1 // SPDX-License-Identifier: GPL-2.0
5 * Copyright (C) 1991, 1992 Linus Torvalds
8 #include <linux/export.h>
10 #include <linux/utsname.h>
11 #include <linux/mman.h>
12 #include <linux/reboot.h>
13 #include <linux/prctl.h>
14 #include <linux/highuid.h>
16 #include <linux/kmod.h>
17 #include <linux/perf_event.h>
18 #include <linux/resource.h>
19 #include <linux/kernel.h>
20 #include <linux/workqueue.h>
21 #include <linux/capability.h>
22 #include <linux/device.h>
23 #include <linux/key.h>
24 #include <linux/times.h>
25 #include <linux/posix-timers.h>
26 #include <linux/security.h>
27 #include <linux/dcookies.h>
28 #include <linux/suspend.h>
29 #include <linux/tty.h>
30 #include <linux/signal.h>
31 #include <linux/cn_proc.h>
32 #include <linux/getcpu.h>
33 #include <linux/task_io_accounting_ops.h>
34 #include <linux/seccomp.h>
35 #include <linux/cpu.h>
36 #include <linux/personality.h>
37 #include <linux/ptrace.h>
38 #include <linux/fs_struct.h>
39 #include <linux/file.h>
40 #include <linux/mount.h>
41 #include <linux/gfp.h>
42 #include <linux/syscore_ops.h>
43 #include <linux/version.h>
44 #include <linux/ctype.h>
46 #include <linux/compat.h>
47 #include <linux/syscalls.h>
48 #include <linux/kprobes.h>
49 #include <linux/user_namespace.h>
50 #include <linux/binfmts.h>
52 #include <linux/sched.h>
53 #include <linux/sched/autogroup.h>
54 #include <linux/sched/loadavg.h>
55 #include <linux/sched/stat.h>
56 #include <linux/sched/mm.h>
57 #include <linux/sched/coredump.h>
58 #include <linux/sched/task.h>
59 #include <linux/sched/cputime.h>
60 #include <linux/rcupdate.h>
61 #include <linux/uidgid.h>
62 #include <linux/cred.h>
64 #include <linux/kmsg_dump.h>
65 /* Move somewhere else to avoid recompiling? */
66 #include <generated/utsrelease.h>
68 #include <linux/uaccess.h>
70 #include <asm/unistd.h>
72 #ifndef SET_UNALIGN_CTL
73 # define SET_UNALIGN_CTL(a, b) (-EINVAL)
75 #ifndef GET_UNALIGN_CTL
76 # define GET_UNALIGN_CTL(a, b) (-EINVAL)
79 # define SET_FPEMU_CTL(a, b) (-EINVAL)
82 # define GET_FPEMU_CTL(a, b) (-EINVAL)
85 # define SET_FPEXC_CTL(a, b) (-EINVAL)
88 # define GET_FPEXC_CTL(a, b) (-EINVAL)
91 # define GET_ENDIAN(a, b) (-EINVAL)
94 # define SET_ENDIAN(a, b) (-EINVAL)
97 # define GET_TSC_CTL(a) (-EINVAL)
100 # define SET_TSC_CTL(a) (-EINVAL)
102 #ifndef MPX_ENABLE_MANAGEMENT
103 # define MPX_ENABLE_MANAGEMENT() (-EINVAL)
105 #ifndef MPX_DISABLE_MANAGEMENT
106 # define MPX_DISABLE_MANAGEMENT() (-EINVAL)
109 # define GET_FP_MODE(a) (-EINVAL)
112 # define SET_FP_MODE(a,b) (-EINVAL)
116 * this is where the system-wide overflow UID and GID are defined, for
117 * architectures that now have 32-bit UID/GID but didn't in the past
120 int overflowuid
= DEFAULT_OVERFLOWUID
;
121 int overflowgid
= DEFAULT_OVERFLOWGID
;
123 EXPORT_SYMBOL(overflowuid
);
124 EXPORT_SYMBOL(overflowgid
);
127 * the same as above, but for filesystems which can only store a 16-bit
128 * UID and GID. as such, this is needed on all architectures
131 int fs_overflowuid
= DEFAULT_FS_OVERFLOWUID
;
132 int fs_overflowgid
= DEFAULT_FS_OVERFLOWUID
;
134 EXPORT_SYMBOL(fs_overflowuid
);
135 EXPORT_SYMBOL(fs_overflowgid
);
138 * Returns true if current's euid is same as p's uid or euid,
139 * or has CAP_SYS_NICE to p's user_ns.
141 * Called with rcu_read_lock, creds are safe
143 static bool set_one_prio_perm(struct task_struct
*p
)
145 const struct cred
*cred
= current_cred(), *pcred
= __task_cred(p
);
147 if (uid_eq(pcred
->uid
, cred
->euid
) ||
148 uid_eq(pcred
->euid
, cred
->euid
))
150 if (ns_capable(pcred
->user_ns
, CAP_SYS_NICE
))
156 * set the priority of a task
157 * - the caller must hold the RCU read lock
159 static int set_one_prio(struct task_struct
*p
, int niceval
, int error
)
163 if (!set_one_prio_perm(p
)) {
167 if (niceval
< task_nice(p
) && !can_nice(p
, niceval
)) {
171 no_nice
= security_task_setnice(p
, niceval
);
178 set_user_nice(p
, niceval
);
183 SYSCALL_DEFINE3(setpriority
, int, which
, int, who
, int, niceval
)
185 struct task_struct
*g
, *p
;
186 struct user_struct
*user
;
187 const struct cred
*cred
= current_cred();
192 if (which
> PRIO_USER
|| which
< PRIO_PROCESS
)
195 /* normalize: avoid signed division (rounding problems) */
197 if (niceval
< MIN_NICE
)
199 if (niceval
> MAX_NICE
)
203 read_lock(&tasklist_lock
);
207 p
= find_task_by_vpid(who
);
211 error
= set_one_prio(p
, niceval
, error
);
215 pgrp
= find_vpid(who
);
217 pgrp
= task_pgrp(current
);
218 do_each_pid_thread(pgrp
, PIDTYPE_PGID
, p
) {
219 error
= set_one_prio(p
, niceval
, error
);
220 } while_each_pid_thread(pgrp
, PIDTYPE_PGID
, p
);
223 uid
= make_kuid(cred
->user_ns
, who
);
227 else if (!uid_eq(uid
, cred
->uid
)) {
228 user
= find_user(uid
);
230 goto out_unlock
; /* No processes for this user */
232 do_each_thread(g
, p
) {
233 if (uid_eq(task_uid(p
), uid
) && task_pid_vnr(p
))
234 error
= set_one_prio(p
, niceval
, error
);
235 } while_each_thread(g
, p
);
236 if (!uid_eq(uid
, cred
->uid
))
237 free_uid(user
); /* For find_user() */
241 read_unlock(&tasklist_lock
);
248 * Ugh. To avoid negative return values, "getpriority()" will
249 * not return the normal nice-value, but a negated value that
250 * has been offset by 20 (ie it returns 40..1 instead of -20..19)
251 * to stay compatible.
253 SYSCALL_DEFINE2(getpriority
, int, which
, int, who
)
255 struct task_struct
*g
, *p
;
256 struct user_struct
*user
;
257 const struct cred
*cred
= current_cred();
258 long niceval
, retval
= -ESRCH
;
262 if (which
> PRIO_USER
|| which
< PRIO_PROCESS
)
266 read_lock(&tasklist_lock
);
270 p
= find_task_by_vpid(who
);
274 niceval
= nice_to_rlimit(task_nice(p
));
275 if (niceval
> retval
)
281 pgrp
= find_vpid(who
);
283 pgrp
= task_pgrp(current
);
284 do_each_pid_thread(pgrp
, PIDTYPE_PGID
, p
) {
285 niceval
= nice_to_rlimit(task_nice(p
));
286 if (niceval
> retval
)
288 } while_each_pid_thread(pgrp
, PIDTYPE_PGID
, p
);
291 uid
= make_kuid(cred
->user_ns
, who
);
295 else if (!uid_eq(uid
, cred
->uid
)) {
296 user
= find_user(uid
);
298 goto out_unlock
; /* No processes for this user */
300 do_each_thread(g
, p
) {
301 if (uid_eq(task_uid(p
), uid
) && task_pid_vnr(p
)) {
302 niceval
= nice_to_rlimit(task_nice(p
));
303 if (niceval
> retval
)
306 } while_each_thread(g
, p
);
307 if (!uid_eq(uid
, cred
->uid
))
308 free_uid(user
); /* for find_user() */
312 read_unlock(&tasklist_lock
);
319 * Unprivileged users may change the real gid to the effective gid
320 * or vice versa. (BSD-style)
322 * If you set the real gid at all, or set the effective gid to a value not
323 * equal to the real gid, then the saved gid is set to the new effective gid.
325 * This makes it possible for a setgid program to completely drop its
326 * privileges, which is often a useful assertion to make when you are doing
327 * a security audit over a program.
329 * The general idea is that a program which uses just setregid() will be
330 * 100% compatible with BSD. A program which uses just setgid() will be
331 * 100% compatible with POSIX with saved IDs.
333 * SMP: There are not races, the GIDs are checked only by filesystem
334 * operations (as far as semantic preservation is concerned).
