Merge branch 'upstream-linus' of master.kernel.org:/pub/scm/linux/kernel/git/jgarzik...
[linux/fpc-iii.git] / drivers / hwmon / adm1031.c
blob122683fc91d096f271e3a372f17b5c8d51bfd2cb
1 /*
2 adm1031.c - Part of lm_sensors, Linux kernel modules for hardware
3 monitoring
4 Based on lm75.c and lm85.c
5 Supports adm1030 / adm1031
6 Copyright (C) 2004 Alexandre d'Alton <alex@alexdalton.org>
7 Reworked by Jean Delvare <khali@linux-fr.org>
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
24 #include <linux/module.h>
25 #include <linux/init.h>
26 #include <linux/slab.h>
27 #include <linux/jiffies.h>
28 #include <linux/i2c.h>
29 #include <linux/hwmon.h>
30 #include <linux/err.h>
31 #include <linux/mutex.h>
33 /* Following macros takes channel parameter starting from 0 to 2 */
34 #define ADM1031_REG_FAN_SPEED(nr) (0x08 + (nr))
35 #define ADM1031_REG_FAN_DIV(nr) (0x20 + (nr))
36 #define ADM1031_REG_PWM (0x22)
37 #define ADM1031_REG_FAN_MIN(nr) (0x10 + (nr))
39 #define ADM1031_REG_TEMP_MAX(nr) (0x14 + 4*(nr))
40 #define ADM1031_REG_TEMP_MIN(nr) (0x15 + 4*(nr))
41 #define ADM1031_REG_TEMP_CRIT(nr) (0x16 + 4*(nr))
43 #define ADM1031_REG_TEMP(nr) (0xa + (nr))
44 #define ADM1031_REG_AUTO_TEMP(nr) (0x24 + (nr))
46 #define ADM1031_REG_STATUS(nr) (0x2 + (nr))
48 #define ADM1031_REG_CONF1 0x0
49 #define ADM1031_REG_CONF2 0x1
50 #define ADM1031_REG_EXT_TEMP 0x6
52 #define ADM1031_CONF1_MONITOR_ENABLE 0x01 /* Monitoring enable */
53 #define ADM1031_CONF1_PWM_INVERT 0x08 /* PWM Invert */
54 #define ADM1031_CONF1_AUTO_MODE 0x80 /* Auto FAN */
56 #define ADM1031_CONF2_PWM1_ENABLE 0x01
57 #define ADM1031_CONF2_PWM2_ENABLE 0x02
58 #define ADM1031_CONF2_TACH1_ENABLE 0x04
59 #define ADM1031_CONF2_TACH2_ENABLE 0x08
60 #define ADM1031_CONF2_TEMP_ENABLE(chan) (0x10 << (chan))
62 /* Addresses to scan */
63 static unsigned short normal_i2c[] = { 0x2c, 0x2d, 0x2e, I2C_CLIENT_END };
65 /* Insmod parameters */
66 I2C_CLIENT_INSMOD_2(adm1030, adm1031);
68 typedef u8 auto_chan_table_t[8][2];
70 /* Each client has this additional data */
71 struct adm1031_data {
72 struct i2c_client client;
73 struct class_device *class_dev;
74 struct mutex update_lock;
75 int chip_type;
76 char valid; /* !=0 if following fields are valid */
77 unsigned long last_updated; /* In jiffies */
78 /* The chan_select_table contains the possible configurations for
79 * auto fan control.
81 auto_chan_table_t *chan_select_table;
82 u16 alarm;
83 u8 conf1;
84 u8 conf2;
85 u8 fan[2];
86 u8 fan_div[2];
87 u8 fan_min[2];
88 u8 pwm[2];
89 u8 old_pwm[2];
90 s8 temp[3];
91 u8 ext_temp[3];
92 u8 auto_temp[3];
93 u8 auto_temp_min[3];
94 u8 auto_temp_off[3];
95 u8 auto_temp_max[3];
96 s8 temp_min[3];
97 s8 temp_max[3];
98 s8 temp_crit[3];
101 static int adm1031_attach_adapter(struct i2c_adapter *adapter);
102 static int adm1031_detect(struct i2c_adapter *adapter, int address, int kind);
103 static void adm1031_init_client(struct i2c_client *client);
104 static int adm1031_detach_client(struct i2c_client *client);
105 static struct adm1031_data *adm1031_update_device(struct device *dev);
