1 /* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
6 * Extent allocs and frees
8 * Copyright (C) 2002, 2004 Oracle. All rights reserved.
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public
12 * License as published by the Free Software Foundation; either
13 * version 2 of the License, or (at your option) any later version.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
20 * You should have received a copy of the GNU General Public
21 * License along with this program; if not, write to the
22 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23 * Boston, MA 021110-1307, USA.
27 #include <linux/types.h>
28 #include <linux/slab.h>
29 #include <linux/highmem.h>
30 #include <linux/swap.h>
31 #include <linux/quotaops.h>
32 #include <linux/blkdev.h>
34 #include <cluster/masklog.h>
40 #include "blockcheck.h"
42 #include "extent_map.h"
45 #include "localalloc.h"
52 #include "refcounttree.h"
53 #include "ocfs2_trace.h"
55 #include "buffer_head_io.h"
57 enum ocfs2_contig_type
{
64 static enum ocfs2_contig_type
65 ocfs2_extent_rec_contig(struct super_block
*sb
,
66 struct ocfs2_extent_rec
*ext
,
67 struct ocfs2_extent_rec
*insert_rec
);
69 * Operations for a specific extent tree type.
71 * To implement an on-disk btree (extent tree) type in ocfs2, add
72 * an ocfs2_extent_tree_operations structure and the matching
73 * ocfs2_init_<thingy>_extent_tree() function. That's pretty much it
74 * for the allocation portion of the extent tree.
76 struct ocfs2_extent_tree_operations
{
78 * last_eb_blk is the block number of the right most leaf extent
79 * block. Most on-disk structures containing an extent tree store
80 * this value for fast access. The ->eo_set_last_eb_blk() and
81 * ->eo_get_last_eb_blk() operations access this value. They are
84 void (*eo_set_last_eb_blk
)(struct ocfs2_extent_tree
*et
,
86 u64 (*eo_get_last_eb_blk
)(struct ocfs2_extent_tree
*et
);
89 * The on-disk structure usually keeps track of how many total
90 * clusters are stored in this extent tree. This function updates
91 * that value. new_clusters is the delta, and must be
92 * added to the total. Required.
94 void (*eo_update_clusters
)(struct ocfs2_extent_tree
*et
,
98 * If this extent tree is supported by an extent map, insert
99 * a record into the map.
101 void (*eo_extent_map_insert
)(struct ocfs2_extent_tree
*et
,
102 struct ocfs2_extent_rec
*rec
);
105 * If this extent tree is supported by an extent map, truncate the
108 void (*eo_extent_map_truncate
)(struct ocfs2_extent_tree
*et
,
112 * If ->eo_insert_check() exists, it is called before rec is
113 * inserted into the extent tree. It is optional.
115 int (*eo_insert_check
)(struct ocfs2_extent_tree
*et
,
116 struct ocfs2_extent_rec
*rec
);
117 int (*eo_sanity_check
)(struct ocfs2_extent_tree
*et
);
120 * --------------------------------------------------------------
121 * The remaining are internal to ocfs2_extent_tree and don't have
126 * ->eo_fill_root_el() takes et->et_object and sets et->et_root_el.
129 void (*eo_fill_root_el
)(struct ocfs2_extent_tree
*et
);
132 * ->eo_fill_max_leaf_clusters sets et->et_max_leaf_clusters if
133 * it exists. If it does not, et->et_max_leaf_clusters is set
134 * to 0 (unlimited). Optional.
136 void (*eo_fill_max_leaf_clusters
)(struct ocfs2_extent_tree
*et
);
139 * ->eo_extent_contig test whether the 2 ocfs2_extent_rec
140 * are contiguous or not. Optional. Don't need to set it if use
141 * ocfs2_extent_rec as the tree leaf.
143 enum ocfs2_contig_type
144 (*eo_extent_contig
)(struct ocfs2_extent_tree
*et
,
145 struct ocfs2_extent_rec
*ext
,
146 struct ocfs2_extent_rec
*insert_rec
);
151 * Pre-declare ocfs2_dinode_et_ops so we can use it as a sanity check
154 static u64
ocfs2_dinode_get_last_eb_blk(struct ocfs2_extent_tree
*et
);
155 static void ocfs2_dinode_set_last_eb_blk(struct ocfs2_extent_tree
*et
,
157 static void ocfs2_dinode_update_clusters(struct ocfs2_extent_tree
*et
,
159 static void ocfs2_dinode_extent_map_insert(struct ocfs2_extent_tree
*et
,
160 struct ocfs2_extent_rec
*rec
);
161 static void ocfs2_dinode_extent_map_truncate(struct ocfs2_extent_tree
*et
,
163 static int ocfs2_dinode_insert_check(struct ocfs2_extent_tree
*et
,
164 struct ocfs2_extent_rec
*rec
);
165 static int ocfs2_dinode_sanity_check(struct ocfs2_extent_tree
*et
);
166 static void ocfs2_dinode_fill_root_el(struct ocfs2_extent_tree
*et
);
167 static const struct ocfs2_extent_tree_operations ocfs2_dinode_et_ops
= {
168 .eo_set_last_eb_blk
= ocfs2_dinode_set_last_eb_blk
,
169 .eo_get_last_eb_blk
= ocfs2_dinode_get_last_eb_blk
,
170 .eo_update_clusters
= ocfs2_dinode_update_clusters
,
171 .eo_extent_map_insert
= ocfs2_dinode_extent_map_insert
,
172 .eo_extent_map_truncate
= ocfs2_dinode_extent_map_truncate
,
173 .eo_insert_check
= ocfs2_dinode_insert_check
,
174 .eo_sanity_check
= ocfs2_dinode_sanity_check
,
175 .eo_fill_root_el
= ocfs2_dinode_fill_root_el
,
178 static void ocfs2_dinode_set_last_eb_blk(struct ocfs2_extent_tree
*et
,
181 struct ocfs2_dinode
*di
= et
->et_object
;
183 BUG_ON(et
->et_ops
!= &ocfs2_dinode_et_ops
);
184 di
->i_last_eb_blk
= cpu_to_le64(blkno
);
187 static u64
ocfs2_dinode_get_last_eb_blk(struct ocfs2_extent_tree
*et
)
189 struct ocfs2_dinode
*di
= et
->et_object
;
191 BUG_ON(et
->et_ops
!= &ocfs2_dinode_et_ops
);
192 return le64_to_cpu(di
->i_last_eb_blk
);
195 static void ocfs2_dinode_update_clusters(struct ocfs2_extent_tree
*et
,
198 struct ocfs2_inode_info
*oi
= cache_info_to_inode(et
->et_ci
);
199 struct ocfs2_dinode
*di
= et
->et_object
;
201 le32_add_cpu(&di
->i_clusters
, clusters
);
202 spin_lock(&oi
->ip_lock
);
203 oi
->ip_clusters
= le32_to_cpu(di
->i_clusters
);
204 spin_unlock(&oi
->ip_lock
);
207 static void ocfs2_dinode_extent_map_insert(struct ocfs2_extent_tree
*et
,
208 struct ocfs2_extent_rec
*rec
)
210 struct inode
*inode
= &cache_info_to_inode(et
->et_ci
)->vfs_inode
;
212 ocfs2_extent_map_insert_rec(inode
, rec
);
215 static void ocfs2_dinode_extent_map_truncate(struct ocfs2_extent_tree
*et
,
218 struct inode
*inode
= &cache_info_to_inode(et
->et_ci
)->vfs_inode
;
220 ocfs2_extent_map_trunc(inode
, clusters
);
223 static int ocfs2_dinode_insert_check(struct ocfs2_extent_tree
*et
,
224 struct ocfs2_extent_rec
*rec
)
226 struct ocfs2_inode_info
*oi
= cache_info_to_inode(et
->et_ci
);
227 struct ocfs2_super
*osb
= OCFS2_SB(oi
->vfs_inode
.i_sb
);
229 BUG_ON(oi
->ip_dyn_features
& OCFS2_INLINE_DATA_FL
);
230 mlog_bug_on_msg(!ocfs2_sparse_alloc(osb
) &&
231 (oi
->ip_clusters
!= le32_to_cpu(rec
->e_cpos
)),
232 "Device %s, asking for sparse allocation: inode %llu, "
233 "cpos %u, clusters %u\n",
235 (unsigned long long)oi
->ip_blkno
,
236 rec
->e_cpos
, oi
->ip_clusters
);
241 static int ocfs2_dinode_sanity_check(struct ocfs2_extent_tree
*et
)
243 struct ocfs2_dinode
*di
= et
->et_object
;
245 BUG_ON(et
->et_ops
!= &ocfs2_dinode_et_ops
);
246 BUG_ON(!OCFS2_IS_VALID_DINODE(di
));
251 static void ocfs2_dinode_fill_root_el(struct ocfs2_extent_tree
*et
)
253 struct ocfs2_dinode
*di
= et
->et_object
;
255 et
->et_root_el
= &di
->id2
.i_list
;
259 static void ocfs2_xattr_value_fill_root_el(struct ocfs2_extent_tree
*et
)
261 struct ocfs2_xattr_value_buf
*vb
= et
->et_object
;
263 et
->et_root_el
= &vb
->vb_xv
->xr_list
;
266 static void ocfs2_xattr_value_set_last_eb_blk(struct ocfs2_extent_tree
*et
,
269 struct ocfs2_xattr_value_buf
*vb
= et
->et_object
;
271 vb
->vb_xv
->xr_last_eb_blk
= cpu_to_le64(blkno
);
274 static u64
ocfs2_xattr_value_get_last_eb_blk(struct ocfs2_extent_tree
*et
)
276 struct ocfs2_xattr_value_buf
*vb
= et
->et_object
;
278 return le64_to_cpu(vb
->vb_xv
->xr_last_eb_blk
);
281 static void ocfs2_xattr_value_update_clusters(struct ocfs2_extent_tree
*et
,
284 struct ocfs2_xattr_value_buf
*vb
= et
->et_object
;
286 le32_add_cpu(&vb
->vb_xv
->xr_clusters
, clusters
);
289 static const struct ocfs2_extent_tree_operations ocfs2_xattr_value_et_ops
= {
290 .eo_set_last_eb_blk
= ocfs2_xattr_value_set_last_eb_blk
,
291 .eo_get_last_eb_blk
= ocfs2_xattr_value_get_last_eb_blk
,
292 .eo_update_clusters
= ocfs2_xattr_value_update_clusters
,
293 .eo_fill_root_el
= ocfs2_xattr_value_fill_root_el
,
296 static void ocfs2_xattr_tree_fill_root_el(struct ocfs2_extent_tree
*et
)
298 struct ocfs2_xattr_block
*xb
= et
->et_object
;
300 et
->et_root_el
= &xb
->xb_attrs
.xb_root
.xt_list
;
303 static void ocfs2_xattr_tree_fill_max_leaf_clusters(struct ocfs2_extent_tree
*et
)
305 struct super_block
*sb
= ocfs2_metadata_cache_get_super(et
->et_ci
);
306 et
->et_max_leaf_clusters
=
307 ocfs2_clusters_for_bytes(sb
, OCFS2_MAX_XATTR_TREE_LEAF_SIZE
);
310 static void ocfs2_xattr_tree_set_last_eb_blk(struct ocfs2_extent_tree
*et
,
313 struct ocfs2_xattr_block
*xb
= et
->et_object
;
314 struct ocfs2_xattr_tree_root
*xt
= &xb
->xb_attrs
.xb_root
;
316 xt
->xt_last_eb_blk
= cpu_to_le64(blkno
);
319 static u64
ocfs2_xattr_tree_get_last_eb_blk(struct ocfs2_extent_tree
*et
)
321 struct ocfs2_xattr_block
*xb
= et
->et_object
;
322 struct ocfs2_xattr_tree_root
*xt
= &xb
->xb_attrs
.xb_root
;
324 return le64_to_cpu(xt
->xt_last_eb_blk
);
327 static void ocfs2_xattr_tree_update_clusters(struct ocfs2_extent_tree
*et
,
330 struct ocfs2_xattr_block
*xb
= et
->et_object
;
332 le32_add_cpu(&xb
->xb_attrs
.xb_root
.xt_clusters
, clusters
);
335 static const struct ocfs2_extent_tree_operations ocfs2_xattr_tree_et_ops
= {
336 .eo_set_last_eb_blk
= ocfs2_xattr_tree_set_last_eb_blk
,
337 .eo_get_last_eb_blk
= ocfs2_xattr_tree_get_last_eb_blk
,
338 .eo_update_clusters
= ocfs2_xattr_tree_update_clusters
,
339 .eo_fill_root_el
= ocfs2_xattr_tree_fill_root_el
,
340 .eo_fill_max_leaf_clusters
= ocfs2_xattr_tree_fill_max_leaf_clusters
,
343 static void ocfs2_dx_root_set_last_eb_blk(struct ocfs2_extent_tree
*et
,
346 struct ocfs2_dx_root_block
*dx_root
= et
->et_object
;
348 dx_root
->dr_last_eb_blk
= cpu_to_le64(blkno
);
351 static u64
ocfs2_dx_root_get_last_eb_blk(struct ocfs2_extent_tree
*et
)
353 struct ocfs2_dx_root_block
*dx_root
= et
->et_object
;
355 return le64_to_cpu(dx_root
->dr_last_eb_blk
);
358 static void ocfs2_dx_root_update_clusters(struct ocfs2_extent_tree
*et
,
361 struct ocfs2_dx_root_block
*dx_root
= et
->et_object
;
363 le32_add_cpu(&dx_root
->dr_clusters
, clusters
);
366 static int ocfs2_dx_root_sanity_check(struct ocfs2_extent_tree
*et
)
368 struct ocfs2_dx_root_block
*dx_root
= et
->et_object
;
370 BUG_ON(!OCFS2_IS_VALID_DX_ROOT(dx_root
));
375 static void ocfs2_dx_root_fill_root_el(struct ocfs2_extent_tree
*et
)
377 struct ocfs2_dx_root_block
*dx_root
= et
->et_object
;
379 et
->et_root_el
= &dx_root
->dr_list
;
382 static const struct ocfs2_extent_tree_operations ocfs2_dx_root_et_ops
= {
383 .eo_set_last_eb_blk
= ocfs2_dx_root_set_last_eb_blk
,
384 .eo_get_last_eb_blk
= ocfs2_dx_root_get_last_eb_blk
,
385 .eo_update_clusters
= ocfs2_dx_root_update_clusters
,
386 .eo_sanity_check
= ocfs2_dx_root_sanity_check
,
387 .eo_fill_root_el
= ocfs2_dx_root_fill_root_el
,
390 static void ocfs2_refcount_tree_fill_root_el(struct ocfs2_extent_tree
*et
)
392 struct ocfs2_refcount_block
*rb
= et
->et_object
;
394 et
->et_root_el
= &rb
->rf_list
;
397 static void ocfs2_refcount_tree_set_last_eb_blk(struct ocfs2_extent_tree
*et
,
400 struct ocfs2_refcount_block
*rb
= et
->et_object
;
402 rb
->rf_last_eb_blk
= cpu_to_le64(blkno
);
405 static u64
ocfs2_refcount_tree_get_last_eb_blk(struct ocfs2_extent_tree
*et
)
407 struct ocfs2_refcount_block
*rb
= et
->et_object
;
409 return le64_to_cpu(rb
->rf_last_eb_blk
);
412 static void ocfs2_refcount_tree_update_clusters(struct ocfs2_extent_tree
*et
,
415 struct ocfs2_refcount_block
*rb
= et
->et_object
;
417 le32_add_cpu(&rb
->rf_clusters
, clusters
);
420 static enum ocfs2_contig_type
421 ocfs2_refcount_tree_extent_contig(struct ocfs2_extent_tree
*et
,
422 struct ocfs2_extent_rec
*ext
,
423 struct ocfs2_extent_rec
*insert_rec
)
428 static const struct ocfs2_extent_tree_operations ocfs2_refcount_tree_et_ops
= {
429 .eo_set_last_eb_blk
= ocfs2_refcount_tree_set_last_eb_blk
,
430 .eo_get_last_eb_blk
= ocfs2_refcount_tree_get_last_eb_blk
,
431 .eo_update_clusters
= ocfs2_refcount_tree_update_clusters
,
432 .eo_fill_root_el
= ocfs2_refcount_tree_fill_root_el
,
433 .eo_extent_contig
= ocfs2_refcount_tree_extent_contig
,
436 static void __ocfs2_init_extent_tree(struct ocfs2_extent_tree
*et
,
437 struct ocfs2_caching_info
*ci
,
438 struct buffer_head
*bh
,
439 ocfs2_journal_access_func access
,
441 const struct ocfs2_extent_tree_operations
*ops
)
446 et
->et_root_journal_access
= access
;
448 obj
= (void *)bh
->b_data
;
451 et
->et_ops
->eo_fill_root_el(et
);
452 if (!et
->et_ops
->eo_fill_max_leaf_clusters
)
453 et
->et_max_leaf_clusters
= 0;
455 et
->et_ops
->eo_fill_max_leaf_clusters(et
);
458 void ocfs2_init_dinode_extent_tree(struct ocfs2_extent_tree
*et
,
459 struct ocfs2_caching_info
*ci
,
460 struct buffer_head
*bh
)
462 __ocfs2_init_extent_tree(et
, ci
, bh
, ocfs2_journal_access_di
,
463 NULL
, &ocfs2_dinode_et_ops
);
466 void ocfs2_init_xattr_tree_extent_tree(struct ocfs2_extent_tree
*et
,
467 struct ocfs2_caching_info
*ci
,
468 struct buffer_head
*bh
)
470 __ocfs2_init_extent_tree(et
, ci
, bh
, ocfs2_journal_access_xb
,
471 NULL
, &ocfs2_xattr_tree_et_ops
);
474 void ocfs2_init_xattr_value_extent_tree(struct ocfs2_extent_tree
*et
,
475 struct ocfs2_caching_info
*ci
,
476 struct ocfs2_xattr_value_buf
*vb
)
478 __ocfs2_init_extent_tree(et
, ci
, vb
->vb_bh
, vb
->vb_access
, vb
,
479 &ocfs2_xattr_value_et_ops
);
482 void ocfs2_init_dx_root_extent_tree(struct ocfs2_extent_tree
*et
,
483 struct ocfs2_caching_info
*ci
,
484 struct buffer_head
*bh
)
486 __ocfs2_init_extent_tree(et
, ci
, bh
, ocfs2_journal_access_dr
,
487 NULL
, &ocfs2_dx_root_et_ops
);
490 void ocfs2_init_refcount_extent_tree(struct ocfs2_extent_tree
*et
,
491 struct ocfs2_caching_info
*ci
,
492 struct buffer_head
*bh
)
494 __ocfs2_init_extent_tree(et
, ci
, bh
, ocfs2_journal_access_rb
,
495 NULL
, &ocfs2_refcount_tree_et_ops
);
498 static inline void ocfs2_et_set_last_eb_blk(struct ocfs2_extent_tree
*et
,
501 et
->et_ops
->eo_set_last_eb_blk(et
, new_last_eb_blk
);
504 static inline u64
ocfs2_et_get_last_eb_blk(struct ocfs2_extent_tree
*et
)
506 return et
->et_ops
->eo_get_last_eb_blk(et
);
509 static inline void ocfs2_et_update_clusters(struct ocfs2_extent_tree
*et
,
512 et
->et_ops
->eo_update_clusters(et
, clusters
);
515 static inline void ocfs2_et_extent_map_insert(struct ocfs2_extent_tree
*et
,
516 struct ocfs2_extent_rec
*rec
)
518 if (et
->et_ops
->eo_extent_map_insert
)
519 et
->et_ops
->eo_extent_map_insert(et
, rec
);
522 static inline void ocfs2_et_extent_map_truncate(struct ocfs2_extent_tree
*et
,
525 if (et
->et_ops
->eo_extent_map_truncate
)
526 et
->et_ops
->eo_extent_map_truncate(et
, clusters
);
529 static inline int ocfs2_et_root_journal_access(handle_t
*handle
,
530 struct ocfs2_extent_tree
*et
,
533 return et
->et_root_journal_access(handle
, et
->et_ci
, et
->et_root_bh
,
537 static inline enum ocfs2_contig_type
538 ocfs2_et_extent_contig(struct ocfs2_extent_tree
*et
,
539 struct ocfs2_extent_rec
*rec
,
540 struct ocfs2_extent_rec
*insert_rec
)
542 if (et
->et_ops
->eo_extent_contig
)
543 return et
->et_ops
->eo_extent_contig(et
, rec
, insert_rec
);
545 return ocfs2_extent_rec_contig(
546 ocfs2_metadata_cache_get_super(et
->et_ci
),
550 static inline int ocfs2_et_insert_check(struct ocfs2_extent_tree
*et
,
551 struct ocfs2_extent_rec
*rec
)
555 if (et
->et_ops
->eo_insert_check
)
556 ret
= et
->et_ops
->eo_insert_check(et
, rec
);
560 static inline int ocfs2_et_sanity_check(struct ocfs2_extent_tree
*et
)
564 if (et
->et_ops
->eo_sanity_check
)
565 ret
= et
->et_ops
->eo_sanity_check(et
);
569 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt
*ctxt
,
570 struct ocfs2_extent_block
*eb
);
571 static void ocfs2_adjust_rightmost_records(handle_t
*handle
,
572 struct ocfs2_extent_tree
*et
,
573 struct ocfs2_path
*path
,
574 struct ocfs2_extent_rec
*insert_rec
);
576 * Reset the actual path elements so that we can re-use the structure
577 * to build another path. Generally, this involves freeing the buffer
580 void ocfs2_reinit_path(struct ocfs2_path
*path
, int keep_root
)
582 int i
, start
= 0, depth
= 0;
583 struct ocfs2_path_item
*node
;
588 for(i
= start
; i
< path_num_items(path
); i
++) {
589 node
= &path
->p_node
[i
];
597 * Tree depth may change during truncate, or insert. If we're
598 * keeping the root extent list, then make sure that our path
599 * structure reflects the proper depth.
602 depth
= le16_to_cpu(path_root_el(path
)->l_tree_depth
);
604 path_root_access(path
) = NULL
;
606 path
->p_tree_depth
= depth
;
609 void ocfs2_free_path(struct ocfs2_path
*path
)
612 ocfs2_reinit_path(path
, 0);
618 * All the elements of src into dest. After this call, src could be freed
619 * without affecting dest.
621 * Both paths should have the same root. Any non-root elements of dest
624 static void ocfs2_cp_path(struct ocfs2_path
*dest
, struct ocfs2_path
*src
)
628 BUG_ON(path_root_bh(dest
) != path_root_bh(src
));
629 BUG_ON(path_root_el(dest
) != path_root_el(src
));
630 BUG_ON(path_root_access(dest
) != path_root_access(src
));
632 ocfs2_reinit_path(dest
, 1);
634 for(i
= 1; i
< OCFS2_MAX_PATH_DEPTH
; i
++) {
635 dest
->p_node
[i
].bh
= src
->p_node
[i
].bh
;
636 dest
->p_node
[i
].el
= src
->p_node
[i
].el
;
638 if (dest
->p_node
[i
].bh
)
639 get_bh(dest
->p_node
[i
].bh
);
644 * Make the *dest path the same as src and re-initialize src path to
647 static void ocfs2_mv_path(struct ocfs2_path
*dest
, struct ocfs2_path
*src
)
651 BUG_ON(path_root_bh(dest
) != path_root_bh(src
));
652 BUG_ON(path_root_access(dest
) != path_root_access(src
));
654 for(i
= 1; i
< OCFS2_MAX_PATH_DEPTH
; i
++) {
655 brelse(dest
->p_node
[i
].bh
);
657 dest
->p_node
[i
].bh
= src
->p_node
[i
].bh
;
658 dest
->p_node
[i
].el
= src
->p_node
[i
].el
;
660 src
->p_node
[i
].bh
= NULL
;
661 src
->p_node
[i
].el
= NULL
;
666 * Insert an extent block at given index.
668 * This will not take an additional reference on eb_bh.
670 static inline void ocfs2_path_insert_eb(struct ocfs2_path
*path
, int index
,
671 struct buffer_head
*eb_bh
)
673 struct ocfs2_extent_block
*eb
= (struct ocfs2_extent_block
*)eb_bh
->b_data
;
676 * Right now, no root bh is an extent block, so this helps
677 * catch code errors with dinode trees. The assertion can be
678 * safely removed if we ever need to insert extent block
679 * structures at the root.
683 path
->p_node
[index
].bh
= eb_bh
;
684 path
->p_node
[index
].el
= &eb
->h_list
;
687 static struct ocfs2_path
*ocfs2_new_path(struct buffer_head
*root_bh
,
688 struct ocfs2_extent_list
*root_el
,
689 ocfs2_journal_access_func access
)
691 struct ocfs2_path
*path
;
693 BUG_ON(le16_to_cpu(root_el
->l_tree_depth
) >= OCFS2_MAX_PATH_DEPTH
);
695 path
= kzalloc(sizeof(*path
), GFP_NOFS
);
697 path
->p_tree_depth
= le16_to_cpu(root_el
->l_tree_depth
);
699 path_root_bh(path
) = root_bh
;
700 path_root_el(path
) = root_el
;
701 path_root_access(path
) = access
;
707 struct ocfs2_path
*ocfs2_new_path_from_path(struct ocfs2_path
*path
)
709 return ocfs2_new_path(path_root_bh(path
), path_root_el(path
),
710 path_root_access(path
));
713 struct ocfs2_path
*ocfs2_new_path_from_et(struct ocfs2_extent_tree
*et
)
715 return ocfs2_new_path(et
->et_root_bh
, et
->et_root_el
,
716 et
->et_root_journal_access
);
720 * Journal the buffer at depth idx. All idx>0 are extent_blocks,
721 * otherwise it's the root_access function.
723 * I don't like the way this function's name looks next to
724 * ocfs2_journal_access_path(), but I don't have a better one.
726 int ocfs2_path_bh_journal_access(handle_t
*handle
,
727 struct ocfs2_caching_info
*ci
,
728 struct ocfs2_path
*path
,
731 ocfs2_journal_access_func access
= path_root_access(path
);
734 access
= ocfs2_journal_access
;
737 access
= ocfs2_journal_access_eb
;
739 return access(handle
, ci
, path
->p_node
[idx
].bh
,
740 OCFS2_JOURNAL_ACCESS_WRITE
);
744 * Convenience function to journal all components in a path.