336 #ifdef CONFIG_MULTIUSER
337 SYSCALL_DEFINE2(setregid
, gid_t
, rgid
, gid_t
, egid
)
339 struct user_namespace
*ns
= current_user_ns();
340 const struct cred
*old
;
345 krgid
= make_kgid(ns
, rgid
);
346 kegid
= make_kgid(ns
, egid
);
348 if ((rgid
!= (gid_t
) -1) && !gid_valid(krgid
))
350 if ((egid
!= (gid_t
) -1) && !gid_valid(kegid
))
353 new = prepare_creds();
356 old
= current_cred();
359 if (rgid
!= (gid_t
) -1) {
360 if (gid_eq(old
->gid
, krgid
) ||
361 gid_eq(old
->egid
, krgid
) ||
362 ns_capable(old
->user_ns
, CAP_SETGID
))
367 if (egid
!= (gid_t
) -1) {
368 if (gid_eq(old
->gid
, kegid
) ||
369 gid_eq(old
->egid
, kegid
) ||
370 gid_eq(old
->sgid
, kegid
) ||
371 ns_capable(old
->user_ns
, CAP_SETGID
))
377 if (rgid
!= (gid_t
) -1 ||
378 (egid
!= (gid_t
) -1 && !gid_eq(kegid
, old
->gid
)))
379 new->sgid
= new->egid
;
380 new->fsgid
= new->egid
;
382 return commit_creds(new);
390 * setgid() is implemented like SysV w/ SAVED_IDS
392 * SMP: Same implicit races as above.
394 SYSCALL_DEFINE1(setgid
, gid_t
, gid
)
396 struct user_namespace
*ns
= current_user_ns();
397 const struct cred
*old
;
402 kgid
= make_kgid(ns
, gid
);
403 if (!gid_valid(kgid
))
406 new = prepare_creds();
409 old
= current_cred();
412 if (ns_capable(old
->user_ns
, CAP_SETGID
))
413 new->gid
= new->egid
= new->sgid
= new->fsgid
= kgid
;
414 else if (gid_eq(kgid
, old
->gid
) || gid_eq(kgid
, old
->sgid
))
415 new->egid
= new->fsgid
= kgid
;
419 return commit_creds(new);
427 * change the user struct in a credentials set to match the new UID
429 static int set_user(struct cred
*new)
431 struct user_struct
*new_user
;
433 new_user
= alloc_uid(new->uid
);
438 * We don't fail in case of NPROC limit excess here because too many
439 * poorly written programs don't check set*uid() return code, assuming
440 * it never fails if called by root. We may still enforce NPROC limit
441 * for programs doing set*uid()+execve() by harmlessly deferring the
442 * failure to the execve() stage.
444 if (atomic_read(&new_user
->processes
) >= rlimit(RLIMIT_NPROC
) &&
445 new_user
!= INIT_USER
)
446 current
->flags
|= PF_NPROC_EXCEEDED
;
448 current
->flags
&= ~PF_NPROC_EXCEEDED
;
451 new->user
= new_user
;
456 * Unprivileged users may change the real uid to the effective uid
457 * or vice versa. (BSD-style)
459 * If you set the real uid at all, or set the effective uid to a value not
460 * equal to the real uid, then the saved uid is set to the new effective uid.
462 * This makes it possible for a setuid program to completely drop its
463 * privileges, which is often a useful assertion to make when you are doing
464 * a security audit over a program.
466 * The general idea is that a program which uses just setreuid() will be
467 * 100% compatible with BSD. A program which uses just setuid() will be
468 * 100% compatible with POSIX with saved IDs.
470 SYSCALL_DEFINE2(setreuid
, uid_t
, ruid
, uid_t
, euid
)
472 struct user_namespace
*ns
= current_user_ns();
473 const struct cred
*old
;
478 kruid
= make_kuid(ns
, ruid
);
479 keuid
= make_kuid(ns
, euid
);
481 if ((ruid
!= (uid_t
) -1) && !uid_valid(kruid
))
483 if ((euid
!= (uid_t
) -1) && !uid_valid(keuid
))
486 new = prepare_creds();
489 old
= current_cred();
492 if (ruid
!= (uid_t
) -1) {
494 if (!uid_eq(old
->uid
, kruid
) &&
495 !uid_eq(old
->euid
, kruid
) &&
496 !ns_capable(old
->user_ns
, CAP_SETUID
))
500 if (euid
!= (uid_t
) -1) {
502 if (!uid_eq(old
->uid
, keuid
) &&
503 !uid_eq(old
->euid
, keuid
) &&
504 !uid_eq(old
->suid
, keuid
) &&
505 !ns_capable(old
->user_ns
, CAP_SETUID
))
509 if (!uid_eq(new->uid
, old
->uid
)) {
510 retval
= set_user(new);
514 if (ruid
!= (uid_t
) -1 ||
515 (euid
!= (uid_t
) -1 && !uid_eq(keuid
, old
->uid
)))
516 new->suid
= new->euid
;
517 new->fsuid
= new->euid
;
519 retval
= security_task_fix_setuid(new, old
, LSM_SETID_RE
);
523 return commit_creds(new);
531 * setuid() is implemented like SysV with SAVED_IDS
533 * Note that SAVED_ID's is deficient in that a setuid root program
534 * like sendmail, for example, cannot set its uid to be a normal
535 * user and then switch back, because if you're root, setuid() sets
536 * the saved uid too. If you don't like this, blame the bright people
537 * in the POSIX committee and/or USG. Note that the BSD-style setreuid()
538 * will allow a root program to temporarily drop privileges and be able to
539 * regain them by swapping the real and effective uid.
541 SYSCALL_DEFINE1(setuid
, uid_t
, uid
)
543 struct user_namespace
*ns
= current_user_ns();
544 const struct cred
*old
;
549 kuid
= make_kuid(ns
, uid
);
550 if (!uid_valid(kuid
))
553 new = prepare_creds();
556 old
= current_cred();
559 if (ns_capable(old
->user_ns
, CAP_SETUID
)) {
560 new->suid
= new->uid
= kuid
;
561 if (!uid_eq(kuid
, old
->uid
)) {
562 retval
= set_user(new);
566 } else if (!uid_eq(kuid
, old
->uid
) && !uid_eq(kuid
, new->suid
)) {
570 new->fsuid
= new->euid
= kuid
;
572 retval
= security_task_fix_setuid(new, old
, LSM_SETID_ID
);
576 return commit_creds(new);
585 * This function implements a generic ability to update ruid, euid,
586 * and suid. This allows you to implement the 4.4 compatible seteuid().
588 SYSCALL_DEFINE3(setresuid
, uid_t
, ruid
, uid_t
, euid
, uid_t
, suid
)
590 struct user_namespace
*ns
= current_user_ns();
591 const struct cred
*old
;
594 kuid_t kruid
, keuid
, ksuid
;
596 kruid
= make_kuid(ns
, ruid
);
597 keuid
= make_kuid(ns
, euid
);
598 ksuid
= make_kuid(ns
, suid
);
600 if ((ruid
!= (uid_t
) -1) && !uid_valid(kruid
))
603 if ((euid
!= (uid_t
) -1) && !uid_valid(keuid
))
606 if ((suid
!= (uid_t
) -1) && !uid_valid(ksuid
))
609 new = prepare_creds();
613 old
= current_cred();
616 if (!ns_capable(old
->user_ns
, CAP_SETUID
)) {
617 if (ruid
!= (uid_t
) -1 && !uid_eq(kruid
, old
->uid
) &&
618 !uid_eq(kruid
, old
->euid
) && !uid_eq(kruid
, old
->suid
))
620 if (euid
!= (uid_t
) -1 && !uid_eq(keuid
, old
->uid
) &&
621 !uid_eq(keuid
, old
->euid
) && !uid_eq(keuid
, old
->suid
))
623 if (suid
!= (uid_t
) -1 && !uid_eq(ksuid
, old
->uid
) &&
624 !uid_eq(ksuid
, old
->euid
) && !uid_eq(ksuid
, old
->suid
))
628 if (ruid
!= (uid_t
) -1) {
630 if (!uid_eq(kruid
, old
->uid
)) {
631 retval
= set_user(new);
636 if (euid
!= (uid_t
) -1)
638 if (suid
!= (uid_t
) -1)
640 new->fsuid
= new->euid
;
642 retval
= security_task_fix_setuid(new, old
, LSM_SETID_RES
);
646 return commit_creds(new);
653 SYSCALL_DEFINE3(getresuid
, uid_t __user
*, ruidp
, uid_t __user
*, euidp
, uid_t __user
*, suidp
)
655 const struct cred
*cred
= current_cred();
657 uid_t ruid
, euid
, suid
;
659 ruid
= from_kuid_munged(cred
->user_ns
, cred
->uid
);
660 euid
= from_kuid_munged(cred
->user_ns
, cred
->euid
);
661 suid
= from_kuid_munged(cred
->user_ns
, cred
->suid
);
663 retval
= put_user(ruid
, ruidp
);
665 retval
= put_user(euid
, euidp
);
667 return put_user(suid
, suidp
);
673 * Same as above, but for rgid, egid, sgid.