107 /* This is the driver that will be inserted */
108 static struct i2c_driver adm1031_driver = {
109 .driver = {
110 .name = "adm1031",
112 .attach_adapter = adm1031_attach_adapter,
113 .detach_client = adm1031_detach_client,
116 static inline u8 adm1031_read_value(struct i2c_client *client, u8 reg)
118 return i2c_smbus_read_byte_data(client, reg);
121 static inline int
122 adm1031_write_value(struct i2c_client *client, u8 reg, unsigned int value)
124 return i2c_smbus_write_byte_data(client, reg, value);
128 #define TEMP_TO_REG(val) (((val) < 0 ? ((val - 500) / 1000) : \
129 ((val + 500) / 1000)))
131 #define TEMP_FROM_REG(val) ((val) * 1000)
133 #define TEMP_FROM_REG_EXT(val, ext) (TEMP_FROM_REG(val) + (ext) * 125)
135 #define FAN_FROM_REG(reg, div) ((reg) ? (11250 * 60) / ((reg) * (div)) : 0)
137 static int FAN_TO_REG(int reg, int div)
139 int tmp;
140 tmp = FAN_FROM_REG(SENSORS_LIMIT(reg, 0, 65535), div);
141 return tmp > 255 ? 255 : tmp;
144 #define FAN_DIV_FROM_REG(reg) (1<<(((reg)&0xc0)>>6))
146 #define PWM_TO_REG(val) (SENSORS_LIMIT((val), 0, 255) >> 4)
147 #define PWM_FROM_REG(val) ((val) << 4)
149 #define FAN_CHAN_FROM_REG(reg) (((reg) >> 5) & 7)
150 #define FAN_CHAN_TO_REG(val, reg) \
151 (((reg) & 0x1F) | (((val) << 5) & 0xe0))
153 #define AUTO_TEMP_MIN_TO_REG(val, reg) \
154 ((((val)/500) & 0xf8)|((reg) & 0x7))
155 #define AUTO_TEMP_RANGE_FROM_REG(reg) (5000 * (1<< ((reg)&0x7)))
156 #define AUTO_TEMP_MIN_FROM_REG(reg) (1000 * ((((reg) >> 3) & 0x1f) << 2))
158 #define AUTO_TEMP_MIN_FROM_REG_DEG(reg) ((((reg) >> 3) & 0x1f) << 2)
160 #define AUTO_TEMP_OFF_FROM_REG(reg) \
161 (AUTO_TEMP_MIN_FROM_REG(reg) - 5000)
163 #define AUTO_TEMP_MAX_FROM_REG(reg) \
164 (AUTO_TEMP_RANGE_FROM_REG(reg) + \
165 AUTO_TEMP_MIN_FROM_REG(reg))
167 static int AUTO_TEMP_MAX_TO_REG(int val, int reg, int pwm)
169 int ret;
170 int range = val - AUTO_TEMP_MIN_FROM_REG(reg);
172 range = ((val - AUTO_TEMP_MIN_FROM_REG(reg))*10)/(16 - pwm);
173 ret = ((reg & 0xf8) |
174 (range < 10000 ? 0 :
175 range < 20000 ? 1 :
176 range < 40000 ? 2 : range < 80000 ? 3 : 4));
177 return ret;
180 /* FAN auto control */
181 #define GET_FAN_AUTO_BITFIELD(data, idx) \
182 (*(data)->chan_select_table)[FAN_CHAN_FROM_REG((data)->conf1)][idx%2]
184 /* The tables below contains the possible values for the auto fan
185 * control bitfields. the index in the table is the register value.
186 * MSb is the auto fan control enable bit, so the four first entries
187 * in the table disables auto fan control when both bitfields are zero.
189 static auto_chan_table_t auto_channel_select_table_adm1031 = {
190 {0, 0}, {0, 0}, {0, 0}, {0, 0},
191 {2 /*0b010 */ , 4 /*0b100 */ },
192 {2 /*0b010 */ , 2 /*0b010 */ },
193 {4 /*0b100 */ , 4 /*0b100 */ },
194 {7 /*0b111 */ , 7 /*0b111 */ },
197 static auto_chan_table_t auto_channel_select_table_adm1030 = {
198 {0, 0}, {0, 0}, {0, 0}, {0, 0},
199 {2 /*0b10 */ , 0},
200 {0xff /*invalid */ , 0},
201 {0xff /*invalid */ , 0},
202 {3 /*0b11 */ , 0},
205 /* That function checks if a bitfield is valid and returns the other bitfield
206 * nearest match if no exact match where found.