746 int ocfs2_journal_access_path(struct ocfs2_caching_info
*ci
,
748 struct ocfs2_path
*path
)
755 for(i
= 0; i
< path_num_items(path
); i
++) {
756 ret
= ocfs2_path_bh_journal_access(handle
, ci
, path
, i
);
768 * Return the index of the extent record which contains cluster #v_cluster.
769 * -1 is returned if it was not found.
771 * Should work fine on interior and exterior nodes.
773 int ocfs2_search_extent_list(struct ocfs2_extent_list
*el
, u32 v_cluster
)
777 struct ocfs2_extent_rec
*rec
;
778 u32 rec_end
, rec_start
, clusters
;
780 for(i
= 0; i
< le16_to_cpu(el
->l_next_free_rec
); i
++) {
781 rec
= &el
->l_recs
[i
];
783 rec_start
= le32_to_cpu(rec
->e_cpos
);
784 clusters
= ocfs2_rec_clusters(el
, rec
);
786 rec_end
= rec_start
+ clusters
;
788 if (v_cluster
>= rec_start
&& v_cluster
< rec_end
) {
798 * NOTE: ocfs2_block_extent_contig(), ocfs2_extents_adjacent() and
799 * ocfs2_extent_rec_contig only work properly against leaf nodes!
801 static int ocfs2_block_extent_contig(struct super_block
*sb
,
802 struct ocfs2_extent_rec
*ext
,
805 u64 blk_end
= le64_to_cpu(ext
->e_blkno
);
807 blk_end
+= ocfs2_clusters_to_blocks(sb
,
808 le16_to_cpu(ext
->e_leaf_clusters
));
810 return blkno
== blk_end
;
813 static int ocfs2_extents_adjacent(struct ocfs2_extent_rec
*left
,
814 struct ocfs2_extent_rec
*right
)
818 left_range
= le32_to_cpu(left
->e_cpos
) +
819 le16_to_cpu(left
->e_leaf_clusters
);
821 return (left_range
== le32_to_cpu(right
->e_cpos
));
824 static enum ocfs2_contig_type
825 ocfs2_extent_rec_contig(struct super_block
*sb
,
826 struct ocfs2_extent_rec
*ext
,
827 struct ocfs2_extent_rec
*insert_rec
)
829 u64 blkno
= le64_to_cpu(insert_rec
->e_blkno
);
832 * Refuse to coalesce extent records with different flag
833 * fields - we don't want to mix unwritten extents with user
836 if (ext
->e_flags
!= insert_rec
->e_flags
)
839 if (ocfs2_extents_adjacent(ext
, insert_rec
) &&
840 ocfs2_block_extent_contig(sb
, ext
, blkno
))
843 blkno
= le64_to_cpu(ext
->e_blkno
);
844 if (ocfs2_extents_adjacent(insert_rec
, ext
) &&
845 ocfs2_block_extent_contig(sb
, insert_rec
, blkno
))
852 * NOTE: We can have pretty much any combination of contiguousness and
855 * The usefulness of APPEND_TAIL is more in that it lets us know that
856 * we'll have to update the path to that leaf.
858 enum ocfs2_append_type
{
863 enum ocfs2_split_type
{
869 struct ocfs2_insert_type
{
870 enum ocfs2_split_type ins_split
;
871 enum ocfs2_append_type ins_appending
;
872 enum ocfs2_contig_type ins_contig
;
873 int ins_contig_index
;
877 struct ocfs2_merge_ctxt
{
878 enum ocfs2_contig_type c_contig_type
;
879 int c_has_empty_extent
;
880 int c_split_covers_rec
;
883 static int ocfs2_validate_extent_block(struct super_block
*sb
,
884 struct buffer_head
*bh
)
887 struct ocfs2_extent_block
*eb
=
888 (struct ocfs2_extent_block
*)bh
->b_data
;
890 trace_ocfs2_validate_extent_block((unsigned long long)bh
->b_blocknr
);
892 BUG_ON(!buffer_uptodate(bh
));
895 * If the ecc fails, we return the error but otherwise
896 * leave the filesystem running. We know any error is
897 * local to this block.
899 rc
= ocfs2_validate_meta_ecc(sb
, bh
->b_data
, &eb
->h_check
);
901 mlog(ML_ERROR
, "Checksum failed for extent block %llu\n",
902 (unsigned long long)bh
->b_blocknr
);
907 * Errors after here are fatal.
910 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb
)) {
912 "Extent block #%llu has bad signature %.*s\n",
913 (unsigned long long)bh
->b_blocknr
, 7,
918 if (le64_to_cpu(eb
->h_blkno
) != bh
->b_blocknr
) {
920 "Extent block #%llu has an invalid h_blkno of %llu\n",
921 (unsigned long long)bh
->b_blocknr
,
922 (unsigned long long)le64_to_cpu(eb
->h_blkno
));
926 if (le32_to_cpu(eb
->h_fs_generation
) != OCFS2_SB(sb
)->fs_generation
) {
928 "Extent block #%llu has an invalid h_fs_generation of #%u\n",
929 (unsigned long long)bh
->b_blocknr
,
930 le32_to_cpu(eb
->h_fs_generation
));
937 int ocfs2_read_extent_block(struct ocfs2_caching_info
*ci
, u64 eb_blkno
,
938 struct buffer_head
**bh
)
941 struct buffer_head
*tmp
= *bh
;
943 rc
= ocfs2_read_block(ci
, eb_blkno
, &tmp
,
944 ocfs2_validate_extent_block
);
946 /* If ocfs2_read_block() got us a new bh, pass it up. */
955 * How many free extents have we got before we need more meta data?
957 int ocfs2_num_free_extents(struct ocfs2_super
*osb
,
958 struct ocfs2_extent_tree
*et
)
961 struct ocfs2_extent_list
*el
= NULL
;
962 struct ocfs2_extent_block
*eb
;
963 struct buffer_head
*eb_bh
= NULL
;
967 last_eb_blk
= ocfs2_et_get_last_eb_blk(et
);
970 retval
= ocfs2_read_extent_block(et
->et_ci
, last_eb_blk
,
976 eb
= (struct ocfs2_extent_block
*) eb_bh
->b_data
;
980 BUG_ON(el
->l_tree_depth
!= 0);
982 retval
= le16_to_cpu(el
->l_count
) - le16_to_cpu(el
->l_next_free_rec
);
986 trace_ocfs2_num_free_extents(retval
);
990 /* expects array to already be allocated
992 * sets h_signature, h_blkno, h_suballoc_bit, h_suballoc_slot, and
995 static int ocfs2_create_new_meta_bhs(handle_t
*handle
,
996 struct ocfs2_extent_tree
*et
,
998 struct ocfs2_alloc_context
*meta_ac
,
999 struct buffer_head
*bhs
[])
1001 int count
, status
, i
;
1002 u16 suballoc_bit_start
;
1004 u64 suballoc_loc
, first_blkno
;
1005 struct ocfs2_super
*osb
=
1006 OCFS2_SB(ocfs2_metadata_cache_get_super(et
->et_ci
));
1007 struct ocfs2_extent_block
*eb
;
1010 while (count
< wanted
) {
1011 status
= ocfs2_claim_metadata(handle
,
1015 &suballoc_bit_start
,
1023 for(i
= count
; i
< (num_got
+ count
); i
++) {
1024 bhs
[i
] = sb_getblk(osb
->sb
, first_blkno
);
1025 if (bhs
[i
] == NULL
) {
1030 ocfs2_set_new_buffer_uptodate(et
->et_ci
, bhs
[i
]);
1032 status
= ocfs2_journal_access_eb(handle
, et
->et_ci
,
1034 OCFS2_JOURNAL_ACCESS_CREATE
);
1040 memset(bhs
[i
]->b_data
, 0, osb
->sb
->s_blocksize
);
1041 eb
= (struct ocfs2_extent_block
*) bhs
[i
]->b_data
;
1042 /* Ok, setup the minimal stuff here. */
1043 strcpy(eb
->h_signature
, OCFS2_EXTENT_BLOCK_SIGNATURE
);
1044 eb
->h_blkno
= cpu_to_le64(first_blkno
);
1045 eb
->h_fs_generation
= cpu_to_le32(osb
->fs_generation
);
1046 eb
->h_suballoc_slot
=
1047 cpu_to_le16(meta_ac
->ac_alloc_slot
);
1048 eb
->h_suballoc_loc
= cpu_to_le64(suballoc_loc
);
1049 eb
->h_suballoc_bit
= cpu_to_le16(suballoc_bit_start
);
1050 eb
->h_list
.l_count
=
1051 cpu_to_le16(ocfs2_extent_recs_per_eb(osb
->sb
));
1053 suballoc_bit_start
++;
1056 /* We'll also be dirtied by the caller, so
1057 * this isn't absolutely necessary. */
1058 ocfs2_journal_dirty(handle
, bhs
[i
]);
1067 for(i
= 0; i
< wanted
; i
++) {
1077 * Helper function for ocfs2_add_branch() and ocfs2_shift_tree_depth().
1079 * Returns the sum of the rightmost extent rec logical offset and
1082 * ocfs2_add_branch() uses this to determine what logical cluster
1083 * value should be populated into the leftmost new branch records.
1085 * ocfs2_shift_tree_depth() uses this to determine the # clusters
1086 * value for the new topmost tree record.
1088 static inline u32
ocfs2_sum_rightmost_rec(struct ocfs2_extent_list
*el
)
1092 i
= le16_to_cpu(el
->l_next_free_rec
) - 1;
1094 return le32_to_cpu(el
->l_recs
[i
].e_cpos
) +
1095 ocfs2_rec_clusters(el
, &el
->l_recs
[i
]);
1099 * Change range of the branches in the right most path according to the leaf
1100 * extent block's rightmost record.
1102 static int ocfs2_adjust_rightmost_branch(handle_t
*handle
,
1103 struct ocfs2_extent_tree
*et
)
1106 struct ocfs2_path
*path
= NULL
;
1107 struct ocfs2_extent_list
*el
;
1108 struct ocfs2_extent_rec
*rec
;
1110 path
= ocfs2_new_path_from_et(et
);
1116 status
= ocfs2_find_path(et
->et_ci
, path
, UINT_MAX
);
1122 status
= ocfs2_extend_trans(handle
, path_num_items(path
));
1128 status
= ocfs2_journal_access_path(et
->et_ci
, handle
, path
);
1134 el
= path_leaf_el(path
);
1135 rec
= &el
->l_recs
[le16_to_cpu(el
->l_next_free_rec
) - 1];
1137 ocfs2_adjust_rightmost_records(handle
, et
, path
, rec
);
1140 ocfs2_free_path(path
);
1145 * Add an entire tree branch to our inode. eb_bh is the extent block
1146 * to start at, if we don't want to start the branch at the root
1149 * last_eb_bh is required as we have to update it's next_leaf pointer
1150 * for the new last extent block.
1152 * the new branch will be 'empty' in the sense that every block will
1153 * contain a single record with cluster count == 0.
1155 static int ocfs2_add_branch(handle_t
*handle
,
1156 struct ocfs2_extent_tree
*et
,
1157 struct buffer_head
*eb_bh
,
1158 struct buffer_head
**last_eb_bh
,
1159 struct ocfs2_alloc_context
*meta_ac
)
1161 int status
, new_blocks
, i
;
1162 u64 next_blkno
, new_last_eb_blk
;
1163 struct buffer_head
*bh
;
1164 struct buffer_head
**new_eb_bhs
= NULL
;
1165 struct ocfs2_extent_block
*eb
;
1166 struct ocfs2_extent_list
*eb_el
;
1167 struct ocfs2_extent_list
*el
;
1168 u32 new_cpos
, root_end
;
1170 BUG_ON(!last_eb_bh
|| !*last_eb_bh
);
1173 eb
= (struct ocfs2_extent_block
*) eb_bh
->b_data
;
1176 el
= et
->et_root_el
;
1178 /* we never add a branch to a leaf. */
1179 BUG_ON(!el
->l_tree_depth
);
1181 new_blocks
= le16_to_cpu(el
->l_tree_depth
);
1183 eb
= (struct ocfs2_extent_block
*)(*last_eb_bh
)->b_data
;
1184 new_cpos
= ocfs2_sum_rightmost_rec(&eb
->h_list
);
1185 root_end
= ocfs2_sum_rightmost_rec(et
->et_root_el
);
1188 * If there is a gap before the root end and the real end
1189 * of the righmost leaf block, we need to remove the gap
1190 * between new_cpos and root_end first so that the tree
1191 * is consistent after we add a new branch(it will start
1194 if (root_end
> new_cpos
) {
1195 trace_ocfs2_adjust_rightmost_branch(
1196 (unsigned long long)
1197 ocfs2_metadata_cache_owner(et
->et_ci
),
1198 root_end
, new_cpos
);
1200 status
= ocfs2_adjust_rightmost_branch(handle
, et
);
1207 /* allocate the number of new eb blocks we need */
1208 new_eb_bhs
= kcalloc(new_blocks
, sizeof(struct buffer_head
*),
1216 status
= ocfs2_create_new_meta_bhs(handle
, et
, new_blocks
,
1217 meta_ac
, new_eb_bhs
);
1223 /* Note: new_eb_bhs[new_blocks - 1] is the guy which will be
1224 * linked with the rest of the tree.
1225 * conversly, new_eb_bhs[0] is the new bottommost leaf.
1227 * when we leave the loop, new_last_eb_blk will point to the
1228 * newest leaf, and next_blkno will point to the topmost extent
1230 next_blkno
= new_last_eb_blk
= 0;
1231 for(i
= 0; i
< new_blocks
; i
++) {
1233 eb
= (struct ocfs2_extent_block
*) bh
->b_data
;
1234 /* ocfs2_create_new_meta_bhs() should create it right! */
1235 BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb
));
1236 eb_el
= &eb
->h_list
;
1238 status
= ocfs2_journal_access_eb(handle
, et
->et_ci
, bh
,
1239 OCFS2_JOURNAL_ACCESS_CREATE
);
1245 eb
->h_next_leaf_blk
= 0;
1246 eb_el
->l_tree_depth
= cpu_to_le16(i
);
1247 eb_el
->l_next_free_rec
= cpu_to_le16(1);
1249 * This actually counts as an empty extent as
1252 eb_el
->l_recs
[0].e_cpos
= cpu_to_le32(new_cpos
);
1253 eb_el
->l_recs
[0].e_blkno
= cpu_to_le64(next_blkno
);
1255 * eb_el isn't always an interior node, but even leaf
1256 * nodes want a zero'd flags and reserved field so
1257 * this gets the whole 32 bits regardless of use.
1259 eb_el
->l_recs
[0].e_int_clusters
= cpu_to_le32(0);
1260 if (!eb_el
->l_tree_depth
)
1261 new_last_eb_blk
= le64_to_cpu(eb
->h_blkno
);
1263 ocfs2_journal_dirty(handle
, bh
);
1264 next_blkno
= le64_to_cpu(eb
->h_blkno
);
1267 /* This is a bit hairy. We want to update up to three blocks
1268 * here without leaving any of them in an inconsistent state
1269 * in case of error. We don't have to worry about
1270 * journal_dirty erroring as it won't unless we've aborted the
1271 * handle (in which case we would never be here) so reserving
1272 * the write with journal_access is all we need to do. */
1273 status
= ocfs2_journal_access_eb(handle
, et
->et_ci
, *last_eb_bh
,
1274 OCFS2_JOURNAL_ACCESS_WRITE
);
1279 status
= ocfs2_et_root_journal_access(handle
, et
,
1280 OCFS2_JOURNAL_ACCESS_WRITE
);
1286 status
= ocfs2_journal_access_eb(handle
, et
->et_ci
, eb_bh
,
1287 OCFS2_JOURNAL_ACCESS_WRITE
);
1294 /* Link the new branch into the rest of the tree (el will
1295 * either be on the root_bh, or the extent block passed in. */
1296 i
= le16_to_cpu(el
->l_next_free_rec
);
1297 el
->l_recs
[i
].e_blkno
= cpu_to_le64(next_blkno
);
1298 el
->l_recs
[i
].e_cpos
= cpu_to_le32(new_cpos
);
1299 el
->l_recs
[i
].e_int_clusters
= 0;
1300 le16_add_cpu(&el
->l_next_free_rec
, 1);
1302 /* fe needs a new last extent block pointer, as does the
1303 * next_leaf on the previously last-extent-block. */
1304 ocfs2_et_set_last_eb_blk(et
, new_last_eb_blk
);
1306 eb
= (struct ocfs2_extent_block
*) (*last_eb_bh
)->b_data
;
1307 eb
->h_next_leaf_blk
= cpu_to_le64(new_last_eb_blk
);
1309 ocfs2_journal_dirty(handle
, *last_eb_bh
);
1310 ocfs2_journal_dirty(handle
, et
->et_root_bh
);
1312 ocfs2_journal_dirty(handle
, eb_bh
);
1315 * Some callers want to track the rightmost leaf so pass it
1318 brelse(*last_eb_bh
);
1319 get_bh(new_eb_bhs
[0]);
1320 *last_eb_bh
= new_eb_bhs
[0];
1325 for (i
= 0; i
< new_blocks
; i
++)
1326 brelse(new_eb_bhs
[i
]);
1334 * adds another level to the allocation tree.
1335 * returns back the new extent block so you can add a branch to it
1338 static int ocfs2_shift_tree_depth(handle_t
*handle
,
1339 struct ocfs2_extent_tree
*et
,
1340 struct ocfs2_alloc_context
*meta_ac
,
1341 struct buffer_head
**ret_new_eb_bh
)
1345 struct buffer_head
*new_eb_bh
= NULL
;
1346 struct ocfs2_extent_block
*eb
;
1347 struct ocfs2_extent_list
*root_el
;
1348 struct ocfs2_extent_list
*eb_el
;
1350 status
= ocfs2_create_new_meta_bhs(handle
, et
, 1, meta_ac
,
1357 eb
= (struct ocfs2_extent_block
*) new_eb_bh
->b_data
;
1358 /* ocfs2_create_new_meta_bhs() should create it right! */
1359 BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb
));
1361 eb_el
= &eb
->h_list
;
1362 root_el
= et
->et_root_el
;
1364 status
= ocfs2_journal_access_eb(handle
, et
->et_ci
, new_eb_bh
,
1365 OCFS2_JOURNAL_ACCESS_CREATE
);
1371 /* copy the root extent list data into the new extent block */
1372 eb_el
->l_tree_depth
= root_el
->l_tree_depth
;
1373 eb_el
->l_next_free_rec
= root_el
->l_next_free_rec
;
1374 for (i
= 0; i
< le16_to_cpu(root_el
->l_next_free_rec
); i
++)
1375 eb_el
->l_recs
[i
] = root_el
->l_recs
[i
];
1377 ocfs2_journal_dirty(handle
, new_eb_bh
);
1379 status
= ocfs2_et_root_journal_access(handle
, et
,
1380 OCFS2_JOURNAL_ACCESS_WRITE
);
1386 new_clusters
= ocfs2_sum_rightmost_rec(eb_el
);
1388 /* update root_bh now */
1389 le16_add_cpu(&root_el
->l_tree_depth
, 1);
1390 root_el
->l_recs
[0].e_cpos
= 0;
1391 root_el
->l_recs
[0].e_blkno
= eb
->h_blkno
;
1392 root_el
->l_recs
[0].e_int_clusters
= cpu_to_le32(new_clusters
);
1393 for (i
= 1; i
< le16_to_cpu(root_el
->l_next_free_rec
); i
++)
1394 memset(&root_el
->l_recs
[i
], 0, sizeof(struct ocfs2_extent_rec
));
1395 root_el
->l_next_free_rec
= cpu_to_le16(1);
1397 /* If this is our 1st tree depth shift, then last_eb_blk
1398 * becomes the allocated extent block */
1399 if (root_el
->l_tree_depth
== cpu_to_le16(1))
1400 ocfs2_et_set_last_eb_blk(et
, le64_to_cpu(eb
->h_blkno
));
1402 ocfs2_journal_dirty(handle
, et
->et_root_bh
);
1404 *ret_new_eb_bh
= new_eb_bh
;
1414 * Should only be called when there is no space left in any of the
1415 * leaf nodes. What we want to do is find the lowest tree depth
1416 * non-leaf extent block with room for new records. There are three
1417 * valid results of this search:
1419 * 1) a lowest extent block is found, then we pass it back in
1420 * *lowest_eb_bh and return '0'
1422 * 2) the search fails to find anything, but the root_el has room. We
1423 * pass NULL back in *lowest_eb_bh, but still return '0'
1425 * 3) the search fails to find anything AND the root_el is full, in
1426 * which case we return > 0
1428 * return status < 0 indicates an error.
1430 static int ocfs2_find_branch_target(struct ocfs2_extent_tree
*et
,
1431 struct buffer_head
**target_bh
)
1435 struct ocfs2_extent_block
*eb
;
1436 struct ocfs2_extent_list
*el
;
1437 struct buffer_head
*bh
= NULL
;
1438 struct buffer_head
*lowest_bh
= NULL
;
1442 el
= et
->et_root_el
;
1444 while(le16_to_cpu(el
->l_tree_depth
) > 1) {
1445 if (le16_to_cpu(el
->l_next_free_rec
) == 0) {
1446 ocfs2_error(ocfs2_metadata_cache_get_super(et
->et_ci
),
1447 "Owner %llu has empty extent list (next_free_rec == 0)\n",
1448 (unsigned long long)ocfs2_metadata_cache_owner(et
->et_ci
));
1452 i
= le16_to_cpu(el
->l_next_free_rec
) - 1;
1453 blkno
= le64_to_cpu(el
->l_recs
[i
].e_blkno
);
1455 ocfs2_error(ocfs2_metadata_cache_get_super(et
->et_ci
),
1456 "Owner %llu has extent list where extent # %d has no physical block start\n",
1457 (unsigned long long)ocfs2_metadata_cache_owner(et
->et_ci
), i
);
1465 status
= ocfs2_read_extent_block(et
->et_ci
, blkno
, &bh
);
1471 eb
= (struct ocfs2_extent_block
*) bh
->b_data
;
1474 if (le16_to_cpu(el
->l_next_free_rec
) <
1475 le16_to_cpu(el
->l_count
)) {
1482 /* If we didn't find one and the fe doesn't have any room,
1483 * then return '1' */
1484 el
= et
->et_root_el
;
1485 if (!lowest_bh
&& (el
->l_next_free_rec
== el
->l_count
))
1488 *target_bh
= lowest_bh
;
1496 * Grow a b-tree so that it has more records.
1498 * We might shift the tree depth in which case existing paths should
1499 * be considered invalid.
1501 * Tree depth after the grow is returned via *final_depth.
1503 * *last_eb_bh will be updated by ocfs2_add_branch().
1505 static int ocfs2_grow_tree(handle_t
*handle
, struct ocfs2_extent_tree
*et
,
1506 int *final_depth
, struct buffer_head
**last_eb_bh
,
1507 struct ocfs2_alloc_context
*meta_ac
)
1510 struct ocfs2_extent_list
*el
= et
->et_root_el
;
1511 int depth
= le16_to_cpu(el
->l_tree_depth
);
1512 struct buffer_head
*bh
= NULL
;
1514 BUG_ON(meta_ac
== NULL
);
1516 shift
= ocfs2_find_branch_target(et
, &bh
);
1523 /* We traveled all the way to the bottom of the allocation tree
1524 * and didn't find room for any more extents - we need to add
1525 * another tree level */
1528 trace_ocfs2_grow_tree(
1529 (unsigned long long)
1530 ocfs2_metadata_cache_owner(et
->et_ci
),
1533 /* ocfs2_shift_tree_depth will return us a buffer with
1534 * the new extent block (so we can pass that to
1535 * ocfs2_add_branch). */
1536 ret
= ocfs2_shift_tree_depth(handle
, et
, meta_ac
, &bh
);
1544 * Special case: we have room now if we shifted from
1545 * tree_depth 0, so no more work needs to be done.
1547 * We won't be calling add_branch, so pass
1548 * back *last_eb_bh as the new leaf. At depth
1549 * zero, it should always be null so there's
1550 * no reason to brelse.
1552 BUG_ON(*last_eb_bh
);
1559 /* call ocfs2_add_branch to add the final part of the tree with
1561 ret
= ocfs2_add_branch(handle
, et
, bh
, last_eb_bh
,
1570 *final_depth
= depth
;
1576 * This function will discard the rightmost extent record.
1578 static void ocfs2_shift_records_right(struct ocfs2_extent_list
*el
)
1580 int next_free
= le16_to_cpu(el
->l_next_free_rec
);
1581 int count
= le16_to_cpu(el
->l_count
);
1582 unsigned int num_bytes
;
1585 /* This will cause us to go off the end of our extent list. */
1586 BUG_ON(next_free
>= count
);
1588 num_bytes
= sizeof(struct ocfs2_extent_rec
) * next_free
;
1590 memmove(&el
->l_recs
[1], &el
->l_recs
[0], num_bytes
);
1593 static void ocfs2_rotate_leaf(struct ocfs2_extent_list
*el
,
1594 struct ocfs2_extent_rec
*insert_rec
)
1596 int i
, insert_index
, next_free
, has_empty
, num_bytes
;
1597 u32 insert_cpos
= le32_to_cpu(insert_rec
->e_cpos
);
1598 struct ocfs2_extent_rec
*rec
;
1600 next_free
= le16_to_cpu(el
->l_next_free_rec
);
1601 has_empty
= ocfs2_is_empty_extent(&el
->l_recs
[0]);
1605 /* The tree code before us didn't allow enough room in the leaf. */
1606 BUG_ON(el
->l_next_free_rec
== el
->l_count
&& !has_empty
);
1609 * The easiest way to approach this is to just remove the
1610 * empty extent and temporarily decrement next_free.
1614 * If next_free was 1 (only an empty extent), this
1615 * loop won't execute, which is fine. We still want
1616 * the decrement above to happen.
1618 for(i
= 0; i
< (next_free
- 1); i
++)
1619 el
->l_recs
[i
] = el
->l_recs
[i
+1];
1625 * Figure out what the new record index should be.
1627 for(i
= 0; i
< next_free
; i
++) {
1628 rec
= &el
->l_recs
[i
];
1630 if (insert_cpos
< le32_to_cpu(rec
->e_cpos
))
1635 trace_ocfs2_rotate_leaf(insert_cpos
, insert_index
,
1636 has_empty
, next_free
,
1637 le16_to_cpu(el
->l_count
));
1639 BUG_ON(insert_index
< 0);
1640 BUG_ON(insert_index
>= le16_to_cpu(el
->l_count
));
1641 BUG_ON(insert_index
> next_free
);
1644 * No need to memmove if we're just adding to the tail.
