page = get_partial_node(n);
1335 if (page)
1336 return page;
1339 #endif
1340 return NULL;
1344 * Get a partial page, lock it and return it.
1346 static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1348 struct page *page;
1349 int searchnode = (node == -1) ? numa_node_id() : node;
1351 page = get_partial_node(get_node(s, searchnode));
1352 if (page || (flags & __GFP_THISNODE))
1353 return page;
1355 return get_any_partial(s, flags);
1359 * Move a page back to the lists.
1361 * Must be called with the slab lock held.
1363 * On exit the slab lock will have been dropped.
1365 static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
1367 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1368 struct kmem_cache_cpu *c = get_cpu_slab(s, smp_processor_id());
1370 __ClearPageSlubFrozen(page);
1371 if (page->inuse) {
1373 if (page->freelist) {
1374 add_partial(n, page, tail);
1375 stat(c, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
1376 } else {
1377 stat(c, DEACTIVATE_FULL);
1378 if (SLABDEBUG && PageSlubDebug(page) &&
1379 (s->flags & SLAB_STORE_USER))
1380 add_full(n, page);
1382 slab_unlock(page);
1383 } else {
1384 stat(c, DEACTIVATE_EMPTY);
1385 if (n->nr_partial < n->min_partial) {
1387 * Adding an empty slab to the partial slabs in order
1388 * to avoid page allocator overhead. This slab needs
1389 * to come after the other slabs with objects in
1390 * so that the others get filled first. That way the
1391 * size of the partial list stays small.
1393 * kmem_cache_shrink can reclaim any empty slabs from
1394 * the partial list.
1396 add_partial(n, page, 1);
1397 slab_unlock(page);
1398 } else {
1399 slab_unlock(page);
1400 stat(get_cpu_slab(s, raw_smp_processor_id()), FREE_SLAB);
1401 discard_slab(s, page);
1407 * Remove the cpu slab
1409 static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1411 struct page *page = c->page;
1412 int tail = 1;
1414 if (page->freelist)
1415 stat(c, DEACTIVATE_REMOTE_FREES);
1417 * Merge cpu freelist into slab freelist. Typically we get here
1418 * because both freelists are empty. So this is unlikely
1419 * to occur.
1421 while (unlikely(c->freelist)) {
1422 void **object;
1424 tail = 0; /* Hot objects. Put the slab first */
1426 /* Retrieve object from cpu_freelist */
1427 object = c->freelist;
1428 c->freelist = c->freelist[c->offset];
1430 /* And put onto the regular freelist */
1431 object[c->offset] = page->freelist;
1432 page->freelist = object;
1433 page->inuse--;
1435 c->page = NULL;
1436 unfreeze_slab(s, page, tail);
1439 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1441 stat(c, CPUSLAB_FLUSH);
1442 slab_lock(c->page);
1443 deactivate_slab(s, c);
1447 * Flush cpu slab.
1449 * Called from IPI handler with interrupts disabled.
1451 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
1453 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
1455 if (likely(c && c->page))
1456 flush_slab(s, c);
1459 static void flush_cpu_slab(void *d)
1461 struct kmem_cache *s = d;
1463 __flush_cpu_slab(s, smp_processor_id());
1466 static void flush_all(struct kmem_cache *s)
1468 on_each_cpu(flush_cpu_slab, s, 1);
1472 * Check if the objects in a per cpu structure fit numa
1473 * locality expectations.
1475 static inline int node_match(struct kmem_cache_cpu *c, int node)
1477 #ifdef CONFIG_NUMA
1478 if (node != -1 && c->node != node)
1479 return 0;
1480 #endif
1481 return 1;
1485 * Slow path. The lockless freelist is empty or we need to perform
1486 * debugging duties.
1488 * Interrupts are disabled.
1490 * Processing is still very fast if new objects have been freed to the
1491 * regular freelist. In that case we simply take over the regular freelist
1492 * as the lockless freelist and zap the regular freelist.
1494 * If that is not working then we fall back to the partial lists. We take the
1495 * first element of the freelist as the object to allocate now and move the
1496 * rest of the freelist to the lockless freelist.
1498 * And if we were unable to get a new slab from the partial slab lists then
1499 * we need to allocate a new slab. This is the slowest path since it involves
1500 * a call to the page allocator and the setup of a new slab.
1502 static void *__slab_alloc(struct kmem_cache *s,
1503 gfp_t gfpflags, int node, void *addr, struct kmem_cache_cpu *c)
1505 void **object;
1506 struct page *new;
1508 /* We handle __GFP_ZERO in the caller */
1509 gfpflags &= ~__GFP_ZERO;
1511 if (!c->page)
1512 goto new_slab;
1514 slab_lock(c->page);
1515 if (unlikely(!node_match(c, node)))
1516 goto another_slab;
1518 stat(c, ALLOC_REFILL);
1520 load_freelist:
1521 object = c->page->freelist;
1522 if (unlikely(!object))
1523 goto another_slab;
1524 if (unlikely(SLABDEBUG && PageSlubDebug(c->page)))
1525 goto debug;
1527 c->freelist = object[c->offset];
1528 c->page->inuse = c->page->objects;
1529 c->page->freelist = NULL;
1530 c->node = page_to_nid(c->page);
1531 unlock_out:
1532 slab_unlock(c->page);
1533 stat(c, ALLOC_SLOWPATH);
1534 return object;
1536 another_slab:
1537 deactivate_slab(s, c);
1539 new_slab:
1540 new = get_partial(s, gfpflags, node);
1541 if (new) {
1542 c->page = new;
1543 stat(c, ALLOC_FROM_PARTIAL);
1544 goto load_freelist;
1547 if (gfpflags & __GFP_WAIT)
1548 local_irq_enable();
1550 new = new_slab(s, gfpflags, node);
1552 if (gfpflags & __GFP_WAIT)
1553 local_irq_disable();
1555 if (new) {
1556 c = get_cpu_slab(s, smp_processor_id());
1557 stat(c, ALLOC_SLAB);
1558 if (c->page)
1559 flush_slab(s, c);
1560 slab_lock(new);
1561 __SetPageSlubFrozen(new);
1562 c->page = new;
1563 goto load_freelist;
1565 return NULL;
1566 debug:
1567 if (!alloc_debug_processing(s, c->page, object, addr))
1568 goto another_slab;
1570 c->page->inuse++;
1571 c->page->freelist = object[c->offset];
1572 c->node = -1;
1573 goto unlock_out;
1577 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1578 * have the fastpath folded into their functions. So no function call
1579 * overhead for requests that can be satisfied on the fastpath.
1581 * The fastpath works by first checking if the lockless freelist can be used.
1582 * If not then __slab_alloc is called for slow processing.
1584 * Otherwise we can simply pick the next object from the lockless free list.
1586 static __always_inline void *slab_alloc(struct kmem_cache *s,
1587 gfp_t gfpflags, int node, void *addr)
1589 void **object;
1590 struct kmem_cache_cpu *c;
1591 unsigned long flags;
1592 unsigned int objsize;
1594 local_irq_save(flags);
1595 c = get_cpu_slab(s, smp_processor_id());
1596 objsize = c->objsize;
1597 if (unlikely(!c->freelist || !node_match(c, node)))
1599 object = __slab_alloc(s, gfpflags, node, addr, c);
1601 else {
1602 object = c->freelist;
1603 c->freelist = object[c->offset];
1604 stat(c, ALLOC_FASTPATH);
1606 local_irq_restore(flags);
1608 if (unlikely((gfpflags & __GFP_ZERO) && object))
1609 memset(object, 0, objsize);
1611 return object;
1614 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1616 return slab_alloc(s, gfpflags, -1, __builtin_return_address(0));
1618 EXPORT_SYMBOL(kmem_cache_alloc);
1620 #ifdef CONFIG_NUMA
1621 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
1623 return slab_alloc(s, gfpflags, node, __builtin_return_address(0));
1625 EXPORT_SYMBOL(kmem_cache_alloc_node);
1626 #endif
1629 * Slow patch handling. This may still be called frequently since objects
1630 * have a longer lifetime than the cpu slabs in most processing loads.
1632 * So we still attempt to reduce cache line usage. Just take the slab
1633 * lock and free the item. If there is no additional partial page
1634 * handling required then we can return immediately.
1636 static void __slab_free(struct kmem_cache *s, struct page *page,
1637 void *x, void *addr, unsigned int offset)
1639 void *prior;
1640 void **object = (void *)x;
1641 struct kmem_cache_cpu *c;
1643 c = get_cpu_slab(s, raw_smp_processor_id());
1644 stat(c, FREE_SLOWPATH);
1645 slab_lock(page);
1647 if (unlikely(SLABDEBUG && PageSlubDebug(page)))
1648 goto debug;
1650 checks_ok:
1651 prior = object[offset] = page->freelist;
1652 page->freelist = object;
1653 page->inuse--;
1655 if (unlikely(PageSlubFrozen(page))) {
1656 stat(c, FREE_FROZEN);
1657 goto out_unlock;
1660 if (unlikely(!page->inuse))
1661 goto slab_empty;
1664 * Objects left in the slab. If it was not on the partial list before
1665 * then add it.
1667 if (unlikely(!prior)) {
1668 add_partial(get_node(s, page_to_nid(page)), page, 1);
1669 stat(c, FREE_ADD_PARTIAL);
1672 out_unlock:
1673 slab_unlock(page);
1674 return;
1676 slab_empty:
1677 if (prior) {
1679 * Slab still on the partial list.
1681 remove_partial(s, page);
1682 stat(c, FREE_REMOVE_PARTIAL);
1684 slab_unlock(page);
1685 stat(c, FREE_SLAB);
1686 discard_slab(s, page);
1687 return;
1689 debug:
1690 if (!free_debug_processing(s, page, x, addr))
1691 goto out_unlock;
1692 goto checks_ok;
1696 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1697 * can perform fastpath freeing without additional function calls.
1699 * The fastpath is only possible if we are freeing to the current cpu slab
1700 * of this processor. This typically the case if we have just allocated
1701 * the item before.
1703 * If fastpath is not possible then fall back to __slab_free where we deal
1704 * with all sorts of special processing.
1706 static __always_inline void slab_free(struct kmem_cache *s,
1707 struct page *page, void *x, void *addr)
1709 void **object = (void *)x;
1710 struct kmem_cache_cpu *c;
1711 unsigned long flags;
1713 local_irq_save(flags);
1714 c = get_cpu_slab(s, smp_processor_id());
1715 debug_check_no_locks_freed(object, c->objsize);
1716 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1717 debug_check_no_obj_freed(object, s->objsize);
1718 if (likely(page == c->page && c->node >= 0)) {
1719 object[c->offset] = c->freelist;
1720 c->freelist = object;
1721 stat(c, FREE_FASTPATH);
1722 } else
1723 __slab_free(s, page, x, addr, c->offset);
1725 local_irq_restore(flags);
1728 void kmem_cache_free(struct kmem_cache *s, void *x)
1730 struct page *page;
1732 page = virt_to_head_page(x);
1734 slab_free(s, page, x, __builtin_return_address(0));
1736 EXPORT_SYMBOL(kmem_cache_free);
1738 /* Figure out on which slab object the object resides */
1739 static struct page *get_object_page(const void *x)
1741 struct page *page = virt_to_head_page(x);
1743 if (!PageSlab(page))
1744 return NULL;
1746 return page;
1750 * Object placement in a slab is made very easy because we always start at
1751 * offset 0. If we tune the size of the object to the alignment then we can
1752 * get the required alignment by putting one properly sized object after
1753 * another.