675 SYSCALL_DEFINE3(setresgid
, gid_t
, rgid
, gid_t
, egid
, gid_t
, sgid
)
677 struct user_namespace
*ns
= current_user_ns();
678 const struct cred
*old
;
681 kgid_t krgid
, kegid
, ksgid
;
683 krgid
= make_kgid(ns
, rgid
);
684 kegid
= make_kgid(ns
, egid
);
685 ksgid
= make_kgid(ns
, sgid
);
687 if ((rgid
!= (gid_t
) -1) && !gid_valid(krgid
))
689 if ((egid
!= (gid_t
) -1) && !gid_valid(kegid
))
691 if ((sgid
!= (gid_t
) -1) && !gid_valid(ksgid
))
694 new = prepare_creds();
697 old
= current_cred();
700 if (!ns_capable(old
->user_ns
, CAP_SETGID
)) {
701 if (rgid
!= (gid_t
) -1 && !gid_eq(krgid
, old
->gid
) &&
702 !gid_eq(krgid
, old
->egid
) && !gid_eq(krgid
, old
->sgid
))
704 if (egid
!= (gid_t
) -1 && !gid_eq(kegid
, old
->gid
) &&
705 !gid_eq(kegid
, old
->egid
) && !gid_eq(kegid
, old
->sgid
))
707 if (sgid
!= (gid_t
) -1 && !gid_eq(ksgid
, old
->gid
) &&
708 !gid_eq(ksgid
, old
->egid
) && !gid_eq(ksgid
, old
->sgid
))
712 if (rgid
!= (gid_t
) -1)
714 if (egid
!= (gid_t
) -1)
716 if (sgid
!= (gid_t
) -1)
718 new->fsgid
= new->egid
;
720 return commit_creds(new);
727 SYSCALL_DEFINE3(getresgid
, gid_t __user
*, rgidp
, gid_t __user
*, egidp
, gid_t __user
*, sgidp
)
729 const struct cred
*cred
= current_cred();
731 gid_t rgid
, egid
, sgid
;
733 rgid
= from_kgid_munged(cred
->user_ns
, cred
->gid
);
734 egid
= from_kgid_munged(cred
->user_ns
, cred
->egid
);
735 sgid
= from_kgid_munged(cred
->user_ns
, cred
->sgid
);
737 retval
= put_user(rgid
, rgidp
);
739 retval
= put_user(egid
, egidp
);
741 retval
= put_user(sgid
, sgidp
);
749 * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
750 * is used for "access()" and for the NFS daemon (letting nfsd stay at
751 * whatever uid it wants to). It normally shadows "euid", except when
752 * explicitly set by setfsuid() or for access..
754 SYSCALL_DEFINE1(setfsuid
, uid_t
, uid
)
756 const struct cred
*old
;
761 old
= current_cred();
762 old_fsuid
= from_kuid_munged(old
->user_ns
, old
->fsuid
);
764 kuid
= make_kuid(old
->user_ns
, uid
);
765 if (!uid_valid(kuid
))
768 new = prepare_creds();
772 if (uid_eq(kuid
, old
->uid
) || uid_eq(kuid
, old
->euid
) ||
773 uid_eq(kuid
, old
->suid
) || uid_eq(kuid
, old
->fsuid
) ||
774 ns_capable(old
->user_ns
, CAP_SETUID
)) {
775 if (!uid_eq(kuid
, old
->fsuid
)) {
777 if (security_task_fix_setuid(new, old
, LSM_SETID_FS
) == 0)
791 * Samma på svenska..
793 SYSCALL_DEFINE1(setfsgid
, gid_t
, gid
)
795 const struct cred
*old
;
800 old
= current_cred();
801 old_fsgid
= from_kgid_munged(old
->user_ns
, old
->fsgid
);
803 kgid
= make_kgid(old
->user_ns
, gid
);
804 if (!gid_valid(kgid
))
807 new = prepare_creds();
811 if (gid_eq(kgid
, old
->gid
) || gid_eq(kgid
, old
->egid
) ||
812 gid_eq(kgid
, old
->sgid
) || gid_eq(kgid
, old
->fsgid
) ||
813 ns_capable(old
->user_ns
, CAP_SETGID
)) {
814 if (!gid_eq(kgid
, old
->fsgid
)) {
827 #endif /* CONFIG_MULTIUSER */
830 * sys_getpid - return the thread group id of the current process
832 * Note, despite the name, this returns the tgid not the pid. The tgid and
833 * the pid are identical unless CLONE_THREAD was specified on clone() in
834 * which case the tgid is the same in all threads of the same group.
836 * This is SMP safe as current->tgid does not change.
838 SYSCALL_DEFINE0(getpid
)
840 return task_tgid_vnr(current
);
843 /* Thread ID - the internal kernel "pid" */
844 SYSCALL_DEFINE0(gettid
)
846 return task_pid_vnr(current
);
850 * Accessing ->real_parent is not SMP-safe, it could
851 * change from under us. However, we can use a stale
852 * value of ->real_parent under rcu_read_lock(), see
853 * release_task()->call_rcu(delayed_put_task_struct).
855 SYSCALL_DEFINE0(getppid
)
860 pid
= task_tgid_vnr(rcu_dereference(current
->real_parent
));
866 SYSCALL_DEFINE0(getuid
)
868 /* Only we change this so SMP safe */
869 return from_kuid_munged(current_user_ns(), current_uid());
872 SYSCALL_DEFINE0(geteuid
)
874 /* Only we change this so SMP safe */
875 return from_kuid_munged(current_user_ns(), current_euid());
878 SYSCALL_DEFINE0(getgid
)
880 /* Only we change this so SMP safe */
881 return from_kgid_munged(current_user_ns(), current_gid());
884 SYSCALL_DEFINE0(getegid
)
886 /* Only we change this so SMP safe */
887 return from_kgid_munged(current_user_ns(), current_egid());
890 static void do_sys_times(struct tms
*tms
)
892 u64 tgutime
, tgstime
, cutime
, cstime
;
894 thread_group_cputime_adjusted(current
, &tgutime
, &tgstime
);
895 cutime
= current
->signal
->cutime
;
896 cstime
= current
->signal
->cstime
;
897 tms
->tms_utime
= nsec_to_clock_t(tgutime
);
898 tms
->tms_stime
= nsec_to_clock_t(tgstime
);
899 tms
->tms_cutime
= nsec_to_clock_t(cutime
);
900 tms
->tms_cstime
= nsec_to_clock_t(cstime
);
903 SYSCALL_DEFINE1(times
, struct tms __user
*, tbuf
)
909 if (copy_to_user(tbuf
, &tmp
, sizeof(struct tms
)))
912 force_successful_syscall_return();
913 return (long) jiffies_64_to_clock_t(get_jiffies_64());
917 static compat_clock_t
clock_t_to_compat_clock_t(clock_t x
)
919 return compat_jiffies_to_clock_t(clock_t_to_jiffies(x
));
922 COMPAT_SYSCALL_DEFINE1(times
, struct compat_tms __user
*, tbuf
)
926 struct compat_tms tmp
;
929 /* Convert our struct tms to the compat version. */
930 tmp
.tms_utime
= clock_t_to_compat_clock_t(tms
.tms_utime
);
931 tmp
.tms_stime
= clock_t_to_compat_clock_t(tms
.tms_stime
);
932 tmp
.tms_cutime
= clock_t_to_compat_clock_t(tms
.tms_cutime
);
933 tmp
.tms_cstime
= clock_t_to_compat_clock_t(tms
.tms_cstime
);
934 if (copy_to_user(tbuf
, &tmp
, sizeof(tmp
)))
937 force_successful_syscall_return();
938 return compat_jiffies_to_clock_t(jiffies
);
943 * This needs some heavy checking ...
944 * I just haven't the stomach for it. I also don't fully
945 * understand sessions/pgrp etc. Let somebody who does explain it.
947 * OK, I think I have the protection semantics right.... this is really
948 * only important on a multi-user system anyway, to make sure one user
949 * can't send a signal to a process owned by another. -TYT, 12/12/91
951 * !PF_FORKNOEXEC check to conform completely to POSIX.
953 SYSCALL_DEFINE2(setpgid
, pid_t
, pid
, pid_t
, pgid
)
955 struct task_struct
*p
;
956 struct task_struct
*group_leader
= current
->group_leader
;
961 pid
= task_pid_vnr(group_leader
);
968 /* From this point forward we keep holding onto the tasklist lock
969 * so that our parent does not change from under us. -DaveM
971 write_lock_irq(&tasklist_lock
);
974 p
= find_task_by_vpid(pid
);
979 if (!thread_group_leader(p
))
982 if (same_thread_group(p
->real_parent
, group_leader
)) {
984 if (task_session(p
) != task_session(group_leader
))
987 if (!(p
->flags
& PF_FORKNOEXEC
))
991 if (p
!= group_leader
)
996 if (p
->signal
->leader
)
1001 struct task_struct
*g
;
1003 pgrp
= find_vpid(pgid
);
1004 g
= pid_task(pgrp
, PIDTYPE_PGID
);
1005 if (!g
|| task_session(g
) != task_session(group_leader
))
1009 err
= security_task_setpgid(p
, pgid
);
1013 if (task_pgrp(p
) != pgrp
)
1014 change_pid(p
, PIDTYPE_PGID
, pgrp
);
1018 /* All paths lead to here, thus we are safe. -DaveM */
1019 write_unlock_irq(&tasklist_lock
);
1024 SYSCALL_DEFINE1(getpgid
, pid_t
, pid
)
1026 struct task_struct
*p
;
1032 grp
= task_pgrp(current
);
1035 p
= find_task_by_vpid(pid
);
1042 retval
= security_task_getpgid(p
);
1046 retval
= pid_vnr(grp
);
1052 #ifdef __ARCH_WANT_SYS_GETPGRP
1054 SYSCALL_DEFINE0(getpgrp
)
1056 return sys_getpgid(0);
1061 SYSCALL_DEFINE1(getsid
, pid_t
, pid
)
1063 struct task_struct
*p
;
1069 sid
= task_session(current
);
1072 p
= find_task_by_vpid(pid
);
1075 sid
= task_session(p
);
1079 retval
= security_task_getsid(p
);
1083 retval
= pid_vnr(sid
);
1089 static void set_special_pids(struct pid
*pid
)
1091 struct task_struct
*curr
= current
->group_leader
;
1093 if (task_session(curr
) != pid
)
1094 change_pid(curr
, PIDTYPE_SID
, pid
);
1096 if (task_pgrp(curr
) != pid
)
1097 change_pid(curr
, PIDTYPE_PGID
, pid
);
1100 SYSCALL_DEFINE0(setsid
)
1102 struct task_struct
*group_leader
= current
->group_leader
;
1103 struct pid
*sid
= task_pid(group_leader
);
1104 pid_t session
= pid_vnr(sid
);
1107 write_lock_irq(&tasklist_lock
);
1108 /* Fail if I am already a session leader */
1109 if (group_leader
->signal
->leader
)
1112 /* Fail if a process group id already exists that equals the
1113 * proposed session id.