1646 if (insert_index
!= next_free
) {
1647 BUG_ON(next_free
>= le16_to_cpu(el
->l_count
));
1649 num_bytes
= next_free
- insert_index
;
1650 num_bytes
*= sizeof(struct ocfs2_extent_rec
);
1651 memmove(&el
->l_recs
[insert_index
+ 1],
1652 &el
->l_recs
[insert_index
],
1657 * Either we had an empty extent, and need to re-increment or
1658 * there was no empty extent on a non full rightmost leaf node,
1659 * in which case we still need to increment.
1662 el
->l_next_free_rec
= cpu_to_le16(next_free
);
1664 * Make sure none of the math above just messed up our tree.
1666 BUG_ON(le16_to_cpu(el
->l_next_free_rec
) > le16_to_cpu(el
->l_count
));
1668 el
->l_recs
[insert_index
] = *insert_rec
;
1672 static void ocfs2_remove_empty_extent(struct ocfs2_extent_list
*el
)
1674 int size
, num_recs
= le16_to_cpu(el
->l_next_free_rec
);
1676 BUG_ON(num_recs
== 0);
1678 if (ocfs2_is_empty_extent(&el
->l_recs
[0])) {
1680 size
= num_recs
* sizeof(struct ocfs2_extent_rec
);
1681 memmove(&el
->l_recs
[0], &el
->l_recs
[1], size
);
1682 memset(&el
->l_recs
[num_recs
], 0,
1683 sizeof(struct ocfs2_extent_rec
));
1684 el
->l_next_free_rec
= cpu_to_le16(num_recs
);
1689 * Create an empty extent record .
1691 * l_next_free_rec may be updated.
1693 * If an empty extent already exists do nothing.
1695 static void ocfs2_create_empty_extent(struct ocfs2_extent_list
*el
)
1697 int next_free
= le16_to_cpu(el
->l_next_free_rec
);
1699 BUG_ON(le16_to_cpu(el
->l_tree_depth
) != 0);
1704 if (ocfs2_is_empty_extent(&el
->l_recs
[0]))
1707 mlog_bug_on_msg(el
->l_count
== el
->l_next_free_rec
,
1708 "Asked to create an empty extent in a full list:\n"
1709 "count = %u, tree depth = %u",
1710 le16_to_cpu(el
->l_count
),
1711 le16_to_cpu(el
->l_tree_depth
));
1713 ocfs2_shift_records_right(el
);
1716 le16_add_cpu(&el
->l_next_free_rec
, 1);
1717 memset(&el
->l_recs
[0], 0, sizeof(struct ocfs2_extent_rec
));
1721 * For a rotation which involves two leaf nodes, the "root node" is
1722 * the lowest level tree node which contains a path to both leafs. This
1723 * resulting set of information can be used to form a complete "subtree"
1725 * This function is passed two full paths from the dinode down to a
1726 * pair of adjacent leaves. It's task is to figure out which path
1727 * index contains the subtree root - this can be the root index itself
1728 * in a worst-case rotation.
1730 * The array index of the subtree root is passed back.
1732 int ocfs2_find_subtree_root(struct ocfs2_extent_tree
*et
,
1733 struct ocfs2_path
*left
,
1734 struct ocfs2_path
*right
)
1739 * Check that the caller passed in two paths from the same tree.
1741 BUG_ON(path_root_bh(left
) != path_root_bh(right
));
1747 * The caller didn't pass two adjacent paths.
1749 mlog_bug_on_msg(i
> left
->p_tree_depth
,
1750 "Owner %llu, left depth %u, right depth %u\n"
1751 "left leaf blk %llu, right leaf blk %llu\n",
1752 (unsigned long long)ocfs2_metadata_cache_owner(et
->et_ci
),
1753 left
->p_tree_depth
, right
->p_tree_depth
,
1754 (unsigned long long)path_leaf_bh(left
)->b_blocknr
,
1755 (unsigned long long)path_leaf_bh(right
)->b_blocknr
);
1756 } while (left
->p_node
[i
].bh
->b_blocknr
==
1757 right
->p_node
[i
].bh
->b_blocknr
);
1762 typedef void (path_insert_t
)(void *, struct buffer_head
*);
1765 * Traverse a btree path in search of cpos, starting at root_el.
1767 * This code can be called with a cpos larger than the tree, in which
1768 * case it will return the rightmost path.
1770 static int __ocfs2_find_path(struct ocfs2_caching_info
*ci
,
1771 struct ocfs2_extent_list
*root_el
, u32 cpos
,
1772 path_insert_t
*func
, void *data
)
1777 struct buffer_head
*bh
= NULL
;
1778 struct ocfs2_extent_block
*eb
;
1779 struct ocfs2_extent_list
*el
;
1780 struct ocfs2_extent_rec
*rec
;
1783 while (el
->l_tree_depth
) {
1784 if (le16_to_cpu(el
->l_next_free_rec
) == 0) {
1785 ocfs2_error(ocfs2_metadata_cache_get_super(ci
),
1786 "Owner %llu has empty extent list at depth %u\n",
1787 (unsigned long long)ocfs2_metadata_cache_owner(ci
),
1788 le16_to_cpu(el
->l_tree_depth
));
1794 for(i
= 0; i
< le16_to_cpu(el
->l_next_free_rec
) - 1; i
++) {
1795 rec
= &el
->l_recs
[i
];
1798 * In the case that cpos is off the allocation
1799 * tree, this should just wind up returning the
1802 range
= le32_to_cpu(rec
->e_cpos
) +
1803 ocfs2_rec_clusters(el
, rec
);
1804 if (cpos
>= le32_to_cpu(rec
->e_cpos
) && cpos
< range
)
1808 blkno
= le64_to_cpu(el
->l_recs
[i
].e_blkno
);
1810 ocfs2_error(ocfs2_metadata_cache_get_super(ci
),
1811 "Owner %llu has bad blkno in extent list at depth %u (index %d)\n",
1812 (unsigned long long)ocfs2_metadata_cache_owner(ci
),
1813 le16_to_cpu(el
->l_tree_depth
), i
);
1820 ret
= ocfs2_read_extent_block(ci
, blkno
, &bh
);
1826 eb
= (struct ocfs2_extent_block
*) bh
->b_data
;
1829 if (le16_to_cpu(el
->l_next_free_rec
) >
1830 le16_to_cpu(el
->l_count
)) {
1831 ocfs2_error(ocfs2_metadata_cache_get_super(ci
),
1832 "Owner %llu has bad count in extent list at block %llu (next free=%u, count=%u)\n",
1833 (unsigned long long)ocfs2_metadata_cache_owner(ci
),
1834 (unsigned long long)bh
->b_blocknr
,
1835 le16_to_cpu(el
->l_next_free_rec
),
1836 le16_to_cpu(el
->l_count
));
1847 * Catch any trailing bh that the loop didn't handle.
1855 * Given an initialized path (that is, it has a valid root extent
1856 * list), this function will traverse the btree in search of the path
1857 * which would contain cpos.
1859 * The path traveled is recorded in the path structure.
1861 * Note that this will not do any comparisons on leaf node extent
1862 * records, so it will work fine in the case that we just added a tree
1865 struct find_path_data
{
1867 struct ocfs2_path
*path
;
1869 static void find_path_ins(void *data
, struct buffer_head
*bh
)
1871 struct find_path_data
*fp
= data
;
1874 ocfs2_path_insert_eb(fp
->path
, fp
->index
, bh
);
1877 int ocfs2_find_path(struct ocfs2_caching_info
*ci
,
1878 struct ocfs2_path
*path
, u32 cpos
)
1880 struct find_path_data data
;
1884 return __ocfs2_find_path(ci
, path_root_el(path
), cpos
,
1885 find_path_ins
, &data
);
1888 static void find_leaf_ins(void *data
, struct buffer_head
*bh
)
1890 struct ocfs2_extent_block
*eb
=(struct ocfs2_extent_block
*)bh
->b_data
;
1891 struct ocfs2_extent_list
*el
= &eb
->h_list
;
1892 struct buffer_head
**ret
= data
;
1894 /* We want to retain only the leaf block. */
1895 if (le16_to_cpu(el
->l_tree_depth
) == 0) {
1901 * Find the leaf block in the tree which would contain cpos. No
1902 * checking of the actual leaf is done.
1904 * Some paths want to call this instead of allocating a path structure
1905 * and calling ocfs2_find_path().
1907 * This function doesn't handle non btree extent lists.
1909 int ocfs2_find_leaf(struct ocfs2_caching_info
*ci
,
1910 struct ocfs2_extent_list
*root_el
, u32 cpos
,
1911 struct buffer_head
**leaf_bh
)
1914 struct buffer_head
*bh
= NULL
;
1916 ret
= __ocfs2_find_path(ci
, root_el
, cpos
, find_leaf_ins
, &bh
);
1928 * Adjust the adjacent records (left_rec, right_rec) involved in a rotation.
1930 * Basically, we've moved stuff around at the bottom of the tree and
1931 * we need to fix up the extent records above the changes to reflect
1934 * left_rec: the record on the left.
1935 * left_child_el: is the child list pointed to by left_rec
1936 * right_rec: the record to the right of left_rec
1937 * right_child_el: is the child list pointed to by right_rec
1939 * By definition, this only works on interior nodes.
1941 static void ocfs2_adjust_adjacent_records(struct ocfs2_extent_rec
*left_rec
,
1942 struct ocfs2_extent_list
*left_child_el
,
1943 struct ocfs2_extent_rec
*right_rec
,
1944 struct ocfs2_extent_list
*right_child_el
)
1946 u32 left_clusters
, right_end
;
1949 * Interior nodes never have holes. Their cpos is the cpos of
1950 * the leftmost record in their child list. Their cluster
1951 * count covers the full theoretical range of their child list
1952 * - the range between their cpos and the cpos of the record
1953 * immediately to their right.
1955 left_clusters
= le32_to_cpu(right_child_el
->l_recs
[0].e_cpos
);
1956 if (!ocfs2_rec_clusters(right_child_el
, &right_child_el
->l_recs
[0])) {
1957 BUG_ON(right_child_el
->l_tree_depth
);
1958 BUG_ON(le16_to_cpu(right_child_el
->l_next_free_rec
) <= 1);
1959 left_clusters
= le32_to_cpu(right_child_el
->l_recs
[1].e_cpos
);
1961 left_clusters
-= le32_to_cpu(left_rec
->e_cpos
);
1962 left_rec
->e_int_clusters
= cpu_to_le32(left_clusters
);
1965 * Calculate the rightmost cluster count boundary before
1966 * moving cpos - we will need to adjust clusters after
1967 * updating e_cpos to keep the same highest cluster count.
1969 right_end
= le32_to_cpu(right_rec
->e_cpos
);
1970 right_end
+= le32_to_cpu(right_rec
->e_int_clusters
);
1972 right_rec
->e_cpos
= left_rec
->e_cpos
;
1973 le32_add_cpu(&right_rec
->e_cpos
, left_clusters
);
1975 right_end
-= le32_to_cpu(right_rec
->e_cpos
);
1976 right_rec
->e_int_clusters
= cpu_to_le32(right_end
);
1980 * Adjust the adjacent root node records involved in a
1981 * rotation. left_el_blkno is passed in as a key so that we can easily
1982 * find it's index in the root list.
1984 static void ocfs2_adjust_root_records(struct ocfs2_extent_list
*root_el
,
1985 struct ocfs2_extent_list
*left_el
,
1986 struct ocfs2_extent_list
*right_el
,
1991 BUG_ON(le16_to_cpu(root_el
->l_tree_depth
) <=
1992 le16_to_cpu(left_el
->l_tree_depth
));
1994 for(i
= 0; i
< le16_to_cpu(root_el
->l_next_free_rec
) - 1; i
++) {
1995 if (le64_to_cpu(root_el
->l_recs
[i
].e_blkno
) == left_el_blkno
)
2000 * The path walking code should have never returned a root and
2001 * two paths which are not adjacent.
2003 BUG_ON(i
>= (le16_to_cpu(root_el
->l_next_free_rec
) - 1));
2005 ocfs2_adjust_adjacent_records(&root_el
->l_recs
[i
], left_el
,
2006 &root_el
->l_recs
[i
+ 1], right_el
);
2010 * We've changed a leaf block (in right_path) and need to reflect that
2011 * change back up the subtree.
2013 * This happens in multiple places:
2014 * - When we've moved an extent record from the left path leaf to the right
2015 * path leaf to make room for an empty extent in the left path leaf.
2016 * - When our insert into the right path leaf is at the leftmost edge
2017 * and requires an update of the path immediately to it's left. This
2018 * can occur at the end of some types of rotation and appending inserts.
2019 * - When we've adjusted the last extent record in the left path leaf and the
2020 * 1st extent record in the right path leaf during cross extent block merge.
2022 static void ocfs2_complete_edge_insert(handle_t
*handle
,
2023 struct ocfs2_path
*left_path
,
2024 struct ocfs2_path
*right_path
,
2028 struct ocfs2_extent_list
*el
, *left_el
, *right_el
;
2029 struct ocfs2_extent_rec
*left_rec
, *right_rec
;
2030 struct buffer_head
*root_bh
= left_path
->p_node
[subtree_index
].bh
;
2033 * Update the counts and position values within all the
2034 * interior nodes to reflect the leaf rotation we just did.
2036 * The root node is handled below the loop.
2038 * We begin the loop with right_el and left_el pointing to the
2039 * leaf lists and work our way up.
2041 * NOTE: within this loop, left_el and right_el always refer
2042 * to the *child* lists.
2044 left_el
= path_leaf_el(left_path
);
2045 right_el
= path_leaf_el(right_path
);
2046 for(i
= left_path
->p_tree_depth
- 1; i
> subtree_index
; i
--) {
2047 trace_ocfs2_complete_edge_insert(i
);
2050 * One nice property of knowing that all of these
2051 * nodes are below the root is that we only deal with
2052 * the leftmost right node record and the rightmost
2055 el
= left_path
->p_node
[i
].el
;
2056 idx
= le16_to_cpu(left_el
->l_next_free_rec
) - 1;
2057 left_rec
= &el
->l_recs
[idx
];
2059 el
= right_path
->p_node
[i
].el
;
2060 right_rec
= &el
->l_recs
[0];
2062 ocfs2_adjust_adjacent_records(left_rec
, left_el
, right_rec
,
2065 ocfs2_journal_dirty(handle
, left_path
->p_node
[i
].bh
);
2066 ocfs2_journal_dirty(handle
, right_path
->p_node
[i
].bh
);
2069 * Setup our list pointers now so that the current
2070 * parents become children in the next iteration.
2072 left_el
= left_path
->p_node
[i
].el
;
2073 right_el
= right_path
->p_node
[i
].el
;
2077 * At the root node, adjust the two adjacent records which
2078 * begin our path to the leaves.
2081 el
= left_path
->p_node
[subtree_index
].el
;
2082 left_el
= left_path
->p_node
[subtree_index
+ 1].el
;
2083 right_el
= right_path
->p_node
[subtree_index
+ 1].el
;
2085 ocfs2_adjust_root_records(el
, left_el
, right_el
,
2086 left_path
->p_node
[subtree_index
+ 1].bh
->b_blocknr
);
2088 root_bh
= left_path
->p_node
[subtree_index
].bh
;
2090 ocfs2_journal_dirty(handle
, root_bh
);
2093 static int ocfs2_rotate_subtree_right(handle_t
*handle
,
2094 struct ocfs2_extent_tree
*et
,
2095 struct ocfs2_path
*left_path
,
2096 struct ocfs2_path
*right_path
,
2100 struct buffer_head
*right_leaf_bh
;
2101 struct buffer_head
*left_leaf_bh
= NULL
;
2102 struct buffer_head
*root_bh
;
2103 struct ocfs2_extent_list
*right_el
, *left_el
;
2104 struct ocfs2_extent_rec move_rec
;
2106 left_leaf_bh
= path_leaf_bh(left_path
);
2107 left_el
= path_leaf_el(left_path
);
2109 if (left_el
->l_next_free_rec
!= left_el
->l_count
) {
2110 ocfs2_error(ocfs2_metadata_cache_get_super(et
->et_ci
),
2111 "Inode %llu has non-full interior leaf node %llu (next free = %u)\n",
2112 (unsigned long long)ocfs2_metadata_cache_owner(et
->et_ci
),
2113 (unsigned long long)left_leaf_bh
->b_blocknr
,
2114 le16_to_cpu(left_el
->l_next_free_rec
));
2119 * This extent block may already have an empty record, so we
2120 * return early if so.
2122 if (ocfs2_is_empty_extent(&left_el
->l_recs
[0]))
2125 root_bh
= left_path
->p_node
[subtree_index
].bh
;
2126 BUG_ON(root_bh
!= right_path
->p_node
[subtree_index
].bh
);
2128 ret
= ocfs2_path_bh_journal_access(handle
, et
->et_ci
, right_path
,
2135 for(i
= subtree_index
+ 1; i
< path_num_items(right_path
); i
++) {
2136 ret
= ocfs2_path_bh_journal_access(handle
, et
->et_ci
,
2143 ret
= ocfs2_path_bh_journal_access(handle
, et
->et_ci
,
2151 right_leaf_bh
= path_leaf_bh(right_path
);
2152 right_el
= path_leaf_el(right_path
);
2154 /* This is a code error, not a disk corruption. */
2155 mlog_bug_on_msg(!right_el
->l_next_free_rec
, "Inode %llu: Rotate fails "
2156 "because rightmost leaf block %llu is empty\n",
2157 (unsigned long long)ocfs2_metadata_cache_owner(et
->et_ci
),
2158 (unsigned long long)right_leaf_bh
->b_blocknr
);
2160 ocfs2_create_empty_extent(right_el
);
2162 ocfs2_journal_dirty(handle
, right_leaf_bh
);
2164 /* Do the copy now. */
2165 i
= le16_to_cpu(left_el
->l_next_free_rec
) - 1;
2166 move_rec
= left_el
->l_recs
[i
];
2167 right_el
->l_recs
[0] = move_rec
;
2170 * Clear out the record we just copied and shift everything
2171 * over, leaving an empty extent in the left leaf.
2173 * We temporarily subtract from next_free_rec so that the
2174 * shift will lose the tail record (which is now defunct).
2176 le16_add_cpu(&left_el
->l_next_free_rec
, -1);
2177 ocfs2_shift_records_right(left_el
);
2178 memset(&left_el
->l_recs
[0], 0, sizeof(struct ocfs2_extent_rec
));
2179 le16_add_cpu(&left_el
->l_next_free_rec
, 1);
2181 ocfs2_journal_dirty(handle
, left_leaf_bh
);
2183 ocfs2_complete_edge_insert(handle
, left_path
, right_path
,
2191 * Given a full path, determine what cpos value would return us a path
2192 * containing the leaf immediately to the left of the current one.
2194 * Will return zero if the path passed in is already the leftmost path.
2196 int ocfs2_find_cpos_for_left_leaf(struct super_block
*sb
,
2197 struct ocfs2_path
*path
, u32
*cpos
)
2201 struct ocfs2_extent_list
*el
;
2203 BUG_ON(path
->p_tree_depth
== 0);
2207 blkno
= path_leaf_bh(path
)->b_blocknr
;
2209 /* Start at the tree node just above the leaf and work our way up. */
2210 i
= path
->p_tree_depth
- 1;
2212 el
= path
->p_node
[i
].el
;
2215 * Find the extent record just before the one in our
2218 for(j
= 0; j
< le16_to_cpu(el
->l_next_free_rec
); j
++) {
2219 if (le64_to_cpu(el
->l_recs
[j
].e_blkno
) == blkno
) {
2223 * We've determined that the
2224 * path specified is already
2225 * the leftmost one - return a
2231 * The leftmost record points to our
2232 * leaf - we need to travel up the
2238 *cpos
= le32_to_cpu(el
->l_recs
[j
- 1].e_cpos
);
2239 *cpos
= *cpos
+ ocfs2_rec_clusters(el
,
2240 &el
->l_recs
[j
- 1]);
2247 * If we got here, we never found a valid node where
2248 * the tree indicated one should be.
2250 ocfs2_error(sb
, "Invalid extent tree at extent block %llu\n",
2251 (unsigned long long)blkno
);
2256 blkno
= path
->p_node
[i
].bh
->b_blocknr
;
2265 * Extend the transaction by enough credits to complete the rotation,
2266 * and still leave at least the original number of credits allocated
2267 * to this transaction.
2269 static int ocfs2_extend_rotate_transaction(handle_t
*handle
, int subtree_depth
,
2271 struct ocfs2_path
*path
)
2274 int credits
= (path
->p_tree_depth
- subtree_depth
) * 2 + 1 + op_credits
;
2276 if (handle
->h_buffer_credits
< credits
)
2277 ret
= ocfs2_extend_trans(handle
,
2278 credits
- handle
->h_buffer_credits
);
2284 * Trap the case where we're inserting into the theoretical range past
2285 * the _actual_ left leaf range. Otherwise, we'll rotate a record
2286 * whose cpos is less than ours into the right leaf.
2288 * It's only necessary to look at the rightmost record of the left
2289 * leaf because the logic that calls us should ensure that the
2290 * theoretical ranges in the path components above the leaves are
2293 static int ocfs2_rotate_requires_path_adjustment(struct ocfs2_path
*left_path
,
2296 struct ocfs2_extent_list
*left_el
;
2297 struct ocfs2_extent_rec
*rec
;
2300 left_el
= path_leaf_el(left_path
);
2301 next_free
= le16_to_cpu(left_el
->l_next_free_rec
);
2302 rec
= &left_el
->l_recs
[next_free
- 1];
2304 if (insert_cpos
> le32_to_cpu(rec
->e_cpos
))
2309 static int ocfs2_leftmost_rec_contains(struct ocfs2_extent_list
*el
, u32 cpos
)
2311 int next_free
= le16_to_cpu(el
->l_next_free_rec
);
2313 struct ocfs2_extent_rec
*rec
;
2318 rec
= &el
->l_recs
[0];
2319 if (ocfs2_is_empty_extent(rec
)) {
2323 rec
= &el
->l_recs
[1];
2326 range
= le32_to_cpu(rec
->e_cpos
) + ocfs2_rec_clusters(el
, rec
);
2327 if (cpos
>= le32_to_cpu(rec
->e_cpos
) && cpos
< range
)
2333 * Rotate all the records in a btree right one record, starting at insert_cpos.
2335 * The path to the rightmost leaf should be passed in.
2337 * The array is assumed to be large enough to hold an entire path (tree depth).
2339 * Upon successful return from this function:
2341 * - The 'right_path' array will contain a path to the leaf block
2342 * whose range contains e_cpos.
2343 * - That leaf block will have a single empty extent in list index 0.
2344 * - In the case that the rotation requires a post-insert update,
2345 * *ret_left_path will contain a valid path which can be passed to
2346 * ocfs2_insert_path().
2348 static int ocfs2_rotate_tree_right(handle_t
*handle
,
2349 struct ocfs2_extent_tree
*et
,
2350 enum ocfs2_split_type split
,
2352 struct ocfs2_path
*right_path
,
2353 struct ocfs2_path
**ret_left_path
)
2355 int ret
, start
, orig_credits
= handle
->h_buffer_credits
;
2357 struct ocfs2_path
*left_path
= NULL
;
2358 struct super_block
*sb
= ocfs2_metadata_cache_get_super(et
->et_ci
);
2360 *ret_left_path
= NULL
;
2362 left_path
= ocfs2_new_path_from_path(right_path
);
2369 ret
= ocfs2_find_cpos_for_left_leaf(sb
, right_path
, &cpos
);
2375 trace_ocfs2_rotate_tree_right(
2376 (unsigned long long)ocfs2_metadata_cache_owner(et
->et_ci
),
2380 * What we want to do here is:
2382 * 1) Start with the rightmost path.
2384 * 2) Determine a path to the leaf block directly to the left
2387 * 3) Determine the 'subtree root' - the lowest level tree node
2388 * which contains a path to both leaves.
2390 * 4) Rotate the subtree.
2392 * 5) Find the next subtree by considering the left path to be
2393 * the new right path.
2395 * The check at the top of this while loop also accepts
2396 * insert_cpos == cpos because cpos is only a _theoretical_
2397 * value to get us the left path - insert_cpos might very well
2398 * be filling that hole.
2400 * Stop at a cpos of '0' because we either started at the
2401 * leftmost branch (i.e., a tree with one branch and a
2402 * rotation inside of it), or we've gone as far as we can in
2403 * rotating subtrees.
2405 while (cpos
&& insert_cpos
<= cpos
) {
2406 trace_ocfs2_rotate_tree_right(
2407 (unsigned long long)
2408 ocfs2_metadata_cache_owner(et
->et_ci
),
2411 ret
= ocfs2_find_path(et
->et_ci
, left_path
, cpos
);
2417 mlog_bug_on_msg(path_leaf_bh(left_path
) ==
2418 path_leaf_bh(right_path
),
2419 "Owner %llu: error during insert of %u "
2420 "(left path cpos %u) results in two identical "
2421 "paths ending at %llu\n",
2422 (unsigned long long)ocfs2_metadata_cache_owner(et
->et_ci
),
2424 (unsigned long long)
2425 path_leaf_bh(left_path
)->b_blocknr
);
2427 if (split
== SPLIT_NONE
&&
2428 ocfs2_rotate_requires_path_adjustment(left_path
,
2432 * We've rotated the tree as much as we
2433 * should. The rest is up to
2434 * ocfs2_insert_path() to complete, after the
2435 * record insertion. We indicate this
2436 * situation by returning the left path.
2438 * The reason we don't adjust the records here
2439 * before the record insert is that an error
2440 * later might break the rule where a parent
2441 * record e_cpos will reflect the actual
2442 * e_cpos of the 1st nonempty record of the
2445 *ret_left_path
= left_path
;
2449 start
= ocfs2_find_subtree_root(et
, left_path
, right_path
);
2451 trace_ocfs2_rotate_subtree(start
,
2452 (unsigned long long)
2453 right_path
->p_node
[start
].bh
->b_blocknr
,
2454 right_path
->p_tree_depth
);
2456 ret
= ocfs2_extend_rotate_transaction(handle
, start
,
2457 orig_credits
, right_path
);
2463 ret
= ocfs2_rotate_subtree_right(handle
, et
, left_path
,
2470 if (split
!= SPLIT_NONE
&&
2471 ocfs2_leftmost_rec_contains(path_leaf_el(right_path
),
2474 * A rotate moves the rightmost left leaf
2475 * record over to the leftmost right leaf
2476 * slot. If we're doing an extent split
2477 * instead of a real insert, then we have to
2478 * check that the extent to be split wasn't
2479 * just moved over. If it was, then we can
2480 * exit here, passing left_path back -
2481 * ocfs2_split_extent() is smart enough to
2482 * search both leaves.