1755 * Notice that the allocation order determines the sizes of the per cpu
1756 * caches. Each processor has always one slab available for allocations.
1757 * Increasing the allocation order reduces the number of times that slabs
1758 * must be moved on and off the partial lists and is therefore a factor in
1759 * locking overhead.
1763 * Mininum / Maximum order of slab pages. This influences locking overhead
1764 * and slab fragmentation. A higher order reduces the number of partial slabs
1765 * and increases the number of allocations possible without having to
1766 * take the list_lock.
1768 static int slub_min_order;
1769 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
1770 static int slub_min_objects;
1773 * Merge control. If this is set then no merging of slab caches will occur.
1774 * (Could be removed. This was introduced to pacify the merge skeptics.)
1776 static int slub_nomerge;
1779 * Calculate the order of allocation given an slab object size.
1781 * The order of allocation has significant impact on performance and other
1782 * system components. Generally order 0 allocations should be preferred since
1783 * order 0 does not cause fragmentation in the page allocator. Larger objects
1784 * be problematic to put into order 0 slabs because there may be too much
1785 * unused space left. We go to a higher order if more than 1/16th of the slab
1786 * would be wasted.
1788 * In order to reach satisfactory performance we must ensure that a minimum
1789 * number of objects is in one slab. Otherwise we may generate too much
1790 * activity on the partial lists which requires taking the list_lock. This is
1791 * less a concern for large slabs though which are rarely used.
1793 * slub_max_order specifies the order where we begin to stop considering the
1794 * number of objects in a slab as critical. If we reach slub_max_order then
1795 * we try to keep the page order as low as possible. So we accept more waste
1796 * of space in favor of a small page order.
1798 * Higher order allocations also allow the placement of more objects in a
1799 * slab and thereby reduce object handling overhead. If the user has
1800 * requested a higher mininum order then we start with that one instead of
1801 * the smallest order which will fit the object.
1803 static inline int slab_order(int size, int min_objects,
1804 int max_order, int fract_leftover)
1806 int order;
1807 int rem;
1808 int min_order = slub_min_order;
1810 if ((PAGE_SIZE << min_order) / size > 65535)
1811 return get_order(size * 65535) - 1;
1813 for (order = max(min_order,
1814 fls(min_objects * size - 1) - PAGE_SHIFT);
1815 order <= max_order; order++) {
1817 unsigned long slab_size = PAGE_SIZE << order;
1819 if (slab_size < min_objects * size)
1820 continue;
1822 rem = slab_size % size;
1824 if (rem <= slab_size / fract_leftover)
1825 break;
1829 return order;
1832 static inline int calculate_order(int size)
1834 int order;
1835 int min_objects;
1836 int fraction;
1839 * Attempt to find best configuration for a slab. This
1840 * works by first attempting to generate a layout with
1841 * the best configuration and backing off gradually.
1843 * First we reduce the acceptable waste in a slab. Then
1844 * we reduce the minimum objects required in a slab.
1846 min_objects = slub_min_objects;
1847 if (!min_objects)
1848 min_objects = 4 * (fls(nr_cpu_ids) + 1);
1849 while (min_objects > 1) {
1850 fraction = 16;
1851 while (fraction >= 4) {
1852 order = slab_order(size, min_objects,
1853 slub_max_order, fraction);
1854 if (order <= slub_max_order)
1855 return order;
1856 fraction /= 2;
1858 min_objects /= 2;
1862 * We were unable to place multiple objects in a slab. Now
1863 * lets see if we can place a single object there.
1865 order = slab_order(size, 1, slub_max_order, 1);
1866 if (order <= slub_max_order)
1867 return order;
1870 * Doh this slab cannot be placed using slub_max_order.
1872 order = slab_order(size, 1, MAX_ORDER, 1);
1873 if (order <= MAX_ORDER)
1874 return order;
1875 return -ENOSYS;
1879 * Figure out what the alignment of the objects will be.
1881 static unsigned long calculate_alignment(unsigned long flags,
1882 unsigned long align, unsigned long size)
1885 * If the user wants hardware cache aligned objects then follow that
1886 * suggestion if the object is sufficiently large.
1888 * The hardware cache alignment cannot override the specified
1889 * alignment though. If that is greater then use it.
1891 if (flags & SLAB_HWCACHE_ALIGN) {
1892 unsigned long ralign = cache_line_size();
1893 while (size <= ralign / 2)
1894 ralign /= 2;
1895 align = max(align, ralign);
1898 if (align < ARCH_SLAB_MINALIGN)
1899 align = ARCH_SLAB_MINALIGN;
1901 return ALIGN(align, sizeof(void *));
1904 static void init_kmem_cache_cpu(struct kmem_cache *s,
1905 struct kmem_cache_cpu *c)
1907 c->page = NULL;
1908 c->freelist = NULL;
1909 c->node = 0;
1910 c->offset = s->offset / sizeof(void *);
1911 c->objsize = s->objsize;
1912 #ifdef CONFIG_SLUB_STATS
1913 memset(c->stat, 0, NR_SLUB_STAT_ITEMS * sizeof(unsigned));
1914 #endif
1917 static void
1918 init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
1920 n->nr_partial = 0;
1923 * The larger the object size is, the more pages we want on the partial
1924 * list to avoid pounding the page allocator excessively.
1926 n->min_partial = ilog2(s->size);
1927 if (n->min_partial < MIN_PARTIAL)
1928 n->min_partial = MIN_PARTIAL;
1929 else if (n->min_partial > MAX_PARTIAL)
1930 n->min_partial = MAX_PARTIAL;
1932 spin_lock_init(&n->list_lock);
1933 INIT_LIST_HEAD(&n->partial);
1934 #ifdef CONFIG_SLUB_DEBUG
1935 atomic_long_set(&n->nr_slabs, 0);
1936 atomic_long_set(&n->total_objects, 0);
1937 INIT_LIST_HEAD(&n->full);
1938 #endif
1941 #ifdef CONFIG_SMP
1943 * Per cpu array for per cpu structures.
1945 * The per cpu array places all kmem_cache_cpu structures from one processor
1946 * close together meaning that it becomes possible that multiple per cpu
1947 * structures are contained in one cacheline. This may be particularly
1948 * beneficial for the kmalloc caches.
1950 * A desktop system typically has around 60-80 slabs. With 100 here we are
1951 * likely able to get per cpu structures for all caches from the array defined
1952 * here. We must be able to cover all kmalloc caches during bootstrap.
1954 * If the per cpu array is exhausted then fall back to kmalloc
1955 * of individual cachelines. No sharing is possible then.
1957 #define NR_KMEM_CACHE_CPU 100
1959 static DEFINE_PER_CPU(struct kmem_cache_cpu,
1960 kmem_cache_cpu)[NR_KMEM_CACHE_CPU];
1962 static DEFINE_PER_CPU(struct kmem_cache_cpu *, kmem_cache_cpu_free);
1963 static cpumask_t kmem_cach_cpu_free_init_once = CPU_MASK_NONE;
1965 static struct kmem_cache_cpu *alloc_kmem_cache_cpu(struct kmem_cache *s,
1966 int cpu, gfp_t flags)
1968 struct kmem_cache_cpu *c = per_cpu(kmem_cache_cpu_free, cpu);
1970 if (c)
1971 per_cpu(kmem_cache_cpu_free, cpu) =
1972 (void *)c->freelist;
1973 else {
1974 /* Table overflow: So allocate ourselves */
1975 c = kmalloc_node(
1976 ALIGN(sizeof(struct kmem_cache_cpu), cache_line_size()),
1977 flags, cpu_to_node(cpu));
1978 if (!c)
1979 return NULL;
1982 init_kmem_cache_cpu(s, c);
1983 return c;
1986 static void free_kmem_cache_cpu(struct kmem_cache_cpu *c, int cpu)
1988 if (c < per_cpu(kmem_cache_cpu, cpu) ||
1989 c > per_cpu(kmem_cache_cpu, cpu) + NR_KMEM_CACHE_CPU) {
1990 kfree(c);
1991 return;
1993 c->freelist = (void *)per_cpu(kmem_cache_cpu_free, cpu);
1994 per_cpu(kmem_cache_cpu_free, cpu) = c;
1997 static void free_kmem_cache_cpus(struct kmem_cache *s)
1999 int cpu;
2001 for_each_online_cpu(cpu) {
2002 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
2004 if (c) {
2005 s->cpu_slab[cpu] = NULL;
2006 free_kmem_cache_cpu(c, cpu);
2011 static int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
2013 int cpu;
2015 for_each_online_cpu(cpu) {
2016 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
2018 if (c)
2019 continue;
2021 c = alloc_kmem_cache_cpu(s, cpu, flags);
2022 if (!c) {
2023 free_kmem_cache_cpus(s);
2024 return 0;
2026 s->cpu_slab[cpu] = c;
2028 return 1;
2032 * Initialize the per cpu array.
2034 static void init_alloc_cpu_cpu(int cpu)
2036 int i;
2038 if (cpu_isset(cpu, kmem_cach_cpu_free_init_once))
2039 return;
2041 for (i = NR_KMEM_CACHE_CPU - 1; i >= 0; i--)
2042 free_kmem_cache_cpu(&per_cpu(kmem_cache_cpu, cpu)[i], cpu);
2044 cpu_set(cpu, kmem_cach_cpu_free_init_once);
2047 static void __init init_alloc_cpu(void)
2049 int cpu;
2051 for_each_online_cpu(cpu)
2052 init_alloc_cpu_cpu(cpu);
2055 #else
2056 static inline void free_kmem_cache_cpus(struct kmem_cache *s) {}
2057 static inline void init_alloc_cpu(void) {}
2059 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
2061 init_kmem_cache_cpu(s, &s->cpu_slab);
2062 return 1;
2064 #endif
2066 #ifdef CONFIG_NUMA
2068 * No kmalloc_node yet so do it by hand. We know that this is the first
2069 * slab on the node for this slabcache. There are no concurrent accesses
2070 * possible.
2072 * Note that this function only works on the kmalloc_node_cache
2073 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2074 * memory on a fresh node that has no slab structures yet.