208 static int
209 get_fan_auto_nearest(struct adm1031_data *data,
210 int chan, u8 val, u8 reg, u8 * new_reg)
212 int i;
213 int first_match = -1, exact_match = -1;
214 u8 other_reg_val =
215 (*data->chan_select_table)[FAN_CHAN_FROM_REG(reg)][chan ? 0 : 1];
217 if (val == 0) {
218 *new_reg = 0;
219 return 0;
222 for (i = 0; i < 8; i++) {
223 if ((val == (*data->chan_select_table)[i][chan]) &&
224 ((*data->chan_select_table)[i][chan ? 0 : 1] ==
225 other_reg_val)) {
226 /* We found an exact match */
227 exact_match = i;
228 break;
229 } else if (val == (*data->chan_select_table)[i][chan] &&
230 first_match == -1) {
231 /* Save the first match in case of an exact match has not been
232 * found
234 first_match = i;
238 if (exact_match >= 0) {
239 *new_reg = exact_match;
240 } else if (first_match >= 0) {
241 *new_reg = first_match;
242 } else {
243 return -EINVAL;
245 return 0;
248 static ssize_t show_fan_auto_channel(struct device *dev, char *buf, int nr)
250 struct adm1031_data *data = adm1031_update_device(dev);
251 return sprintf(buf, "%d\n", GET_FAN_AUTO_BITFIELD(data, nr));
254 static ssize_t
255 set_fan_auto_channel(struct device *dev, const char *buf, size_t count, int nr)
257 struct i2c_client *client = to_i2c_client(dev);
258 struct adm1031_data *data = i2c_get_clientdata(client);
259 int val = simple_strtol(buf, NULL, 10);
260 u8 reg;
261 int ret;
262 u8 old_fan_mode;
264 old_fan_mode = data->conf1;
266 mutex_lock(&data->update_lock);
268 if ((ret = get_fan_auto_nearest(data, nr, val, data->conf1, &reg))) {
269 mutex_unlock(&data->update_lock);
270 return ret;
272 if (((data->conf1 = FAN_CHAN_TO_REG(reg, data->conf1)) & ADM1031_CONF1_AUTO_MODE) ^
273 (old_fan_mode & ADM1031_CONF1_AUTO_MODE)) {
274 if (data->conf1 & ADM1031_CONF1_AUTO_MODE){
275 /* Switch to Auto Fan Mode
276 * Save PWM registers
277 * Set PWM registers to 33% Both */
278 data->old_pwm[0] = data->pwm[0];
279 data->old_pwm[1] = data->pwm[1];
280 adm1031_write_value(client, ADM1031_REG_PWM, 0x55);
281 } else {
282 /* Switch to Manual Mode */
283 data->pwm[0] = data->old_pwm[0];
284 data->pwm[1] = data->old_pwm[1];
285 /* Restore PWM registers */
286 adm1031_write_value(client, ADM1031_REG_PWM,
287 data->pwm[0] | (data->pwm[1] << 4));
290 data->conf1 = FAN_CHAN_TO_REG(reg, data->conf1);
291 adm1031_write_value(client, ADM1031_REG_CONF1, data->conf1);
292 mutex_unlock(&data->update_lock);
293 return count;
296 #define fan_auto_channel_offset(offset) \
297 static ssize_t show_fan_auto_channel_##offset (struct device *dev, struct device_attribute *attr, char *buf) \
299 return show_fan_auto_channel(dev, buf, offset - 1); \
301 static ssize_t set_fan_auto_channel_##offset (struct device *dev, struct device_attribute *attr, \
302 const char *buf, size_t count) \
304 return set_fan_auto_channel(dev, buf, count, offset - 1); \
306 static DEVICE_ATTR(auto_fan##offset##_channel, S_IRUGO | S_IWUSR, \
307 show_fan_auto_channel_##offset, \
308 set_fan_auto_channel_##offset)
310 fan_auto_channel_offset(1);
311 fan_auto_channel_offset(2);
313 /* Auto Temps */
314 static ssize_t show_auto_temp_off(struct device *dev, char *buf, int nr)
316 struct adm1031_data *data = adm1031_update_device(dev);
317 return sprintf(buf, "%d\n",
318 AUTO_TEMP_OFF_FROM_REG(data->auto_temp[nr]));
320 static ssize_t show_auto_temp_min(struct device *dev, char *buf, int nr)
322 struct adm1031_data *data = adm1031_update_device(dev);
323 return sprintf(buf, "%d\n",
324 AUTO_TEMP_MIN_FROM_REG(data->auto_temp[nr]));
326 static ssize_t
327 set_auto_temp_min(struct device *dev, const char *buf, size_t count, int nr)
329 struct i2c_client *client = to_i2c_client(dev);
330 struct adm1031_data *data = i2c_get_clientdata(client);
331 int val = simple_strtol(buf, NULL, 10);
333 mutex_lock(&data->update_lock);
334 data->auto_temp[nr] = AUTO_TEMP_MIN_TO_REG(val, data->auto_temp[nr]);
335 adm1031_write_value(client, ADM1031_REG_AUTO_TEMP(nr),
336 data->auto_temp[nr]);
337 mutex_unlock(&data->update_lock);
338 return count;
340 static ssize_t show_auto_temp_max(struct device *dev, char *buf, int nr)
342 struct adm1031_data *data = adm1031_update_device(dev);
343 return sprintf(buf, "%d\n",
344 AUTO_TEMP_MAX_FROM_REG(data->auto_temp[nr]));
346 static ssize_t