2484 *ret_left_path
= left_path
;
2489 * There is no need to re-read the next right path
2490 * as we know that it'll be our current left
2491 * path. Optimize by copying values instead.
2493 ocfs2_mv_path(right_path
, left_path
);
2495 ret
= ocfs2_find_cpos_for_left_leaf(sb
, right_path
, &cpos
);
2503 ocfs2_free_path(left_path
);
2509 static int ocfs2_update_edge_lengths(handle_t
*handle
,
2510 struct ocfs2_extent_tree
*et
,
2511 int subtree_index
, struct ocfs2_path
*path
)
2514 struct ocfs2_extent_rec
*rec
;
2515 struct ocfs2_extent_list
*el
;
2516 struct ocfs2_extent_block
*eb
;
2519 ret
= ocfs2_journal_access_path(et
->et_ci
, handle
, path
);
2525 /* Path should always be rightmost. */
2526 eb
= (struct ocfs2_extent_block
*)path_leaf_bh(path
)->b_data
;
2527 BUG_ON(eb
->h_next_leaf_blk
!= 0ULL);
2530 BUG_ON(le16_to_cpu(el
->l_next_free_rec
) == 0);
2531 idx
= le16_to_cpu(el
->l_next_free_rec
) - 1;
2532 rec
= &el
->l_recs
[idx
];
2533 range
= le32_to_cpu(rec
->e_cpos
) + ocfs2_rec_clusters(el
, rec
);
2535 for (i
= 0; i
< path
->p_tree_depth
; i
++) {
2536 el
= path
->p_node
[i
].el
;
2537 idx
= le16_to_cpu(el
->l_next_free_rec
) - 1;
2538 rec
= &el
->l_recs
[idx
];
2540 rec
->e_int_clusters
= cpu_to_le32(range
);
2541 le32_add_cpu(&rec
->e_int_clusters
, -le32_to_cpu(rec
->e_cpos
));
2543 ocfs2_journal_dirty(handle
, path
->p_node
[i
].bh
);
2549 static void ocfs2_unlink_path(handle_t
*handle
,
2550 struct ocfs2_extent_tree
*et
,
2551 struct ocfs2_cached_dealloc_ctxt
*dealloc
,
2552 struct ocfs2_path
*path
, int unlink_start
)
2555 struct ocfs2_extent_block
*eb
;
2556 struct ocfs2_extent_list
*el
;
2557 struct buffer_head
*bh
;
2559 for(i
= unlink_start
; i
< path_num_items(path
); i
++) {
2560 bh
= path
->p_node
[i
].bh
;
2562 eb
= (struct ocfs2_extent_block
*)bh
->b_data
;
2564 * Not all nodes might have had their final count
2565 * decremented by the caller - handle this here.
2568 if (le16_to_cpu(el
->l_next_free_rec
) > 1) {
2570 "Inode %llu, attempted to remove extent block "
2571 "%llu with %u records\n",
2572 (unsigned long long)ocfs2_metadata_cache_owner(et
->et_ci
),
2573 (unsigned long long)le64_to_cpu(eb
->h_blkno
),
2574 le16_to_cpu(el
->l_next_free_rec
));
2576 ocfs2_journal_dirty(handle
, bh
);
2577 ocfs2_remove_from_cache(et
->et_ci
, bh
);
2581 el
->l_next_free_rec
= 0;
2582 memset(&el
->l_recs
[0], 0, sizeof(struct ocfs2_extent_rec
));
2584 ocfs2_journal_dirty(handle
, bh
);
2586 ret
= ocfs2_cache_extent_block_free(dealloc
, eb
);
2590 ocfs2_remove_from_cache(et
->et_ci
, bh
);
2594 static void ocfs2_unlink_subtree(handle_t
*handle
,
2595 struct ocfs2_extent_tree
*et
,
2596 struct ocfs2_path
*left_path
,
2597 struct ocfs2_path
*right_path
,
2599 struct ocfs2_cached_dealloc_ctxt
*dealloc
)
2602 struct buffer_head
*root_bh
= left_path
->p_node
[subtree_index
].bh
;
2603 struct ocfs2_extent_list
*root_el
= left_path
->p_node
[subtree_index
].el
;
2604 struct ocfs2_extent_list
*el
;
2605 struct ocfs2_extent_block
*eb
;
2607 el
= path_leaf_el(left_path
);
2609 eb
= (struct ocfs2_extent_block
*)right_path
->p_node
[subtree_index
+ 1].bh
->b_data
;
2611 for(i
= 1; i
< le16_to_cpu(root_el
->l_next_free_rec
); i
++)
2612 if (root_el
->l_recs
[i
].e_blkno
== eb
->h_blkno
)
2615 BUG_ON(i
>= le16_to_cpu(root_el
->l_next_free_rec
));
2617 memset(&root_el
->l_recs
[i
], 0, sizeof(struct ocfs2_extent_rec
));
2618 le16_add_cpu(&root_el
->l_next_free_rec
, -1);
2620 eb
= (struct ocfs2_extent_block
*)path_leaf_bh(left_path
)->b_data
;
2621 eb
->h_next_leaf_blk
= 0;
2623 ocfs2_journal_dirty(handle
, root_bh
);
2624 ocfs2_journal_dirty(handle
, path_leaf_bh(left_path
));
2626 ocfs2_unlink_path(handle
, et
, dealloc
, right_path
,
2630 static int ocfs2_rotate_subtree_left(handle_t
*handle
,
2631 struct ocfs2_extent_tree
*et
,
2632 struct ocfs2_path
*left_path
,
2633 struct ocfs2_path
*right_path
,
2635 struct ocfs2_cached_dealloc_ctxt
*dealloc
,
2638 int ret
, i
, del_right_subtree
= 0, right_has_empty
= 0;
2639 struct buffer_head
*root_bh
, *et_root_bh
= path_root_bh(right_path
);
2640 struct ocfs2_extent_list
*right_leaf_el
, *left_leaf_el
;
2641 struct ocfs2_extent_block
*eb
;
2645 right_leaf_el
= path_leaf_el(right_path
);
2646 left_leaf_el
= path_leaf_el(left_path
);
2647 root_bh
= left_path
->p_node
[subtree_index
].bh
;
2648 BUG_ON(root_bh
!= right_path
->p_node
[subtree_index
].bh
);
2650 if (!ocfs2_is_empty_extent(&left_leaf_el
->l_recs
[0]))
2653 eb
= (struct ocfs2_extent_block
*)path_leaf_bh(right_path
)->b_data
;
2654 if (ocfs2_is_empty_extent(&right_leaf_el
->l_recs
[0])) {
2656 * It's legal for us to proceed if the right leaf is
2657 * the rightmost one and it has an empty extent. There
2658 * are two cases to handle - whether the leaf will be
2659 * empty after removal or not. If the leaf isn't empty
2660 * then just remove the empty extent up front. The
2661 * next block will handle empty leaves by flagging
2664 * Non rightmost leaves will throw -EAGAIN and the
2665 * caller can manually move the subtree and retry.
2668 if (eb
->h_next_leaf_blk
!= 0ULL)
2671 if (le16_to_cpu(right_leaf_el
->l_next_free_rec
) > 1) {
2672 ret
= ocfs2_journal_access_eb(handle
, et
->et_ci
,
2673 path_leaf_bh(right_path
),
2674 OCFS2_JOURNAL_ACCESS_WRITE
);
2680 ocfs2_remove_empty_extent(right_leaf_el
);
2682 right_has_empty
= 1;
2685 if (eb
->h_next_leaf_blk
== 0ULL &&
2686 le16_to_cpu(right_leaf_el
->l_next_free_rec
) == 1) {
2688 * We have to update i_last_eb_blk during the meta
2691 ret
= ocfs2_et_root_journal_access(handle
, et
,
2692 OCFS2_JOURNAL_ACCESS_WRITE
);
2698 del_right_subtree
= 1;
2702 * Getting here with an empty extent in the right path implies
2703 * that it's the rightmost path and will be deleted.
2705 BUG_ON(right_has_empty
&& !del_right_subtree
);
2707 ret
= ocfs2_path_bh_journal_access(handle
, et
->et_ci
, right_path
,
2714 for(i
= subtree_index
+ 1; i
< path_num_items(right_path
); i
++) {
2715 ret
= ocfs2_path_bh_journal_access(handle
, et
->et_ci
,
2722 ret
= ocfs2_path_bh_journal_access(handle
, et
->et_ci
,
2730 if (!right_has_empty
) {
2732 * Only do this if we're moving a real
2733 * record. Otherwise, the action is delayed until
2734 * after removal of the right path in which case we
2735 * can do a simple shift to remove the empty extent.
2737 ocfs2_rotate_leaf(left_leaf_el
, &right_leaf_el
->l_recs
[0]);
2738 memset(&right_leaf_el
->l_recs
[0], 0,
2739 sizeof(struct ocfs2_extent_rec
));
2741 if (eb
->h_next_leaf_blk
== 0ULL) {
2743 * Move recs over to get rid of empty extent, decrease
2744 * next_free. This is allowed to remove the last
2745 * extent in our leaf (setting l_next_free_rec to
2746 * zero) - the delete code below won't care.
2748 ocfs2_remove_empty_extent(right_leaf_el
);
2751 ocfs2_journal_dirty(handle
, path_leaf_bh(left_path
));
2752 ocfs2_journal_dirty(handle
, path_leaf_bh(right_path
));
2754 if (del_right_subtree
) {
2755 ocfs2_unlink_subtree(handle
, et
, left_path
, right_path
,
2756 subtree_index
, dealloc
);
2757 ret
= ocfs2_update_edge_lengths(handle
, et
, subtree_index
,
2764 eb
= (struct ocfs2_extent_block
*)path_leaf_bh(left_path
)->b_data
;
2765 ocfs2_et_set_last_eb_blk(et
, le64_to_cpu(eb
->h_blkno
));
2768 * Removal of the extent in the left leaf was skipped
2769 * above so we could delete the right path
2772 if (right_has_empty
)
2773 ocfs2_remove_empty_extent(left_leaf_el
);
2775 ocfs2_journal_dirty(handle
, et_root_bh
);
2779 ocfs2_complete_edge_insert(handle
, left_path
, right_path
,
2787 * Given a full path, determine what cpos value would return us a path
2788 * containing the leaf immediately to the right of the current one.
2790 * Will return zero if the path passed in is already the rightmost path.
2792 * This looks similar, but is subtly different to
2793 * ocfs2_find_cpos_for_left_leaf().
2795 int ocfs2_find_cpos_for_right_leaf(struct super_block
*sb
,
2796 struct ocfs2_path
*path
, u32
*cpos
)
2800 struct ocfs2_extent_list
*el
;
2804 if (path
->p_tree_depth
== 0)
2807 blkno
= path_leaf_bh(path
)->b_blocknr
;
2809 /* Start at the tree node just above the leaf and work our way up. */
2810 i
= path
->p_tree_depth
- 1;
2814 el
= path
->p_node
[i
].el
;
2817 * Find the extent record just after the one in our
2820 next_free
= le16_to_cpu(el
->l_next_free_rec
);
2821 for(j
= 0; j
< le16_to_cpu(el
->l_next_free_rec
); j
++) {
2822 if (le64_to_cpu(el
->l_recs
[j
].e_blkno
) == blkno
) {
2823 if (j
== (next_free
- 1)) {
2826 * We've determined that the
2827 * path specified is already
2828 * the rightmost one - return a
2834 * The rightmost record points to our
2835 * leaf - we need to travel up the
2841 *cpos
= le32_to_cpu(el
->l_recs
[j
+ 1].e_cpos
);
2847 * If we got here, we never found a valid node where
2848 * the tree indicated one should be.
2850 ocfs2_error(sb
, "Invalid extent tree at extent block %llu\n",
2851 (unsigned long long)blkno
);
2856 blkno
= path
->p_node
[i
].bh
->b_blocknr
;
2864 static int ocfs2_rotate_rightmost_leaf_left(handle_t
*handle
,
2865 struct ocfs2_extent_tree
*et
,
2866 struct ocfs2_path
*path
)
2869 struct buffer_head
*bh
= path_leaf_bh(path
);
2870 struct ocfs2_extent_list
*el
= path_leaf_el(path
);
2872 if (!ocfs2_is_empty_extent(&el
->l_recs
[0]))
2875 ret
= ocfs2_path_bh_journal_access(handle
, et
->et_ci
, path
,
2876 path_num_items(path
) - 1);
2882 ocfs2_remove_empty_extent(el
);
2883 ocfs2_journal_dirty(handle
, bh
);
2889 static int __ocfs2_rotate_tree_left(handle_t
*handle
,
2890 struct ocfs2_extent_tree
*et
,
2892 struct ocfs2_path
*path
,
2893 struct ocfs2_cached_dealloc_ctxt
*dealloc
,
2894 struct ocfs2_path
**empty_extent_path
)
2896 int ret
, subtree_root
, deleted
;
2898 struct ocfs2_path
*left_path
= NULL
;
2899 struct ocfs2_path
*right_path
= NULL
;
2900 struct super_block
*sb
= ocfs2_metadata_cache_get_super(et
->et_ci
);
2902 if (!ocfs2_is_empty_extent(&(path_leaf_el(path
)->l_recs
[0])))
2905 *empty_extent_path
= NULL
;
2907 ret
= ocfs2_find_cpos_for_right_leaf(sb
, path
, &right_cpos
);
2913 left_path
= ocfs2_new_path_from_path(path
);
2920 ocfs2_cp_path(left_path
, path
);
2922 right_path
= ocfs2_new_path_from_path(path
);
2929 while (right_cpos
) {
2930 ret
= ocfs2_find_path(et
->et_ci
, right_path
, right_cpos
);
2936 subtree_root
= ocfs2_find_subtree_root(et
, left_path
,
2939 trace_ocfs2_rotate_subtree(subtree_root
,
2940 (unsigned long long)
2941 right_path
->p_node
[subtree_root
].bh
->b_blocknr
,
2942 right_path
->p_tree_depth
);
2944 ret
= ocfs2_extend_rotate_transaction(handle
, 0,
2945 orig_credits
, left_path
);
2952 * Caller might still want to make changes to the
2953 * tree root, so re-add it to the journal here.
2955 ret
= ocfs2_path_bh_journal_access(handle
, et
->et_ci
,
2962 ret
= ocfs2_rotate_subtree_left(handle
, et
, left_path
,
2963 right_path
, subtree_root
,
2965 if (ret
== -EAGAIN
) {
2967 * The rotation has to temporarily stop due to
2968 * the right subtree having an empty
2969 * extent. Pass it back to the caller for a
2972 *empty_extent_path
= right_path
;
2982 * The subtree rotate might have removed records on
2983 * the rightmost edge. If so, then rotation is
2989 ocfs2_mv_path(left_path
, right_path
);
2991 ret
= ocfs2_find_cpos_for_right_leaf(sb
, left_path
,
3000 ocfs2_free_path(right_path
);
3001 ocfs2_free_path(left_path
);
3006 static int ocfs2_remove_rightmost_path(handle_t
*handle
,
3007 struct ocfs2_extent_tree
*et
,
3008 struct ocfs2_path
*path
,
3009 struct ocfs2_cached_dealloc_ctxt
*dealloc
)
3011 int ret
, subtree_index
;
3013 struct ocfs2_path
*left_path
= NULL
;
3014 struct ocfs2_extent_block
*eb
;
3015 struct ocfs2_extent_list
*el
;
3017 ret
= ocfs2_et_sanity_check(et
);
3021 ret
= ocfs2_journal_access_path(et
->et_ci
, handle
, path
);
3027 ret
= ocfs2_find_cpos_for_left_leaf(ocfs2_metadata_cache_get_super(et
->et_ci
),
3036 * We have a path to the left of this one - it needs
3039 left_path
= ocfs2_new_path_from_path(path
);
3046 ret
= ocfs2_find_path(et
->et_ci
, left_path
, cpos
);
3052 ret
= ocfs2_journal_access_path(et
->et_ci
, handle
, left_path
);
3058 subtree_index
= ocfs2_find_subtree_root(et
, left_path
, path
);
3060 ocfs2_unlink_subtree(handle
, et
, left_path
, path
,
3061 subtree_index
, dealloc
);
3062 ret
= ocfs2_update_edge_lengths(handle
, et
, subtree_index
,
3069 eb
= (struct ocfs2_extent_block
*)path_leaf_bh(left_path
)->b_data
;
3070 ocfs2_et_set_last_eb_blk(et
, le64_to_cpu(eb
->h_blkno
));
3073 * 'path' is also the leftmost path which
3074 * means it must be the only one. This gets
3075 * handled differently because we want to
3076 * revert the root back to having extents
3079 ocfs2_unlink_path(handle
, et
, dealloc
, path
, 1);
3081 el
= et
->et_root_el
;
3082 el
->l_tree_depth
= 0;
3083 el
->l_next_free_rec
= 0;
3084 memset(&el
->l_recs
[0], 0, sizeof(struct ocfs2_extent_rec
));
3086 ocfs2_et_set_last_eb_blk(et
, 0);
3089 ocfs2_journal_dirty(handle
, path_root_bh(path
));
3092 ocfs2_free_path(left_path
);
3096 static int ocfs2_remove_rightmost_empty_extent(struct ocfs2_super
*osb
,
3097 struct ocfs2_extent_tree
*et
,
3098 struct ocfs2_path
*path
,
3099 struct ocfs2_cached_dealloc_ctxt
*dealloc
)
3103 int credits
= path
->p_tree_depth
* 2 + 1;
3105 handle
= ocfs2_start_trans(osb
, credits
);
3106 if (IS_ERR(handle
)) {
3107 ret
= PTR_ERR(handle
);
3112 ret
= ocfs2_remove_rightmost_path(handle
, et
, path
, dealloc
);
3116 ocfs2_commit_trans(osb
, handle
);
3121 * Left rotation of btree records.
3123 * In many ways, this is (unsurprisingly) the opposite of right
3124 * rotation. We start at some non-rightmost path containing an empty
3125 * extent in the leaf block. The code works its way to the rightmost
3126 * path by rotating records to the left in every subtree.
3128 * This is used by any code which reduces the number of extent records
3129 * in a leaf. After removal, an empty record should be placed in the
3130 * leftmost list position.
3132 * This won't handle a length update of the rightmost path records if
3133 * the rightmost tree leaf record is removed so the caller is
3134 * responsible for detecting and correcting that.
3136 static int ocfs2_rotate_tree_left(handle_t
*handle
,
3137 struct ocfs2_extent_tree
*et
,
3138 struct ocfs2_path
*path
,
3139 struct ocfs2_cached_dealloc_ctxt
*dealloc
)
3141 int ret
, orig_credits
= handle
->h_buffer_credits
;
3142 struct ocfs2_path
*tmp_path
= NULL
, *restart_path
= NULL
;
3143 struct ocfs2_extent_block
*eb
;
3144 struct ocfs2_extent_list
*el
;
3146 el
= path_leaf_el(path
);
3147 if (!ocfs2_is_empty_extent(&el
->l_recs
[0]))
3150 if (path
->p_tree_depth
== 0) {
3151 rightmost_no_delete
:
3153 * Inline extents. This is trivially handled, so do
3156 ret
= ocfs2_rotate_rightmost_leaf_left(handle
, et
, path
);
3163 * Handle rightmost branch now. There's several cases:
3164 * 1) simple rotation leaving records in there. That's trivial.
3165 * 2) rotation requiring a branch delete - there's no more
3166 * records left. Two cases of this:
3167 * a) There are branches to the left.
3168 * b) This is also the leftmost (the only) branch.
3170 * 1) is handled via ocfs2_rotate_rightmost_leaf_left()
3171 * 2a) we need the left branch so that we can update it with the unlink
3172 * 2b) we need to bring the root back to inline extents.
3175 eb
= (struct ocfs2_extent_block
*)path_leaf_bh(path
)->b_data
;
3177 if (eb
->h_next_leaf_blk
== 0) {
3179 * This gets a bit tricky if we're going to delete the
3180 * rightmost path. Get the other cases out of the way
3183 if (le16_to_cpu(el
->l_next_free_rec
) > 1)
3184 goto rightmost_no_delete
;
3186 if (le16_to_cpu(el
->l_next_free_rec
) == 0) {
3188 ocfs2_error(ocfs2_metadata_cache_get_super(et
->et_ci
),
3189 "Owner %llu has empty extent block at %llu\n",
3190 (unsigned long long)ocfs2_metadata_cache_owner(et
->et_ci
),
3191 (unsigned long long)le64_to_cpu(eb
->h_blkno
));
3196 * XXX: The caller can not trust "path" any more after
3197 * this as it will have been deleted. What do we do?
3199 * In theory the rotate-for-merge code will never get
3200 * here because it'll always ask for a rotate in a
3204 ret
= ocfs2_remove_rightmost_path(handle
, et
, path
,
3212 * Now we can loop, remembering the path we get from -EAGAIN
3213 * and restarting from there.
3216 ret
= __ocfs2_rotate_tree_left(handle
, et
, orig_credits
, path
,
3217 dealloc
, &restart_path
);
3218 if (ret
&& ret
!= -EAGAIN
) {
3223 while (ret
== -EAGAIN
) {
3224 tmp_path
= restart_path
;
3225 restart_path
= NULL
;
3227 ret
= __ocfs2_rotate_tree_left(handle
, et
, orig_credits
,
3230 if (ret
&& ret
!= -EAGAIN
) {
3235 ocfs2_free_path(tmp_path
);
3243 ocfs2_free_path(tmp_path
);
3244 ocfs2_free_path(restart_path
);
3248 static void ocfs2_cleanup_merge(struct ocfs2_extent_list
*el
,
3251 struct ocfs2_extent_rec
*rec
= &el
->l_recs
[index
];
3254 if (rec
->e_leaf_clusters
== 0) {
3256 * We consumed all of the merged-from record. An empty
3257 * extent cannot exist anywhere but the 1st array
3258 * position, so move things over if the merged-from
3259 * record doesn't occupy that position.
3261 * This creates a new empty extent so the caller
3262 * should be smart enough to have removed any existing
3266 BUG_ON(ocfs2_is_empty_extent(&el
->l_recs
[0]));
3267 size
= index
* sizeof(struct ocfs2_extent_rec
);
3268 memmove(&el
->l_recs
[1], &el
->l_recs
[0], size
);
3272 * Always memset - the caller doesn't check whether it
3273 * created an empty extent, so there could be junk in
3276 memset(&el
->l_recs
[0], 0, sizeof(struct ocfs2_extent_rec
));
3280 static int ocfs2_get_right_path(struct ocfs2_extent_tree
*et
,
3281 struct ocfs2_path
*left_path
,
3282 struct ocfs2_path
**ret_right_path
)
3286 struct ocfs2_path
*right_path
= NULL
;
3287 struct ocfs2_extent_list
*left_el
;
3289 *ret_right_path
= NULL
;
3291 /* This function shouldn't be called for non-trees. */
3292 BUG_ON(left_path
->p_tree_depth
== 0);
3294 left_el
= path_leaf_el(left_path
);
3295 BUG_ON(left_el
->l_next_free_rec
!= left_el
->l_count
);
3297 ret
= ocfs2_find_cpos_for_right_leaf(ocfs2_metadata_cache_get_super(et
->et_ci
),
3298 left_path
, &right_cpos
);
3304 /* This function shouldn't be called for the rightmost leaf. */
3305 BUG_ON(right_cpos
== 0);
3307 right_path
= ocfs2_new_path_from_path(left_path
);
3314 ret
= ocfs2_find_path(et
->et_ci
, right_path
, right_cpos
);
3320 *ret_right_path
= right_path
;
3323 ocfs2_free_path(right_path
);
3328 * Remove split_rec clusters from the record at index and merge them
3329 * onto the beginning of the record "next" to it.
3330 * For index < l_count - 1, the next means the extent rec at index + 1.
3331 * For index == l_count - 1, the "next" means the 1st extent rec of the
3332 * next extent block.
3334 static int ocfs2_merge_rec_right(struct ocfs2_path
*left_path
,
3336 struct ocfs2_extent_tree
*et
,
3337 struct ocfs2_extent_rec
*split_rec
,
3340 int ret
, next_free
, i
;
3341 unsigned int split_clusters
= le16_to_cpu(split_rec
->e_leaf_clusters
);
3342 struct ocfs2_extent_rec
*left_rec
;
3343 struct ocfs2_extent_rec
*right_rec
;
3344 struct ocfs2_extent_list
*right_el
;
3345 struct ocfs2_path
*right_path
= NULL
;
3346 int subtree_index
= 0;
3347 struct ocfs2_extent_list
*el
= path_leaf_el(left_path
);
3348 struct buffer_head
*bh
= path_leaf_bh(left_path
);
3349 struct buffer_head
*root_bh
= NULL
;
3351 BUG_ON(index
>= le16_to_cpu(el
->l_next_free_rec
));
3352 left_rec
= &el
->l_recs
[index
];
3354 if (index
== le16_to_cpu(el
->l_next_free_rec
) - 1 &&
3355 le16_to_cpu(el
->l_next_free_rec
) == le16_to_cpu(el
->l_count
)) {
3356 /* we meet with a cross extent block merge. */
3357 ret
= ocfs2_get_right_path(et
, left_path
, &right_path
);
3363 right_el
= path_leaf_el(right_path
);
3364 next_free
= le16_to_cpu(right_el
->l_next_free_rec
);
3365 BUG_ON(next_free
<= 0);
3366 right_rec
= &right_el
->l_recs
[0];
3367 if (ocfs2_is_empty_extent(right_rec
)) {
3368 BUG_ON(next_free
<= 1);
3369 right_rec
= &right_el
->l_recs
[1];
3372 BUG_ON(le32_to_cpu(left_rec
->e_cpos
) +
3373 le16_to_cpu(left_rec
->e_leaf_clusters
) !=
3374 le32_to_cpu(right_rec
->e_cpos
));
3376 subtree_index
= ocfs2_find_subtree_root(et
, left_path
,
3379 ret
= ocfs2_extend_rotate_transaction(handle
, subtree_index
,
3380 handle
->h_buffer_credits
,
3387 root_bh
= left_path
->p_node
[subtree_index
].bh
;
3388 BUG_ON(root_bh
!= right_path
->p_node
[subtree_index
].bh
);
3390 ret
= ocfs2_path_bh_journal_access(handle
, et
->et_ci
, right_path
,
3397 for (i
= subtree_index
+ 1;
3398 i
< path_num_items(right_path
); i
++) {
3399 ret
= ocfs2_path_bh_journal_access(handle
, et
->et_ci
,
3406 ret
= ocfs2_path_bh_journal_access(handle
, et
->et_ci
,
3415 BUG_ON(index
== le16_to_cpu(el
->l_next_free_rec
) - 1);
3416 right_rec
= &el
->l_recs
[index
+ 1];
3419 ret
= ocfs2_path_bh_journal_access(handle
, et
->et_ci
, left_path
,
3420 path_num_items(left_path
) - 1);
3426 le16_add_cpu(&left_rec
->e_leaf_clusters
, -split_clusters
);
3428 le32_add_cpu(&right_rec
->e_cpos
, -split_clusters
);
3429 le64_add_cpu(&right_rec
->e_blkno
,
3430 -ocfs2_clusters_to_blocks(ocfs2_metadata_cache_get_super(et
->et_ci
),
3432 le16_add_cpu(&right_rec
->e_leaf_clusters
, split_clusters
);
3434 ocfs2_cleanup_merge(el
, index
);
3436 ocfs2_journal_dirty(handle
, bh
);
3438 ocfs2_journal_dirty(handle
, path_leaf_bh(right_path
));
3439 ocfs2_complete_edge_insert(handle
, left_path
, right_path
,
3443 ocfs2_free_path(right_path
);
3447 static int ocfs2_get_left_path(struct ocfs2_extent_tree
*et
,
3448 struct ocfs2_path
*right_path
,
3449 struct ocfs2_path
**ret_left_path
)
3453 struct ocfs2_path
*left_path
= NULL
;
3455 *ret_left_path
= NULL
;
3457 /* This function shouldn't be called for non-trees. */
3458 BUG_ON(right_path
->p_tree_depth
== 0);
3460 ret
= ocfs2_find_cpos_for_left_leaf(ocfs2_metadata_cache_get_super(et
->et_ci
),
3461 right_path
, &left_cpos
);
3467 /* This function shouldn't be called for the leftmost leaf. */
3468 BUG_ON(left_cpos
== 0);
3470 left_path
= ocfs2_new_path_from_path(right_path
);
3477 ret
= ocfs2_find_path(et
->et_ci
, left_path
, left_cpos
);
3483 *ret_left_path
= left_path
;
3486 ocfs2_free_path(left_path
);
3491 * Remove split_rec clusters from the record at index and merge them
3492 * onto the tail of the record "before" it.