1115 if (pid_task(sid
, PIDTYPE_PGID
))
1118 group_leader
->signal
->leader
= 1;
1119 set_special_pids(sid
);
1121 proc_clear_tty(group_leader
);
1125 write_unlock_irq(&tasklist_lock
);
1127 proc_sid_connector(group_leader
);
1128 sched_autogroup_create_attach(group_leader
);
1133 DECLARE_RWSEM(uts_sem
);
1135 #ifdef COMPAT_UTS_MACHINE
1136 #define override_architecture(name) \
1137 (personality(current->personality) == PER_LINUX32 && \
1138 copy_to_user(name->machine, COMPAT_UTS_MACHINE, \
1139 sizeof(COMPAT_UTS_MACHINE)))
1141 #define override_architecture(name) 0
1145 * Work around broken programs that cannot handle "Linux 3.0".
1146 * Instead we map 3.x to 2.6.40+x, so e.g. 3.0 would be 2.6.40
1147 * And we map 4.x to 2.6.60+x, so 4.0 would be 2.6.60.
1149 static int override_release(char __user
*release
, size_t len
)
1153 if (current
->personality
& UNAME26
) {
1154 const char *rest
= UTS_RELEASE
;
1155 char buf
[65] = { 0 };
1161 if (*rest
== '.' && ++ndots
>= 3)
1163 if (!isdigit(*rest
) && *rest
!= '.')
1167 v
= ((LINUX_VERSION_CODE
>> 8) & 0xff) + 60;
1168 copy
= clamp_t(size_t, len
, 1, sizeof(buf
));
1169 copy
= scnprintf(buf
, copy
, "2.6.%u%s", v
, rest
);
1170 ret
= copy_to_user(release
, buf
, copy
+ 1);
1175 SYSCALL_DEFINE1(newuname
, struct new_utsname __user
*, name
)
1179 down_read(&uts_sem
);
1180 if (copy_to_user(name
, utsname(), sizeof *name
))
1184 if (!errno
&& override_release(name
->release
, sizeof(name
->release
)))
1186 if (!errno
&& override_architecture(name
))
1191 #ifdef __ARCH_WANT_SYS_OLD_UNAME
1195 SYSCALL_DEFINE1(uname
, struct old_utsname __user
*, name
)
1202 down_read(&uts_sem
);
1203 if (copy_to_user(name
, utsname(), sizeof(*name
)))
1207 if (!error
&& override_release(name
->release
, sizeof(name
->release
)))
1209 if (!error
&& override_architecture(name
))
1214 SYSCALL_DEFINE1(olduname
, struct oldold_utsname __user
*, name
)
1220 if (!access_ok(VERIFY_WRITE
, name
, sizeof(struct oldold_utsname
)))
1223 down_read(&uts_sem
);
1224 error
= __copy_to_user(&name
->sysname
, &utsname()->sysname
,
1226 error
|= __put_user(0, name
->sysname
+ __OLD_UTS_LEN
);
1227 error
|= __copy_to_user(&name
->nodename
, &utsname()->nodename
,
1229 error
|= __put_user(0, name
->nodename
+ __OLD_UTS_LEN
);
1230 error
|= __copy_to_user(&name
->release
, &utsname()->release
,
1232 error
|= __put_user(0, name
->release
+ __OLD_UTS_LEN
);
1233 error
|= __copy_to_user(&name
->version
, &utsname()->version
,
1235 error
|= __put_user(0, name
->version
+ __OLD_UTS_LEN
);
1236 error
|= __copy_to_user(&name
->machine
, &utsname()->machine
,
1238 error
|= __put_user(0, name
->machine
+ __OLD_UTS_LEN
);
1241 if (!error
&& override_architecture(name
))
1243 if (!error
&& override_release(name
->release
, sizeof(name
->release
)))
1245 return error
? -EFAULT
: 0;
1249 SYSCALL_DEFINE2(sethostname
, char __user
*, name
, int, len
)
1252 char tmp
[__NEW_UTS_LEN
];
1254 if (!ns_capable(current
->nsproxy
->uts_ns
->user_ns
, CAP_SYS_ADMIN
))
1257 if (len
< 0 || len
> __NEW_UTS_LEN
)
1259 down_write(&uts_sem
);
1261 if (!copy_from_user(tmp
, name
, len
)) {
1262 struct new_utsname
*u
= utsname();
1264 memcpy(u
->nodename
, tmp
, len
);
1265 memset(u
->nodename
+ len
, 0, sizeof(u
->nodename
) - len
);
1267 uts_proc_notify(UTS_PROC_HOSTNAME
);
1273 #ifdef __ARCH_WANT_SYS_GETHOSTNAME
1275 SYSCALL_DEFINE2(gethostname
, char __user
*, name
, int, len
)
1278 struct new_utsname
*u
;
1282 down_read(&uts_sem
);
1284 i
= 1 + strlen(u
->nodename
);
1288 if (copy_to_user(name
, u
->nodename
, i
))
1297 * Only setdomainname; getdomainname can be implemented by calling
1300 SYSCALL_DEFINE2(setdomainname
, char __user
*, name
, int, len
)
1303 char tmp
[__NEW_UTS_LEN
];
1305 if (!ns_capable(current
->nsproxy
->uts_ns
->user_ns
, CAP_SYS_ADMIN
))
1307 if (len
< 0 || len
> __NEW_UTS_LEN
)
1310 down_write(&uts_sem
);
1312 if (!copy_from_user(tmp
, name
, len
)) {
1313 struct new_utsname
*u
= utsname();
1315 memcpy(u
->domainname
, tmp
, len
);
1316 memset(u
->domainname
+ len
, 0, sizeof(u
->domainname
) - len
);
1318 uts_proc_notify(UTS_PROC_DOMAINNAME
);
1324 SYSCALL_DEFINE2(getrlimit
, unsigned int, resource
, struct rlimit __user
*, rlim
)
1326 struct rlimit value
;
1329 ret
= do_prlimit(current
, resource
, NULL
, &value
);
1331 ret
= copy_to_user(rlim
, &value
, sizeof(*rlim
)) ? -EFAULT
: 0;
1336 #ifdef CONFIG_COMPAT
1338 COMPAT_SYSCALL_DEFINE2(setrlimit
, unsigned int, resource
,
1339 struct compat_rlimit __user
*, rlim
)
1342 struct compat_rlimit r32
;
1344 if (copy_from_user(&r32
, rlim
, sizeof(struct compat_rlimit
)))
1347 if (r32
.rlim_cur
== COMPAT_RLIM_INFINITY
)
1348 r
.rlim_cur
= RLIM_INFINITY
;
1350 r
.rlim_cur
= r32
.rlim_cur
;
1351 if (r32
.rlim_max
== COMPAT_RLIM_INFINITY
)
1352 r
.rlim_max
= RLIM_INFINITY
;
1354 r
.rlim_max
= r32
.rlim_max
;
1355 return do_prlimit(current
, resource
, &r
, NULL
);
1358 COMPAT_SYSCALL_DEFINE2(getrlimit
, unsigned int, resource
,
1359 struct compat_rlimit __user
*, rlim
)
1364 ret
= do_prlimit(current
, resource
, NULL
, &r
);
1366 struct compat_rlimit r32
;
1367 if (r
.rlim_cur
> COMPAT_RLIM_INFINITY
)
1368 r32
.rlim_cur
= COMPAT_RLIM_INFINITY
;
1370 r32
.rlim_cur
= r
.rlim_cur
;
1371 if (r
.rlim_max
> COMPAT_RLIM_INFINITY
)
1372 r32
.rlim_max
= COMPAT_RLIM_INFINITY
;
1374 r32
.rlim_max
= r
.rlim_max
;
1376 if (copy_to_user(rlim
, &r32
, sizeof(struct compat_rlimit
)))
1384 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1387 * Back compatibility for getrlimit. Needed for some apps.