2076 static struct kmem_cache_node *early_kmem_cache_node_alloc(gfp_t gfpflags,
2077 int node)
2079 struct page *page;
2080 struct kmem_cache_node *n;
2081 unsigned long flags;
2083 BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
2085 page = new_slab(kmalloc_caches, gfpflags, node);
2087 BUG_ON(!page);
2088 if (page_to_nid(page) != node) {
2089 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2090 "node %d\n", node);
2091 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2092 "in order to be able to continue\n");
2095 n = page->freelist;
2096 BUG_ON(!n);
2097 page->freelist = get_freepointer(kmalloc_caches, n);
2098 page->inuse++;
2099 kmalloc_caches->node[node] = n;
2100 #ifdef CONFIG_SLUB_DEBUG
2101 init_object(kmalloc_caches, n, 1);
2102 init_tracking(kmalloc_caches, n);
2103 #endif
2104 init_kmem_cache_node(n, kmalloc_caches);
2105 inc_slabs_node(kmalloc_caches, node, page->objects);
2108 * lockdep requires consistent irq usage for each lock
2109 * so even though there cannot be a race this early in
2110 * the boot sequence, we still disable irqs.
2112 local_irq_save(flags);
2113 add_partial(n, page, 0);
2114 local_irq_restore(flags);
2115 return n;
2118 static void free_kmem_cache_nodes(struct kmem_cache *s)
2120 int node;
2122 for_each_node_state(node, N_NORMAL_MEMORY) {
2123 struct kmem_cache_node *n = s->node[node];
2124 if (n && n != &s->local_node)
2125 kmem_cache_free(kmalloc_caches, n);
2126 s->node[node] = NULL;
2130 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2132 int node;
2133 int local_node;
2135 if (slab_state >= UP)
2136 local_node = page_to_nid(virt_to_page(s));
2137 else
2138 local_node = 0;
2140 for_each_node_state(node, N_NORMAL_MEMORY) {
2141 struct kmem_cache_node *n;
2143 if (local_node == node)
2144 n = &s->local_node;
2145 else {
2146 if (slab_state == DOWN) {
2147 n = early_kmem_cache_node_alloc(gfpflags,
2148 node);
2149 continue;
2151 n = kmem_cache_alloc_node(kmalloc_caches,
2152 gfpflags, node);
2154 if (!n) {
2155 free_kmem_cache_nodes(s);
2156 return 0;
2160 s->node[node] = n;
2161 init_kmem_cache_node(n, s);
2163 return 1;
2165 #else
2166 static void free_kmem_cache_nodes(struct kmem_cache *s)
2170 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2172 init_kmem_cache_node(&s->local_node, s);
2173 return 1;
2175 #endif
2178 * calculate_sizes() determines the order and the distribution of data within
2179 * a slab object.
2181 static int calculate_sizes(struct kmem_cache *s, int forced_order)
2183 unsigned long flags = s->flags;
2184 unsigned long size = s->objsize;
2185 unsigned long align = s->align;
2186 int order;
2189 * Round up object size to the next word boundary. We can only
2190 * place the free pointer at word boundaries and this determines
2191 * the possible location of the free pointer.
2193 size = ALIGN(size, sizeof(void *));
2195 #ifdef CONFIG_SLUB_DEBUG
2197 * Determine if we can poison the object itself. If the user of
2198 * the slab may touch the object after free or before allocation
2199 * then we should never poison the object itself.
2201 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2202 !s->ctor)
2203 s->flags |= __OBJECT_POISON;
2204 else
2205 s->flags &= ~__OBJECT_POISON;
2209 * If we are Redzoning then check if there is some space between the
2210 * end of the object and the free pointer. If not then add an
2211 * additional word to have some bytes to store Redzone information.
2213 if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2214 size += sizeof(void *);
2215 #endif
2218 * With that we have determined the number of bytes in actual use
2219 * by the object. This is the potential offset to the free pointer.
2221 s->inuse = size;
2223 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2224 s->ctor)) {
2226 * Relocate free pointer after the object if it is not
2227 * permitted to overwrite the first word of the object on
2228 * kmem_cache_free.
2230 * This is the case if we do RCU, have a constructor or
2231 * destructor or are poisoning the objects.
2233 s->offset = size;
2234 size += sizeof(void *);
2237 #ifdef CONFIG_SLUB_DEBUG
2238 if (flags & SLAB_STORE_USER)
2240 * Need to store information about allocs and frees after
2241 * the object.
2243 size += 2 * sizeof(struct track);
2245 if (flags & SLAB_RED_ZONE)
2247 * Add some empty padding so that we can catch
2248 * overwrites from earlier objects rather than let
2249 * tracking information or the free pointer be
2250 * corrupted if an user writes before the start
2251 * of the object.
2253 size += sizeof(void *);
2254 #endif
2257 * Determine the alignment based on various parameters that the
2258 * user specified and the dynamic determination of cache line size
2259 * on bootup.
2261 align = calculate_alignment(flags, align, s->objsize);
2264 * SLUB stores one object immediately after another beginning from
2265 * offset 0. In order to align the objects we have to simply size
2266 * each object to conform to the alignment.
2268 size = ALIGN(size, align);
2269 s->size = size;
2270 if (forced_order >= 0)
2271 order = forced_order;
2272 else
2273 order = calculate_order(size);
2275 if (order < 0)
2276 return 0;
2278 s->allocflags = 0;
2279 if (order)
2280 s->allocflags |= __GFP_COMP;
2282 if (s->flags & SLAB_CACHE_DMA)
2283 s->allocflags |= SLUB_DMA;
2285 if (s->flags & SLAB_RECLAIM_ACCOUNT)
2286 s->allocflags |= __GFP_RECLAIMABLE;
2289 * Determine the number of objects per slab
2291 s->oo = oo_make(order, size);
2292 s->min = oo_make(get_order(size), size);
2293 if (oo_objects(s->oo) > oo_objects(s->max))
2294 s->max = s->oo;
2296 return !!oo_objects(s->oo);
2300 static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
2301 const char *name, size_t size,
2302 size_t align, unsigned long flags,
2303 void (*ctor)(void *))
2305 memset(s, 0, kmem_size);
2306 s->name = name;
2307 s->ctor = ctor;
2308 s->objsize = size;
2309 s->align = align;
2310 s->flags = kmem_cache_flags(size, flags, name, ctor);
2312 if (!calculate_sizes(s, -1))
2313 goto error;
2315 s->refcount = 1;
2316 #ifdef CONFIG_NUMA
2317 s->remote_node_defrag_ratio = 1000;
2318 #endif
2319 if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
2320 goto error;
2322 if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA))
2323 return 1;
2324 free_kmem_cache_nodes(s);
2325 error:
2326 if (flags & SLAB_PANIC)
2327 panic("Cannot create slab %s size=%lu realsize=%u "
2328 "order=%u offset=%u flags=%lx\n",
2329 s->name, (unsigned long)size, s->size, oo_order(s->oo),
2330 s->offset, flags);
2331 return 0;
2335 * Check if a given pointer is valid
2337 int kmem_ptr_validate(struct kmem_cache *s, const void *object)
2339 struct page *page;
2341 page = get_object_page(object);
2343 if (!page || s != page->slab)
2344 /* No slab or wrong slab */
2345 return 0;
2347 if (!check_valid_pointer(s, page, object))
2348 return 0;
2351 * We could also check if the object is on the slabs freelist.
2352 * But this would be too expensive and it seems that the main
2353 * purpose of kmem_ptr_valid() is to check if the object belongs
2354 * to a certain slab.
2356 return 1;
2358 EXPORT_SYMBOL(kmem_ptr_validate);
2361 * Determine the size of a slab object
2363 unsigned int kmem_cache_size(struct kmem_cache *s)
2365 return s->objsize;
2367 EXPORT_SYMBOL(kmem_cache_size);
2369 const char *kmem_cache_name(struct kmem_cache *s)
2371 return s->name;
2373 EXPORT_SYMBOL(kmem_cache_name);
2375 static void list_slab_objects(struct kmem_cache *s, struct page *page,
2376 const char *text)
2378 #ifdef CONFIG_SLUB_DEBUG
2379 void *addr = page_address(page);
2380 void *p;
2381 DECLARE_BITMAP(map, page->objects);
2383 bitmap_zero(map, page->objects);
2384 slab_err(s, page, "%s", text);
2385 slab_lock(page);
2386 for_each_free_object(p, s, page->freelist)
2387 set_bit(slab_index(p, s, addr), map);
2389 for_each_object(p, s, addr, page->objects) {
2391 if (!test_bit(slab_index(p, s, addr), map)) {
2392 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
2393 p, p - addr);
2394 print_tracking(s, p);
2397 slab_unlock(page);
2398 #endif
2402 * Attempt to free all partial slabs on a node.
2404 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
2406 unsigned long flags;
2407 struct page *page, *h;
2409 spin_lock_irqsave(&n->list_lock, flags);
2410 list_for_each_entry_safe(page, h, &n->partial, lru) {
2411 if (!page->inuse) {
2412 list_del(&page->lru);
2413 discard_slab(s, page);
2414 n->nr_partial--;
2415 } else {
2416 list_slab_objects(s, page,
2417 "Objects remaining on kmem_cache_close()");
2420 spin_unlock_irqrestore(&n->list_lock, flags);
2424 * Release all resources used by a slab cache.