3493 * For index > 0, the "before" means the extent rec at index - 1.
3495 * For index == 0, the "before" means the last record of the previous
3496 * extent block. And there is also a situation that we may need to
3497 * remove the rightmost leaf extent block in the right_path and change
3498 * the right path to indicate the new rightmost path.
3500 static int ocfs2_merge_rec_left(struct ocfs2_path
*right_path
,
3502 struct ocfs2_extent_tree
*et
,
3503 struct ocfs2_extent_rec
*split_rec
,
3504 struct ocfs2_cached_dealloc_ctxt
*dealloc
,
3507 int ret
, i
, subtree_index
= 0, has_empty_extent
= 0;
3508 unsigned int split_clusters
= le16_to_cpu(split_rec
->e_leaf_clusters
);
3509 struct ocfs2_extent_rec
*left_rec
;
3510 struct ocfs2_extent_rec
*right_rec
;
3511 struct ocfs2_extent_list
*el
= path_leaf_el(right_path
);
3512 struct buffer_head
*bh
= path_leaf_bh(right_path
);
3513 struct buffer_head
*root_bh
= NULL
;
3514 struct ocfs2_path
*left_path
= NULL
;
3515 struct ocfs2_extent_list
*left_el
;
3519 right_rec
= &el
->l_recs
[index
];
3521 /* we meet with a cross extent block merge. */
3522 ret
= ocfs2_get_left_path(et
, right_path
, &left_path
);
3528 left_el
= path_leaf_el(left_path
);
3529 BUG_ON(le16_to_cpu(left_el
->l_next_free_rec
) !=
3530 le16_to_cpu(left_el
->l_count
));
3532 left_rec
= &left_el
->l_recs
[
3533 le16_to_cpu(left_el
->l_next_free_rec
) - 1];
3534 BUG_ON(le32_to_cpu(left_rec
->e_cpos
) +
3535 le16_to_cpu(left_rec
->e_leaf_clusters
) !=
3536 le32_to_cpu(split_rec
->e_cpos
));
3538 subtree_index
= ocfs2_find_subtree_root(et
, left_path
,
3541 ret
= ocfs2_extend_rotate_transaction(handle
, subtree_index
,
3542 handle
->h_buffer_credits
,
3549 root_bh
= left_path
->p_node
[subtree_index
].bh
;
3550 BUG_ON(root_bh
!= right_path
->p_node
[subtree_index
].bh
);
3552 ret
= ocfs2_path_bh_journal_access(handle
, et
->et_ci
, right_path
,
3559 for (i
= subtree_index
+ 1;
3560 i
< path_num_items(right_path
); i
++) {
3561 ret
= ocfs2_path_bh_journal_access(handle
, et
->et_ci
,
3568 ret
= ocfs2_path_bh_journal_access(handle
, et
->et_ci
,
3576 left_rec
= &el
->l_recs
[index
- 1];
3577 if (ocfs2_is_empty_extent(&el
->l_recs
[0]))
3578 has_empty_extent
= 1;
3581 ret
= ocfs2_path_bh_journal_access(handle
, et
->et_ci
, right_path
,
3582 path_num_items(right_path
) - 1);
3588 if (has_empty_extent
&& index
== 1) {
3590 * The easy case - we can just plop the record right in.
3592 *left_rec
= *split_rec
;
3594 has_empty_extent
= 0;
3596 le16_add_cpu(&left_rec
->e_leaf_clusters
, split_clusters
);
3598 le32_add_cpu(&right_rec
->e_cpos
, split_clusters
);
3599 le64_add_cpu(&right_rec
->e_blkno
,
3600 ocfs2_clusters_to_blocks(ocfs2_metadata_cache_get_super(et
->et_ci
),
3602 le16_add_cpu(&right_rec
->e_leaf_clusters
, -split_clusters
);
3604 ocfs2_cleanup_merge(el
, index
);
3606 ocfs2_journal_dirty(handle
, bh
);
3608 ocfs2_journal_dirty(handle
, path_leaf_bh(left_path
));
3611 * In the situation that the right_rec is empty and the extent
3612 * block is empty also, ocfs2_complete_edge_insert can't handle
3613 * it and we need to delete the right extent block.
3615 if (le16_to_cpu(right_rec
->e_leaf_clusters
) == 0 &&
3616 le16_to_cpu(el
->l_next_free_rec
) == 1) {
3617 /* extend credit for ocfs2_remove_rightmost_path */
3618 ret
= ocfs2_extend_rotate_transaction(handle
, 0,
3619 handle
->h_buffer_credits
,
3626 ret
= ocfs2_remove_rightmost_path(handle
, et
,
3634 /* Now the rightmost extent block has been deleted.
3635 * So we use the new rightmost path.
3637 ocfs2_mv_path(right_path
, left_path
);
3640 ocfs2_complete_edge_insert(handle
, left_path
,
3641 right_path
, subtree_index
);
3644 ocfs2_free_path(left_path
);
3648 static int ocfs2_try_to_merge_extent(handle_t
*handle
,
3649 struct ocfs2_extent_tree
*et
,
3650 struct ocfs2_path
*path
,
3652 struct ocfs2_extent_rec
*split_rec
,
3653 struct ocfs2_cached_dealloc_ctxt
*dealloc
,
3654 struct ocfs2_merge_ctxt
*ctxt
)
3657 struct ocfs2_extent_list
*el
= path_leaf_el(path
);
3658 struct ocfs2_extent_rec
*rec
= &el
->l_recs
[split_index
];
3660 BUG_ON(ctxt
->c_contig_type
== CONTIG_NONE
);
3662 if (ctxt
->c_split_covers_rec
&& ctxt
->c_has_empty_extent
) {
3663 /* extend credit for ocfs2_remove_rightmost_path */
3664 ret
= ocfs2_extend_rotate_transaction(handle
, 0,
3665 handle
->h_buffer_credits
,
3672 * The merge code will need to create an empty
3673 * extent to take the place of the newly
3674 * emptied slot. Remove any pre-existing empty
3675 * extents - having more than one in a leaf is
3678 ret
= ocfs2_rotate_tree_left(handle
, et
, path
, dealloc
);
3684 rec
= &el
->l_recs
[split_index
];
3687 if (ctxt
->c_contig_type
== CONTIG_LEFTRIGHT
) {
3689 * Left-right contig implies this.
3691 BUG_ON(!ctxt
->c_split_covers_rec
);
3694 * Since the leftright insert always covers the entire
3695 * extent, this call will delete the insert record
3696 * entirely, resulting in an empty extent record added to
3699 * Since the adding of an empty extent shifts
3700 * everything back to the right, there's no need to
3701 * update split_index here.
3703 * When the split_index is zero, we need to merge it to the
3704 * prevoius extent block. It is more efficient and easier
3705 * if we do merge_right first and merge_left later.
3707 ret
= ocfs2_merge_rec_right(path
, handle
, et
, split_rec
,
3715 * We can only get this from logic error above.
3717 BUG_ON(!ocfs2_is_empty_extent(&el
->l_recs
[0]));
3719 /* extend credit for ocfs2_remove_rightmost_path */
3720 ret
= ocfs2_extend_rotate_transaction(handle
, 0,
3721 handle
->h_buffer_credits
,
3728 /* The merge left us with an empty extent, remove it. */
3729 ret
= ocfs2_rotate_tree_left(handle
, et
, path
, dealloc
);
3735 rec
= &el
->l_recs
[split_index
];
3738 * Note that we don't pass split_rec here on purpose -
3739 * we've merged it into the rec already.
3741 ret
= ocfs2_merge_rec_left(path
, handle
, et
, rec
,
3742 dealloc
, split_index
);
3749 /* extend credit for ocfs2_remove_rightmost_path */
3750 ret
= ocfs2_extend_rotate_transaction(handle
, 0,
3751 handle
->h_buffer_credits
,
3758 ret
= ocfs2_rotate_tree_left(handle
, et
, path
, dealloc
);
3760 * Error from this last rotate is not critical, so
3761 * print but don't bubble it up.
3768 * Merge a record to the left or right.
3770 * 'contig_type' is relative to the existing record,
3771 * so for example, if we're "right contig", it's to
3772 * the record on the left (hence the left merge).
3774 if (ctxt
->c_contig_type
== CONTIG_RIGHT
) {
3775 ret
= ocfs2_merge_rec_left(path
, handle
, et
,
3783 ret
= ocfs2_merge_rec_right(path
, handle
,
3792 if (ctxt
->c_split_covers_rec
) {
3793 /* extend credit for ocfs2_remove_rightmost_path */
3794 ret
= ocfs2_extend_rotate_transaction(handle
, 0,
3795 handle
->h_buffer_credits
,
3804 * The merge may have left an empty extent in
3805 * our leaf. Try to rotate it away.
3807 ret
= ocfs2_rotate_tree_left(handle
, et
, path
,
3819 static void ocfs2_subtract_from_rec(struct super_block
*sb
,
3820 enum ocfs2_split_type split
,
3821 struct ocfs2_extent_rec
*rec
,
3822 struct ocfs2_extent_rec
*split_rec
)
3826 len_blocks
= ocfs2_clusters_to_blocks(sb
,
3827 le16_to_cpu(split_rec
->e_leaf_clusters
));
3829 if (split
== SPLIT_LEFT
) {
3831 * Region is on the left edge of the existing
3834 le32_add_cpu(&rec
->e_cpos
,
3835 le16_to_cpu(split_rec
->e_leaf_clusters
));
3836 le64_add_cpu(&rec
->e_blkno
, len_blocks
);
3837 le16_add_cpu(&rec
->e_leaf_clusters
,
3838 -le16_to_cpu(split_rec
->e_leaf_clusters
));
3841 * Region is on the right edge of the existing
3844 le16_add_cpu(&rec
->e_leaf_clusters
,
3845 -le16_to_cpu(split_rec
->e_leaf_clusters
));
3850 * Do the final bits of extent record insertion at the target leaf
3851 * list. If this leaf is part of an allocation tree, it is assumed
3852 * that the tree above has been prepared.
3854 static void ocfs2_insert_at_leaf(struct ocfs2_extent_tree
*et
,
3855 struct ocfs2_extent_rec
*insert_rec
,
3856 struct ocfs2_extent_list
*el
,
3857 struct ocfs2_insert_type
*insert
)
3859 int i
= insert
->ins_contig_index
;
3861 struct ocfs2_extent_rec
*rec
;
3863 BUG_ON(le16_to_cpu(el
->l_tree_depth
) != 0);
3865 if (insert
->ins_split
!= SPLIT_NONE
) {
3866 i
= ocfs2_search_extent_list(el
, le32_to_cpu(insert_rec
->e_cpos
));
3868 rec
= &el
->l_recs
[i
];
3869 ocfs2_subtract_from_rec(ocfs2_metadata_cache_get_super(et
->et_ci
),
3870 insert
->ins_split
, rec
,
3876 * Contiguous insert - either left or right.
3878 if (insert
->ins_contig
!= CONTIG_NONE
) {
3879 rec
= &el
->l_recs
[i
];
3880 if (insert
->ins_contig
== CONTIG_LEFT
) {
3881 rec
->e_blkno
= insert_rec
->e_blkno
;
3882 rec
->e_cpos
= insert_rec
->e_cpos
;
3884 le16_add_cpu(&rec
->e_leaf_clusters
,
3885 le16_to_cpu(insert_rec
->e_leaf_clusters
));
3890 * Handle insert into an empty leaf.
3892 if (le16_to_cpu(el
->l_next_free_rec
) == 0 ||
3893 ((le16_to_cpu(el
->l_next_free_rec
) == 1) &&
3894 ocfs2_is_empty_extent(&el
->l_recs
[0]))) {
3895 el
->l_recs
[0] = *insert_rec
;
3896 el
->l_next_free_rec
= cpu_to_le16(1);
3903 if (insert
->ins_appending
== APPEND_TAIL
) {
3904 i
= le16_to_cpu(el
->l_next_free_rec
) - 1;
3905 rec
= &el
->l_recs
[i
];
3906 range
= le32_to_cpu(rec
->e_cpos
)
3907 + le16_to_cpu(rec
->e_leaf_clusters
);
3908 BUG_ON(le32_to_cpu(insert_rec
->e_cpos
) < range
);
3910 mlog_bug_on_msg(le16_to_cpu(el
->l_next_free_rec
) >=
3911 le16_to_cpu(el
->l_count
),
3912 "owner %llu, depth %u, count %u, next free %u, "
3913 "rec.cpos %u, rec.clusters %u, "
3914 "insert.cpos %u, insert.clusters %u\n",
3915 ocfs2_metadata_cache_owner(et
->et_ci
),
3916 le16_to_cpu(el
->l_tree_depth
),
3917 le16_to_cpu(el
->l_count
),
3918 le16_to_cpu(el
->l_next_free_rec
),
3919 le32_to_cpu(el
->l_recs
[i
].e_cpos
),
3920 le16_to_cpu(el
->l_recs
[i
].e_leaf_clusters
),
3921 le32_to_cpu(insert_rec
->e_cpos
),
3922 le16_to_cpu(insert_rec
->e_leaf_clusters
));
3924 el
->l_recs
[i
] = *insert_rec
;
3925 le16_add_cpu(&el
->l_next_free_rec
, 1);
3931 * Ok, we have to rotate.
3933 * At this point, it is safe to assume that inserting into an
3934 * empty leaf and appending to a leaf have both been handled
3937 * This leaf needs to have space, either by the empty 1st
3938 * extent record, or by virtue of an l_next_rec < l_count.
3940 ocfs2_rotate_leaf(el
, insert_rec
);
3943 static void ocfs2_adjust_rightmost_records(handle_t
*handle
,
3944 struct ocfs2_extent_tree
*et
,
3945 struct ocfs2_path
*path
,
3946 struct ocfs2_extent_rec
*insert_rec
)
3948 int ret
, i
, next_free
;
3949 struct buffer_head
*bh
;
3950 struct ocfs2_extent_list
*el
;
3951 struct ocfs2_extent_rec
*rec
;
3954 * Update everything except the leaf block.
3956 for (i
= 0; i
< path
->p_tree_depth
; i
++) {
3957 bh
= path
->p_node
[i
].bh
;
3958 el
= path
->p_node
[i
].el
;
3960 next_free
= le16_to_cpu(el
->l_next_free_rec
);
3961 if (next_free
== 0) {
3962 ocfs2_error(ocfs2_metadata_cache_get_super(et
->et_ci
),
3963 "Owner %llu has a bad extent list\n",
3964 (unsigned long long)ocfs2_metadata_cache_owner(et
->et_ci
));
3969 rec
= &el
->l_recs
[next_free
- 1];
3971 rec
->e_int_clusters
= insert_rec
->e_cpos
;
3972 le32_add_cpu(&rec
->e_int_clusters
,
3973 le16_to_cpu(insert_rec
->e_leaf_clusters
));
3974 le32_add_cpu(&rec
->e_int_clusters
,
3975 -le32_to_cpu(rec
->e_cpos
));
3977 ocfs2_journal_dirty(handle
, bh
);
3981 static int ocfs2_append_rec_to_path(handle_t
*handle
,
3982 struct ocfs2_extent_tree
*et
,
3983 struct ocfs2_extent_rec
*insert_rec
,
3984 struct ocfs2_path
*right_path
,
3985 struct ocfs2_path
**ret_left_path
)
3988 struct ocfs2_extent_list
*el
;
3989 struct ocfs2_path
*left_path
= NULL
;
3991 *ret_left_path
= NULL
;
3994 * This shouldn't happen for non-trees. The extent rec cluster
3995 * count manipulation below only works for interior nodes.
3997 BUG_ON(right_path
->p_tree_depth
== 0);
4000 * If our appending insert is at the leftmost edge of a leaf,
4001 * then we might need to update the rightmost records of the
4004 el
= path_leaf_el(right_path
);
4005 next_free
= le16_to_cpu(el
->l_next_free_rec
);
4006 if (next_free
== 0 ||
4007 (next_free
== 1 && ocfs2_is_empty_extent(&el
->l_recs
[0]))) {
4010 ret
= ocfs2_find_cpos_for_left_leaf(ocfs2_metadata_cache_get_super(et
->et_ci
),
4011 right_path
, &left_cpos
);
4017 trace_ocfs2_append_rec_to_path(
4018 (unsigned long long)
4019 ocfs2_metadata_cache_owner(et
->et_ci
),
4020 le32_to_cpu(insert_rec
->e_cpos
),
4024 * No need to worry if the append is already in the
4028 left_path
= ocfs2_new_path_from_path(right_path
);
4035 ret
= ocfs2_find_path(et
->et_ci
, left_path
,
4043 * ocfs2_insert_path() will pass the left_path to the
4049 ret
= ocfs2_journal_access_path(et
->et_ci
, handle
, right_path
);
4055 ocfs2_adjust_rightmost_records(handle
, et
, right_path
, insert_rec
);
4057 *ret_left_path
= left_path
;
4061 ocfs2_free_path(left_path
);
4066 static void ocfs2_split_record(struct ocfs2_extent_tree
*et
,
4067 struct ocfs2_path
*left_path
,
4068 struct ocfs2_path
*right_path
,
4069 struct ocfs2_extent_rec
*split_rec
,
4070 enum ocfs2_split_type split
)
4073 u32 cpos
= le32_to_cpu(split_rec
->e_cpos
);
4074 struct ocfs2_extent_list
*left_el
= NULL
, *right_el
, *insert_el
, *el
;
4075 struct ocfs2_extent_rec
*rec
, *tmprec
;
4077 right_el
= path_leaf_el(right_path
);
4079 left_el
= path_leaf_el(left_path
);
4082 insert_el
= right_el
;
4083 index
= ocfs2_search_extent_list(el
, cpos
);
4085 if (index
== 0 && left_path
) {
4086 BUG_ON(ocfs2_is_empty_extent(&el
->l_recs
[0]));
4089 * This typically means that the record
4090 * started in the left path but moved to the
4091 * right as a result of rotation. We either
4092 * move the existing record to the left, or we
4093 * do the later insert there.
4095 * In this case, the left path should always
4096 * exist as the rotate code will have passed
4097 * it back for a post-insert update.
4100 if (split
== SPLIT_LEFT
) {
4102 * It's a left split. Since we know
4103 * that the rotate code gave us an
4104 * empty extent in the left path, we
4105 * can just do the insert there.
4107 insert_el
= left_el
;
4110 * Right split - we have to move the
4111 * existing record over to the left
4112 * leaf. The insert will be into the
4113 * newly created empty extent in the
4116 tmprec
= &right_el
->l_recs
[index
];
4117 ocfs2_rotate_leaf(left_el
, tmprec
);
4120 memset(tmprec
, 0, sizeof(*tmprec
));
4121 index
= ocfs2_search_extent_list(left_el
, cpos
);
4122 BUG_ON(index
== -1);
4127 BUG_ON(!ocfs2_is_empty_extent(&left_el
->l_recs
[0]));
4129 * Left path is easy - we can just allow the insert to
4133 insert_el
= left_el
;
4134 index
= ocfs2_search_extent_list(el
, cpos
);
4135 BUG_ON(index
== -1);
4138 rec
= &el
->l_recs
[index
];
4139 ocfs2_subtract_from_rec(ocfs2_metadata_cache_get_super(et
->et_ci
),
4140 split
, rec
, split_rec
);
4141 ocfs2_rotate_leaf(insert_el
, split_rec
);
4145 * This function only does inserts on an allocation b-tree. For tree
4146 * depth = 0, ocfs2_insert_at_leaf() is called directly.
4148 * right_path is the path we want to do the actual insert
4149 * in. left_path should only be passed in if we need to update that
4150 * portion of the tree after an edge insert.
4152 static int ocfs2_insert_path(handle_t
*handle
,
4153 struct ocfs2_extent_tree
*et
,
4154 struct ocfs2_path
*left_path
,
4155 struct ocfs2_path
*right_path
,
4156 struct ocfs2_extent_rec
*insert_rec
,
4157 struct ocfs2_insert_type
*insert
)
4159 int ret
, subtree_index
;
4160 struct buffer_head
*leaf_bh
= path_leaf_bh(right_path
);
4164 * There's a chance that left_path got passed back to
4165 * us without being accounted for in the
4166 * journal. Extend our transaction here to be sure we
4167 * can change those blocks.
4169 ret
= ocfs2_extend_trans(handle
, left_path
->p_tree_depth
);
4175 ret
= ocfs2_journal_access_path(et
->et_ci
, handle
, left_path
);
4183 * Pass both paths to the journal. The majority of inserts
4184 * will be touching all components anyway.
4186 ret
= ocfs2_journal_access_path(et
->et_ci
, handle
, right_path
);
4192 if (insert
->ins_split
!= SPLIT_NONE
) {
4194 * We could call ocfs2_insert_at_leaf() for some types
4195 * of splits, but it's easier to just let one separate
4196 * function sort it all out.
4198 ocfs2_split_record(et
, left_path
, right_path
,
4199 insert_rec
, insert
->ins_split
);
4202 * Split might have modified either leaf and we don't
4203 * have a guarantee that the later edge insert will
4204 * dirty this for us.
4207 ocfs2_journal_dirty(handle
,
4208 path_leaf_bh(left_path
));
4210 ocfs2_insert_at_leaf(et
, insert_rec
, path_leaf_el(right_path
),
4213 ocfs2_journal_dirty(handle
, leaf_bh
);
4217 * The rotate code has indicated that we need to fix
4218 * up portions of the tree after the insert.
4220 * XXX: Should we extend the transaction here?
4222 subtree_index
= ocfs2_find_subtree_root(et
, left_path
,
4224 ocfs2_complete_edge_insert(handle
, left_path
, right_path
,
4233 static int ocfs2_do_insert_extent(handle_t
*handle
,
4234 struct ocfs2_extent_tree
*et
,
4235 struct ocfs2_extent_rec
*insert_rec
,
4236 struct ocfs2_insert_type
*type
)
4238 int ret
, rotate
= 0;
4240 struct ocfs2_path
*right_path
= NULL
;
4241 struct ocfs2_path
*left_path
= NULL
;
4242 struct ocfs2_extent_list
*el
;
4244 el
= et
->et_root_el
;
4246 ret
= ocfs2_et_root_journal_access(handle
, et
,
4247 OCFS2_JOURNAL_ACCESS_WRITE
);
4253 if (le16_to_cpu(el
->l_tree_depth
) == 0) {
4254 ocfs2_insert_at_leaf(et
, insert_rec
, el
, type
);
4255 goto out_update_clusters
;
4258 right_path
= ocfs2_new_path_from_et(et
);
4266 * Determine the path to start with. Rotations need the
4267 * rightmost path, everything else can go directly to the
4270 cpos
= le32_to_cpu(insert_rec
->e_cpos
);
4271 if (type
->ins_appending
== APPEND_NONE
&&
4272 type
->ins_contig
== CONTIG_NONE
) {
4277 ret
= ocfs2_find_path(et
->et_ci
, right_path
, cpos
);
4284 * Rotations and appends need special treatment - they modify
4285 * parts of the tree's above them.
4287 * Both might pass back a path immediate to the left of the
4288 * one being inserted to. This will be cause
4289 * ocfs2_insert_path() to modify the rightmost records of
4290 * left_path to account for an edge insert.
4292 * XXX: When modifying this code, keep in mind that an insert
4293 * can wind up skipping both of these two special cases...
4296 ret
= ocfs2_rotate_tree_right(handle
, et
, type
->ins_split
,
4297 le32_to_cpu(insert_rec
->e_cpos
),
4298 right_path
, &left_path
);
4305 * ocfs2_rotate_tree_right() might have extended the
4306 * transaction without re-journaling our tree root.