347 set_auto_temp_max(struct device *dev, const char *buf, size_t count, int nr)
349 struct i2c_client *client = to_i2c_client(dev);
350 struct adm1031_data *data = i2c_get_clientdata(client);
351 int val = simple_strtol(buf, NULL, 10);
353 mutex_lock(&data->update_lock);
354 data->temp_max[nr] = AUTO_TEMP_MAX_TO_REG(val, data->auto_temp[nr], data->pwm[nr]);
355 adm1031_write_value(client, ADM1031_REG_AUTO_TEMP(nr),
356 data->temp_max[nr]);
357 mutex_unlock(&data->update_lock);
358 return count;
361 #define auto_temp_reg(offset) \
362 static ssize_t show_auto_temp_##offset##_off (struct device *dev, struct device_attribute *attr, char *buf) \
364 return show_auto_temp_off(dev, buf, offset - 1); \
366 static ssize_t show_auto_temp_##offset##_min (struct device *dev, struct device_attribute *attr, char *buf) \
368 return show_auto_temp_min(dev, buf, offset - 1); \
370 static ssize_t show_auto_temp_##offset##_max (struct device *dev, struct device_attribute *attr, char *buf) \
372 return show_auto_temp_max(dev, buf, offset - 1); \
374 static ssize_t set_auto_temp_##offset##_min (struct device *dev, struct device_attribute *attr, \
375 const char *buf, size_t count) \
377 return set_auto_temp_min(dev, buf, count, offset - 1); \
379 static ssize_t set_auto_temp_##offset##_max (struct device *dev, struct device_attribute *attr, \
380 const char *buf, size_t count) \
382 return set_auto_temp_max(dev, buf, count, offset - 1); \
384 static DEVICE_ATTR(auto_temp##offset##_off, S_IRUGO, \
385 show_auto_temp_##offset##_off, NULL); \
386 static DEVICE_ATTR(auto_temp##offset##_min, S_IRUGO | S_IWUSR, \
387 show_auto_temp_##offset##_min, set_auto_temp_##offset##_min);\
388 static DEVICE_ATTR(auto_temp##offset##_max, S_IRUGO | S_IWUSR, \
389 show_auto_temp_##offset##_max, set_auto_temp_##offset##_max)
391 auto_temp_reg(1);
392 auto_temp_reg(2);
393 auto_temp_reg(3);
395 /* pwm */
396 static ssize_t show_pwm(struct device *dev, char *buf, int nr)
398 struct adm1031_data *data = adm1031_update_device(dev);
399 return sprintf(buf, "%d\n", PWM_FROM_REG(data->pwm[nr]));
401 static ssize_t
402 set_pwm(struct device *dev, const char *buf, size_t count, int nr)
404 struct i2c_client *client = to_i2c_client(dev);
405 struct adm1031_data *data = i2c_get_clientdata(client);
406 int val = simple_strtol(buf, NULL, 10);
407 int reg;
409 mutex_lock(&data->update_lock);
410 if ((data->conf1 & ADM1031_CONF1_AUTO_MODE) &&
411 (((val>>4) & 0xf) != 5)) {
412 /* In automatic mode, the only PWM accepted is 33% */
413 mutex_unlock(&data->update_lock);
414 return -EINVAL;
416 data->pwm[nr] = PWM_TO_REG(val);
417 reg = adm1031_read_value(client, ADM1031_REG_PWM);
418 adm1031_write_value(client, ADM1031_REG_PWM,
419 nr ? ((data->pwm[nr] << 4) & 0xf0) | (reg & 0xf)
420 : (data->pwm[nr] & 0xf) | (reg & 0xf0));
421 mutex_unlock(&data->update_lock);
422 return count;
425 #define pwm_reg(offset) \
426 static ssize_t show_pwm_##offset (struct device *dev, struct device_attribute *attr, char *buf) \
428 return show_pwm(dev, buf, offset - 1); \
430 static ssize_t set_pwm_##offset (struct device *dev, struct device_attribute *attr, \
431 const char *buf, size_t count) \
433 return set_pwm(dev, buf, count, offset - 1); \
435 static DEVICE_ATTR(pwm##offset, S_IRUGO | S_IWUSR, \
436 show_pwm_##offset, set_pwm_##offset)
438 pwm_reg(1);
439 pwm_reg(2);
441 /* Fans */
444 * That function checks the cases where the fan reading is not
445 * relevant. It is used to provide 0 as fan reading when the fan is
446 * not supposed to run
448 static int trust_fan_readings(struct adm1031_data *data, int chan)
450 int res = 0;
452 if (data->conf1 & ADM1031_CONF1_AUTO_MODE) {
453 switch (data->conf1 & 0x60) {
454 case 0x00: /* remote temp1 controls fan1 remote temp2 controls fan2 */
455 res = data->temp[chan+1] >=
456 AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[chan+1]);
457 break;
458 case 0x20: /* remote temp1 controls both fans */
459 res =
460 data->temp[1] >=
461 AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[1]);
462 break;
463 case 0x40: /* remote temp2 controls both fans */
464 res =
465 data->temp[2] >=
466 AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[2]);
467 break;
468 case 0x60: /* max controls both fans */