1389 SYSCALL_DEFINE2(old_getrlimit
, unsigned int, resource
,
1390 struct rlimit __user
*, rlim
)
1393 if (resource
>= RLIM_NLIMITS
)
1396 task_lock(current
->group_leader
);
1397 x
= current
->signal
->rlim
[resource
];
1398 task_unlock(current
->group_leader
);
1399 if (x
.rlim_cur
> 0x7FFFFFFF)
1400 x
.rlim_cur
= 0x7FFFFFFF;
1401 if (x
.rlim_max
> 0x7FFFFFFF)
1402 x
.rlim_max
= 0x7FFFFFFF;
1403 return copy_to_user(rlim
, &x
, sizeof(x
)) ? -EFAULT
: 0;
1406 #ifdef CONFIG_COMPAT
1407 COMPAT_SYSCALL_DEFINE2(old_getrlimit
, unsigned int, resource
,
1408 struct compat_rlimit __user
*, rlim
)
1412 if (resource
>= RLIM_NLIMITS
)
1415 task_lock(current
->group_leader
);
1416 r
= current
->signal
->rlim
[resource
];
1417 task_unlock(current
->group_leader
);
1418 if (r
.rlim_cur
> 0x7FFFFFFF)
1419 r
.rlim_cur
= 0x7FFFFFFF;
1420 if (r
.rlim_max
> 0x7FFFFFFF)
1421 r
.rlim_max
= 0x7FFFFFFF;
1423 if (put_user(r
.rlim_cur
, &rlim
->rlim_cur
) ||
1424 put_user(r
.rlim_max
, &rlim
->rlim_max
))
1432 static inline bool rlim64_is_infinity(__u64 rlim64
)
1434 #if BITS_PER_LONG < 64
1435 return rlim64
>= ULONG_MAX
;
1437 return rlim64
== RLIM64_INFINITY
;
1441 static void rlim_to_rlim64(const struct rlimit
*rlim
, struct rlimit64
*rlim64
)
1443 if (rlim
->rlim_cur
== RLIM_INFINITY
)
1444 rlim64
->rlim_cur
= RLIM64_INFINITY
;
1446 rlim64
->rlim_cur
= rlim
->rlim_cur
;
1447 if (rlim
->rlim_max
== RLIM_INFINITY
)
1448 rlim64
->rlim_max
= RLIM64_INFINITY
;
1450 rlim64
->rlim_max
= rlim
->rlim_max
;
1453 static void rlim64_to_rlim(const struct rlimit64
*rlim64
, struct rlimit
*rlim
)
1455 if (rlim64_is_infinity(rlim64
->rlim_cur
))
1456 rlim
->rlim_cur
= RLIM_INFINITY
;
1458 rlim
->rlim_cur
= (unsigned long)rlim64
->rlim_cur
;
1459 if (rlim64_is_infinity(rlim64
->rlim_max
))
1460 rlim
->rlim_max
= RLIM_INFINITY
;
1462 rlim
->rlim_max
= (unsigned long)rlim64
->rlim_max
;
1465 /* make sure you are allowed to change @tsk limits before calling this */
1466 int do_prlimit(struct task_struct
*tsk
, unsigned int resource
,
1467 struct rlimit
*new_rlim
, struct rlimit
*old_rlim
)
1469 struct rlimit
*rlim
;
1472 if (resource
>= RLIM_NLIMITS
)
1475 if (new_rlim
->rlim_cur
> new_rlim
->rlim_max
)
1477 if (resource
== RLIMIT_NOFILE
&&
1478 new_rlim
->rlim_max
> sysctl_nr_open
)
1482 /* protect tsk->signal and tsk->sighand from disappearing */
1483 read_lock(&tasklist_lock
);
1484 if (!tsk
->sighand
) {
1489 rlim
= tsk
->signal
->rlim
+ resource
;
1490 task_lock(tsk
->group_leader
);
1492 /* Keep the capable check against init_user_ns until
1493 cgroups can contain all limits */
1494 if (new_rlim
->rlim_max
> rlim
->rlim_max
&&
1495 !capable(CAP_SYS_RESOURCE
))
1498 retval
= security_task_setrlimit(tsk
, resource
, new_rlim
);
1499 if (resource
== RLIMIT_CPU
&& new_rlim
->rlim_cur
== 0) {
1501 * The caller is asking for an immediate RLIMIT_CPU
1502 * expiry. But we use the zero value to mean "it was
1503 * never set". So let's cheat and make it one second
1506 new_rlim
->rlim_cur
= 1;
1515 task_unlock(tsk
->group_leader
);
1518 * RLIMIT_CPU handling. Note that the kernel fails to return an error
1519 * code if it rejected the user's attempt to set RLIMIT_CPU. This is a
1520 * very long-standing error, and fixing it now risks breakage of
1521 * applications, so we live with it
1523 if (!retval
&& new_rlim
&& resource
== RLIMIT_CPU
&&
1524 new_rlim
->rlim_cur
!= RLIM_INFINITY
&&
1525 IS_ENABLED(CONFIG_POSIX_TIMERS
))
1526 update_rlimit_cpu(tsk
, new_rlim
->rlim_cur
);
1528 read_unlock(&tasklist_lock
);
1532 /* rcu lock must be held */
1533 static int check_prlimit_permission(struct task_struct
*task
,
1536 const struct cred
*cred
= current_cred(), *tcred
;
1539 if (current
== task
)
1542 tcred
= __task_cred(task
);
1543 id_match
= (uid_eq(cred
->uid
, tcred
->euid
) &&
1544 uid_eq(cred
->uid
, tcred
->suid
) &&
1545 uid_eq(cred
->uid
, tcred
->uid
) &&
1546 gid_eq(cred
->gid
, tcred
->egid
) &&
1547 gid_eq(cred
->gid
, tcred
->sgid
) &&
1548 gid_eq(cred
->gid
, tcred
->gid
));
1549 if (!id_match
&& !ns_capable(tcred
->user_ns
, CAP_SYS_RESOURCE
))
1552 return security_task_prlimit(cred
, tcred
, flags
);
1555 SYSCALL_DEFINE4(prlimit64
, pid_t
, pid
, unsigned int, resource
,
1556 const struct rlimit64 __user
*, new_rlim
,
1557 struct rlimit64 __user
*, old_rlim
)
1559 struct rlimit64 old64
, new64
;
1560 struct rlimit old
, new;
1561 struct task_struct
*tsk
;
1562 unsigned int checkflags
= 0;
1566 checkflags
|= LSM_PRLIMIT_READ
;
1569 if (copy_from_user(&new64
, new_rlim
, sizeof(new64
)))
1571 rlim64_to_rlim(&new64
, &new);
1572 checkflags
|= LSM_PRLIMIT_WRITE
;
1576 tsk
= pid
? find_task_by_vpid(pid
) : current
;
1581 ret
= check_prlimit_permission(tsk
, checkflags
);
1586 get_task_struct(tsk
);
1589 ret
= do_prlimit(tsk
, resource
, new_rlim
? &new : NULL
,
1590 old_rlim
? &old
: NULL
);
1592 if (!ret
&& old_rlim
) {
1593 rlim_to_rlim64(&old
, &old64
);
1594 if (copy_to_user(old_rlim
, &old64
, sizeof(old64
)))
1598 put_task_struct(tsk
);
1602 SYSCALL_DEFINE2(setrlimit
, unsigned int, resource
, struct rlimit __user
*, rlim
)
1604 struct rlimit new_rlim
;
1606 if (copy_from_user(&new_rlim
, rlim
, sizeof(*rlim
)))
1608 return do_prlimit(current
, resource
, &new_rlim
, NULL
);
1612 * It would make sense to put struct rusage in the task_struct,
1613 * except that would make the task_struct be *really big*. After
1614 * task_struct gets moved into malloc'ed memory, it would
1615 * make sense to do this. It will make moving the rest of the information
1616 * a lot simpler! (Which we're not doing right now because we're not
1617 * measuring them yet).
1619 * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1620 * races with threads incrementing their own counters. But since word
1621 * reads are atomic, we either get new values or old values and we don't
1622 * care which for the sums. We always take the siglock to protect reading
1623 * the c* fields from p->signal from races with exit.c updating those
1624 * fields when reaping, so a sample either gets all the additions of a
1625 * given child after it's reaped, or none so this sample is before reaping.
1628 * We need to take the siglock for CHILDEREN, SELF and BOTH
1629 * for the cases current multithreaded, non-current single threaded
1630 * non-current multithreaded. Thread traversal is now safe with
1632 * Strictly speaking, we donot need to take the siglock if we are current and
1633 * single threaded, as no one else can take our signal_struct away, no one
1634 * else can reap the children to update signal->c* counters, and no one else
1635 * can race with the signal-> fields. If we do not take any lock, the
1636 * signal-> fields could be read out of order while another thread was just
1637 * exiting. So we should place a read memory barrier when we avoid the lock.
1638 * On the writer side, write memory barrier is implied in __exit_signal
1639 * as __exit_signal releases the siglock spinlock after updating the signal->
1640 * fields. But we don't do this yet to keep things simple.