4308 ret
= ocfs2_et_root_journal_access(handle
, et
,
4309 OCFS2_JOURNAL_ACCESS_WRITE
);
4314 } else if (type
->ins_appending
== APPEND_TAIL
4315 && type
->ins_contig
!= CONTIG_LEFT
) {
4316 ret
= ocfs2_append_rec_to_path(handle
, et
, insert_rec
,
4317 right_path
, &left_path
);
4324 ret
= ocfs2_insert_path(handle
, et
, left_path
, right_path
,
4331 out_update_clusters
:
4332 if (type
->ins_split
== SPLIT_NONE
)
4333 ocfs2_et_update_clusters(et
,
4334 le16_to_cpu(insert_rec
->e_leaf_clusters
));
4336 ocfs2_journal_dirty(handle
, et
->et_root_bh
);
4339 ocfs2_free_path(left_path
);
4340 ocfs2_free_path(right_path
);
4345 static int ocfs2_figure_merge_contig_type(struct ocfs2_extent_tree
*et
,
4346 struct ocfs2_path
*path
,
4347 struct ocfs2_extent_list
*el
, int index
,
4348 struct ocfs2_extent_rec
*split_rec
,
4349 struct ocfs2_merge_ctxt
*ctxt
)
4352 enum ocfs2_contig_type ret
= CONTIG_NONE
;
4353 u32 left_cpos
, right_cpos
;
4354 struct ocfs2_extent_rec
*rec
= NULL
;
4355 struct ocfs2_extent_list
*new_el
;
4356 struct ocfs2_path
*left_path
= NULL
, *right_path
= NULL
;
4357 struct buffer_head
*bh
;
4358 struct ocfs2_extent_block
*eb
;
4359 struct super_block
*sb
= ocfs2_metadata_cache_get_super(et
->et_ci
);
4362 rec
= &el
->l_recs
[index
- 1];
4363 } else if (path
->p_tree_depth
> 0) {
4364 status
= ocfs2_find_cpos_for_left_leaf(sb
, path
, &left_cpos
);
4368 if (left_cpos
!= 0) {
4369 left_path
= ocfs2_new_path_from_path(path
);
4376 status
= ocfs2_find_path(et
->et_ci
, left_path
,
4379 goto free_left_path
;
4381 new_el
= path_leaf_el(left_path
);
4383 if (le16_to_cpu(new_el
->l_next_free_rec
) !=
4384 le16_to_cpu(new_el
->l_count
)) {
4385 bh
= path_leaf_bh(left_path
);
4386 eb
= (struct ocfs2_extent_block
*)bh
->b_data
;
4388 "Extent block #%llu has an invalid l_next_free_rec of %d. It should have matched the l_count of %d\n",
4389 (unsigned long long)le64_to_cpu(eb
->h_blkno
),
4390 le16_to_cpu(new_el
->l_next_free_rec
),
4391 le16_to_cpu(new_el
->l_count
));
4393 goto free_left_path
;
4395 rec
= &new_el
->l_recs
[
4396 le16_to_cpu(new_el
->l_next_free_rec
) - 1];
4401 * We're careful to check for an empty extent record here -
4402 * the merge code will know what to do if it sees one.
4405 if (index
== 1 && ocfs2_is_empty_extent(rec
)) {
4406 if (split_rec
->e_cpos
== el
->l_recs
[index
].e_cpos
)
4409 ret
= ocfs2_et_extent_contig(et
, rec
, split_rec
);
4414 if (index
< (le16_to_cpu(el
->l_next_free_rec
) - 1))
4415 rec
= &el
->l_recs
[index
+ 1];
4416 else if (le16_to_cpu(el
->l_next_free_rec
) == le16_to_cpu(el
->l_count
) &&
4417 path
->p_tree_depth
> 0) {
4418 status
= ocfs2_find_cpos_for_right_leaf(sb
, path
, &right_cpos
);
4420 goto free_left_path
;
4422 if (right_cpos
== 0)
4423 goto free_left_path
;
4425 right_path
= ocfs2_new_path_from_path(path
);
4429 goto free_left_path
;
4432 status
= ocfs2_find_path(et
->et_ci
, right_path
, right_cpos
);
4434 goto free_right_path
;
4436 new_el
= path_leaf_el(right_path
);
4437 rec
= &new_el
->l_recs
[0];
4438 if (ocfs2_is_empty_extent(rec
)) {
4439 if (le16_to_cpu(new_el
->l_next_free_rec
) <= 1) {
4440 bh
= path_leaf_bh(right_path
);
4441 eb
= (struct ocfs2_extent_block
*)bh
->b_data
;
4443 "Extent block #%llu has an invalid l_next_free_rec of %d\n",
4444 (unsigned long long)le64_to_cpu(eb
->h_blkno
),
4445 le16_to_cpu(new_el
->l_next_free_rec
));
4447 goto free_right_path
;
4449 rec
= &new_el
->l_recs
[1];
4454 enum ocfs2_contig_type contig_type
;
4456 contig_type
= ocfs2_et_extent_contig(et
, rec
, split_rec
);
4458 if (contig_type
== CONTIG_LEFT
&& ret
== CONTIG_RIGHT
)
4459 ret
= CONTIG_LEFTRIGHT
;
4460 else if (ret
== CONTIG_NONE
)
4465 ocfs2_free_path(right_path
);
4467 ocfs2_free_path(left_path
);
4470 ctxt
->c_contig_type
= ret
;
4475 static void ocfs2_figure_contig_type(struct ocfs2_extent_tree
*et
,
4476 struct ocfs2_insert_type
*insert
,
4477 struct ocfs2_extent_list
*el
,
4478 struct ocfs2_extent_rec
*insert_rec
)
4481 enum ocfs2_contig_type contig_type
= CONTIG_NONE
;
4483 BUG_ON(le16_to_cpu(el
->l_tree_depth
) != 0);
4485 for(i
= 0; i
< le16_to_cpu(el
->l_next_free_rec
); i
++) {
4486 contig_type
= ocfs2_et_extent_contig(et
, &el
->l_recs
[i
],
4488 if (contig_type
!= CONTIG_NONE
) {
4489 insert
->ins_contig_index
= i
;
4493 insert
->ins_contig
= contig_type
;
4495 if (insert
->ins_contig
!= CONTIG_NONE
) {
4496 struct ocfs2_extent_rec
*rec
=
4497 &el
->l_recs
[insert
->ins_contig_index
];
4498 unsigned int len
= le16_to_cpu(rec
->e_leaf_clusters
) +
4499 le16_to_cpu(insert_rec
->e_leaf_clusters
);
4502 * Caller might want us to limit the size of extents, don't
4503 * calculate contiguousness if we might exceed that limit.
4505 if (et
->et_max_leaf_clusters
&&
4506 (len
> et
->et_max_leaf_clusters
))
4507 insert
->ins_contig
= CONTIG_NONE
;
4512 * This should only be called against the righmost leaf extent list.
4514 * ocfs2_figure_appending_type() will figure out whether we'll have to
4515 * insert at the tail of the rightmost leaf.
4517 * This should also work against the root extent list for tree's with 0
4518 * depth. If we consider the root extent list to be the rightmost leaf node
4519 * then the logic here makes sense.
4521 static void ocfs2_figure_appending_type(struct ocfs2_insert_type
*insert
,
4522 struct ocfs2_extent_list
*el
,
4523 struct ocfs2_extent_rec
*insert_rec
)
4526 u32 cpos
= le32_to_cpu(insert_rec
->e_cpos
);
4527 struct ocfs2_extent_rec
*rec
;
4529 insert
->ins_appending
= APPEND_NONE
;
4531 BUG_ON(le16_to_cpu(el
->l_tree_depth
) != 0);
4533 if (!el
->l_next_free_rec
)
4534 goto set_tail_append
;
4536 if (ocfs2_is_empty_extent(&el
->l_recs
[0])) {
4537 /* Were all records empty? */
4538 if (le16_to_cpu(el
->l_next_free_rec
) == 1)
4539 goto set_tail_append
;
4542 i
= le16_to_cpu(el
->l_next_free_rec
) - 1;
4543 rec
= &el
->l_recs
[i
];
4546 (le32_to_cpu(rec
->e_cpos
) + le16_to_cpu(rec
->e_leaf_clusters
)))
4547 goto set_tail_append
;
4552 insert
->ins_appending
= APPEND_TAIL
;
4556 * Helper function called at the beginning of an insert.
4558 * This computes a few things that are commonly used in the process of
4559 * inserting into the btree:
4560 * - Whether the new extent is contiguous with an existing one.
4561 * - The current tree depth.
4562 * - Whether the insert is an appending one.
4563 * - The total # of free records in the tree.
4565 * All of the information is stored on the ocfs2_insert_type
4568 static int ocfs2_figure_insert_type(struct ocfs2_extent_tree
*et
,
4569 struct buffer_head
**last_eb_bh
,
4570 struct ocfs2_extent_rec
*insert_rec
,
4572 struct ocfs2_insert_type
*insert
)
4575 struct ocfs2_extent_block
*eb
;
4576 struct ocfs2_extent_list
*el
;
4577 struct ocfs2_path
*path
= NULL
;
4578 struct buffer_head
*bh
= NULL
;
4580 insert
->ins_split
= SPLIT_NONE
;
4582 el
= et
->et_root_el
;
4583 insert
->ins_tree_depth
= le16_to_cpu(el
->l_tree_depth
);
4585 if (el
->l_tree_depth
) {
4587 * If we have tree depth, we read in the
4588 * rightmost extent block ahead of time as
4589 * ocfs2_figure_insert_type() and ocfs2_add_branch()
4590 * may want it later.
4592 ret
= ocfs2_read_extent_block(et
->et_ci
,
4593 ocfs2_et_get_last_eb_blk(et
),
4599 eb
= (struct ocfs2_extent_block
*) bh
->b_data
;
4604 * Unless we have a contiguous insert, we'll need to know if
4605 * there is room left in our allocation tree for another
4608 * XXX: This test is simplistic, we can search for empty
4609 * extent records too.
4611 *free_records
= le16_to_cpu(el
->l_count
) -
4612 le16_to_cpu(el
->l_next_free_rec
);
4614 if (!insert
->ins_tree_depth
) {
4615 ocfs2_figure_contig_type(et
, insert
, el
, insert_rec
);
4616 ocfs2_figure_appending_type(insert
, el
, insert_rec
);
4620 path
= ocfs2_new_path_from_et(et
);
4628 * In the case that we're inserting past what the tree
4629 * currently accounts for, ocfs2_find_path() will return for
4630 * us the rightmost tree path. This is accounted for below in
4631 * the appending code.
4633 ret
= ocfs2_find_path(et
->et_ci
, path
, le32_to_cpu(insert_rec
->e_cpos
));
4639 el
= path_leaf_el(path
);
4642 * Now that we have the path, there's two things we want to determine:
4643 * 1) Contiguousness (also set contig_index if this is so)
4645 * 2) Are we doing an append? We can trivially break this up
4646 * into two types of appends: simple record append, or a
4647 * rotate inside the tail leaf.
4649 ocfs2_figure_contig_type(et
, insert
, el
, insert_rec
);
4652 * The insert code isn't quite ready to deal with all cases of
4653 * left contiguousness. Specifically, if it's an insert into
4654 * the 1st record in a leaf, it will require the adjustment of
4655 * cluster count on the last record of the path directly to it's
4656 * left. For now, just catch that case and fool the layers
4657 * above us. This works just fine for tree_depth == 0, which
4658 * is why we allow that above.
4660 if (insert
->ins_contig
== CONTIG_LEFT
&&
4661 insert
->ins_contig_index
== 0)
4662 insert
->ins_contig
= CONTIG_NONE
;
4665 * Ok, so we can simply compare against last_eb to figure out
4666 * whether the path doesn't exist. This will only happen in
4667 * the case that we're doing a tail append, so maybe we can
4668 * take advantage of that information somehow.
4670 if (ocfs2_et_get_last_eb_blk(et
) ==
4671 path_leaf_bh(path
)->b_blocknr
) {
4673 * Ok, ocfs2_find_path() returned us the rightmost
4674 * tree path. This might be an appending insert. There are
4676 * 1) We're doing a true append at the tail:
4677 * -This might even be off the end of the leaf
4678 * 2) We're "appending" by rotating in the tail
4680 ocfs2_figure_appending_type(insert
, el
, insert_rec
);
4684 ocfs2_free_path(path
);
4694 * Insert an extent into a btree.
4696 * The caller needs to update the owning btree's cluster count.
4698 int ocfs2_insert_extent(handle_t
*handle
,
4699 struct ocfs2_extent_tree
*et
,
4704 struct ocfs2_alloc_context
*meta_ac
)
4707 int uninitialized_var(free_records
);
4708 struct buffer_head
*last_eb_bh
= NULL
;
4709 struct ocfs2_insert_type insert
= {0, };
4710 struct ocfs2_extent_rec rec
;
4712 trace_ocfs2_insert_extent_start(
4713 (unsigned long long)ocfs2_metadata_cache_owner(et
->et_ci
),
4714 cpos
, new_clusters
);
4716 memset(&rec
, 0, sizeof(rec
));
4717 rec
.e_cpos
= cpu_to_le32(cpos
);
4718 rec
.e_blkno
= cpu_to_le64(start_blk
);
4719 rec
.e_leaf_clusters
= cpu_to_le16(new_clusters
);
4720 rec
.e_flags
= flags
;
4721 status
= ocfs2_et_insert_check(et
, &rec
);
4727 status
= ocfs2_figure_insert_type(et
, &last_eb_bh
, &rec
,
4728 &free_records
, &insert
);
4734 trace_ocfs2_insert_extent(insert
.ins_appending
, insert
.ins_contig
,
4735 insert
.ins_contig_index
, free_records
,
4736 insert
.ins_tree_depth
);
4738 if (insert
.ins_contig
== CONTIG_NONE
&& free_records
== 0) {
4739 status
= ocfs2_grow_tree(handle
, et
,
4740 &insert
.ins_tree_depth
, &last_eb_bh
,
4748 /* Finally, we can add clusters. This might rotate the tree for us. */
4749 status
= ocfs2_do_insert_extent(handle
, et
, &rec
, &insert
);
4753 ocfs2_et_extent_map_insert(et
, &rec
);
4762 * Allcate and add clusters into the extent b-tree.
4763 * The new clusters(clusters_to_add) will be inserted at logical_offset.
4764 * The extent b-tree's root is specified by et, and
4765 * it is not limited to the file storage. Any extent tree can use this
4766 * function if it implements the proper ocfs2_extent_tree.
4768 int ocfs2_add_clusters_in_btree(handle_t
*handle
,
4769 struct ocfs2_extent_tree
*et
,
4770 u32
*logical_offset
,
4771 u32 clusters_to_add
,
4773 struct ocfs2_alloc_context
*data_ac
,
4774 struct ocfs2_alloc_context
*meta_ac
,
4775 enum ocfs2_alloc_restarted
*reason_ret
)
4777 int status
= 0, err
= 0;
4780 enum ocfs2_alloc_restarted reason
= RESTART_NONE
;
4781 u32 bit_off
, num_bits
;
4784 struct ocfs2_super
*osb
=
4785 OCFS2_SB(ocfs2_metadata_cache_get_super(et
->et_ci
));
4787 BUG_ON(!clusters_to_add
);
4790 flags
= OCFS2_EXT_UNWRITTEN
;
4792 free_extents
= ocfs2_num_free_extents(osb
, et
);
4793 if (free_extents
< 0) {
4794 status
= free_extents
;
4799 /* there are two cases which could cause us to EAGAIN in the
4800 * we-need-more-metadata case:
4801 * 1) we haven't reserved *any*
4802 * 2) we are so fragmented, we've needed to add metadata too
4804 if (!free_extents
&& !meta_ac
) {
4807 reason
= RESTART_META
;
4809 } else if ((!free_extents
)
4810 && (ocfs2_alloc_context_bits_left(meta_ac
)
4811 < ocfs2_extend_meta_needed(et
->et_root_el
))) {
4814 reason
= RESTART_META
;
4818 status
= __ocfs2_claim_clusters(handle
, data_ac
, 1,
4819 clusters_to_add
, &bit_off
, &num_bits
);
4821 if (status
!= -ENOSPC
)
4826 BUG_ON(num_bits
> clusters_to_add
);
4828 /* reserve our write early -- insert_extent may update the tree root */
4829 status
= ocfs2_et_root_journal_access(handle
, et
,
4830 OCFS2_JOURNAL_ACCESS_WRITE
);
4837 block
= ocfs2_clusters_to_blocks(osb
->sb
, bit_off
);
4838 trace_ocfs2_add_clusters_in_btree(
4839 (unsigned long long)ocfs2_metadata_cache_owner(et
->et_ci
),
4841 status
= ocfs2_insert_extent(handle
, et
, *logical_offset
, block
,
4842 num_bits
, flags
, meta_ac
);
4849 ocfs2_journal_dirty(handle
, et
->et_root_bh
);
4851 clusters_to_add
-= num_bits
;
4852 *logical_offset
+= num_bits
;
4854 if (clusters_to_add
) {
4855 err
= clusters_to_add
;
4857 reason
= RESTART_TRANS
;
4862 if (data_ac
->ac_which
== OCFS2_AC_USE_LOCAL
)
4863 ocfs2_free_local_alloc_bits(osb
, handle
, data_ac
,
4866 ocfs2_free_clusters(handle
,
4869 ocfs2_clusters_to_blocks(osb
->sb
, bit_off
),
4875 *reason_ret
= reason
;
4876 trace_ocfs2_add_clusters_in_btree_ret(status
, reason
, err
);
4880 static void ocfs2_make_right_split_rec(struct super_block
*sb
,
4881 struct ocfs2_extent_rec
*split_rec
,
4883 struct ocfs2_extent_rec
*rec
)
4885 u32 rec_cpos
= le32_to_cpu(rec
->e_cpos
);
4886 u32 rec_range
= rec_cpos
+ le16_to_cpu(rec
->e_leaf_clusters
);
4888 memset(split_rec
, 0, sizeof(struct ocfs2_extent_rec
));
4890 split_rec
->e_cpos
= cpu_to_le32(cpos
);
4891 split_rec
->e_leaf_clusters
= cpu_to_le16(rec_range
- cpos
);
4893 split_rec
->e_blkno
= rec
->e_blkno
;
4894 le64_add_cpu(&split_rec
->e_blkno
,
4895 ocfs2_clusters_to_blocks(sb
, cpos
- rec_cpos
));
4897 split_rec
->e_flags
= rec
->e_flags
;
4900 static int ocfs2_split_and_insert(handle_t
*handle
,
4901 struct ocfs2_extent_tree
*et
,
4902 struct ocfs2_path
*path
,
4903 struct buffer_head
**last_eb_bh
,
4905 struct ocfs2_extent_rec
*orig_split_rec
,
4906 struct ocfs2_alloc_context
*meta_ac
)
4909 unsigned int insert_range
, rec_range
, do_leftright
= 0;
4910 struct ocfs2_extent_rec tmprec
;
4911 struct ocfs2_extent_list
*rightmost_el
;
4912 struct ocfs2_extent_rec rec
;
4913 struct ocfs2_extent_rec split_rec
= *orig_split_rec
;
4914 struct ocfs2_insert_type insert
;
4915 struct ocfs2_extent_block
*eb
;
4919 * Store a copy of the record on the stack - it might move
4920 * around as the tree is manipulated below.
4922 rec
= path_leaf_el(path
)->l_recs
[split_index
];
4924 rightmost_el
= et
->et_root_el
;
4926 depth
= le16_to_cpu(rightmost_el
->l_tree_depth
);
4928 BUG_ON(!(*last_eb_bh
));
4929 eb
= (struct ocfs2_extent_block
*) (*last_eb_bh
)->b_data
;
4930 rightmost_el
= &eb
->h_list
;
4933 if (le16_to_cpu(rightmost_el
->l_next_free_rec
) ==
4934 le16_to_cpu(rightmost_el
->l_count
)) {
4935 ret
= ocfs2_grow_tree(handle
, et
,
4936 &depth
, last_eb_bh
, meta_ac
);
4943 memset(&insert
, 0, sizeof(struct ocfs2_insert_type
));
4944 insert
.ins_appending
= APPEND_NONE
;
4945 insert
.ins_contig
= CONTIG_NONE
;
4946 insert
.ins_tree_depth
= depth
;
4948 insert_range
= le32_to_cpu(split_rec
.e_cpos
) +
4949 le16_to_cpu(split_rec
.e_leaf_clusters
);
4950 rec_range
= le32_to_cpu(rec
.e_cpos
) +
4951 le16_to_cpu(rec
.e_leaf_clusters
);
4953 if (split_rec
.e_cpos
== rec
.e_cpos
) {
4954 insert
.ins_split
= SPLIT_LEFT
;
4955 } else if (insert_range
== rec_range
) {
4956 insert
.ins_split
= SPLIT_RIGHT
;
4959 * Left/right split. We fake this as a right split
4960 * first and then make a second pass as a left split.
4962 insert
.ins_split
= SPLIT_RIGHT
;
4964 ocfs2_make_right_split_rec(ocfs2_metadata_cache_get_super(et
->et_ci
),
4965 &tmprec
, insert_range
, &rec
);
4969 BUG_ON(do_leftright
);
4973 ret
= ocfs2_do_insert_extent(handle
, et
, &split_rec
, &insert
);
4979 if (do_leftright
== 1) {
4981 struct ocfs2_extent_list
*el
;
4984 split_rec
= *orig_split_rec
;
4986 ocfs2_reinit_path(path
, 1);
4988 cpos
= le32_to_cpu(split_rec
.e_cpos
);
4989 ret
= ocfs2_find_path(et
->et_ci
, path
, cpos
);
4995 el
= path_leaf_el(path
);
4996 split_index
= ocfs2_search_extent_list(el
, cpos
);
4997 if (split_index
== -1) {
4998 ocfs2_error(ocfs2_metadata_cache_get_super(et
->et_ci
),
4999 "Owner %llu has an extent at cpos %u which can no longer be found\n",
5000 (unsigned long long)ocfs2_metadata_cache_owner(et
->et_ci
),
5012 static int ocfs2_replace_extent_rec(handle_t
*handle
,
5013 struct ocfs2_extent_tree
*et
,
5014 struct ocfs2_path
*path
,
5015 struct ocfs2_extent_list
*el
,
5017 struct ocfs2_extent_rec
*split_rec
)
5021 ret
= ocfs2_path_bh_journal_access(handle
, et
->et_ci
, path
,
5022 path_num_items(path
) - 1);
5028 el
->l_recs
[split_index
] = *split_rec
;
5030 ocfs2_journal_dirty(handle
, path_leaf_bh(path
));
5036 * Split part or all of the extent record at split_index in the leaf
5037 * pointed to by path. Merge with the contiguous extent record if needed.
5039 * Care is taken to handle contiguousness so as to not grow the tree.
5041 * meta_ac is not strictly necessary - we only truly need it if growth
5042 * of the tree is required. All other cases will degrade into a less
5043 * optimal tree layout.
5045 * last_eb_bh should be the rightmost leaf block for any extent
5046 * btree. Since a split may grow the tree or a merge might shrink it,
5047 * the caller cannot trust the contents of that buffer after this call.
5049 * This code is optimized for readability - several passes might be
5050 * made over certain portions of the tree. All of those blocks will
5051 * have been brought into cache (and pinned via the journal), so the
5052 * extra overhead is not expressed in terms of disk reads.
5054 int ocfs2_split_extent(handle_t
*handle
,
5055 struct ocfs2_extent_tree
*et
,
5056 struct ocfs2_path
*path
,
5058 struct ocfs2_extent_rec
*split_rec
,
5059 struct ocfs2_alloc_context
*meta_ac
,
5060 struct ocfs2_cached_dealloc_ctxt
*dealloc
)
5063 struct ocfs2_extent_list
*el
= path_leaf_el(path
);
5064 struct buffer_head
*last_eb_bh
= NULL
;
5065 struct ocfs2_extent_rec
*rec
= &el
->l_recs
[split_index
];
5066 struct ocfs2_merge_ctxt ctxt
;
5067 struct ocfs2_extent_list
*rightmost_el
;
5069 if (le32_to_cpu(rec
->e_cpos
) > le32_to_cpu(split_rec
->e_cpos
) ||
5070 ((le32_to_cpu(rec
->e_cpos
) + le16_to_cpu(rec
->e_leaf_clusters
)) <
5071 (le32_to_cpu(split_rec
->e_cpos
) + le16_to_cpu(split_rec
->e_leaf_clusters
)))) {
5077 ret
= ocfs2_figure_merge_contig_type(et
, path
, el
,
5087 * The core merge / split code wants to know how much room is
5088 * left in this allocation tree, so we pass the
5089 * rightmost extent list.
5091 if (path
->p_tree_depth
) {
5092 struct ocfs2_extent_block
*eb
;
5094 ret
= ocfs2_read_extent_block(et
->et_ci
,
5095 ocfs2_et_get_last_eb_blk(et
),
5102 eb
= (struct ocfs2_extent_block
*) last_eb_bh
->b_data
;
5103 rightmost_el
= &eb
->h_list
;
5105 rightmost_el
= path_root_el(path
);
5107 if (rec
->e_cpos
== split_rec
->e_cpos
&&
5108 rec
->e_leaf_clusters
== split_rec
->e_leaf_clusters
)
5109 ctxt
.c_split_covers_rec
= 1;
5111 ctxt
.c_split_covers_rec
= 0;
5113 ctxt
.c_has_empty_extent
= ocfs2_is_empty_extent(&el
->l_recs
[0]);
5115 trace_ocfs2_split_extent(split_index
, ctxt
.c_contig_type
,
5116 ctxt
.c_has_empty_extent
,
5117 ctxt
.c_split_covers_rec
);
5119 if (ctxt
.c_contig_type
== CONTIG_NONE
) {
5120 if (ctxt
.c_split_covers_rec
)
5121 ret
= ocfs2_replace_extent_rec(handle
, et
, path
, el
,
5122 split_index
, split_rec
);
5124 ret
= ocfs2_split_and_insert(handle
, et
, path
,
5125 &last_eb_bh
, split_index
,
5126 split_rec
, meta_ac
);
5130 ret
= ocfs2_try_to_merge_extent(handle
, et
, path
,
5131 split_index
, split_rec
,
5143 * Change the flags of the already-existing extent at cpos for len clusters.
5145 * new_flags: the flags we want to set.
5146 * clear_flags: the flags we want to clear.
5147 * phys: the new physical offset we want this new extent starts from.
5149 * If the existing extent is larger than the request, initiate a
5150 * split. An attempt will be made at merging with adjacent extents.
5152 * The caller is responsible for passing down meta_ac if we'll need it.