469 res =
470 data->temp[0] >=
471 AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[0])
472 || data->temp[1] >=
473 AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[1])
474 || (data->chip_type == adm1031
475 && data->temp[2] >=
476 AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[2]));
477 break;
479 } else {
480 res = data->pwm[chan] > 0;
482 return res;
486 static ssize_t show_fan(struct device *dev, char *buf, int nr)
488 struct adm1031_data *data = adm1031_update_device(dev);
489 int value;
491 value = trust_fan_readings(data, nr) ? FAN_FROM_REG(data->fan[nr],
492 FAN_DIV_FROM_REG(data->fan_div[nr])) : 0;
493 return sprintf(buf, "%d\n", value);
496 static ssize_t show_fan_div(struct device *dev, char *buf, int nr)
498 struct adm1031_data *data = adm1031_update_device(dev);
499 return sprintf(buf, "%d\n", FAN_DIV_FROM_REG(data->fan_div[nr]));
501 static ssize_t show_fan_min(struct device *dev, char *buf, int nr)
503 struct adm1031_data *data = adm1031_update_device(dev);
504 return sprintf(buf, "%d\n",
505 FAN_FROM_REG(data->fan_min[nr],
506 FAN_DIV_FROM_REG(data->fan_div[nr])));
508 static ssize_t
509 set_fan_min(struct device *dev, const char *buf, size_t count, int nr)
511 struct i2c_client *client = to_i2c_client(dev);
512 struct adm1031_data *data = i2c_get_clientdata(client);
513 int val = simple_strtol(buf, NULL, 10);
515 mutex_lock(&data->update_lock);
516 if (val) {
517 data->fan_min[nr] =
518 FAN_TO_REG(val, FAN_DIV_FROM_REG(data->fan_div[nr]));
519 } else {
520 data->fan_min[nr] = 0xff;
522 adm1031_write_value(client, ADM1031_REG_FAN_MIN(nr), data->fan_min[nr]);
523 mutex_unlock(&data->update_lock);
524 return count;
526 static ssize_t
527 set_fan_div(struct device *dev, const char *buf, size_t count, int nr)
529 struct i2c_client *client = to_i2c_client(dev);
530 struct adm1031_data *data = i2c_get_clientdata(client);
531 int val = simple_strtol(buf, NULL, 10);
532 u8 tmp;
533 int old_div;
534 int new_min;
536 tmp = val == 8 ? 0xc0 :
537 val == 4 ? 0x80 :
538 val == 2 ? 0x40 :
539 val == 1 ? 0x00 :
540 0xff;
541 if (tmp == 0xff)
542 return -EINVAL;
544 mutex_lock(&data->update_lock);
545 old_div = FAN_DIV_FROM_REG(data->fan_div[nr]);
546 data->fan_div[nr] = (tmp & 0xC0) | (0x3f & data->fan_div[nr]);
547 new_min = data->fan_min[nr] * old_div /
548 FAN_DIV_FROM_REG(data->fan_div[nr]);
549 data->fan_min[nr] = new_min > 0xff ? 0xff : new_min;
550 data->fan[nr] = data->fan[nr] * old_div /
551 FAN_DIV_FROM_REG(data->fan_div[nr]);
553 adm1031_write_value(client, ADM1031_REG_FAN_DIV(nr),
554 data->fan_div[nr]);
555 adm1031_write_value(client, ADM1031_REG_FAN_MIN(nr),
556 data->fan_min[nr]);
557 mutex_unlock(&data->update_lock);
558 return count;
561 #define fan_offset(offset) \
562 static ssize_t show_fan_##offset (struct device *dev, struct device_attribute *attr, char *buf) \
564 return show_fan(dev, buf, offset - 1); \
566 static ssize_t show_fan_##offset##_min (struct device *dev, struct device_attribute *attr, char *buf) \
568 return show_fan_min(dev, buf, offset - 1); \
570 static ssize_t show_fan_##offset##_div (struct device *dev, struct device_attribute *attr, char *buf) \
572 return show_fan_div(dev, buf, offset - 1); \
574 static ssize_t set_fan_##offset##_min (struct device *dev, struct device_attribute *attr, \
575 const char *buf, size_t count) \
577 return set_fan_min(dev, buf, count, offset - 1); \
579 static ssize_t set_fan_##offset##_div (struct device *dev, struct device_attribute *attr, \
580 const char *buf, size_t count) \
582 return set_fan_div(dev, buf, count, offset - 1); \
584 static DEVICE_ATTR(fan##offset##_input, S_IRUGO, show_fan_##offset, \
585 NULL); \
586 static DEVICE_ATTR(fan##offset##_min, S_IRUGO | S_IWUSR, \
587 show_fan_##offset##_min, set_fan_##offset##_min); \
588 static DEVICE_ATTR(fan##offset##_div, S_IRUGO | S_IWUSR, \
589 show_fan_##offset##_div, set_fan_##offset##_div); \
590 static DEVICE_ATTR(auto_fan##offset##_min_pwm, S_IRUGO | S_IWUSR, \
591 show_pwm_##offset, set_pwm_##offset)
593 fan_offset(1);
594 fan_offset(2);
597 /* Temps */
598 static ssize_t show_temp(struct device *dev, char *buf, int nr)
600 struct adm1031_data *data = adm1031_update_device(dev);
601 int ext;
602 ext = nr == 0 ?