2426 static inline int kmem_cache_close(struct kmem_cache *s)
2428 int node;
2430 flush_all(s);
2432 /* Attempt to free all objects */
2433 free_kmem_cache_cpus(s);
2434 for_each_node_state(node, N_NORMAL_MEMORY) {
2435 struct kmem_cache_node *n = get_node(s, node);
2437 free_partial(s, n);
2438 if (n->nr_partial || slabs_node(s, node))
2439 return 1;
2441 free_kmem_cache_nodes(s);
2442 return 0;
2446 * Close a cache and release the kmem_cache structure
2447 * (must be used for caches created using kmem_cache_create)
2449 void kmem_cache_destroy(struct kmem_cache *s)
2451 down_write(&slub_lock);
2452 s->refcount--;
2453 if (!s->refcount) {
2454 list_del(&s->list);
2455 up_write(&slub_lock);
2456 if (kmem_cache_close(s)) {
2457 printk(KERN_ERR "SLUB %s: %s called for cache that "
2458 "still has objects.\n", s->name, __func__);
2459 dump_stack();
2461 sysfs_slab_remove(s);
2462 } else
2463 up_write(&slub_lock);
2465 EXPORT_SYMBOL(kmem_cache_destroy);
2467 /********************************************************************
2468 * Kmalloc subsystem
2469 *******************************************************************/
2471 struct kmem_cache kmalloc_caches[PAGE_SHIFT + 1] __cacheline_aligned;
2472 EXPORT_SYMBOL(kmalloc_caches);
2474 static int __init setup_slub_min_order(char *str)
2476 get_option(&str, &slub_min_order);
2478 return 1;
2481 __setup("slub_min_order=", setup_slub_min_order);
2483 static int __init setup_slub_max_order(char *str)
2485 get_option(&str, &slub_max_order);
2487 return 1;
2490 __setup("slub_max_order=", setup_slub_max_order);
2492 static int __init setup_slub_min_objects(char *str)
2494 get_option(&str, &slub_min_objects);
2496 return 1;
2499 __setup("slub_min_objects=", setup_slub_min_objects);
2501 static int __init setup_slub_nomerge(char *str)
2503 slub_nomerge = 1;
2504 return 1;
2507 __setup("slub_nomerge", setup_slub_nomerge);
2509 static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
2510 const char *name, int size, gfp_t gfp_flags)
2512 unsigned int flags = 0;
2514 if (gfp_flags & SLUB_DMA)
2515 flags = SLAB_CACHE_DMA;
2517 down_write(&slub_lock);
2518 if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
2519 flags, NULL))
2520 goto panic;
2522 list_add(&s->list, &slab_caches);
2523 up_write(&slub_lock);
2524 if (sysfs_slab_add(s))
2525 goto panic;
2526 return s;
2528 panic:
2529 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
2532 #ifdef CONFIG_ZONE_DMA
2533 static struct kmem_cache *kmalloc_caches_dma[PAGE_SHIFT + 1];
2535 static void sysfs_add_func(struct work_struct *w)
2537 struct kmem_cache *s;
2539 down_write(&slub_lock);
2540 list_for_each_entry(s, &slab_caches, list) {
2541 if (s->flags & __SYSFS_ADD_DEFERRED) {
2542 s->flags &= ~__SYSFS_ADD_DEFERRED;
2543 sysfs_slab_add(s);
2546 up_write(&slub_lock);
2549 static DECLARE_WORK(sysfs_add_work, sysfs_add_func);
2551 static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
2553 struct kmem_cache *s;
2554 char *text;
2555 size_t realsize;
2557 s = kmalloc_caches_dma[index];
2558 if (s)
2559 return s;
2561 /* Dynamically create dma cache */
2562 if (flags & __GFP_WAIT)
2563 down_write(&slub_lock);
2564 else {
2565 if (!down_write_trylock(&slub_lock))
2566 goto out;
2569 if (kmalloc_caches_dma[index])
2570 goto unlock_out;
2572 realsize = kmalloc_caches[index].objsize;
2573 text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d",
2574 (unsigned int)realsize);
2575 s = kmalloc(kmem_size, flags & ~SLUB_DMA);
2577 if (!s || !text || !kmem_cache_open(s, flags, text,
2578 realsize, ARCH_KMALLOC_MINALIGN,
2579 SLAB_CACHE_DMA|__SYSFS_ADD_DEFERRED, NULL)) {
2580 kfree(s);
2581 kfree(text);
2582 goto unlock_out;
2585 list_add(&s->list, &slab_caches);
2586 kmalloc_caches_dma[index] = s;
2588 schedule_work(&sysfs_add_work);
2590 unlock_out:
2591 up_write(&slub_lock);
2592 out:
2593 return kmalloc_caches_dma[index];
2595 #endif
2598 * Conversion table for small slabs sizes / 8 to the index in the
2599 * kmalloc array. This is necessary for slabs < 192 since we have non power
2600 * of two cache sizes there. The size of larger slabs can be determined using
2601 * fls.
2603 static s8 size_index[24] = {
2604 3, /* 8 */
2605 4, /* 16 */
2606 5, /* 24 */
2607 5, /* 32 */
2608 6, /* 40 */
2609 6, /* 48 */
2610 6, /* 56 */
2611 6, /* 64 */
2612 1, /* 72 */
2613 1, /* 80 */
2614 1, /* 88 */
2615 1, /* 96 */
2616 7, /* 104 */
2617 7, /* 112 */
2618 7, /* 120 */
2619 7, /* 128 */
2620 2, /* 136 */
2621 2, /* 144 */
2622 2, /* 152 */
2623 2, /* 160 */
2624 2, /* 168 */
2625 2, /* 176 */
2626 2, /* 184 */
2627 2 /* 192 */
2630 static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2632 int index;
2634 if (size <= 192) {
2635 if (!size)
2636 return ZERO_SIZE_PTR;
2638 index = size_index[(size - 1) / 8];
2639 } else
2640 index = fls(size - 1);
2642 #ifdef CONFIG_ZONE_DMA
2643 if (unlikely((flags & SLUB_DMA)))
2644 return dma_kmalloc_cache(index, flags);
2646 #endif
2647 return &kmalloc_caches[index];
2650 void *__kmalloc(size_t size, gfp_t flags)
2652 struct kmem_cache *s;
2654 if (unlikely(size > PAGE_SIZE))
2655 return kmalloc_large(size, flags);
2657 s = get_slab(size, flags);
2659 if (unlikely(ZERO_OR_NULL_PTR(s)))
2660 return s;
2662 return slab_alloc(s, flags, -1, __builtin_return_address(0));
2664 EXPORT_SYMBOL(__kmalloc);
2666 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
2668 struct page *page = alloc_pages_node(node, flags | __GFP_COMP,
2669 get_order(size));
2671 if (page)
2672 return page_address(page);
2673 else
2674 return NULL;
2677 #ifdef CONFIG_NUMA
2678 void *__kmalloc_node(size_t size, gfp_t flags, int node)
2680 struct kmem_cache *s;
2682 if (unlikely(size > PAGE_SIZE))
2683 return kmalloc_large_node(size, flags, node);
2685 s = get_slab(size, flags);
2687 if (unlikely(ZERO_OR_NULL_PTR(s)))
2688 return s;
2690 return slab_alloc(s, flags, node, __builtin_return_address(0));
2692 EXPORT_SYMBOL(__kmalloc_node);
2693 #endif
2695 size_t ksize(const void *object)
2697 struct page *page;
2698 struct kmem_cache *s;
2700 if (unlikely(object == ZERO_SIZE_PTR))
2701 return 0;
2703 page = virt_to_head_page(object);
2705 if (unlikely(!PageSlab(page))) {
2706 WARN_ON(!PageCompound(page));
2707 return PAGE_SIZE << compound_order(page);
2709 s = page->slab;
2711 #ifdef CONFIG_SLUB_DEBUG
2713 * Debugging requires use of the padding between object
2714 * and whatever may come after it.
2716 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
2717 return s->objsize;
2719 #endif
2721 * If we have the need to store the freelist pointer
2722 * back there or track user information then we can
2723 * only use the space before that information.
2725 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
2726 return s->inuse;
2728 * Else we can use all the padding etc for the allocation
2730 return s->size;
2733 void kfree(const void *x)
2735 struct page *page;
2736 void *object = (void *)x;
2738 if (unlikely(ZERO_OR_NULL_PTR(x)))
2739 return;
2741 page = virt_to_head_page(x);
2742 if (unlikely(!PageSlab(page))) {
2743 BUG_ON(!PageCompound(page));
2744 put_page(page);
2745 return;
2747 slab_free(page->slab, page, object, __builtin_return_address(0));
2749 EXPORT_SYMBOL(kfree);
2752 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2753 * the remaining slabs by the number of items in use. The slabs with the
2754 * most items in use come first. New allocations will then fill those up
2755 * and thus they can be removed from the partial lists.
2757 * The slabs with the least items are placed last. This results in them
2758 * being allocated from last increasing the chance that the last objects
2759 * are freed in them.
2761 int kmem_cache_shrink(struct kmem_cache *s)
2763 int node;
2764 int i;
2765 struct kmem_cache_node *n;
2766 struct page *page;
2767 struct page *t;
2768 int objects = oo_objects(s->max);
2769 struct list_head *slabs_by_inuse =
2770 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
2771 unsigned long flags;
2773 if (!slabs_by_inuse)
2774 return -ENOMEM;
2776 flush_all(s);
2777 for_each_node_state(node, N_NORMAL_MEMORY) {
2778 n = get_node(s, node);
2780 if (!n->nr_partial)
2781 continue;
2783 for (i = 0; i < objects; i++)
2784 INIT_LIST_HEAD(slabs_by_inuse + i);
2786 spin_lock_irqsave(&n->list_lock, flags);
2789 * Build lists indexed by the items in use in each slab.
2791 * Note that concurrent frees may occur while we hold the
2792 * list_lock. page->inuse here is the upper limit.
2794 list_for_each_entry_safe(page, t, &n->partial, lru) {
2795 if (!page->inuse && slab_trylock(page)) {
2797 * Must hold slab lock here because slab_free
2798 * may have freed the last object and be
2799 * waiting to release the slab.
2801 list_del(&page->lru);
2802 n->nr_partial--;
2803 slab_unlock(page);
2804 discard_slab(s, page);
2805 } else {
2806 list_move(&page->lru,
2807 slabs_by_inuse + page->inuse);
2812 * Rebuild the partial list with the slabs filled up most
2813 * first and the least used slabs at the end.
2815 for (i = objects - 1; i >= 0; i--)
2816 list_splice(slabs_by_inuse + i, n->partial.prev);
2818 spin_unlock_irqrestore(&n->list_lock, flags);
2821 kfree(slabs_by_inuse);
2822 return 0;
2824 EXPORT_SYMBOL(kmem_cache_shrink);
2826 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
2827 static int slab_mem_going_offline_callback(void *arg)
2829 struct kmem_cache *s;
2831 down_read(&slub_lock);
2832 list_for_each_entry(s, &slab_caches, list)
2833 kmem_cache_shrink(s);
2834 up_read(&slub_lock);
2836 return 0;
2839 static void slab_mem_offline_callback(void *arg)
2841 struct kmem_cache_node *n;
2842 struct kmem_cache *s;
2843 struct memory_notify *marg = arg;
2844 int offline_node;
2846 offline_node = marg->status_change_nid;
2849 * If the node still has available memory. we need kmem_cache_node
2850 * for it yet.
2852 if (offline_node < 0)
2853 return;
2855 down_read(&slub_lock);
2856 list_for_each_entry(s, &slab_caches, list) {
2857 n = get_node(s, offline_node);
2858 if (n) {
2860 * if n->nr_slabs > 0, slabs still exist on the node
2861 * that is going down. We were unable to free them,
2862 * and offline_pages() function shoudn't call this
2863 * callback. So, we must fail.
2865 BUG_ON(slabs_node(s, offline_node));
2867 s->node[offline_node] = NULL;
2868 kmem_cache_free(kmalloc_caches, n);
2871 up_read(&slub_lock);
2874 static int slab_mem_going_online_callback(void *arg)
2876 struct kmem_cache_node *n;
2877 struct kmem_cache *s;
2878 struct memory_notify *marg = arg;
2879 int nid = marg->status_change_nid;
2880 int ret = 0;
2883 * If the node's memory is already available, then kmem_cache_node is
2884 * already created. Nothing to do.
2886 if (nid < 0)
2887 return 0;
2890 * We are bringing a node online. No memory is available yet. We must
2891 * allocate a kmem_cache_node structure in order to bring the node
2892 * online.