5154 int ocfs2_change_extent_flag(handle_t
*handle
,
5155 struct ocfs2_extent_tree
*et
,
5156 u32 cpos
, u32 len
, u32 phys
,
5157 struct ocfs2_alloc_context
*meta_ac
,
5158 struct ocfs2_cached_dealloc_ctxt
*dealloc
,
5159 int new_flags
, int clear_flags
)
5162 struct super_block
*sb
= ocfs2_metadata_cache_get_super(et
->et_ci
);
5163 u64 start_blkno
= ocfs2_clusters_to_blocks(sb
, phys
);
5164 struct ocfs2_extent_rec split_rec
;
5165 struct ocfs2_path
*left_path
= NULL
;
5166 struct ocfs2_extent_list
*el
;
5167 struct ocfs2_extent_rec
*rec
;
5169 left_path
= ocfs2_new_path_from_et(et
);
5176 ret
= ocfs2_find_path(et
->et_ci
, left_path
, cpos
);
5181 el
= path_leaf_el(left_path
);
5183 index
= ocfs2_search_extent_list(el
, cpos
);
5186 "Owner %llu has an extent at cpos %u which can no longer be found\n",
5187 (unsigned long long)ocfs2_metadata_cache_owner(et
->et_ci
),
5194 rec
= &el
->l_recs
[index
];
5195 if (new_flags
&& (rec
->e_flags
& new_flags
)) {
5196 mlog(ML_ERROR
, "Owner %llu tried to set %d flags on an "
5197 "extent that already had them",
5198 (unsigned long long)ocfs2_metadata_cache_owner(et
->et_ci
),
5203 if (clear_flags
&& !(rec
->e_flags
& clear_flags
)) {
5204 mlog(ML_ERROR
, "Owner %llu tried to clear %d flags on an "
5205 "extent that didn't have them",
5206 (unsigned long long)ocfs2_metadata_cache_owner(et
->et_ci
),
5211 memset(&split_rec
, 0, sizeof(struct ocfs2_extent_rec
));
5212 split_rec
.e_cpos
= cpu_to_le32(cpos
);
5213 split_rec
.e_leaf_clusters
= cpu_to_le16(len
);
5214 split_rec
.e_blkno
= cpu_to_le64(start_blkno
);
5215 split_rec
.e_flags
= rec
->e_flags
;
5217 split_rec
.e_flags
|= new_flags
;
5219 split_rec
.e_flags
&= ~clear_flags
;
5221 ret
= ocfs2_split_extent(handle
, et
, left_path
,
5222 index
, &split_rec
, meta_ac
,
5228 ocfs2_free_path(left_path
);
5234 * Mark the already-existing extent at cpos as written for len clusters.
5235 * This removes the unwritten extent flag.
5237 * If the existing extent is larger than the request, initiate a
5238 * split. An attempt will be made at merging with adjacent extents.
5240 * The caller is responsible for passing down meta_ac if we'll need it.
5242 int ocfs2_mark_extent_written(struct inode
*inode
,
5243 struct ocfs2_extent_tree
*et
,
5244 handle_t
*handle
, u32 cpos
, u32 len
, u32 phys
,
5245 struct ocfs2_alloc_context
*meta_ac
,
5246 struct ocfs2_cached_dealloc_ctxt
*dealloc
)
5250 trace_ocfs2_mark_extent_written(
5251 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
5254 if (!ocfs2_writes_unwritten_extents(OCFS2_SB(inode
->i_sb
))) {
5255 ocfs2_error(inode
->i_sb
, "Inode %llu has unwritten extents that are being written to, but the feature bit is not set in the super block\n",
5256 (unsigned long long)OCFS2_I(inode
)->ip_blkno
);
5262 * XXX: This should be fixed up so that we just re-insert the
5263 * next extent records.
5265 ocfs2_et_extent_map_truncate(et
, 0);
5267 ret
= ocfs2_change_extent_flag(handle
, et
, cpos
,
5268 len
, phys
, meta_ac
, dealloc
,
5269 0, OCFS2_EXT_UNWRITTEN
);
5277 static int ocfs2_split_tree(handle_t
*handle
, struct ocfs2_extent_tree
*et
,
5278 struct ocfs2_path
*path
,
5279 int index
, u32 new_range
,
5280 struct ocfs2_alloc_context
*meta_ac
)
5282 int ret
, depth
, credits
;
5283 struct buffer_head
*last_eb_bh
= NULL
;
5284 struct ocfs2_extent_block
*eb
;
5285 struct ocfs2_extent_list
*rightmost_el
, *el
;
5286 struct ocfs2_extent_rec split_rec
;
5287 struct ocfs2_extent_rec
*rec
;
5288 struct ocfs2_insert_type insert
;
5291 * Setup the record to split before we grow the tree.
5293 el
= path_leaf_el(path
);
5294 rec
= &el
->l_recs
[index
];
5295 ocfs2_make_right_split_rec(ocfs2_metadata_cache_get_super(et
->et_ci
),
5296 &split_rec
, new_range
, rec
);
5298 depth
= path
->p_tree_depth
;
5300 ret
= ocfs2_read_extent_block(et
->et_ci
,
5301 ocfs2_et_get_last_eb_blk(et
),
5308 eb
= (struct ocfs2_extent_block
*) last_eb_bh
->b_data
;
5309 rightmost_el
= &eb
->h_list
;
5311 rightmost_el
= path_leaf_el(path
);
5313 credits
= path
->p_tree_depth
+
5314 ocfs2_extend_meta_needed(et
->et_root_el
);
5315 ret
= ocfs2_extend_trans(handle
, credits
);
5321 if (le16_to_cpu(rightmost_el
->l_next_free_rec
) ==
5322 le16_to_cpu(rightmost_el
->l_count
)) {
5323 ret
= ocfs2_grow_tree(handle
, et
, &depth
, &last_eb_bh
,
5331 memset(&insert
, 0, sizeof(struct ocfs2_insert_type
));
5332 insert
.ins_appending
= APPEND_NONE
;
5333 insert
.ins_contig
= CONTIG_NONE
;
5334 insert
.ins_split
= SPLIT_RIGHT
;
5335 insert
.ins_tree_depth
= depth
;
5337 ret
= ocfs2_do_insert_extent(handle
, et
, &split_rec
, &insert
);
5346 static int ocfs2_truncate_rec(handle_t
*handle
,
5347 struct ocfs2_extent_tree
*et
,
5348 struct ocfs2_path
*path
, int index
,
5349 struct ocfs2_cached_dealloc_ctxt
*dealloc
,
5353 u32 left_cpos
, rec_range
, trunc_range
;
5354 int is_rightmost_tree_rec
= 0;
5355 struct super_block
*sb
= ocfs2_metadata_cache_get_super(et
->et_ci
);
5356 struct ocfs2_path
*left_path
= NULL
;
5357 struct ocfs2_extent_list
*el
= path_leaf_el(path
);
5358 struct ocfs2_extent_rec
*rec
;
5359 struct ocfs2_extent_block
*eb
;
5361 if (ocfs2_is_empty_extent(&el
->l_recs
[0]) && index
> 0) {
5362 /* extend credit for ocfs2_remove_rightmost_path */
5363 ret
= ocfs2_extend_rotate_transaction(handle
, 0,
5364 handle
->h_buffer_credits
,
5371 ret
= ocfs2_rotate_tree_left(handle
, et
, path
, dealloc
);
5380 if (index
== (le16_to_cpu(el
->l_next_free_rec
) - 1) &&
5381 path
->p_tree_depth
) {
5383 * Check whether this is the rightmost tree record. If
5384 * we remove all of this record or part of its right
5385 * edge then an update of the record lengths above it
5388 eb
= (struct ocfs2_extent_block
*)path_leaf_bh(path
)->b_data
;
5389 if (eb
->h_next_leaf_blk
== 0)
5390 is_rightmost_tree_rec
= 1;
5393 rec
= &el
->l_recs
[index
];
5394 if (index
== 0 && path
->p_tree_depth
&&
5395 le32_to_cpu(rec
->e_cpos
) == cpos
) {
5397 * Changing the leftmost offset (via partial or whole
5398 * record truncate) of an interior (or rightmost) path
5399 * means we have to update the subtree that is formed
5400 * by this leaf and the one to it's left.
5402 * There are two cases we can skip:
5403 * 1) Path is the leftmost one in our btree.
5404 * 2) The leaf is rightmost and will be empty after
5405 * we remove the extent record - the rotate code
5406 * knows how to update the newly formed edge.
5409 ret
= ocfs2_find_cpos_for_left_leaf(sb
, path
, &left_cpos
);
5415 if (left_cpos
&& le16_to_cpu(el
->l_next_free_rec
) > 1) {
5416 left_path
= ocfs2_new_path_from_path(path
);
5423 ret
= ocfs2_find_path(et
->et_ci
, left_path
,
5432 ret
= ocfs2_extend_rotate_transaction(handle
, 0,
5433 handle
->h_buffer_credits
,
5440 ret
= ocfs2_journal_access_path(et
->et_ci
, handle
, path
);
5446 ret
= ocfs2_journal_access_path(et
->et_ci
, handle
, left_path
);
5452 rec_range
= le32_to_cpu(rec
->e_cpos
) + ocfs2_rec_clusters(el
, rec
);
5453 trunc_range
= cpos
+ len
;
5455 if (le32_to_cpu(rec
->e_cpos
) == cpos
&& rec_range
== trunc_range
) {
5458 memset(rec
, 0, sizeof(*rec
));
5459 ocfs2_cleanup_merge(el
, index
);
5461 next_free
= le16_to_cpu(el
->l_next_free_rec
);
5462 if (is_rightmost_tree_rec
&& next_free
> 1) {
5464 * We skip the edge update if this path will
5465 * be deleted by the rotate code.
5467 rec
= &el
->l_recs
[next_free
- 1];
5468 ocfs2_adjust_rightmost_records(handle
, et
, path
,
5471 } else if (le32_to_cpu(rec
->e_cpos
) == cpos
) {
5472 /* Remove leftmost portion of the record. */
5473 le32_add_cpu(&rec
->e_cpos
, len
);
5474 le64_add_cpu(&rec
->e_blkno
, ocfs2_clusters_to_blocks(sb
, len
));
5475 le16_add_cpu(&rec
->e_leaf_clusters
, -len
);
5476 } else if (rec_range
== trunc_range
) {
5477 /* Remove rightmost portion of the record */
5478 le16_add_cpu(&rec
->e_leaf_clusters
, -len
);
5479 if (is_rightmost_tree_rec
)
5480 ocfs2_adjust_rightmost_records(handle
, et
, path
, rec
);
5482 /* Caller should have trapped this. */
5483 mlog(ML_ERROR
, "Owner %llu: Invalid record truncate: (%u, %u) "
5485 (unsigned long long)ocfs2_metadata_cache_owner(et
->et_ci
),
5486 le32_to_cpu(rec
->e_cpos
),
5487 le16_to_cpu(rec
->e_leaf_clusters
), cpos
, len
);
5494 subtree_index
= ocfs2_find_subtree_root(et
, left_path
, path
);
5495 ocfs2_complete_edge_insert(handle
, left_path
, path
,
5499 ocfs2_journal_dirty(handle
, path_leaf_bh(path
));
5501 ret
= ocfs2_rotate_tree_left(handle
, et
, path
, dealloc
);
5508 ocfs2_free_path(left_path
);
5512 int ocfs2_remove_extent(handle_t
*handle
,
5513 struct ocfs2_extent_tree
*et
,
5515 struct ocfs2_alloc_context
*meta_ac
,
5516 struct ocfs2_cached_dealloc_ctxt
*dealloc
)
5519 u32 rec_range
, trunc_range
;
5520 struct ocfs2_extent_rec
*rec
;
5521 struct ocfs2_extent_list
*el
;
5522 struct ocfs2_path
*path
= NULL
;
5525 * XXX: Why are we truncating to 0 instead of wherever this
5528 ocfs2_et_extent_map_truncate(et
, 0);
5530 path
= ocfs2_new_path_from_et(et
);
5537 ret
= ocfs2_find_path(et
->et_ci
, path
, cpos
);
5543 el
= path_leaf_el(path
);
5544 index
= ocfs2_search_extent_list(el
, cpos
);
5546 ocfs2_error(ocfs2_metadata_cache_get_super(et
->et_ci
),
5547 "Owner %llu has an extent at cpos %u which can no longer be found\n",
5548 (unsigned long long)ocfs2_metadata_cache_owner(et
->et_ci
),
5555 * We have 3 cases of extent removal:
5556 * 1) Range covers the entire extent rec
5557 * 2) Range begins or ends on one edge of the extent rec
5558 * 3) Range is in the middle of the extent rec (no shared edges)
5560 * For case 1 we remove the extent rec and left rotate to
5563 * For case 2 we just shrink the existing extent rec, with a
5564 * tree update if the shrinking edge is also the edge of an
5567 * For case 3 we do a right split to turn the extent rec into
5568 * something case 2 can handle.
5570 rec
= &el
->l_recs
[index
];
5571 rec_range
= le32_to_cpu(rec
->e_cpos
) + ocfs2_rec_clusters(el
, rec
);
5572 trunc_range
= cpos
+ len
;
5574 BUG_ON(cpos
< le32_to_cpu(rec
->e_cpos
) || trunc_range
> rec_range
);
5576 trace_ocfs2_remove_extent(
5577 (unsigned long long)ocfs2_metadata_cache_owner(et
->et_ci
),
5578 cpos
, len
, index
, le32_to_cpu(rec
->e_cpos
),
5579 ocfs2_rec_clusters(el
, rec
));
5581 if (le32_to_cpu(rec
->e_cpos
) == cpos
|| rec_range
== trunc_range
) {
5582 ret
= ocfs2_truncate_rec(handle
, et
, path
, index
, dealloc
,
5589 ret
= ocfs2_split_tree(handle
, et
, path
, index
,
5590 trunc_range
, meta_ac
);
5597 * The split could have manipulated the tree enough to
5598 * move the record location, so we have to look for it again.
5600 ocfs2_reinit_path(path
, 1);
5602 ret
= ocfs2_find_path(et
->et_ci
, path
, cpos
);
5608 el
= path_leaf_el(path
);
5609 index
= ocfs2_search_extent_list(el
, cpos
);
5611 ocfs2_error(ocfs2_metadata_cache_get_super(et
->et_ci
),
5612 "Owner %llu: split at cpos %u lost record\n",
5613 (unsigned long long)ocfs2_metadata_cache_owner(et
->et_ci
),
5620 * Double check our values here. If anything is fishy,
5621 * it's easier to catch it at the top level.
5623 rec
= &el
->l_recs
[index
];
5624 rec_range
= le32_to_cpu(rec
->e_cpos
) +
5625 ocfs2_rec_clusters(el
, rec
);
5626 if (rec_range
!= trunc_range
) {
5627 ocfs2_error(ocfs2_metadata_cache_get_super(et
->et_ci
),
5628 "Owner %llu: error after split at cpos %u trunc len %u, existing record is (%u,%u)\n",
5629 (unsigned long long)ocfs2_metadata_cache_owner(et
->et_ci
),
5630 cpos
, len
, le32_to_cpu(rec
->e_cpos
),
5631 ocfs2_rec_clusters(el
, rec
));
5636 ret
= ocfs2_truncate_rec(handle
, et
, path
, index
, dealloc
,
5645 ocfs2_free_path(path
);
5650 * ocfs2_reserve_blocks_for_rec_trunc() would look basically the
5651 * same as ocfs2_lock_alloctors(), except for it accepts a blocks
5652 * number to reserve some extra blocks, and it only handles meta
5655 * Currently, only ocfs2_remove_btree_range() uses it for truncating
5656 * and punching holes.
5658 static int ocfs2_reserve_blocks_for_rec_trunc(struct inode
*inode
,
5659 struct ocfs2_extent_tree
*et
,
5660 u32 extents_to_split
,
5661 struct ocfs2_alloc_context
**ac
,
5664 int ret
= 0, num_free_extents
;
5665 unsigned int max_recs_needed
= 2 * extents_to_split
;
5666 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
5670 num_free_extents
= ocfs2_num_free_extents(osb
, et
);
5671 if (num_free_extents
< 0) {
5672 ret
= num_free_extents
;
5677 if (!num_free_extents
||
5678 (ocfs2_sparse_alloc(osb
) && num_free_extents
< max_recs_needed
))
5679 extra_blocks
+= ocfs2_extend_meta_needed(et
->et_root_el
);
5682 ret
= ocfs2_reserve_new_metadata_blocks(osb
, extra_blocks
, ac
);
5693 ocfs2_free_alloc_context(*ac
);
5701 int ocfs2_remove_btree_range(struct inode
*inode
,
5702 struct ocfs2_extent_tree
*et
,
5703 u32 cpos
, u32 phys_cpos
, u32 len
, int flags
,
5704 struct ocfs2_cached_dealloc_ctxt
*dealloc
,
5705 u64 refcount_loc
, bool refcount_tree_locked
)
5707 int ret
, credits
= 0, extra_blocks
= 0;
5708 u64 phys_blkno
= ocfs2_clusters_to_blocks(inode
->i_sb
, phys_cpos
);
5709 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
5710 struct inode
*tl_inode
= osb
->osb_tl_inode
;
5712 struct ocfs2_alloc_context
*meta_ac
= NULL
;
5713 struct ocfs2_refcount_tree
*ref_tree
= NULL
;
5715 if ((flags
& OCFS2_EXT_REFCOUNTED
) && len
) {
5716 BUG_ON(!(OCFS2_I(inode
)->ip_dyn_features
&
5717 OCFS2_HAS_REFCOUNT_FL
));
5719 if (!refcount_tree_locked
) {
5720 ret
= ocfs2_lock_refcount_tree(osb
, refcount_loc
, 1,
5728 ret
= ocfs2_prepare_refcount_change_for_del(inode
,
5740 ret
= ocfs2_reserve_blocks_for_rec_trunc(inode
, et
, 1, &meta_ac
,
5747 inode_lock(tl_inode
);
5749 if (ocfs2_truncate_log_needs_flush(osb
)) {
5750 ret
= __ocfs2_flush_truncate_log(osb
);
5757 handle
= ocfs2_start_trans(osb
,
5758 ocfs2_remove_extent_credits(osb
->sb
) + credits
);
5759 if (IS_ERR(handle
)) {
5760 ret
= PTR_ERR(handle
);
5765 ret
= ocfs2_et_root_journal_access(handle
, et
,
5766 OCFS2_JOURNAL_ACCESS_WRITE
);
5772 dquot_free_space_nodirty(inode
,
5773 ocfs2_clusters_to_bytes(inode
->i_sb
, len
));
5775 ret
= ocfs2_remove_extent(handle
, et
, cpos
, len
, meta_ac
, dealloc
);
5781 ocfs2_et_update_clusters(et
, -len
);
5782 ocfs2_update_inode_fsync_trans(handle
, inode
, 1);
5784 ocfs2_journal_dirty(handle
, et
->et_root_bh
);
5787 if (flags
& OCFS2_EXT_REFCOUNTED
)
5788 ret
= ocfs2_decrease_refcount(inode
, handle
,
5789 ocfs2_blocks_to_clusters(osb
->sb
,
5794 ret
= ocfs2_truncate_log_append(osb
, handle
,
5802 ocfs2_commit_trans(osb
, handle
);
5804 inode_unlock(tl_inode
);
5807 ocfs2_free_alloc_context(meta_ac
);
5810 ocfs2_unlock_refcount_tree(osb
, ref_tree
, 1);
5815 int ocfs2_truncate_log_needs_flush(struct ocfs2_super
*osb
)
5817 struct buffer_head
*tl_bh
= osb
->osb_tl_bh
;
5818 struct ocfs2_dinode
*di
;
5819 struct ocfs2_truncate_log
*tl
;
5821 di
= (struct ocfs2_dinode
*) tl_bh
->b_data
;
5822 tl
= &di
->id2
.i_dealloc
;
5824 mlog_bug_on_msg(le16_to_cpu(tl
->tl_used
) > le16_to_cpu(tl
->tl_count
),
5825 "slot %d, invalid truncate log parameters: used = "
5826 "%u, count = %u\n", osb
->slot_num
,
5827 le16_to_cpu(tl
->tl_used
), le16_to_cpu(tl
->tl_count
));
5828 return le16_to_cpu(tl
->tl_used
) == le16_to_cpu(tl
->tl_count
);
5831 static int ocfs2_truncate_log_can_coalesce(struct ocfs2_truncate_log
*tl
,
5832 unsigned int new_start
)
5834 unsigned int tail_index
;
5835 unsigned int current_tail
;
5837 /* No records, nothing to coalesce */
5838 if (!le16_to_cpu(tl
->tl_used
))
5841 tail_index
= le16_to_cpu(tl
->tl_used
) - 1;
5842 current_tail
= le32_to_cpu(tl
->tl_recs
[tail_index
].t_start
);
5843 current_tail
+= le32_to_cpu(tl
->tl_recs
[tail_index
].t_clusters
);
5845 return current_tail
== new_start
;
5848 int ocfs2_truncate_log_append(struct ocfs2_super
*osb
,
5851 unsigned int num_clusters
)
5854 unsigned int start_cluster
, tl_count
;
5855 struct inode
*tl_inode
= osb
->osb_tl_inode
;
5856 struct buffer_head
*tl_bh
= osb
->osb_tl_bh
;
5857 struct ocfs2_dinode
*di
;
5858 struct ocfs2_truncate_log
*tl
;
5860 BUG_ON(inode_trylock(tl_inode
));
5862 start_cluster
= ocfs2_blocks_to_clusters(osb
->sb
, start_blk
);
5864 di
= (struct ocfs2_dinode
*) tl_bh
->b_data
;
5866 /* tl_bh is loaded from ocfs2_truncate_log_init(). It's validated
5867 * by the underlying call to ocfs2_read_inode_block(), so any
5868 * corruption is a code bug */
5869 BUG_ON(!OCFS2_IS_VALID_DINODE(di
));
5871 tl
= &di
->id2
.i_dealloc
;
5872 tl_count
= le16_to_cpu(tl
->tl_count
);
5873 mlog_bug_on_msg(tl_count
> ocfs2_truncate_recs_per_inode(osb
->sb
) ||
5875 "Truncate record count on #%llu invalid "
5876 "wanted %u, actual %u\n",
5877 (unsigned long long)OCFS2_I(tl_inode
)->ip_blkno
,
5878 ocfs2_truncate_recs_per_inode(osb
->sb
),
5879 le16_to_cpu(tl
->tl_count
));
5881 /* Caller should have known to flush before calling us. */
5882 index
= le16_to_cpu(tl
->tl_used
);
5883 if (index
>= tl_count
) {
5889 status
= ocfs2_journal_access_di(handle
, INODE_CACHE(tl_inode
), tl_bh
,
5890 OCFS2_JOURNAL_ACCESS_WRITE
);
5896 trace_ocfs2_truncate_log_append(
5897 (unsigned long long)OCFS2_I(tl_inode
)->ip_blkno
, index
,
5898 start_cluster
, num_clusters
);
5899 if (ocfs2_truncate_log_can_coalesce(tl
, start_cluster
)) {
5901 * Move index back to the record we are coalescing with.
5902 * ocfs2_truncate_log_can_coalesce() guarantees nonzero
5906 num_clusters
+= le32_to_cpu(tl
->tl_recs
[index
].t_clusters
);
5907 trace_ocfs2_truncate_log_append(
5908 (unsigned long long)OCFS2_I(tl_inode
)->ip_blkno
,
5909 index
, le32_to_cpu(tl
->tl_recs
[index
].t_start
),
5912 tl
->tl_recs
[index
].t_start
= cpu_to_le32(start_cluster
);
5913 tl
->tl_used
= cpu_to_le16(index
+ 1);
5915 tl
->tl_recs
[index
].t_clusters
= cpu_to_le32(num_clusters
);
5917 ocfs2_journal_dirty(handle
, tl_bh
);
5919 osb
->truncated_clusters
+= num_clusters
;
5924 static int ocfs2_replay_truncate_records(struct ocfs2_super
*osb
,
5925 struct inode
*data_alloc_inode
,
5926 struct buffer_head
*data_alloc_bh
)
5930 unsigned int num_clusters
;
5932 struct ocfs2_truncate_rec rec
;
5933 struct ocfs2_dinode
*di
;
5934 struct ocfs2_truncate_log
*tl
;
5935 struct inode
*tl_inode
= osb
->osb_tl_inode
;
5936 struct buffer_head
*tl_bh
= osb
->osb_tl_bh
;
5939 di
= (struct ocfs2_dinode
*) tl_bh
->b_data
;
5940 tl
= &di
->id2
.i_dealloc
;
5941 i
= le16_to_cpu(tl
->tl_used
) - 1;
5943 handle
= ocfs2_start_trans(osb
, OCFS2_TRUNCATE_LOG_FLUSH_ONE_REC
);
5944 if (IS_ERR(handle
)) {
5945 status
= PTR_ERR(handle
);
5950 /* Caller has given us at least enough credits to
5951 * update the truncate log dinode */
5952 status
= ocfs2_journal_access_di(handle
, INODE_CACHE(tl_inode
), tl_bh
,
5953 OCFS2_JOURNAL_ACCESS_WRITE
);
5959 tl
->tl_used
= cpu_to_le16(i
);
5961 ocfs2_journal_dirty(handle
, tl_bh
);
5963 rec
= tl
->tl_recs
[i
];
5964 start_blk
= ocfs2_clusters_to_blocks(data_alloc_inode
->i_sb
,
5965 le32_to_cpu(rec
.t_start
));
5966 num_clusters
= le32_to_cpu(rec
.t_clusters
);
5968 /* if start_blk is not set, we ignore the record as
5971 trace_ocfs2_replay_truncate_records(
5972 (unsigned long long)OCFS2_I(tl_inode
)->ip_blkno
,
5973 i
, le32_to_cpu(rec
.t_start
), num_clusters
);
5975 status
= ocfs2_free_clusters(handle
, data_alloc_inode
,
5976 data_alloc_bh
, start_blk
,
5984 ocfs2_commit_trans(osb
, handle
);
5988 osb
->truncated_clusters
= 0;
5994 /* Expects you to already be holding tl_inode->i_mutex */
5995 int __ocfs2_flush_truncate_log(struct ocfs2_super
*osb
)
5998 unsigned int num_to_flush
;
5999 struct inode
*tl_inode
= osb
->osb_tl_inode
;
6000 struct inode
*data_alloc_inode
= NULL
;
6001 struct buffer_head
*tl_bh
= osb
->osb_tl_bh
;
6002 struct buffer_head
*data_alloc_bh
= NULL
;
6003 struct ocfs2_dinode
*di
;
6004 struct ocfs2_truncate_log
*tl
;
6006 BUG_ON(inode_trylock(tl_inode
));
6008 di
= (struct ocfs2_dinode
*) tl_bh
->b_data
;
6010 /* tl_bh is loaded from ocfs2_truncate_log_init(). It's validated
6011 * by the underlying call to ocfs2_read_inode_block(), so any
6012 * corruption is a code bug */
6013 BUG_ON(!OCFS2_IS_VALID_DINODE(di
));
6015 tl
= &di
->id2
.i_dealloc
;
6016 num_to_flush
= le16_to_cpu(tl
->tl_used
);
6017 trace_ocfs2_flush_truncate_log(
6018 (unsigned long long)OCFS2_I(tl_inode
)->ip_blkno
,
6020 if (!num_to_flush
) {
6025 data_alloc_inode
= ocfs2_get_system_file_inode(osb
,
6026 GLOBAL_BITMAP_SYSTEM_INODE
,
6027 OCFS2_INVALID_SLOT
);
6028 if (!data_alloc_inode
) {
6030 mlog(ML_ERROR
, "Could not get bitmap inode!\n");
6034 inode_lock(data_alloc_inode
);
6036 status
= ocfs2_inode_lock(data_alloc_inode
, &data_alloc_bh
, 1);
6042 status
= ocfs2_replay_truncate_records(osb
, data_alloc_inode
,
6047 brelse(data_alloc_bh
);
6048 ocfs2_inode_unlock(data_alloc_inode
, 1);
6051 inode_unlock(data_alloc_inode
);
6052 iput(data_alloc_inode
);
6058 int ocfs2_flush_truncate_log(struct ocfs2_super
*osb
)
6061 struct inode
*tl_inode
= osb
->osb_tl_inode
;
6063 inode_lock(tl_inode
);
6064 status
= __ocfs2_flush_truncate_log(osb
);
6065 inode_unlock(tl_inode
);
6070 static void ocfs2_truncate_log_worker(struct work_struct
*work
)
6073 struct ocfs2_super
*osb
=
6074 container_of(work
, struct ocfs2_super
,
6075 osb_truncate_log_wq
.work
);
6077 status
= ocfs2_flush_truncate_log(osb
);
6081 ocfs2_init_steal_slots(osb
);
6084 #define OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL (2 * HZ)
6085 void ocfs2_schedule_truncate_log_flush(struct ocfs2_super
*osb
,
6088 if (osb
->osb_tl_inode
&&
6089 atomic_read(&osb
->osb_tl_disable
) == 0) {
6090 /* We want to push off log flushes while truncates are
6093 cancel_delayed_work(&osb
->osb_truncate_log_wq
);
6095 queue_delayed_work(osb
->ocfs2_wq
, &osb
->osb_truncate_log_wq
,
6096 OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL
);
6101 * Try to flush truncate logs if we can free enough clusters from it.