603 ((data->ext_temp[nr] >> 6) & 0x3) * 2 :
604 (((data->ext_temp[nr] >> ((nr - 1) * 3)) & 7));
605 return sprintf(buf, "%d\n", TEMP_FROM_REG_EXT(data->temp[nr], ext));
607 static ssize_t show_temp_min(struct device *dev, char *buf, int nr)
609 struct adm1031_data *data = adm1031_update_device(dev);
610 return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_min[nr]));
612 static ssize_t show_temp_max(struct device *dev, char *buf, int nr)
614 struct adm1031_data *data = adm1031_update_device(dev);
615 return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_max[nr]));
617 static ssize_t show_temp_crit(struct device *dev, char *buf, int nr)
619 struct adm1031_data *data = adm1031_update_device(dev);
620 return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_crit[nr]));
622 static ssize_t
623 set_temp_min(struct device *dev, const char *buf, size_t count, int nr)
625 struct i2c_client *client = to_i2c_client(dev);
626 struct adm1031_data *data = i2c_get_clientdata(client);
627 int val;
629 val = simple_strtol(buf, NULL, 10);
630 val = SENSORS_LIMIT(val, -55000, nr == 0 ? 127750 : 127875);
631 mutex_lock(&data->update_lock);
632 data->temp_min[nr] = TEMP_TO_REG(val);
633 adm1031_write_value(client, ADM1031_REG_TEMP_MIN(nr),
634 data->temp_min[nr]);
635 mutex_unlock(&data->update_lock);
636 return count;
638 static ssize_t
639 set_temp_max(struct device *dev, const char *buf, size_t count, int nr)
641 struct i2c_client *client = to_i2c_client(dev);
642 struct adm1031_data *data = i2c_get_clientdata(client);
643 int val;
645 val = simple_strtol(buf, NULL, 10);
646 val = SENSORS_LIMIT(val, -55000, nr == 0 ? 127750 : 127875);
647 mutex_lock(&data->update_lock);
648 data->temp_max[nr] = TEMP_TO_REG(val);
649 adm1031_write_value(client, ADM1031_REG_TEMP_MAX(nr),
650 data->temp_max[nr]);
651 mutex_unlock(&data->update_lock);
652 return count;
654 static ssize_t
655 set_temp_crit(struct device *dev, const char *buf, size_t count, int nr)
657 struct i2c_client *client = to_i2c_client(dev);
658 struct adm1031_data *data = i2c_get_clientdata(client);
659 int val;
661 val = simple_strtol(buf, NULL, 10);
662 val = SENSORS_LIMIT(val, -55000, nr == 0 ? 127750 : 127875);
663 mutex_lock(&data->update_lock);
664 data->temp_crit[nr] = TEMP_TO_REG(val);
665 adm1031_write_value(client, ADM1031_REG_TEMP_CRIT(nr),
666 data->temp_crit[nr]);
667 mutex_unlock(&data->update_lock);
668 return count;
671 #define temp_reg(offset) \
672 static ssize_t show_temp_##offset (struct device *dev, struct device_attribute *attr, char *buf) \
674 return show_temp(dev, buf, offset - 1); \
676 static ssize_t show_temp_##offset##_min (struct device *dev, struct device_attribute *attr, char *buf) \
678 return show_temp_min(dev, buf, offset - 1); \
680 static ssize_t show_temp_##offset##_max (struct device *dev, struct device_attribute *attr, char *buf) \
682 return show_temp_max(dev, buf, offset - 1); \
684 static ssize_t show_temp_##offset##_crit (struct device *dev, struct device_attribute *attr, char *buf) \
686 return show_temp_crit(dev, buf, offset - 1); \
688 static ssize_t set_temp_##offset##_min (struct device *dev, struct device_attribute *attr, \
689 const char *buf, size_t count) \
691 return set_temp_min(dev, buf, count, offset - 1); \
693 static ssize_t set_temp_##offset##_max (struct device *dev, struct device_attribute *attr, \
694 const char *buf, size_t count) \
696 return set_temp_max(dev, buf, count, offset - 1); \
698 static ssize_t set_temp_##offset##_crit (struct device *dev, struct device_attribute *attr, \
699 const char *buf, size_t count) \
701 return set_temp_crit(dev, buf, count, offset - 1); \
703 static DEVICE_ATTR(temp##offset##_input, S_IRUGO, show_temp_##offset, \
704 NULL); \
705 static DEVICE_ATTR(temp##offset##_min, S_IRUGO | S_IWUSR, \
706 show_temp_##offset##_min, set_temp_##offset##_min); \
707 static DEVICE_ATTR(temp##offset##_max, S_IRUGO | S_IWUSR, \
708 show_temp_##offset##_max, set_temp_##offset##_max); \
709 static DEVICE_ATTR(temp##offset##_crit, S_IRUGO | S_IWUSR, \