1644 static void accumulate_thread_rusage(struct task_struct
*t
, struct rusage
*r
)
1646 r
->ru_nvcsw
+= t
->nvcsw
;
1647 r
->ru_nivcsw
+= t
->nivcsw
;
1648 r
->ru_minflt
+= t
->min_flt
;
1649 r
->ru_majflt
+= t
->maj_flt
;
1650 r
->ru_inblock
+= task_io_get_inblock(t
);
1651 r
->ru_oublock
+= task_io_get_oublock(t
);
1654 void getrusage(struct task_struct
*p
, int who
, struct rusage
*r
)
1656 struct task_struct
*t
;
1657 unsigned long flags
;
1658 u64 tgutime
, tgstime
, utime
, stime
;
1659 unsigned long maxrss
= 0;
1661 memset((char *)r
, 0, sizeof (*r
));
1664 if (who
== RUSAGE_THREAD
) {
1665 task_cputime_adjusted(current
, &utime
, &stime
);
1666 accumulate_thread_rusage(p
, r
);
1667 maxrss
= p
->signal
->maxrss
;
1671 if (!lock_task_sighand(p
, &flags
))
1676 case RUSAGE_CHILDREN
:
1677 utime
= p
->signal
->cutime
;
1678 stime
= p
->signal
->cstime
;
1679 r
->ru_nvcsw
= p
->signal
->cnvcsw
;
1680 r
->ru_nivcsw
= p
->signal
->cnivcsw
;
1681 r
->ru_minflt
= p
->signal
->cmin_flt
;
1682 r
->ru_majflt
= p
->signal
->cmaj_flt
;
1683 r
->ru_inblock
= p
->signal
->cinblock
;
1684 r
->ru_oublock
= p
->signal
->coublock
;
1685 maxrss
= p
->signal
->cmaxrss
;
1687 if (who
== RUSAGE_CHILDREN
)
1691 thread_group_cputime_adjusted(p
, &tgutime
, &tgstime
);
1694 r
->ru_nvcsw
+= p
->signal
->nvcsw
;
1695 r
->ru_nivcsw
+= p
->signal
->nivcsw
;
1696 r
->ru_minflt
+= p
->signal
->min_flt
;
1697 r
->ru_majflt
+= p
->signal
->maj_flt
;
1698 r
->ru_inblock
+= p
->signal
->inblock
;
1699 r
->ru_oublock
+= p
->signal
->oublock
;
1700 if (maxrss
< p
->signal
->maxrss
)
1701 maxrss
= p
->signal
->maxrss
;
1704 accumulate_thread_rusage(t
, r
);
1705 } while_each_thread(p
, t
);
1711 unlock_task_sighand(p
, &flags
);
1714 r
->ru_utime
= ns_to_timeval(utime
);
1715 r
->ru_stime
= ns_to_timeval(stime
);
1717 if (who
!= RUSAGE_CHILDREN
) {
1718 struct mm_struct
*mm
= get_task_mm(p
);
1721 setmax_mm_hiwater_rss(&maxrss
, mm
);
1725 r
->ru_maxrss
= maxrss
* (PAGE_SIZE
/ 1024); /* convert pages to KBs */
1728 SYSCALL_DEFINE2(getrusage
, int, who
, struct rusage __user
*, ru
)
1732 if (who
!= RUSAGE_SELF
&& who
!= RUSAGE_CHILDREN
&&
1733 who
!= RUSAGE_THREAD
)
1736 getrusage(current
, who
, &r
);
1737 return copy_to_user(ru
, &r
, sizeof(r
)) ? -EFAULT
: 0;
1740 #ifdef CONFIG_COMPAT
1741 COMPAT_SYSCALL_DEFINE2(getrusage
, int, who
, struct compat_rusage __user
*, ru
)
1745 if (who
!= RUSAGE_SELF
&& who
!= RUSAGE_CHILDREN
&&
1746 who
!= RUSAGE_THREAD
)
1749 getrusage(current
, who
, &r
);
1750 return put_compat_rusage(&r
, ru
);
1754 SYSCALL_DEFINE1(umask
, int, mask
)
1756 mask
= xchg(¤t
->fs
->umask
, mask
& S_IRWXUGO
);
1760 static int prctl_set_mm_exe_file(struct mm_struct
*mm
, unsigned int fd
)
1763 struct file
*old_exe
, *exe_file
;
1764 struct inode
*inode
;
1771 inode
= file_inode(exe
.file
);
1774 * Because the original mm->exe_file points to executable file, make
1775 * sure that this one is executable as well, to avoid breaking an
1779 if (!S_ISREG(inode
->i_mode
) || path_noexec(&exe
.file
->f_path
))
1782 err
= inode_permission(inode
, MAY_EXEC
);
1787 * Forbid mm->exe_file change if old file still mapped.
1789 exe_file
= get_mm_exe_file(mm
);
1792 struct vm_area_struct
*vma
;
1794 down_read(&mm
->mmap_sem
);
1795 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
1798 if (path_equal(&vma
->vm_file
->f_path
,
1803 up_read(&mm
->mmap_sem
);
1808 /* set the new file, lockless */
1810 old_exe
= xchg(&mm
->exe_file
, exe
.file
);
1817 up_read(&mm
->mmap_sem
);
1823 * WARNING: we don't require any capability here so be very careful
1824 * in what is allowed for modification from userspace.
1826 static int validate_prctl_map(struct prctl_mm_map
*prctl_map
)
1828 unsigned long mmap_max_addr
= TASK_SIZE
;
1829 struct mm_struct
*mm
= current
->mm
;
1830 int error
= -EINVAL
, i
;
1832 static const unsigned char offsets
[] = {
1833 offsetof(struct prctl_mm_map
, start_code
),
1834 offsetof(struct prctl_mm_map
, end_code
),
1835 offsetof(struct prctl_mm_map
, start_data
),
1836 offsetof(struct prctl_mm_map
, end_data
),
1837 offsetof(struct prctl_mm_map
, start_brk
),
1838 offsetof(struct prctl_mm_map
, brk
),
1839 offsetof(struct prctl_mm_map
, start_stack
),
1840 offsetof(struct prctl_mm_map
, arg_start
),
1841 offsetof(struct prctl_mm_map
, arg_end
),
1842 offsetof(struct prctl_mm_map
, env_start
),
1843 offsetof(struct prctl_mm_map
, env_end
),
1847 * Make sure the members are not somewhere outside
1848 * of allowed address space.
1850 for (i
= 0; i
< ARRAY_SIZE(offsets
); i
++) {
1851 u64 val
= *(u64
*)((char *)prctl_map
+ offsets
[i
]);
1853 if ((unsigned long)val
>= mmap_max_addr
||
1854 (unsigned long)val
< mmap_min_addr
)
1859 * Make sure the pairs are ordered.
1861 #define __prctl_check_order(__m1, __op, __m2) \
1862 ((unsigned long)prctl_map->__m1 __op \
1863 (unsigned long)prctl_map->__m2) ? 0 : -EINVAL
1864 error
= __prctl_check_order(start_code
, <, end_code
);
1865 error
|= __prctl_check_order(start_data
, <, end_data
);
1866 error
|= __prctl_check_order(start_brk
, <=, brk
);
1867 error
|= __prctl_check_order(arg_start
, <=, arg_end
);
1868 error
|= __prctl_check_order(env_start
, <=, env_end
);
1871 #undef __prctl_check_order
1876 * @brk should be after @end_data in traditional maps.
1878 if (prctl_map
->start_brk
<= prctl_map
->end_data
||
1879 prctl_map
->brk
<= prctl_map
->end_data
)
1883 * Neither we should allow to override limits if they set.
1885 if (check_data_rlimit(rlimit(RLIMIT_DATA
), prctl_map
->brk
,
1886 prctl_map
->start_brk
, prctl_map
->end_data
,
1887 prctl_map
->start_data
))
1891 * Someone is trying to cheat the auxv vector.
1893 if (prctl_map
->auxv_size
) {
1894 if (!prctl_map
->auxv
|| prctl_map
->auxv_size
> sizeof(mm
->saved_auxv
))
1899 * Finally, make sure the caller has the rights to
1900 * change /proc/pid/exe link: only local sys admin should
1903 if (prctl_map
->exe_fd
!= (u32
)-1) {
1904 if (!ns_capable(current_user_ns(), CAP_SYS_ADMIN
))
1913 #ifdef CONFIG_CHECKPOINT_RESTORE
1914 static int prctl_set_mm_map(int opt
, const void __user
*addr
, unsigned long data_size
)
1916 struct prctl_mm_map prctl_map
= { .exe_fd
= (u32
)-1, };
1917 unsigned long user_auxv
[AT_VECTOR_SIZE
];
1918 struct mm_struct
*mm
= current
->mm
;
1921 BUILD_BUG_ON(sizeof(user_auxv
) != sizeof(mm
->saved_auxv
));
1922 BUILD_BUG_ON(sizeof(struct prctl_mm_map
) > 256);
1924 if (opt
== PR_SET_MM_MAP_SIZE
)
1925 return put_user((unsigned int)sizeof(prctl_map
),
1926 (unsigned int __user
*)addr
);
1928 if (data_size
!= sizeof(prctl_map
))
1931 if (copy_from_user(&prctl_map
, addr
, sizeof(prctl_map
)))
1934 error
= validate_prctl_map(&prctl_map
);
1938 if (prctl_map
.auxv_size
) {
1939 memset(user_auxv
, 0, sizeof(user_auxv
));
1940 if (copy_from_user(user_auxv
,
1941 (const void __user
*)prctl_map
.auxv
,
1942 prctl_map
.auxv_size
))
1945 /* Last entry must be AT_NULL as specification requires */
1946 user_auxv
[AT_VECTOR_SIZE
- 2] = AT_NULL
;
1947 user_auxv
[AT_VECTOR_SIZE
- 1] = AT_NULL
;
1950 if (prctl_map
.exe_fd
!= (u32
)-1) {
1951 error
= prctl_set_mm_exe_file(mm
, prctl_map
.exe_fd
);
1956 down_write(&mm
->mmap_sem
);
1959 * We don't validate if these members are pointing to
1960 * real present VMAs because application may have correspond
1961 * VMAs already unmapped and kernel uses these members for statistics
1962 * output in procfs mostly, except
1964 * - @start_brk/@brk which are used in do_brk but kernel lookups
1965 * for VMAs when updating these memvers so anything wrong written
1966 * here cause kernel to swear at userspace program but won't lead
1967 * to any problem in kernel itself
1970 mm
->start_code
= prctl_map
.start_code
;
1971 mm
->end_code
= prctl_map
.end_code
;
1972 mm
->start_data
= prctl_map
.start_data
;
1973 mm
->end_data
= prctl_map
.end_data
;
1974 mm
->start_brk
= prctl_map
.start_brk
;
1975 mm
->brk
= prctl_map
.brk
;
1976 mm
->start_stack
= prctl_map
.start_stack
;
1977 mm
->arg_start
= prctl_map
.arg_start
;
1978 mm
->arg_end
= prctl_map
.arg_end
;
1979 mm
->env_start
= prctl_map
.env_start
;
1980 mm
->env_end
= prctl_map
.env_end
;
1983 * Note this update of @saved_auxv is lockless thus
1984 * if someone reads this member in procfs while we're
1985 * updating -- it may get partly updated results. It's
1986 * known and acceptable trade off: we leave it as is to
1987 * not introduce additional locks here making the kernel
1990 if (prctl_map
.auxv_size
)
1991 memcpy(mm
->saved_auxv
, user_auxv
, sizeof(user_auxv
));
1993 up_write(&mm
->mmap_sem
);
1996 #endif /* CONFIG_CHECKPOINT_RESTORE */
1998 static int prctl_set_auxv(struct mm_struct
*mm
, unsigned long addr
,
2002 * This doesn't move the auxiliary vector itself since it's pinned to
2003 * mm_struct, but it permits filling the vector with new values. It's
2004 * up to the caller to provide sane values here, otherwise userspace
2005 * tools which use this vector might be unhappy.