2894 down_read(&slub_lock);
2895 list_for_each_entry(s, &slab_caches, list) {
2897 * XXX: kmem_cache_alloc_node will fallback to other nodes
2898 * since memory is not yet available from the node that
2899 * is brought up.
2901 n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL);
2902 if (!n) {
2903 ret = -ENOMEM;
2904 goto out;
2906 init_kmem_cache_node(n, s);
2907 s->node[nid] = n;
2909 out:
2910 up_read(&slub_lock);
2911 return ret;
2914 static int slab_memory_callback(struct notifier_block *self,
2915 unsigned long action, void *arg)
2917 int ret = 0;
2919 switch (action) {
2920 case MEM_GOING_ONLINE:
2921 ret = slab_mem_going_online_callback(arg);
2922 break;
2923 case MEM_GOING_OFFLINE:
2924 ret = slab_mem_going_offline_callback(arg);
2925 break;
2926 case MEM_OFFLINE:
2927 case MEM_CANCEL_ONLINE:
2928 slab_mem_offline_callback(arg);
2929 break;
2930 case MEM_ONLINE:
2931 case MEM_CANCEL_OFFLINE:
2932 break;
2935 ret = notifier_from_errno(ret);
2936 return ret;
2939 #endif /* CONFIG_MEMORY_HOTPLUG */
2941 /********************************************************************
2942 * Basic setup of slabs
2943 *******************************************************************/
2945 void __init kmem_cache_init(void)
2947 int i;
2948 int caches = 0;
2950 init_alloc_cpu();
2952 #ifdef CONFIG_NUMA
2954 * Must first have the slab cache available for the allocations of the
2955 * struct kmem_cache_node's. There is special bootstrap code in
2956 * kmem_cache_open for slab_state == DOWN.
2958 create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
2959 sizeof(struct kmem_cache_node), GFP_KERNEL);
2960 kmalloc_caches[0].refcount = -1;
2961 caches++;
2963 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
2964 #endif
2966 /* Able to allocate the per node structures */
2967 slab_state = PARTIAL;
2969 /* Caches that are not of the two-to-the-power-of size */
2970 if (KMALLOC_MIN_SIZE <= 64) {
2971 create_kmalloc_cache(&kmalloc_caches[1],
2972 "kmalloc-96", 96, GFP_KERNEL);
2973 caches++;
2974 create_kmalloc_cache(&kmalloc_caches[2],
2975 "kmalloc-192", 192, GFP_KERNEL);
2976 caches++;
2979 for (i = KMALLOC_SHIFT_LOW; i <= PAGE_SHIFT; i++) {
2980 create_kmalloc_cache(&kmalloc_caches[i],
2981 "kmalloc", 1 << i, GFP_KERNEL);
2982 caches++;
2987 * Patch up the size_index table if we have strange large alignment
2988 * requirements for the kmalloc array. This is only the case for
2989 * MIPS it seems. The standard arches will not generate any code here.
2991 * Largest permitted alignment is 256 bytes due to the way we
2992 * handle the index determination for the smaller caches.
2994 * Make sure that nothing crazy happens if someone starts tinkering
2995 * around with ARCH_KMALLOC_MINALIGN
2997 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
2998 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3000 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8)
3001 size_index[(i - 1) / 8] = KMALLOC_SHIFT_LOW;
3003 if (KMALLOC_MIN_SIZE == 128) {
3005 * The 192 byte sized cache is not used if the alignment
3006 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3007 * instead.
3009 for (i = 128 + 8; i <= 192; i += 8)
3010 size_index[(i - 1) / 8] = 8;
3013 slab_state = UP;
3015 /* Provide the correct kmalloc names now that the caches are up */
3016 for (i = KMALLOC_SHIFT_LOW; i <= PAGE_SHIFT; i++)
3017 kmalloc_caches[i]. name =
3018 kasprintf(GFP_KERNEL, "kmalloc-%d", 1 << i);
3020 #ifdef CONFIG_SMP
3021 register_cpu_notifier(&slab_notifier);
3022 kmem_size = offsetof(struct kmem_cache, cpu_slab) +
3023 nr_cpu_ids * sizeof(struct kmem_cache_cpu *);
3024 #else
3025 kmem_size = sizeof(struct kmem_cache);
3026 #endif
3028 printk(KERN_INFO
3029 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
3030 " CPUs=%d, Nodes=%d\n",
3031 caches, cache_line_size(),
3032 slub_min_order, slub_max_order, slub_min_objects,
3033 nr_cpu_ids, nr_node_ids);
3037 * Find a mergeable slab cache
3039 static int slab_unmergeable(struct kmem_cache *s)
3041 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3042 return 1;
3044 if (s->ctor)
3045 return 1;
3048 * We may have set a slab to be unmergeable during bootstrap.
3050 if (s->refcount < 0)
3051 return 1;
3053 return 0;
3056 static struct kmem_cache *find_mergeable(size_t size,
3057 size_t align, unsigned long flags, const char *name,
3058 void (*ctor)(void *))
3060 struct kmem_cache *s;
3062 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3063 return NULL;
3065 if (ctor)
3066 return NULL;
3068 size = ALIGN(size, sizeof(void *));
3069 align = calculate_alignment(flags, align, size);
3070 size = ALIGN(size, align);
3071 flags = kmem_cache_flags(size, flags, name, NULL);
3073 list_for_each_entry(s, &slab_caches, list) {
3074 if (slab_unmergeable(s))
3075 continue;
3077 if (size > s->size)
3078 continue;
3080 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
3081 continue;
3083 * Check if alignment is compatible.
3084 * Courtesy of Adrian Drzewiecki
3086 if ((s->size & ~(align - 1)) != s->size)
3087 continue;
3089 if (s->size - size >= sizeof(void *))
3090 continue;
3092 return s;
3094 return NULL;
3097 struct kmem_cache *kmem_cache_create(const char *name, size_t size,
3098 size_t align, unsigned long flags, void (*ctor)(void *))
3100 struct kmem_cache *s;
3102 down_write(&slub_lock);
3103 s = find_mergeable(size, align, flags, name, ctor);
3104 if (s) {
3105 int cpu;
3107 s->refcount++;
3109 * Adjust the object sizes so that we clear
3110 * the complete object on kzalloc.
3112 s->objsize = max(s->objsize, (int)size);
3115 * And then we need to update the object size in the
3116 * per cpu structures
3118 for_each_online_cpu(cpu)
3119 get_cpu_slab(s, cpu)->objsize = s->objsize;
3121 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3122 up_write(&slub_lock);
3124 if (sysfs_slab_alias(s, name))
3125 goto err;
3126 return s;
3129 s = kmalloc(kmem_size, GFP_KERNEL);
3130 if (s) {
3131 if (kmem_cache_open(s, GFP_KERNEL, name,
3132 size, align, flags, ctor)) {
3133 list_add(&s->list, &slab_caches);
3134 up_write(&slub_lock);
3135 if (sysfs_slab_add(s))
3136 goto err;
3137 return s;
3139 kfree(s);
3141 up_write(&slub_lock);
3143 err:
3144 if (flags & SLAB_PANIC)
3145 panic("Cannot create slabcache %s\n", name);
3146 else
3147 s = NULL;
3148 return s;
3150 EXPORT_SYMBOL(kmem_cache_create);
3152 #ifdef CONFIG_SMP
3154 * Use the cpu notifier to insure that the cpu slabs are flushed when
3155 * necessary.
3157 static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3158 unsigned long action, void *hcpu)
3160 long cpu = (long)hcpu;
3161 struct kmem_cache *s;
3162 unsigned long flags;
3164 switch (action) {
3165 case CPU_UP_PREPARE:
3166 case CPU_UP_PREPARE_FROZEN:
3167 init_alloc_cpu_cpu(cpu);
3168 down_read(&slub_lock);
3169 list_for_each_entry(s, &slab_caches, list)
3170 s->cpu_slab[cpu] = alloc_kmem_cache_cpu(s, cpu,
3171 GFP_KERNEL);
3172 up_read(&slub_lock);
3173 break;
3175 case CPU_UP_CANCELED:
3176 case CPU_UP_CANCELED_FROZEN:
3177 case CPU_DEAD:
3178 case CPU_DEAD_FROZEN:
3179 down_read(&slub_lock);
3180 list_for_each_entry(s, &slab_caches, list) {
3181 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3183 local_irq_save(flags);
3184 __flush_cpu_slab(s, cpu);
3185 local_irq_restore(flags);
3186 free_kmem_cache_cpu(c, cpu);
3187 s->cpu_slab[cpu] = NULL;
3189 up_read(&slub_lock);
3190 break;
3191 default:
3192 break;
3194 return NOTIFY_OK;
3197 static struct notifier_block __cpuinitdata slab_notifier = {
3198 .notifier_call = slab_cpuup_callback
3201 #endif
3203 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, void *caller)
3205 struct kmem_cache *s;
3207 if (unlikely(size > PAGE_SIZE))
3208 return kmalloc_large(size, gfpflags);
3210 s = get_slab(size, gfpflags);
3212 if (unlikely(ZERO_OR_NULL_PTR(s)))
3213 return s;
3215 return slab_alloc(s, gfpflags, -1, caller);
3218 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3219 int node, void *caller)
3221 struct kmem_cache *s;
3223 if (unlikely(size > PAGE_SIZE))
3224 return kmalloc_large_node(size, gfpflags, node);
3226 s = get_slab(size, gfpflags);
3228 if (unlikely(ZERO_OR_NULL_PTR(s)))
3229 return s;
3231 return slab_alloc(s, gfpflags, node, caller);
3234 #ifdef CONFIG_SLUB_DEBUG
3235 static unsigned long count_partial(struct kmem_cache_node *n,
3236 int (*get_count)(struct page *))
3238 unsigned long flags;
3239 unsigned long x = 0;
3240 struct page *page;
3242 spin_lock_irqsave(&n->list_lock, flags);
3243 list_for_each_entry(page, &n->partial, lru)
3244 x += get_count(page);
3245 spin_unlock_irqrestore(&n->list_lock, flags);
3246 return x;
3249 static int count_inuse(struct page *page)
3251 return page->inuse;
3254 static int count_total(struct page *page)
3256 return page->objects;
3259 static int count_free(struct page *page)
3261 return page->objects - page->inuse;
3264 static int validate_slab(struct kmem_cache *s, struct page *page,
3265 unsigned long *map)
3267 void *p;
3268 void *addr = page_address(page);
3270 if (!check_slab(s, page) ||
3271 !on_freelist(s, page, NULL))
3272 return 0;
3274 /* Now we know that a valid freelist exists */
3275 bitmap_zero(map, page->objects);
3277 for_each_free_object(p, s, page->freelist) {
3278 set_bit(slab_index(p, s, addr), map);
3279 if (!check_object(s, page, p, 0))
3280 return 0;
3283 for_each_object(p, s, addr, page->objects)
3284 if (!test_bit(slab_index(p, s, addr), map))
3285 if (!check_object(s, page, p, 1))
3286 return 0;
3287 return 1;
3290 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3291 unsigned long *map)
3293 if (slab_trylock(page)) {
3294 validate_slab(s, page, map);
3295 slab_unlock(page);
3296 } else