710 show_temp_##offset##_crit, set_temp_##offset##_crit)
712 temp_reg(1);
713 temp_reg(2);
714 temp_reg(3);
716 /* Alarms */
717 static ssize_t show_alarms(struct device *dev, struct device_attribute *attr, char *buf)
719 struct adm1031_data *data = adm1031_update_device(dev);
720 return sprintf(buf, "%d\n", data->alarm);
723 static DEVICE_ATTR(alarms, S_IRUGO, show_alarms, NULL);
726 static int adm1031_attach_adapter(struct i2c_adapter *adapter)
728 if (!(adapter->class & I2C_CLASS_HWMON))
729 return 0;
730 return i2c_probe(adapter, &addr_data, adm1031_detect);
733 static struct attribute *adm1031_attributes[] = {
734 &dev_attr_fan1_input.attr,
735 &dev_attr_fan1_div.attr,
736 &dev_attr_fan1_min.attr,
737 &dev_attr_pwm1.attr,
738 &dev_attr_auto_fan1_channel.attr,
739 &dev_attr_temp1_input.attr,
740 &dev_attr_temp1_min.attr,
741 &dev_attr_temp1_max.attr,
742 &dev_attr_temp1_crit.attr,
743 &dev_attr_temp2_input.attr,
744 &dev_attr_temp2_min.attr,
745 &dev_attr_temp2_max.attr,
746 &dev_attr_temp2_crit.attr,
748 &dev_attr_auto_temp1_off.attr,
749 &dev_attr_auto_temp1_min.attr,
750 &dev_attr_auto_temp1_max.attr,
752 &dev_attr_auto_temp2_off.attr,
753 &dev_attr_auto_temp2_min.attr,
754 &dev_attr_auto_temp2_max.attr,
756 &dev_attr_auto_fan1_min_pwm.attr,
758 &dev_attr_alarms.attr,
760 NULL
763 static const struct attribute_group adm1031_group = {
764 .attrs = adm1031_attributes,
767 static struct attribute *adm1031_attributes_opt[] = {
768 &dev_attr_fan2_input.attr,
769 &dev_attr_fan2_div.attr,
770 &dev_attr_fan2_min.attr,
771 &dev_attr_pwm2.attr,
772 &dev_attr_auto_fan2_channel.attr,
773 &dev_attr_temp3_input.attr,
774 &dev_attr_temp3_min.attr,
775 &dev_attr_temp3_max.attr,
776 &dev_attr_temp3_crit.attr,
777 &dev_attr_auto_temp3_off.attr,
778 &dev_attr_auto_temp3_min.attr,
779 &dev_attr_auto_temp3_max.attr,
780 &dev_attr_auto_fan2_min_pwm.attr,
781 NULL
784 static const struct attribute_group adm1031_group_opt = {
785 .attrs = adm1031_attributes_opt,
788 /* This function is called by i2c_probe */
789 static int adm1031_detect(struct i2c_adapter *adapter, int address, int kind)
791 struct i2c_client *new_client;
792 struct adm1031_data *data;
793 int err = 0;
794 const char *name = "";
796 if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA))
797 goto exit;
799 if (!(data = kzalloc(sizeof(struct adm1031_data), GFP_KERNEL))) {
800 err = -ENOMEM;
801 goto exit;
804 new_client = &data->client;
805 i2c_set_clientdata(new_client, data);
806 new_client->addr = address;
807 new_client->adapter = adapter;
808 new_client->driver = &adm1031_driver;
809 new_client->flags = 0;
811 if (kind < 0) {
812 int id, co;
813 id = i2c_smbus_read_byte_data(new_client, 0x3d);
814 co = i2c_smbus_read_byte_data(new_client, 0x3e);
816 if (!((id == 0x31 || id == 0x30) && co == 0x41))
817 goto exit_free;
818 kind = (id == 0x30) ? adm1030 : adm1031;
821 if (kind <= 0)
822 kind = adm1031;
824 /* Given the detected chip type, set the chip name and the
825 * auto fan control helper table. */
826 if (kind == adm1030) {
827 name = "adm1030";
828 data->chan_select_table = &auto_channel_select_table_adm1030;
829 } else if (kind == adm1031) {
830 name = "adm1031";
831 data->chan_select_table = &auto_channel_select_table_adm1031;
833 data->chip_type = kind;
835 strlcpy(new_client->name, name, I2C_NAME_SIZE);
836 data->valid = 0;
837 mutex_init(&data->update_lock);
839 /* Tell the I2C layer a new client has arrived */
840 if ((err = i2c_attach_client(new_client)))
841 goto exit_free;
843 /* Initialize the ADM1031 chip */
844 adm1031_init_client(new_client);
846 /* Register sysfs hooks */
847 if ((err = sysfs_create_group(&new_client->dev.kobj, &adm1031_group)))
848 goto exit_detach;
850 if (kind == adm1031) {
851 if ((err = sysfs_create_group(&new_client->dev.kobj,
852 &adm1031_group_opt)))
853 goto exit_remove;
856 data->class_dev = hwmon_device_register(&new_client->dev);
857 if (IS_ERR(data->class_dev)) {
858 err = PTR_ERR(data->class_dev);
859 goto exit_remove;
862 return 0;
864 exit_remove:
865 sysfs_remove_group(&new_client->dev.kobj, &adm1031_group);