2007 unsigned long user_auxv
[AT_VECTOR_SIZE
];
2009 if (len
> sizeof(user_auxv
))
2012 if (copy_from_user(user_auxv
, (const void __user
*)addr
, len
))
2015 /* Make sure the last entry is always AT_NULL */
2016 user_auxv
[AT_VECTOR_SIZE
- 2] = 0;
2017 user_auxv
[AT_VECTOR_SIZE
- 1] = 0;
2019 BUILD_BUG_ON(sizeof(user_auxv
) != sizeof(mm
->saved_auxv
));
2022 memcpy(mm
->saved_auxv
, user_auxv
, len
);
2023 task_unlock(current
);
2028 static int prctl_set_mm(int opt
, unsigned long addr
,
2029 unsigned long arg4
, unsigned long arg5
)
2031 struct mm_struct
*mm
= current
->mm
;
2032 struct prctl_mm_map prctl_map
;
2033 struct vm_area_struct
*vma
;
2036 if (arg5
|| (arg4
&& (opt
!= PR_SET_MM_AUXV
&&
2037 opt
!= PR_SET_MM_MAP
&&
2038 opt
!= PR_SET_MM_MAP_SIZE
)))
2041 #ifdef CONFIG_CHECKPOINT_RESTORE
2042 if (opt
== PR_SET_MM_MAP
|| opt
== PR_SET_MM_MAP_SIZE
)
2043 return prctl_set_mm_map(opt
, (const void __user
*)addr
, arg4
);
2046 if (!capable(CAP_SYS_RESOURCE
))
2049 if (opt
== PR_SET_MM_EXE_FILE
)
2050 return prctl_set_mm_exe_file(mm
, (unsigned int)addr
);
2052 if (opt
== PR_SET_MM_AUXV
)
2053 return prctl_set_auxv(mm
, addr
, arg4
);
2055 if (addr
>= TASK_SIZE
|| addr
< mmap_min_addr
)
2060 down_write(&mm
->mmap_sem
);
2061 vma
= find_vma(mm
, addr
);
2063 prctl_map
.start_code
= mm
->start_code
;
2064 prctl_map
.end_code
= mm
->end_code
;
2065 prctl_map
.start_data
= mm
->start_data
;
2066 prctl_map
.end_data
= mm
->end_data
;
2067 prctl_map
.start_brk
= mm
->start_brk
;
2068 prctl_map
.brk
= mm
->brk
;
2069 prctl_map
.start_stack
= mm
->start_stack
;
2070 prctl_map
.arg_start
= mm
->arg_start
;
2071 prctl_map
.arg_end
= mm
->arg_end
;
2072 prctl_map
.env_start
= mm
->env_start
;
2073 prctl_map
.env_end
= mm
->env_end
;
2074 prctl_map
.auxv
= NULL
;
2075 prctl_map
.auxv_size
= 0;
2076 prctl_map
.exe_fd
= -1;
2079 case PR_SET_MM_START_CODE
:
2080 prctl_map
.start_code
= addr
;
2082 case PR_SET_MM_END_CODE
:
2083 prctl_map
.end_code
= addr
;
2085 case PR_SET_MM_START_DATA
:
2086 prctl_map
.start_data
= addr
;
2088 case PR_SET_MM_END_DATA
:
2089 prctl_map
.end_data
= addr
;
2091 case PR_SET_MM_START_STACK
:
2092 prctl_map
.start_stack
= addr
;
2094 case PR_SET_MM_START_BRK
:
2095 prctl_map
.start_brk
= addr
;
2098 prctl_map
.brk
= addr
;
2100 case PR_SET_MM_ARG_START
:
2101 prctl_map
.arg_start
= addr
;
2103 case PR_SET_MM_ARG_END
:
2104 prctl_map
.arg_end
= addr
;
2106 case PR_SET_MM_ENV_START
:
2107 prctl_map
.env_start
= addr
;
2109 case PR_SET_MM_ENV_END
:
2110 prctl_map
.env_end
= addr
;
2116 error
= validate_prctl_map(&prctl_map
);
2122 * If command line arguments and environment
2123 * are placed somewhere else on stack, we can
2124 * set them up here, ARG_START/END to setup
2125 * command line argumets and ENV_START/END
2128 case PR_SET_MM_START_STACK
:
2129 case PR_SET_MM_ARG_START
:
2130 case PR_SET_MM_ARG_END
:
2131 case PR_SET_MM_ENV_START
:
2132 case PR_SET_MM_ENV_END
:
2139 mm
->start_code
= prctl_map
.start_code
;
2140 mm
->end_code
= prctl_map
.end_code
;
2141 mm
->start_data
= prctl_map
.start_data
;
2142 mm
->end_data
= prctl_map
.end_data
;
2143 mm
->start_brk
= prctl_map
.start_brk
;
2144 mm
->brk
= prctl_map
.brk
;
2145 mm
->start_stack
= prctl_map
.start_stack
;
2146 mm
->arg_start
= prctl_map
.arg_start
;
2147 mm
->arg_end
= prctl_map
.arg_end
;
2148 mm
->env_start
= prctl_map
.env_start
;
2149 mm
->env_end
= prctl_map
.env_end
;
2153 up_write(&mm
->mmap_sem
);
2157 #ifdef CONFIG_CHECKPOINT_RESTORE
2158 static int prctl_get_tid_address(struct task_struct
*me
, int __user
**tid_addr
)
2160 return put_user(me
->clear_child_tid
, tid_addr
);
2163 static int prctl_get_tid_address(struct task_struct
*me
, int __user
**tid_addr
)
2169 static int propagate_has_child_subreaper(struct task_struct
*p
, void *data
)
2172 * If task has has_child_subreaper - all its decendants
2173 * already have these flag too and new decendants will
2174 * inherit it on fork, skip them.
2176 * If we've found child_reaper - skip descendants in
2177 * it's subtree as they will never get out pidns.