3297 printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
3298 s->name, page);
3300 if (s->flags & DEBUG_DEFAULT_FLAGS) {
3301 if (!PageSlubDebug(page))
3302 printk(KERN_ERR "SLUB %s: SlubDebug not set "
3303 "on slab 0x%p\n", s->name, page);
3304 } else {
3305 if (PageSlubDebug(page))
3306 printk(KERN_ERR "SLUB %s: SlubDebug set on "
3307 "slab 0x%p\n", s->name, page);
3311 static int validate_slab_node(struct kmem_cache *s,
3312 struct kmem_cache_node *n, unsigned long *map)
3314 unsigned long count = 0;
3315 struct page *page;
3316 unsigned long flags;
3318 spin_lock_irqsave(&n->list_lock, flags);
3320 list_for_each_entry(page, &n->partial, lru) {
3321 validate_slab_slab(s, page, map);
3322 count++;
3324 if (count != n->nr_partial)
3325 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3326 "counter=%ld\n", s->name, count, n->nr_partial);
3328 if (!(s->flags & SLAB_STORE_USER))
3329 goto out;
3331 list_for_each_entry(page, &n->full, lru) {
3332 validate_slab_slab(s, page, map);
3333 count++;
3335 if (count != atomic_long_read(&n->nr_slabs))
3336 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3337 "counter=%ld\n", s->name, count,
3338 atomic_long_read(&n->nr_slabs));
3340 out:
3341 spin_unlock_irqrestore(&n->list_lock, flags);
3342 return count;
3345 static long validate_slab_cache(struct kmem_cache *s)
3347 int node;
3348 unsigned long count = 0;
3349 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3350 sizeof(unsigned long), GFP_KERNEL);
3352 if (!map)
3353 return -ENOMEM;
3355 flush_all(s);
3356 for_each_node_state(node, N_NORMAL_MEMORY) {
3357 struct kmem_cache_node *n = get_node(s, node);
3359 count += validate_slab_node(s, n, map);
3361 kfree(map);
3362 return count;
3365 #ifdef SLUB_RESILIENCY_TEST
3366 static void resiliency_test(void)
3368 u8 *p;
3370 printk(KERN_ERR "SLUB resiliency testing\n");
3371 printk(KERN_ERR "-----------------------\n");
3372 printk(KERN_ERR "A. Corruption after allocation\n");
3374 p = kzalloc(16, GFP_KERNEL);
3375 p[16] = 0x12;
3376 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
3377 " 0x12->0x%p\n\n", p + 16);
3379 validate_slab_cache(kmalloc_caches + 4);
3381 /* Hmmm... The next two are dangerous */
3382 p = kzalloc(32, GFP_KERNEL);
3383 p[32 + sizeof(void *)] = 0x34;
3384 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
3385 " 0x34 -> -0x%p\n", p);
3386 printk(KERN_ERR
3387 "If allocated object is overwritten then not detectable\n\n");
3389 validate_slab_cache(kmalloc_caches + 5);
3390 p = kzalloc(64, GFP_KERNEL);
3391 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
3392 *p = 0x56;
3393 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3395 printk(KERN_ERR
3396 "If allocated object is overwritten then not detectable\n\n");
3397 validate_slab_cache(kmalloc_caches + 6);
3399 printk(KERN_ERR "\nB. Corruption after free\n");
3400 p = kzalloc(128, GFP_KERNEL);
3401 kfree(p);
3402 *p = 0x78;
3403 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
3404 validate_slab_cache(kmalloc_caches + 7);
3406 p = kzalloc(256, GFP_KERNEL);
3407 kfree(p);
3408 p[50] = 0x9a;
3409 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
3411 validate_slab_cache(kmalloc_caches + 8);
3413 p = kzalloc(512, GFP_KERNEL);
3414 kfree(p);
3415 p[512] = 0xab;
3416 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
3417 validate_slab_cache(kmalloc_caches + 9);
3419 #else
3420 static void resiliency_test(void) {};
3421 #endif
3424 * Generate lists of code addresses where slabcache objects are allocated
3425 * and freed.
3428 struct location {
3429 unsigned long count;
3430 void *addr;
3431 long long sum_time;
3432 long min_time;
3433 long max_time;
3434 long min_pid;
3435 long max_pid;
3436 cpumask_t cpus;
3437 nodemask_t nodes;
3440 struct loc_track {
3441 unsigned long max;
3442 unsigned long count;
3443 struct location *loc;
3446 static void free_loc_track(struct loc_track *t)
3448 if (t->max)
3449 free_pages((unsigned long)t->loc,
3450 get_order(sizeof(struct location) * t->max));
3453 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
3455 struct location *l;
3456 int order;
3458 order = get_order(sizeof(struct location) * max);
3460 l = (void *)__get_free_pages(flags, order);
3461 if (!l)
3462 return 0;
3464 if (t->count) {
3465 memcpy(l, t->loc, sizeof(struct location) * t->count);
3466 free_loc_track(t);
3468 t->max = max;
3469 t->loc = l;
3470 return 1;
3473 static int add_location(struct loc_track *t, struct kmem_cache *s,
3474 const struct track *track)
3476 long start, end, pos;
3477 struct location *l;
3478 void *caddr;
3479 unsigned long age = jiffies - track->when;
3481 start = -1;
3482 end = t->count;
3484 for ( ; ; ) {
3485 pos = start + (end - start + 1) / 2;
3488 * There is nothing at "end". If we end up there
3489 * we need to add something to before end.
3491 if (pos == end)
3492 break;
3494 caddr = t->loc[pos].addr;
3495 if (track->addr == caddr) {
3497 l = &t->loc[pos];
3498 l->count++;
3499 if (track->when) {
3500 l->sum_time += age;
3501 if (age < l->min_time)
3502 l->min_time = age;
3503 if (age > l->max_time)
3504 l->max_time = age;
3506 if (track->pid < l->min_pid)
3507 l->min_pid = track->pid;
3508 if (track->pid > l->max_pid)
3509 l->max_pid = track->pid;
3511 cpu_set(track->cpu, l->cpus);
3513 node_set(page_to_nid(virt_to_page(track)), l->nodes);
3514 return 1;
3517 if (track->addr < caddr)
3518 end = pos;
3519 else
3520 start = pos;
3524 * Not found. Insert new tracking element.
3526 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
3527 return 0;
3529 l = t->loc + pos;
3530 if (pos < t->count)
3531 memmove(l + 1, l,
3532 (t->count - pos) * sizeof(struct location));
3533 t->count++;
3534 l->count = 1;
3535 l->addr = track->addr;
3536 l->sum_time = age;
3537 l->min_time = age;
3538 l->max_time = age;
3539 l->min_pid = track->pid;
3540 l->max_pid = track->pid;
3541 cpus_clear(l->cpus);
3542 cpu_set(track->cpu, l->cpus);
3543 nodes_clear(l->nodes);
3544 node_set(page_to_nid(virt_to_page(track)), l->nodes);
3545 return 1;
3548 static void process_slab(struct loc_track *t, struct kmem_cache *s,
3549 struct page *page, enum track_item alloc)
3551 void *addr = page_address(page);
3552 DECLARE_BITMAP(map, page->objects);
3553 void *p;
3555 bitmap_zero(map, page->objects);
3556 for_each_free_object(p, s, page->freelist)
3557 set_bit(slab_index(p, s, addr), map);
3559 for_each_object(p, s, addr, page->objects)
3560 if (!test_bit(slab_index(p, s, addr), map))
3561 add_location(t, s, get_track(s, p, alloc));
3564 static int list_locations(struct kmem_cache *s, char *buf,
3565 enum track_item alloc)
3567 int len = 0;
3568 unsigned long i;
3569 struct loc_track t = { 0, 0, NULL };
3570 int node;
3572 if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
3573 GFP_TEMPORARY))
3574 return sprintf(buf, "Out of memory\n");
3576 /* Push back cpu slabs */
3577 flush_all(s);
3579 for_each_node_state(node, N_NORMAL_MEMORY) {
3580 struct kmem_cache_node *n = get_node(s, node);
3581 unsigned long flags;
3582 struct page *page;
3584 if (!atomic_long_read(&n->nr_slabs))
3585 continue;
3587 spin_lock_irqsave(&n->list_lock, flags);
3588 list_for_each_entry(page, &n->partial, lru)
3589 process_slab(&t, s, page, alloc);
3590 list_for_each_entry(page, &n->full, lru)
3591 process_slab(&t, s, page, alloc);
3592 spin_unlock_irqrestore(&n->list_lock, flags);
3595 for (i = 0; i < t.count; i++) {
3596 struct location *l = &t.loc[i];
3598 if (len > PAGE_SIZE - 100)
3599 break;
3600 len += sprintf(buf + len, "%7ld ", l->count);
3602 if (l->addr)
3603 len += sprint_symbol(buf + len, (unsigned long)l->addr);
3604 else
3605 len += sprintf(buf + len, "<not-available>");
3607 if (l->sum_time != l->min_time) {
3608 len += sprintf(buf + len, " age=%ld/%ld/%ld",
3609 l->min_time,
3610 (long)div_u64(l->sum_time, l->count),
3611 l->max_time);
3612 } else
3613 len += sprintf(buf + len, " age=%ld",
3614 l->min_time);
3616 if (l->min_pid != l->max_pid)
3617 len += sprintf(buf + len, " pid=%ld-%ld",
3618 l->min_pid, l->max_pid);
3619 else
3620 len += sprintf(buf + len, " pid=%ld",
3621 l->min_pid);
3623 if (num_online_cpus() > 1 && !cpus_empty(l->cpus) &&
3624 len < PAGE_SIZE - 60) {
3625 len += sprintf(buf + len, " cpus=");
3626 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3627 l->cpus);
3630 if (num_online_nodes() > 1 && !nodes_empty(l->nodes) &&
3631 len < PAGE_SIZE - 60) {
3632 len += sprintf(buf + len, " nodes=");
3633 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3634 l->nodes);
3637 len += sprintf(buf + len, "\n");
3640 free_loc_track(&t);
3641 if (!t.count)
3642 len += sprintf(buf, "No data\n");
3643 return len;
3646 enum slab_stat_type {
3647 SL_ALL, /* All slabs */
3648 SL_PARTIAL, /* Only partially allocated slabs */
3649 SL_CPU, /* Only slabs used for cpu caches */
3650 SL_OBJECTS, /* Determine allocated objects not slabs */
3651 SL_TOTAL /* Determine object capacity not slabs */
3654 #define SO_ALL (1 << SL_ALL)
3655 #define SO_PARTIAL (1 << SL_PARTIAL)
3656 #define SO_CPU (1 << SL_CPU)
3657 #define SO_OBJECTS (1 << SL_OBJECTS)
3658 #define SO_TOTAL (1 << SL_TOTAL)
3660 static ssize_t show_slab_objects(struct kmem_cache *s,
3661 char *buf, unsigned long flags)
3663 unsigned long total = 0;
3664 int node;
3665 int x;
3666 unsigned long *nodes;
3667 unsigned long *per_cpu;
3669 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
3670 if (!nodes)
3671 return -ENOMEM;
3672 per_cpu = nodes + nr_node_ids;
3674 if (flags & SO_CPU) {
3675 int cpu;
3677 for_each_possible_cpu(cpu) {
3678 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3680 if (!c || c->node < 0)
3681 continue;
3683 if (c->page) {
3684 if (flags & SO_TOTAL)