866 sysfs_remove_group(&new_client->dev.kobj, &adm1031_group_opt);
867 exit_detach:
868 i2c_detach_client(new_client);
869 exit_free:
870 kfree(data);
871 exit:
872 return err;
875 static int adm1031_detach_client(struct i2c_client *client)
877 struct adm1031_data *data = i2c_get_clientdata(client);
878 int ret;
880 hwmon_device_unregister(data->class_dev);
881 sysfs_remove_group(&client->dev.kobj, &adm1031_group);
882 sysfs_remove_group(&client->dev.kobj, &adm1031_group_opt);
883 if ((ret = i2c_detach_client(client)) != 0) {
884 return ret;
886 kfree(data);
887 return 0;
890 static void adm1031_init_client(struct i2c_client *client)
892 unsigned int read_val;
893 unsigned int mask;
894 struct adm1031_data *data = i2c_get_clientdata(client);
896 mask = (ADM1031_CONF2_PWM1_ENABLE | ADM1031_CONF2_TACH1_ENABLE);
897 if (data->chip_type == adm1031) {
898 mask |= (ADM1031_CONF2_PWM2_ENABLE |
899 ADM1031_CONF2_TACH2_ENABLE);
901 /* Initialize the ADM1031 chip (enables fan speed reading ) */
902 read_val = adm1031_read_value(client, ADM1031_REG_CONF2);
903 if ((read_val | mask) != read_val) {
904 adm1031_write_value(client, ADM1031_REG_CONF2, read_val | mask);
907 read_val = adm1031_read_value(client, ADM1031_REG_CONF1);
908 if ((read_val | ADM1031_CONF1_MONITOR_ENABLE) != read_val) {
909 adm1031_write_value(client, ADM1031_REG_CONF1, read_val |
910 ADM1031_CONF1_MONITOR_ENABLE);
915 static struct adm1031_data *adm1031_update_device(struct device *dev)
917 struct i2c_client *client = to_i2c_client(dev);
918 struct adm1031_data *data = i2c_get_clientdata(client);
919 int chan;
921 mutex_lock(&data->update_lock);
923 if (time_after(jiffies, data->last_updated + HZ + HZ / 2)
924 || !data->valid) {
926 dev_dbg(&client->dev, "Starting adm1031 update\n");
927 for (chan = 0;
928 chan < ((data->chip_type == adm1031) ? 3 : 2); chan++) {
929 u8 oldh, newh;
931 oldh =
932 adm1031_read_value(client, ADM1031_REG_TEMP(chan));
933 data->ext_temp[chan] =
934 adm1031_read_value(client, ADM1031_REG_EXT_TEMP);
935 newh =
936 adm1031_read_value(client, ADM1031_REG_TEMP(chan));
937 if (newh != oldh) {
938 data->ext_temp[chan] =
939 adm1031_read_value(client,
940 ADM1031_REG_EXT_TEMP);
941 #ifdef DEBUG
942 oldh =
943 adm1031_read_value(client,
944 ADM1031_REG_TEMP(chan));
946 /* oldh is actually newer */
947 if (newh != oldh)
948 dev_warn(&client->dev,
949 "Remote temperature may be "
950 "wrong.\n");
951 #endif
953 data->temp[chan] = newh;
955 data->temp_min[chan] =
956 adm1031_read_value(client,
957 ADM1031_REG_TEMP_MIN(chan));
958 data->temp_max[chan] =
959 adm1031_read_value(client,
960 ADM1031_REG_TEMP_MAX(chan));
961 data->temp_crit[chan] =
962 adm1031_read_value(client,
963 ADM1031_REG_TEMP_CRIT(chan));
964 data->auto_temp[chan] =
965 adm1031_read_value(client,
966 ADM1031_REG_AUTO_TEMP(chan));
970 data->conf1 = adm1031_read_value(client, ADM1031_REG_CONF1);
971 data->conf2 = adm1031_read_value(client, ADM1031_REG_CONF2);
973 data->alarm = adm1031_read_value(client, ADM1031_REG_STATUS(0))
974 | (adm1031_read_value(client, ADM1031_REG_STATUS(1))
975 << 8);
976 if (data->chip_type == adm1030) {
977 data->alarm &= 0xc0ff;
980 for (chan=0; chan<(data->chip_type == adm1030 ? 1 : 2); chan++) {
981 data->fan_div[chan] =
982 adm1031_read_value(client, ADM1031_REG_FAN_DIV(chan));
983 data->fan_min[chan] =
984 adm1031_read_value(client, ADM1031_REG_FAN_MIN(chan));
985 data->fan[chan] =
986 adm1031_read_value(client, ADM1031_REG_FAN_SPEED(chan));
987 data->pwm[chan] =
988 0xf & (adm1031_read_value(client, ADM1031_REG_PWM) >>
989 (4*chan));
991 data->last_updated = jiffies;
992 data->valid = 1;
995 mutex_unlock(&data->update_lock);
997 return data;
1000 static int __init sensors_adm1031_init(void)
1002 return i2c_add_driver(&adm1031_driver);
1005 static void __exit sensors_adm1031_exit(void)
1007 i2c_del_driver(&adm1031_driver);
1010 MODULE_AUTHOR("Alexandre d'Alton <alex@alexdalton.org>");
1011 MODULE_DESCRIPTION("ADM1031/ADM1030 driver");
1012 MODULE_LICENSE("GPL");
1014 module_init(sensors_adm1031_init);
1015 module_exit(sensors_adm1031_exit);