2179 if (p
->signal
->has_child_subreaper
||
2180 is_child_reaper(task_pid(p
)))
2183 p
->signal
->has_child_subreaper
= 1;
2187 SYSCALL_DEFINE5(prctl
, int, option
, unsigned long, arg2
, unsigned long, arg3
,
2188 unsigned long, arg4
, unsigned long, arg5
)
2190 struct task_struct
*me
= current
;
2191 unsigned char comm
[sizeof(me
->comm
)];
2194 error
= security_task_prctl(option
, arg2
, arg3
, arg4
, arg5
);
2195 if (error
!= -ENOSYS
)
2200 case PR_SET_PDEATHSIG
:
2201 if (!valid_signal(arg2
)) {
2205 me
->pdeath_signal
= arg2
;
2207 case PR_GET_PDEATHSIG
:
2208 error
= put_user(me
->pdeath_signal
, (int __user
*)arg2
);
2210 case PR_GET_DUMPABLE
:
2211 error
= get_dumpable(me
->mm
);
2213 case PR_SET_DUMPABLE
:
2214 if (arg2
!= SUID_DUMP_DISABLE
&& arg2
!= SUID_DUMP_USER
) {
2218 set_dumpable(me
->mm
, arg2
);
2221 case PR_SET_UNALIGN
:
2222 error
= SET_UNALIGN_CTL(me
, arg2
);
2224 case PR_GET_UNALIGN
:
2225 error
= GET_UNALIGN_CTL(me
, arg2
);
2228 error
= SET_FPEMU_CTL(me
, arg2
);
2231 error
= GET_FPEMU_CTL(me
, arg2
);
2234 error
= SET_FPEXC_CTL(me
, arg2
);
2237 error
= GET_FPEXC_CTL(me
, arg2
);
2240 error
= PR_TIMING_STATISTICAL
;
2243 if (arg2
!= PR_TIMING_STATISTICAL
)
2247 comm
[sizeof(me
->comm
) - 1] = 0;
2248 if (strncpy_from_user(comm
, (char __user
*)arg2
,
2249 sizeof(me
->comm
) - 1) < 0)
2251 set_task_comm(me
, comm
);
2252 proc_comm_connector(me
);
2255 get_task_comm(comm
, me
);
2256 if (copy_to_user((char __user
*)arg2
, comm
, sizeof(comm
)))
2260 error
= GET_ENDIAN(me
, arg2
);
2263 error
= SET_ENDIAN(me
, arg2
);
2265 case PR_GET_SECCOMP
:
2266 error
= prctl_get_seccomp();
2268 case PR_SET_SECCOMP
:
2269 error
= prctl_set_seccomp(arg2
, (char __user
*)arg3
);
2272 error
= GET_TSC_CTL(arg2
);
2275 error
= SET_TSC_CTL(arg2
);
2277 case PR_TASK_PERF_EVENTS_DISABLE
:
2278 error
= perf_event_task_disable();
2280 case PR_TASK_PERF_EVENTS_ENABLE
:
2281 error
= perf_event_task_enable();
2283 case PR_GET_TIMERSLACK
:
2284 if (current
->timer_slack_ns
> ULONG_MAX
)
2287 error
= current
->timer_slack_ns
;
2289 case PR_SET_TIMERSLACK
:
2291 current
->timer_slack_ns
=
2292 current
->default_timer_slack_ns
;
2294 current
->timer_slack_ns
= arg2
;
2300 case PR_MCE_KILL_CLEAR
:
2303 current
->flags
&= ~PF_MCE_PROCESS
;
2305 case PR_MCE_KILL_SET
:
2306 current
->flags
|= PF_MCE_PROCESS
;
2307 if (arg3
== PR_MCE_KILL_EARLY
)
2308 current
->flags
|= PF_MCE_EARLY
;
2309 else if (arg3
== PR_MCE_KILL_LATE
)
2310 current
->flags
&= ~PF_MCE_EARLY
;
2311 else if (arg3
== PR_MCE_KILL_DEFAULT
)
2313 ~(PF_MCE_EARLY
|PF_MCE_PROCESS
);
2321 case PR_MCE_KILL_GET
:
2322 if (arg2
| arg3
| arg4
| arg5
)
2324 if (current
->flags
& PF_MCE_PROCESS
)
2325 error
= (current
->flags
& PF_MCE_EARLY
) ?
2326 PR_MCE_KILL_EARLY
: PR_MCE_KILL_LATE
;
2328 error
= PR_MCE_KILL_DEFAULT
;
2331 error
= prctl_set_mm(arg2
, arg3
, arg4
, arg5
);
2333 case PR_GET_TID_ADDRESS
:
2334 error
= prctl_get_tid_address(me
, (int __user
**)arg2
);
2336 case PR_SET_CHILD_SUBREAPER
:
2337 me
->signal
->is_child_subreaper
= !!arg2
;
2341 walk_process_tree(me
, propagate_has_child_subreaper
, NULL
);
2343 case PR_GET_CHILD_SUBREAPER
:
2344 error
= put_user(me
->signal
->is_child_subreaper
,
2345 (int __user
*)arg2
);
2347 case PR_SET_NO_NEW_PRIVS
:
2348 if (arg2
!= 1 || arg3
|| arg4
|| arg5
)
2351 task_set_no_new_privs(current
);
2353 case PR_GET_NO_NEW_PRIVS
:
2354 if (arg2
|| arg3
|| arg4
|| arg5
)
2356 return task_no_new_privs(current
) ? 1 : 0;
2357 case PR_GET_THP_DISABLE
:
2358 if (arg2
|| arg3
|| arg4
|| arg5
)
2360 error
= !!test_bit(MMF_DISABLE_THP
, &me
->mm
->flags
);
2362 case PR_SET_THP_DISABLE
:
2363 if (arg3
|| arg4
|| arg5
)
2365 if (down_write_killable(&me
->mm
->mmap_sem
))
2368 set_bit(MMF_DISABLE_THP
, &me
->mm
->flags
);
2370 clear_bit(MMF_DISABLE_THP
, &me
->mm
->flags
);
2371 up_write(&me
->mm
->mmap_sem
);
2373 case PR_MPX_ENABLE_MANAGEMENT
:
2374 if (arg2
|| arg3
|| arg4
|| arg5
)
2376 error
= MPX_ENABLE_MANAGEMENT();
2378 case PR_MPX_DISABLE_MANAGEMENT
:
2379 if (arg2
|| arg3
|| arg4
|| arg5
)
2381 error
= MPX_DISABLE_MANAGEMENT();
2383 case PR_SET_FP_MODE
:
2384 error
= SET_FP_MODE(me
, arg2
);
2386 case PR_GET_FP_MODE
:
2387 error
= GET_FP_MODE(me
);
2396 SYSCALL_DEFINE3(getcpu
, unsigned __user
*, cpup
, unsigned __user
*, nodep
,
2397 struct getcpu_cache __user
*, unused
)
2400 int cpu
= raw_smp_processor_id();
2403 err
|= put_user(cpu
, cpup
);
2405 err
|= put_user(cpu_to_node(cpu
), nodep
);
2406 return err
? -EFAULT
: 0;
2410 * do_sysinfo - fill in sysinfo struct
2411 * @info: pointer to buffer to fill
2413 static int do_sysinfo(struct sysinfo
*info
)
2415 unsigned long mem_total
, sav_total
;
2416 unsigned int mem_unit
, bitcount
;
2419 memset(info
, 0, sizeof(struct sysinfo
));
2421 get_monotonic_boottime(&tp
);
2422 info
->uptime
= tp
.tv_sec
+ (tp
.tv_nsec
? 1 : 0);
2424 get_avenrun(info
->loads
, 0, SI_LOAD_SHIFT
- FSHIFT
);
2426 info
->procs
= nr_threads
;
2432 * If the sum of all the available memory (i.e. ram + swap)
2433 * is less than can be stored in a 32 bit unsigned long then
2434 * we can be binary compatible with 2.2.x kernels. If not,
2435 * well, in that case 2.2.x was broken anyways...
2437 * -Erik Andersen <andersee@debian.org>
2440 mem_total
= info
->totalram
+ info
->totalswap
;
2441 if (mem_total
< info
->totalram
|| mem_total
< info
->totalswap
)
2444 mem_unit
= info
->mem_unit
;
2445 while (mem_unit
> 1) {
2448 sav_total
= mem_total
;
2450 if (mem_total
< sav_total
)
2455 * If mem_total did not overflow, multiply all memory values by
2456 * info->mem_unit and set it to 1. This leaves things compatible
2457 * with 2.2.x, and also retains compatibility with earlier 2.4.x
2462 info
->totalram
<<= bitcount
;
2463 info
->freeram
<<= bitcount
;
2464 info
->sharedram
<<= bitcount
;
2465 info
->bufferram
<<= bitcount
;
2466 info
->totalswap
<<= bitcount
;
2467 info
->freeswap
<<= bitcount
;
2468 info
->totalhigh
<<= bitcount
;
2469 info
->freehigh
<<= bitcount
;
2475 SYSCALL_DEFINE1(sysinfo
, struct sysinfo __user
*, info
)
2481 if (copy_to_user(info
, &val
, sizeof(struct sysinfo
)))
2487 #ifdef CONFIG_COMPAT
2488 struct compat_sysinfo
{
2502 char _f
[20-2*sizeof(u32
)-sizeof(int)];
2505 COMPAT_SYSCALL_DEFINE1(sysinfo
, struct compat_sysinfo __user
*, info
)
2511 /* Check to see if any memory value is too large for 32-bit and scale
2514 if (upper_32_bits(s
.totalram
) || upper_32_bits(s
.totalswap
)) {
2517 while (s
.mem_unit
< PAGE_SIZE
) {
2522 s
.totalram
>>= bitcount
;
2523 s
.freeram
>>= bitcount
;
2524 s
.sharedram
>>= bitcount
;
2525 s
.bufferram
>>= bitcount
;
2526 s
.totalswap
>>= bitcount
;
2527 s
.freeswap
>>= bitcount
;
2528 s
.totalhigh
>>= bitcount
;
2529 s
.freehigh
>>= bitcount
;
2532 if (!access_ok(VERIFY_WRITE
, info
, sizeof(struct compat_sysinfo
)) ||
2533 __put_user(s
.uptime
, &info
->uptime
) ||
2534 __put_user(s
.loads
[0], &info
->loads
[0]) ||
2535 __put_user(s
.loads
[1], &info
->loads
[1]) ||
2536 __put_user(s
.loads
[2], &info
->loads
[2]) ||
2537 __put_user(s
.totalram
, &info
->totalram
) ||
2538 __put_user(s
.freeram
, &info
->freeram
) ||
2539 __put_user(s
.sharedram
, &info
->sharedram
) ||
2540 __put_user(s
.bufferram
, &info
->bufferram
) ||
2541 __put_user(s
.totalswap
, &info
->totalswap
) ||
2542 __put_user(s
.freeswap
, &info
->freeswap
) ||
2543 __put_user(s
.procs
, &info
->procs
) ||
2544 __put_user(s
.totalhigh
, &info
->totalhigh
) ||
2545 __put_user(s
.freehigh
, &info
->freehigh
) ||
2546 __put_user(s
.mem_unit
, &info
->mem_unit
))
2551 #endif /* CONFIG_COMPAT */