3685 x = c->page->objects;
3686 else if (flags & SO_OBJECTS)
3687 x = c->page->inuse;
3688 else
3689 x = 1;
3691 total += x;
3692 nodes[c->node] += x;
3694 per_cpu[c->node]++;
3698 if (flags & SO_ALL) {
3699 for_each_node_state(node, N_NORMAL_MEMORY) {
3700 struct kmem_cache_node *n = get_node(s, node);
3702 if (flags & SO_TOTAL)
3703 x = atomic_long_read(&n->total_objects);
3704 else if (flags & SO_OBJECTS)
3705 x = atomic_long_read(&n->total_objects) -
3706 count_partial(n, count_free);
3708 else
3709 x = atomic_long_read(&n->nr_slabs);
3710 total += x;
3711 nodes[node] += x;
3714 } else if (flags & SO_PARTIAL) {
3715 for_each_node_state(node, N_NORMAL_MEMORY) {
3716 struct kmem_cache_node *n = get_node(s, node);
3718 if (flags & SO_TOTAL)
3719 x = count_partial(n, count_total);
3720 else if (flags & SO_OBJECTS)
3721 x = count_partial(n, count_inuse);
3722 else
3723 x = n->nr_partial;
3724 total += x;
3725 nodes[node] += x;
3728 x = sprintf(buf, "%lu", total);
3729 #ifdef CONFIG_NUMA
3730 for_each_node_state(node, N_NORMAL_MEMORY)
3731 if (nodes[node])
3732 x += sprintf(buf + x, " N%d=%lu",
3733 node, nodes[node]);
3734 #endif
3735 kfree(nodes);
3736 return x + sprintf(buf + x, "\n");
3739 static int any_slab_objects(struct kmem_cache *s)
3741 int node;
3743 for_each_online_node(node) {
3744 struct kmem_cache_node *n = get_node(s, node);
3746 if (!n)
3747 continue;
3749 if (atomic_long_read(&n->total_objects))
3750 return 1;
3752 return 0;
3755 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3756 #define to_slab(n) container_of(n, struct kmem_cache, kobj);
3758 struct slab_attribute {
3759 struct attribute attr;
3760 ssize_t (*show)(struct kmem_cache *s, char *buf);
3761 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
3764 #define SLAB_ATTR_RO(_name) \
3765 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3767 #define SLAB_ATTR(_name) \
3768 static struct slab_attribute _name##_attr = \
3769 __ATTR(_name, 0644, _name##_show, _name##_store)
3771 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
3773 return sprintf(buf, "%d\n", s->size);
3775 SLAB_ATTR_RO(slab_size);
3777 static ssize_t align_show(struct kmem_cache *s, char *buf)
3779 return sprintf(buf, "%d\n", s->align);
3781 SLAB_ATTR_RO(align);
3783 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
3785 return sprintf(buf, "%d\n", s->objsize);
3787 SLAB_ATTR_RO(object_size);
3789 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
3791 return sprintf(buf, "%d\n", oo_objects(s->oo));
3793 SLAB_ATTR_RO(objs_per_slab);
3795 static ssize_t order_store(struct kmem_cache *s,
3796 const char *buf, size_t length)
3798 unsigned long order;
3799 int err;
3801 err = strict_strtoul(buf, 10, &order);
3802 if (err)
3803 return err;
3805 if (order > slub_max_order || order < slub_min_order)
3806 return -EINVAL;
3808 calculate_sizes(s, order);
3809 return length;
3812 static ssize_t order_show(struct kmem_cache *s, char *buf)
3814 return sprintf(buf, "%d\n", oo_order(s->oo));
3816 SLAB_ATTR(order);
3818 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
3820 if (s->ctor) {
3821 int n = sprint_symbol(buf, (unsigned long)s->ctor);
3823 return n + sprintf(buf + n, "\n");
3825 return 0;
3827 SLAB_ATTR_RO(ctor);
3829 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
3831 return sprintf(buf, "%d\n", s->refcount - 1);
3833 SLAB_ATTR_RO(aliases);
3835 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
3837 return show_slab_objects(s, buf, SO_ALL);
3839 SLAB_ATTR_RO(slabs);
3841 static ssize_t partial_show(struct kmem_cache *s, char *buf)
3843 return show_slab_objects(s, buf, SO_PARTIAL);
3845 SLAB_ATTR_RO(partial);
3847 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
3849 return show_slab_objects(s, buf, SO_CPU);
3851 SLAB_ATTR_RO(cpu_slabs);
3853 static ssize_t objects_show(struct kmem_cache *s, char *buf)
3855 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
3857 SLAB_ATTR_RO(objects);
3859 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
3861 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
3863 SLAB_ATTR_RO(objects_partial);
3865 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
3867 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
3869 SLAB_ATTR_RO(total_objects);
3871 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
3873 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
3876 static ssize_t sanity_checks_store(struct kmem_cache *s,
3877 const char *buf, size_t length)
3879 s->flags &= ~SLAB_DEBUG_FREE;
3880 if (buf[0] == '1')
3881 s->flags |= SLAB_DEBUG_FREE;
3882 return length;
3884 SLAB_ATTR(sanity_checks);
3886 static ssize_t trace_show(struct kmem_cache *s, char *buf)
3888 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
3891 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
3892 size_t length)
3894 s->flags &= ~SLAB_TRACE;
3895 if (buf[0] == '1')
3896 s->flags |= SLAB_TRACE;
3897 return length;
3899 SLAB_ATTR(trace);
3901 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
3903 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
3906 static ssize_t reclaim_account_store(struct kmem_cache *s,
3907 const char *buf, size_t length)
3909 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
3910 if (buf[0] == '1')
3911 s->flags |= SLAB_RECLAIM_ACCOUNT;
3912 return length;
3914 SLAB_ATTR(reclaim_account);
3916 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
3918 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
3920 SLAB_ATTR_RO(hwcache_align);
3922 #ifdef CONFIG_ZONE_DMA
3923 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
3925 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
3927 SLAB_ATTR_RO(cache_dma);
3928 #endif
3930 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
3932 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
3934 SLAB_ATTR_RO(destroy_by_rcu);
3936 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
3938 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
3941 static ssize_t red_zone_store(struct kmem_cache *s,
3942 const char *buf, size_t length)
3944 if (any_slab_objects(s))
3945 return -EBUSY;
3947 s->flags &= ~SLAB_RED_ZONE;
3948 if (buf[0] == '1')
3949 s->flags |= SLAB_RED_ZONE;
3950 calculate_sizes(s, -1);
3951 return length;
3953 SLAB_ATTR(red_zone);
3955 static ssize_t poison_show(struct kmem_cache *s, char *buf)
3957 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
3960 static ssize_t poison_store(struct kmem_cache *s,
3961 const char *buf, size_t length)
3963 if (any_slab_objects(s))
3964 return -EBUSY;
3966 s->flags &= ~SLAB_POISON;
3967 if (buf[0] == '1')
3968 s->flags |= SLAB_POISON;
3969 calculate_sizes(s, -1);
3970 return length;
3972 SLAB_ATTR(poison);
3974 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
3976 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
3979 static ssize_t store_user_store(struct kmem_cache *s,
3980 const char *buf, size_t length)
3982 if (any_slab_objects(s))
3983 return -EBUSY;
3985 s->flags &= ~SLAB_STORE_USER;
3986 if (buf[0] == '1')
3987 s->flags |= SLAB_STORE_USER;
3988 calculate_sizes(s, -1);
3989 return length;
3991 SLAB_ATTR(store_user);
3993 static ssize_t validate_show(struct kmem_cache *s, char *buf)
3995 return 0;
3998 static ssize_t validate_store(struct kmem_cache *s,
3999 const char *buf, size_t length)
4001 int ret = -EINVAL;
4003 if (buf[0] == '1') {
4004 ret = validate_slab_cache(s);
4005 if (ret >= 0)
4006 ret = length;
4008 return ret;
4010 SLAB_ATTR(validate);
4012 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4014 return 0;
4017 static ssize_t shrink_store(struct kmem_cache *s,
4018 const char *buf, size_t length)
4020 if (buf[0] == '1') {
4021 int rc = kmem_cache_shrink(s);
4023 if (rc)
4024 return rc;
4025 } else
4026 return -EINVAL;
4027 return length;
4029 SLAB_ATTR(shrink);
4031 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4033 if (!(s->flags & SLAB_STORE_USER))
4034 return -ENOSYS;
4035 return list_locations(s, buf, TRACK_ALLOC);
4037 SLAB_ATTR_RO(alloc_calls);
4039 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4041 if (!(s->flags & SLAB_STORE_USER))
4042 return -ENOSYS;
4043 return list_locations(s, buf, TRACK_FREE);
4045 SLAB_ATTR_RO(free_calls);
4047 #ifdef CONFIG_NUMA
4048 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4050 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4053 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
4054 const char *buf, size_t length)
4056 unsigned long ratio;
4057 int err;
4059 err = strict_strtoul(buf, 10, &ratio);
4060 if (err)
4061 return err;
4063 if (ratio <= 100)
4064 s->remote_node_defrag_ratio = ratio * 10;
4066 return length;
4068 SLAB_ATTR(remote_node_defrag_ratio);
4069 #endif
4071 #ifdef CONFIG_SLUB_STATS
4072 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4074 unsigned long sum = 0;
4075 int cpu;
4076 int len;
4077 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4079 if (!data)
4080 return -ENOMEM;
4082 for_each_online_cpu(cpu) {
4083 unsigned x = get_cpu_slab(s, cpu)->stat[si];
4085 data[cpu] = x;
4086 sum += x;
4089 len = sprintf(buf, "%lu", sum);
4091 #ifdef CONFIG_SMP
4092 for_each_online_cpu(cpu) {
4093 if (data[cpu] && len < PAGE_SIZE - 20)
4094 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
4096 #endif
4097 kfree(data);
4098 return len + sprintf(buf + len, "\n");
4101 #define STAT_ATTR(si, text) \
4102 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4104 return show_stat(s, buf, si); \
4106 SLAB_ATTR_RO(text); \
4108 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4109 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4110 STAT_ATTR(FREE_FASTPATH, free_fastpath);
4111 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4112 STAT_ATTR(FREE_FROZEN, free_frozen);
4113 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4114 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4115 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4116 STAT_ATTR(ALLOC_SLAB, alloc_slab);
4117 STAT_ATTR(ALLOC_REFILL, alloc_refill);
4118 STAT_ATTR(FREE_SLAB, free_slab);
4119 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4120 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4121 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4122 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4123 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4124 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4125 STAT_ATTR(ORDER_FALLBACK, order_fallback);
4126 #endif
4128 static struct attribute *slab_attrs[] = {
4129 &slab_size_attr.attr,
4130 &object_size_attr.attr,
4131 &objs_per_slab_attr.attr,
4132 &order_attr.attr,
4133 &objects_attr.attr,
4134 &objects_partial_attr.attr,
4135 &total_objects_attr.attr,
4136 &slabs_attr.attr,
4137 &partial_attr.attr,
4138 &cpu_slabs_attr.attr,
4139 &ctor_attr.attr,
4140 &aliases_attr.attr,
4141 &align_attr.attr,
4142 &sanity_checks_attr.attr,
4143 &trace_attr.attr,
4144 &hwcache_align_attr.attr,
4145 &reclaim_account_attr.attr,
4146 &destroy_by_rcu_attr.attr,
4147 &red_zone_attr.attr,
4148 &poison_attr.attr,
4149 &store_user_attr.attr,
4150 &validate_attr.attr,
4151 &shrink_attr.attr,
4152 &alloc_calls_attr.attr,
4153 &free_calls_attr.attr,
4154 #ifdef CONFIG_ZONE_DMA
4155 &cache_dma_attr.attr,
4156 #endif
4157 #ifdef CONFIG_NUMA
4158 &remote_node_defrag_ratio_attr.attr,
4159 #endif
4160 #ifdef CONFIG_SLUB_STATS
4161 &alloc_fastpath_attr.attr,
4162 &alloc_slowpath_attr.attr,
4163 &free_fastpath_attr.attr,
4164 &free_slowpath_attr.attr,
4165 &free_frozen_attr.attr,
4166 &free_add_partial_attr.attr,
4167 &free_remove_partial_attr.attr,
4168 &alloc_from_partial_attr.attr,
4169 &alloc_slab_attr.attr,
4170 &alloc_refill_attr.attr,
4171 &free_slab_attr.attr,
4172 &cpuslab_flush_attr.attr,
4173 &deactivate_full_attr.attr,
4174 &deactivate_empty_attr.attr,
4175 &deactivate_to_head_attr.attr,
4176 &deactivate_to_tail_attr.attr,
4177 &deactivate_remote_frees_attr.attr,
4178 &order_fallback_attr.attr,
4179 #endif
4180 NULL
4183 static struct attribute_group slab_attr_group = {
4184 .attrs = slab_attrs,
4187 static ssize_t slab_attr_show(struct kobject *kobj,
4188 struct attribute *attr,
4189 char *buf)
4191 struct slab_attribute *attribute;
4192 struct kmem_cache *s;
4193 int err;
4195 attribute = to_slab_attr(attr);
4196 s = to_slab(kobj);
4198 if (!attribute->show)
4199 return -EIO;
4201 err = attribute->show(s, buf);
4203 return err;
4206 static ssize_t slab_attr_store(struct kobject *kobj,
4207 struct attribute *attr,
4208 const char *buf, size_t len)
4210 struct slab_attribute *attribute;
4211 struct kmem_cache *s;
4212 int err;
4214 attribute = to_slab_attr(attr);
4215 s = to_slab(kobj);
4217 if (!attribute->store)
4218 return -EIO;
4220 err = attribute->store(s, buf, len);
4222 return err;
4225 static void kmem_cache_release(struct kobject *kobj)
4227 struct kmem_cache *s = to_slab(kobj);
4229 kfree(s);
4232 static struct sysfs_ops slab_sysfs_ops = {
4233 .show = slab_attr_show,
4234 .store = slab_attr_store,
4237 static struct kobj_type slab_ktype = {
4238 .sysfs_ops = &slab_sysfs_ops,
4239 .release = kmem_cache_release
4242 static int uevent_filter(struct kset *kset, struct kobject *kobj)
4244 struct kobj_type *ktype = get_ktype(kobj);
4246 if (ktype == &slab_ktype)
4247 return 1;
4248 return 0;
4251 static struct kset_uevent_ops slab_uevent_ops = {
4252 .filter = uevent_filter,
4255 static struct kset *slab_kset;
4257 #define ID_STR_LENGTH 64
4259 /* Create a unique string id for a slab cache:
4261 * Format :[flags-]size
4263 static char *create_unique_id(struct kmem_cache *s)
4265 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
4266 char *p = name;
4268 BUG_ON(!name);
4270 *p++ = ':';
4272 * First flags affecting slabcache operations. We will only
4273 * get here for aliasable slabs so we do not need to support
4274 * too many flags. The flags here must cover all flags that
4275 * are matched during merging to guarantee that the id is
4276 * unique.
4278 if (s->flags & SLAB_CACHE_DMA)
4279 *p++ = 'd';
4280 if (s->flags & SLAB_RECLAIM_ACCOUNT)
4281 *p++ = 'a';
4282 if (s->flags & SLAB_DEBUG_FREE)
4283 *p++ = 'F';
4284 if (p != name + 1)
4285 *p++ = '-';
4286 p += sprintf(p, "%07d", s->size);
4287 BUG_ON(p > name + ID_STR_LENGTH - 1);
4288 return name;
4291 static int sysfs_slab_add(struct kmem_cache *s)
4293 int err;
4294 const char *name;
4295 int unmergeable;
4297 if (slab_state < SYSFS)
4298 /* Defer until later */
4299 return 0;
4301 unmergeable = slab_unmergeable(s);
4302 if (unmergeable) {
4304 * Slabcache can never be merged so we can use the name proper.
4305 * This is typically the case for debug situations. In that
4306 * case we can catch duplicate names easily.
4308 sysfs_remove_link(&slab_kset->kobj, s->name);
4309 name = s->name;
4310 } else {
4312 * Create a unique name for the slab as a target
4313 * for the symlinks.
4315 name = create_unique_id(s);
4318 s->kobj.kset = slab_kset;
4319 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
4320 if (err) {
4321 kobject_put(&s->kobj);
4322 return err;
4325 err = sysfs_create_group(&s->kobj, &slab_attr_group);
4326 if (err)
4327 return err;
4328 kobject_uevent(&s->kobj, KOBJ_ADD);
4329 if (!unmergeable) {
4330 /* Setup first alias */
4331 sysfs_slab_alias(s, s->name);
4332 kfree(name);
4334 return 0;
4337 static void sysfs_slab_remove(struct kmem_cache *s)
4339 kobject_uevent(&s->kobj, KOBJ_REMOVE);
4340 kobject_del(&s->kobj);
4341 kobject_put(&s->kobj);
4345 * Need to buffer aliases during bootup until sysfs becomes
4346 * available lest we loose that information.
4348 struct saved_alias {
4349 struct kmem_cache *s;
4350 const char *name;
4351 struct saved_alias *next;
4354 static struct saved_alias *alias_list;
4356 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
4358 struct saved_alias *al;
4360 if (slab_state == SYSFS) {
4362 * If we have a leftover link then remove it.
4364 sysfs_remove_link(&slab_kset->kobj, name);
4365 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
4368 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
4369 if (!al)
4370 return -ENOMEM;
4372 al->s = s;
4373 al->name = name;
4374 al->next = alias_list;
4375 alias_list = al;
4376 return 0;
4379 static int __init slab_sysfs_init(void)
4381 struct kmem_cache *s;
4382 int err;
4384 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
4385 if (!slab_kset) {
4386 printk(KERN_ERR "Cannot register slab subsystem.\n");
4387 return -ENOSYS;
4390 slab_state = SYSFS;
4392 list_for_each_entry(s, &slab_caches, list) {
4393 err = sysfs_slab_add(s);
4394 if (err)
4395 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
4396 " to sysfs\n", s->name);
4399 while (alias_list) {
4400 struct saved_alias *al = alias_list;
4402 alias_list = alias_list->next;
4403 err = sysfs_slab_alias(al->s, al->name);
4404 if (err)
4405 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
4406 " %s to sysfs\n", s->name);
4407 kfree(al);
4410 resiliency_test();
4411 return 0;
4414 __initcall(slab_sysfs_init);
4415 #endif
4418 * The /proc/slabinfo ABI
4420 #ifdef CONFIG_SLABINFO
4421 static void print_slabinfo_header(struct seq_file *m)
4423 seq_puts(m, "slabinfo - version: 2.1\n");
4424 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4425 "<objperslab> <pagesperslab>");
4426 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4427 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4428 seq_putc(m, '\n');
4431 static void *s_start(struct seq_file *m, loff_t *pos)
4433 loff_t n = *pos;
4435 down_read(&slub_lock);
4436 if (!n)
4437 print_slabinfo_header(m);
4439 return seq_list_start(&slab_caches, *pos);
4442 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4444 return seq_list_next(p, &slab_caches, pos);
4447 static void s_stop(struct seq_file *m, void *p)
4449 up_read(&slub_lock);
4452 static int s_show(struct seq_file *m, void *p)
4454 unsigned long nr_partials = 0;
4455 unsigned long nr_slabs = 0;
4456 unsigned long nr_inuse = 0;
4457 unsigned long nr_objs = 0;
4458 unsigned long nr_free = 0;
4459 struct kmem_cache *s;
4460 int node;
4462 s = list_entry(p, struct kmem_cache, list);
4464 for_each_online_node(node) {
4465 struct kmem_cache_node *n = get_node(s, node);
4467 if (!n)
4468 continue;
4470 nr_partials += n->nr_partial;
4471 nr_slabs += atomic_long_read(&n->nr_slabs);
4472 nr_objs += atomic_long_read(&n->total_objects);
4473 nr_free += count_partial(n, count_free);
4476 nr_inuse = nr_objs - nr_free;
4478 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
4479 nr_objs, s->size, oo_objects(s->oo),
4480 (1 << oo_order(s->oo)));
4481 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
4482 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
4483 0UL);
4484 seq_putc(m, '\n');
4485 return 0;
4488 static const struct seq_operations slabinfo_op = {
4489 .start = s_start,
4490 .next = s_next,
4491 .stop = s_stop,
4492 .show = s_show,
4495 static int slabinfo_open(struct inode *inode, struct file *file)
4497 return seq_open(file, &slabinfo_op);
4500 static const struct file_operations proc_slabinfo_operations = {
4501 .open = slabinfo_open,
4502 .read = seq_read,
4503 .llseek = seq_lseek,
4504 .release = seq_release,
4507 static int __init slab_proc_init(void)
4509 proc_create("slabinfo",S_IWUSR|S_IRUGO,NULL,&proc_slabinfo_operations);
4510 return 0;
4512 module_init(slab_proc_init);
4513 #endif /* CONFIG_SLABINFO */