6102 * As for return value, "< 0" means error, "0" no space and "1" means
6103 * we have freed enough spaces and let the caller try to allocate again.
6105 int ocfs2_try_to_free_truncate_log(struct ocfs2_super
*osb
,
6106 unsigned int needed
)
6110 unsigned int truncated_clusters
;
6112 inode_lock(osb
->osb_tl_inode
);
6113 truncated_clusters
= osb
->truncated_clusters
;
6114 inode_unlock(osb
->osb_tl_inode
);
6117 * Check whether we can succeed in allocating if we free
6120 if (truncated_clusters
< needed
)
6123 ret
= ocfs2_flush_truncate_log(osb
);
6129 if (jbd2_journal_start_commit(osb
->journal
->j_journal
, &target
)) {
6130 jbd2_log_wait_commit(osb
->journal
->j_journal
, target
);
6137 static int ocfs2_get_truncate_log_info(struct ocfs2_super
*osb
,
6139 struct inode
**tl_inode
,
6140 struct buffer_head
**tl_bh
)
6143 struct inode
*inode
= NULL
;
6144 struct buffer_head
*bh
= NULL
;
6146 inode
= ocfs2_get_system_file_inode(osb
,
6147 TRUNCATE_LOG_SYSTEM_INODE
,
6151 mlog(ML_ERROR
, "Could not get load truncate log inode!\n");
6155 status
= ocfs2_read_inode_block(inode
, &bh
);
6168 /* called during the 1st stage of node recovery. we stamp a clean
6169 * truncate log and pass back a copy for processing later. if the
6170 * truncate log does not require processing, a *tl_copy is set to
6172 int ocfs2_begin_truncate_log_recovery(struct ocfs2_super
*osb
,
6174 struct ocfs2_dinode
**tl_copy
)
6177 struct inode
*tl_inode
= NULL
;
6178 struct buffer_head
*tl_bh
= NULL
;
6179 struct ocfs2_dinode
*di
;
6180 struct ocfs2_truncate_log
*tl
;
6184 trace_ocfs2_begin_truncate_log_recovery(slot_num
);
6186 status
= ocfs2_get_truncate_log_info(osb
, slot_num
, &tl_inode
, &tl_bh
);
6192 di
= (struct ocfs2_dinode
*) tl_bh
->b_data
;
6194 /* tl_bh is loaded from ocfs2_get_truncate_log_info(). It's
6195 * validated by the underlying call to ocfs2_read_inode_block(),
6196 * so any corruption is a code bug */
6197 BUG_ON(!OCFS2_IS_VALID_DINODE(di
));
6199 tl
= &di
->id2
.i_dealloc
;
6200 if (le16_to_cpu(tl
->tl_used
)) {
6201 trace_ocfs2_truncate_log_recovery_num(le16_to_cpu(tl
->tl_used
));
6203 *tl_copy
= kmalloc(tl_bh
->b_size
, GFP_KERNEL
);
6210 /* Assuming the write-out below goes well, this copy
6211 * will be passed back to recovery for processing. */
6212 memcpy(*tl_copy
, tl_bh
->b_data
, tl_bh
->b_size
);
6214 /* All we need to do to clear the truncate log is set
6218 ocfs2_compute_meta_ecc(osb
->sb
, tl_bh
->b_data
, &di
->i_check
);
6219 status
= ocfs2_write_block(osb
, tl_bh
, INODE_CACHE(tl_inode
));
6239 int ocfs2_complete_truncate_log_recovery(struct ocfs2_super
*osb
,
6240 struct ocfs2_dinode
*tl_copy
)
6244 unsigned int clusters
, num_recs
, start_cluster
;
6247 struct inode
*tl_inode
= osb
->osb_tl_inode
;
6248 struct ocfs2_truncate_log
*tl
;
6250 if (OCFS2_I(tl_inode
)->ip_blkno
== le64_to_cpu(tl_copy
->i_blkno
)) {
6251 mlog(ML_ERROR
, "Asked to recover my own truncate log!\n");
6255 tl
= &tl_copy
->id2
.i_dealloc
;
6256 num_recs
= le16_to_cpu(tl
->tl_used
);
6257 trace_ocfs2_complete_truncate_log_recovery(
6258 (unsigned long long)le64_to_cpu(tl_copy
->i_blkno
),
6261 inode_lock(tl_inode
);
6262 for(i
= 0; i
< num_recs
; i
++) {
6263 if (ocfs2_truncate_log_needs_flush(osb
)) {
6264 status
= __ocfs2_flush_truncate_log(osb
);
6271 handle
= ocfs2_start_trans(osb
, OCFS2_TRUNCATE_LOG_UPDATE
);
6272 if (IS_ERR(handle
)) {
6273 status
= PTR_ERR(handle
);
6278 clusters
= le32_to_cpu(tl
->tl_recs
[i
].t_clusters
);
6279 start_cluster
= le32_to_cpu(tl
->tl_recs
[i
].t_start
);
6280 start_blk
= ocfs2_clusters_to_blocks(osb
->sb
, start_cluster
);
6282 status
= ocfs2_truncate_log_append(osb
, handle
,
6283 start_blk
, clusters
);
6284 ocfs2_commit_trans(osb
, handle
);
6292 inode_unlock(tl_inode
);
6297 void ocfs2_truncate_log_shutdown(struct ocfs2_super
*osb
)
6300 struct inode
*tl_inode
= osb
->osb_tl_inode
;
6302 atomic_set(&osb
->osb_tl_disable
, 1);
6305 cancel_delayed_work(&osb
->osb_truncate_log_wq
);
6306 flush_workqueue(osb
->ocfs2_wq
);
6308 status
= ocfs2_flush_truncate_log(osb
);
6312 brelse(osb
->osb_tl_bh
);
6313 iput(osb
->osb_tl_inode
);
6317 int ocfs2_truncate_log_init(struct ocfs2_super
*osb
)
6320 struct inode
*tl_inode
= NULL
;
6321 struct buffer_head
*tl_bh
= NULL
;
6323 status
= ocfs2_get_truncate_log_info(osb
,
6330 /* ocfs2_truncate_log_shutdown keys on the existence of
6331 * osb->osb_tl_inode so we don't set any of the osb variables
6332 * until we're sure all is well. */
6333 INIT_DELAYED_WORK(&osb
->osb_truncate_log_wq
,
6334 ocfs2_truncate_log_worker
);
6335 atomic_set(&osb
->osb_tl_disable
, 0);
6336 osb
->osb_tl_bh
= tl_bh
;
6337 osb
->osb_tl_inode
= tl_inode
;
6343 * Delayed de-allocation of suballocator blocks.
6345 * Some sets of block de-allocations might involve multiple suballocator inodes.
6347 * The locking for this can get extremely complicated, especially when
6348 * the suballocator inodes to delete from aren't known until deep
6349 * within an unrelated codepath.
6351 * ocfs2_extent_block structures are a good example of this - an inode
6352 * btree could have been grown by any number of nodes each allocating
6353 * out of their own suballoc inode.
6355 * These structures allow the delay of block de-allocation until a
6356 * later time, when locking of multiple cluster inodes won't cause
6361 * Describe a single bit freed from a suballocator. For the block
6362 * suballocators, it represents one block. For the global cluster
6363 * allocator, it represents some clusters and free_bit indicates
6366 struct ocfs2_cached_block_free
{
6367 struct ocfs2_cached_block_free
*free_next
;
6370 unsigned int free_bit
;
6373 struct ocfs2_per_slot_free_list
{
6374 struct ocfs2_per_slot_free_list
*f_next_suballocator
;
6377 struct ocfs2_cached_block_free
*f_first
;
6380 static int ocfs2_free_cached_blocks(struct ocfs2_super
*osb
,
6383 struct ocfs2_cached_block_free
*head
)
6388 struct inode
*inode
;
6389 struct buffer_head
*di_bh
= NULL
;
6390 struct ocfs2_cached_block_free
*tmp
;
6392 inode
= ocfs2_get_system_file_inode(osb
, sysfile_type
, slot
);
6401 ret
= ocfs2_inode_lock(inode
, &di_bh
, 1);
6409 bg_blkno
= head
->free_bg
;
6411 bg_blkno
= ocfs2_which_suballoc_group(head
->free_blk
,
6413 handle
= ocfs2_start_trans(osb
, OCFS2_SUBALLOC_FREE
);
6414 if (IS_ERR(handle
)) {
6415 ret
= PTR_ERR(handle
);
6420 trace_ocfs2_free_cached_blocks(
6421 (unsigned long long)head
->free_blk
, head
->free_bit
);
6423 ret
= ocfs2_free_suballoc_bits(handle
, inode
, di_bh
,
6424 head
->free_bit
, bg_blkno
, 1);
6428 ocfs2_commit_trans(osb
, handle
);
6431 head
= head
->free_next
;
6436 ocfs2_inode_unlock(inode
, 1);
6439 inode_unlock(inode
);
6443 /* Premature exit may have left some dangling items. */
6445 head
= head
->free_next
;
6452 int ocfs2_cache_cluster_dealloc(struct ocfs2_cached_dealloc_ctxt
*ctxt
,
6453 u64 blkno
, unsigned int bit
)
6456 struct ocfs2_cached_block_free
*item
;
6458 item
= kzalloc(sizeof(*item
), GFP_NOFS
);
6465 trace_ocfs2_cache_cluster_dealloc((unsigned long long)blkno
, bit
);
6467 item
->free_blk
= blkno
;
6468 item
->free_bit
= bit
;
6469 item
->free_next
= ctxt
->c_global_allocator
;
6471 ctxt
->c_global_allocator
= item
;
6475 static int ocfs2_free_cached_clusters(struct ocfs2_super
*osb
,
6476 struct ocfs2_cached_block_free
*head
)
6478 struct ocfs2_cached_block_free
*tmp
;
6479 struct inode
*tl_inode
= osb
->osb_tl_inode
;
6483 inode_lock(tl_inode
);
6486 if (ocfs2_truncate_log_needs_flush(osb
)) {
6487 ret
= __ocfs2_flush_truncate_log(osb
);
6494 handle
= ocfs2_start_trans(osb
, OCFS2_TRUNCATE_LOG_UPDATE
);
6495 if (IS_ERR(handle
)) {
6496 ret
= PTR_ERR(handle
);
6501 ret
= ocfs2_truncate_log_append(osb
, handle
, head
->free_blk
,
6504 ocfs2_commit_trans(osb
, handle
);
6506 head
= head
->free_next
;
6515 inode_unlock(tl_inode
);
6518 /* Premature exit may have left some dangling items. */
6520 head
= head
->free_next
;
6527 int ocfs2_run_deallocs(struct ocfs2_super
*osb
,
6528 struct ocfs2_cached_dealloc_ctxt
*ctxt
)
6531 struct ocfs2_per_slot_free_list
*fl
;
6536 while (ctxt
->c_first_suballocator
) {
6537 fl
= ctxt
->c_first_suballocator
;
6540 trace_ocfs2_run_deallocs(fl
->f_inode_type
,
6542 ret2
= ocfs2_free_cached_blocks(osb
,
6552 ctxt
->c_first_suballocator
= fl
->f_next_suballocator
;
6556 if (ctxt
->c_global_allocator
) {
6557 ret2
= ocfs2_free_cached_clusters(osb
,
6558 ctxt
->c_global_allocator
);
6564 ctxt
->c_global_allocator
= NULL
;
6570 static struct ocfs2_per_slot_free_list
*
6571 ocfs2_find_per_slot_free_list(int type
,
6573 struct ocfs2_cached_dealloc_ctxt
*ctxt
)
6575 struct ocfs2_per_slot_free_list
*fl
= ctxt
->c_first_suballocator
;
6578 if (fl
->f_inode_type
== type
&& fl
->f_slot
== slot
)
6581 fl
= fl
->f_next_suballocator
;
6584 fl
= kmalloc(sizeof(*fl
), GFP_NOFS
);
6586 fl
->f_inode_type
= type
;
6589 fl
->f_next_suballocator
= ctxt
->c_first_suballocator
;
6591 ctxt
->c_first_suballocator
= fl
;
6596 int ocfs2_cache_block_dealloc(struct ocfs2_cached_dealloc_ctxt
*ctxt
,
6597 int type
, int slot
, u64 suballoc
,
6598 u64 blkno
, unsigned int bit
)
6601 struct ocfs2_per_slot_free_list
*fl
;
6602 struct ocfs2_cached_block_free
*item
;
6604 fl
= ocfs2_find_per_slot_free_list(type
, slot
, ctxt
);
6611 item
= kzalloc(sizeof(*item
), GFP_NOFS
);
6618 trace_ocfs2_cache_block_dealloc(type
, slot
,
6619 (unsigned long long)suballoc
,
6620 (unsigned long long)blkno
, bit
);
6622 item
->free_bg
= suballoc
;
6623 item
->free_blk
= blkno
;
6624 item
->free_bit
= bit
;
6625 item
->free_next
= fl
->f_first
;
6634 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt
*ctxt
,
6635 struct ocfs2_extent_block
*eb
)
6637 return ocfs2_cache_block_dealloc(ctxt
, EXTENT_ALLOC_SYSTEM_INODE
,
6638 le16_to_cpu(eb
->h_suballoc_slot
),
6639 le64_to_cpu(eb
->h_suballoc_loc
),
6640 le64_to_cpu(eb
->h_blkno
),
6641 le16_to_cpu(eb
->h_suballoc_bit
));
6644 static int ocfs2_zero_func(handle_t
*handle
, struct buffer_head
*bh
)
6646 set_buffer_uptodate(bh
);
6647 mark_buffer_dirty(bh
);
6651 void ocfs2_map_and_dirty_page(struct inode
*inode
, handle_t
*handle
,
6652 unsigned int from
, unsigned int to
,
6653 struct page
*page
, int zero
, u64
*phys
)
6655 int ret
, partial
= 0;
6657 ret
= ocfs2_map_page_blocks(page
, phys
, inode
, from
, to
, 0);
6662 zero_user_segment(page
, from
, to
);
6665 * Need to set the buffers we zero'd into uptodate
6666 * here if they aren't - ocfs2_map_page_blocks()
6667 * might've skipped some
6669 ret
= walk_page_buffers(handle
, page_buffers(page
),
6674 else if (ocfs2_should_order_data(inode
)) {
6675 ret
= ocfs2_jbd2_file_inode(handle
, inode
);
6681 SetPageUptodate(page
);
6683 flush_dcache_page(page
);
6686 static void ocfs2_zero_cluster_pages(struct inode
*inode
, loff_t start
,
6687 loff_t end
, struct page
**pages
,
6688 int numpages
, u64 phys
, handle_t
*handle
)
6692 unsigned int from
, to
= PAGE_SIZE
;
6693 struct super_block
*sb
= inode
->i_sb
;
6695 BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(sb
)));
6701 for(i
= 0; i
< numpages
; i
++) {
6704 from
= start
& (PAGE_SIZE
- 1);
6705 if ((end
>> PAGE_SHIFT
) == page
->index
)
6706 to
= end
& (PAGE_SIZE
- 1);
6708 BUG_ON(from
> PAGE_SIZE
);
6709 BUG_ON(to
> PAGE_SIZE
);
6711 ocfs2_map_and_dirty_page(inode
, handle
, from
, to
, page
, 1,
6714 start
= (page
->index
+ 1) << PAGE_SHIFT
;
6718 ocfs2_unlock_and_free_pages(pages
, numpages
);
6721 int ocfs2_grab_pages(struct inode
*inode
, loff_t start
, loff_t end
,
6722 struct page
**pages
, int *num
)
6724 int numpages
, ret
= 0;
6725 struct address_space
*mapping
= inode
->i_mapping
;
6726 unsigned long index
;
6727 loff_t last_page_bytes
;
6729 BUG_ON(start
> end
);
6732 last_page_bytes
= PAGE_ALIGN(end
);
6733 index
= start
>> PAGE_SHIFT
;
6735 pages
[numpages
] = find_or_create_page(mapping
, index
, GFP_NOFS
);
6736 if (!pages
[numpages
]) {
6744 } while (index
< (last_page_bytes
>> PAGE_SHIFT
));
6749 ocfs2_unlock_and_free_pages(pages
, numpages
);
6758 static int ocfs2_grab_eof_pages(struct inode
*inode
, loff_t start
, loff_t end
,
6759 struct page
**pages
, int *num
)
6761 struct super_block
*sb
= inode
->i_sb
;
6763 BUG_ON(start
>> OCFS2_SB(sb
)->s_clustersize_bits
!=
6764 (end
- 1) >> OCFS2_SB(sb
)->s_clustersize_bits
);
6766 return ocfs2_grab_pages(inode
, start
, end
, pages
, num
);
6770 * Zero the area past i_size but still within an allocated
6771 * cluster. This avoids exposing nonzero data on subsequent file
6774 * We need to call this before i_size is updated on the inode because
6775 * otherwise block_write_full_page() will skip writeout of pages past
6776 * i_size. The new_i_size parameter is passed for this reason.
6778 int ocfs2_zero_range_for_truncate(struct inode
*inode
, handle_t
*handle
,
6779 u64 range_start
, u64 range_end
)
6781 int ret
= 0, numpages
;
6782 struct page
**pages
= NULL
;
6784 unsigned int ext_flags
;
6785 struct super_block
*sb
= inode
->i_sb
;
6788 * File systems which don't support sparse files zero on every
6791 if (!ocfs2_sparse_alloc(OCFS2_SB(sb
)))
6794 pages
= kcalloc(ocfs2_pages_per_cluster(sb
),
6795 sizeof(struct page
*), GFP_NOFS
);
6796 if (pages
== NULL
) {
6802 if (range_start
== range_end
)
6805 ret
= ocfs2_extent_map_get_blocks(inode
,
6806 range_start
>> sb
->s_blocksize_bits
,
6807 &phys
, NULL
, &ext_flags
);
6814 * Tail is a hole, or is marked unwritten. In either case, we
6815 * can count on read and write to return/push zero's.
6817 if (phys
== 0 || ext_flags
& OCFS2_EXT_UNWRITTEN
)
6820 ret
= ocfs2_grab_eof_pages(inode
, range_start
, range_end
, pages
,
6827 ocfs2_zero_cluster_pages(inode
, range_start
, range_end
, pages
,
6828 numpages
, phys
, handle
);
6831 * Initiate writeout of the pages we zero'd here. We don't
6832 * wait on them - the truncate_inode_pages() call later will
6835 ret
= filemap_fdatawrite_range(inode
->i_mapping
, range_start
,
6846 static void ocfs2_zero_dinode_id2_with_xattr(struct inode
*inode
,
6847 struct ocfs2_dinode
*di
)
6849 unsigned int blocksize
= 1 << inode
->i_sb
->s_blocksize_bits
;
6850 unsigned int xattrsize
= le16_to_cpu(di
->i_xattr_inline_size
);
6852 if (le16_to_cpu(di
->i_dyn_features
) & OCFS2_INLINE_XATTR_FL
)
6853 memset(&di
->id2
, 0, blocksize
-
6854 offsetof(struct ocfs2_dinode
, id2
) -
6857 memset(&di
->id2
, 0, blocksize
-
6858 offsetof(struct ocfs2_dinode
, id2
));
6861 void ocfs2_dinode_new_extent_list(struct inode
*inode
,
6862 struct ocfs2_dinode
*di
)
6864 ocfs2_zero_dinode_id2_with_xattr(inode
, di
);
6865 di
->id2
.i_list
.l_tree_depth
= 0;
6866 di
->id2
.i_list
.l_next_free_rec
= 0;
6867 di
->id2
.i_list
.l_count
= cpu_to_le16(
6868 ocfs2_extent_recs_per_inode_with_xattr(inode
->i_sb
, di
));
6871 void ocfs2_set_inode_data_inline(struct inode
*inode
, struct ocfs2_dinode
*di
)
6873 struct ocfs2_inode_info
*oi
= OCFS2_I(inode
);
6874 struct ocfs2_inline_data
*idata
= &di
->id2
.i_data
;
6876 spin_lock(&oi
->ip_lock
);
6877 oi
->ip_dyn_features
|= OCFS2_INLINE_DATA_FL
;
6878 di
->i_dyn_features
= cpu_to_le16(oi
->ip_dyn_features
);
6879 spin_unlock(&oi
->ip_lock
);
6882 * We clear the entire i_data structure here so that all
6883 * fields can be properly initialized.
6885 ocfs2_zero_dinode_id2_with_xattr(inode
, di
);
6887 idata
->id_count
= cpu_to_le16(
6888 ocfs2_max_inline_data_with_xattr(inode
->i_sb
, di
));
6891 int ocfs2_convert_inline_data_to_extents(struct inode
*inode
,
6892 struct buffer_head
*di_bh
)
6894 int ret
, i
, has_data
, num_pages
= 0;
6898 u64
uninitialized_var(block
);
6899 struct ocfs2_inode_info
*oi
= OCFS2_I(inode
);
6900 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
6901 struct ocfs2_dinode
*di
= (struct ocfs2_dinode
*)di_bh
->b_data
;
6902 struct ocfs2_alloc_context
*data_ac
= NULL
;
6903 struct page
**pages
= NULL
;
6904 loff_t end
= osb
->s_clustersize
;
6905 struct ocfs2_extent_tree et
;
6908 has_data
= i_size_read(inode
) ? 1 : 0;
6911 pages
= kcalloc(ocfs2_pages_per_cluster(osb
->sb
),
6912 sizeof(struct page
*), GFP_NOFS
);
6913 if (pages
== NULL
) {
6919 ret
= ocfs2_reserve_clusters(osb
, 1, &data_ac
);
6926 handle
= ocfs2_start_trans(osb
,
6927 ocfs2_inline_to_extents_credits(osb
->sb
));
6928 if (IS_ERR(handle
)) {
6929 ret
= PTR_ERR(handle
);
6934 ret
= ocfs2_journal_access_di(handle
, INODE_CACHE(inode
), di_bh
,
6935 OCFS2_JOURNAL_ACCESS_WRITE
);
6942 unsigned int page_end
;
6945 ret
= dquot_alloc_space_nodirty(inode
,
6946 ocfs2_clusters_to_bytes(osb
->sb
, 1));
6951 data_ac
->ac_resv
= &OCFS2_I(inode
)->ip_la_data_resv
;
6953 ret
= ocfs2_claim_clusters(handle
, data_ac
, 1, &bit_off
,
6961 * Save two copies, one for insert, and one that can
6962 * be changed by ocfs2_map_and_dirty_page() below.
6964 block
= phys
= ocfs2_clusters_to_blocks(inode
->i_sb
, bit_off
);
6967 * Non sparse file systems zero on extend, so no need
6970 if (!ocfs2_sparse_alloc(osb
) &&
6971 PAGE_SIZE
< osb
->s_clustersize
)
6974 ret
= ocfs2_grab_eof_pages(inode
, 0, end
, pages
, &num_pages
);
6982 * This should populate the 1st page for us and mark
6985 ret
= ocfs2_read_inline_data(inode
, pages
[0], di_bh
);
6992 page_end
= PAGE_SIZE
;
6993 if (PAGE_SIZE
> osb
->s_clustersize
)
6994 page_end
= osb
->s_clustersize
;
6996 for (i
= 0; i
< num_pages
; i
++)
6997 ocfs2_map_and_dirty_page(inode
, handle
, 0, page_end
,
6998 pages
[i
], i
> 0, &phys
);
7001 spin_lock(&oi
->ip_lock
);
7002 oi
->ip_dyn_features
&= ~OCFS2_INLINE_DATA_FL
;
7003 di
->i_dyn_features
= cpu_to_le16(oi
->ip_dyn_features
);
7004 spin_unlock(&oi
->ip_lock
);
7006 ocfs2_update_inode_fsync_trans(handle
, inode
, 1);
7007 ocfs2_dinode_new_extent_list(inode
, di
);
7009 ocfs2_journal_dirty(handle
, di_bh
);
7013 * An error at this point should be extremely rare. If
7014 * this proves to be false, we could always re-build
7015 * the in-inode data from our pages.
7017 ocfs2_init_dinode_extent_tree(&et
, INODE_CACHE(inode
), di_bh
);
7018 ret
= ocfs2_insert_extent(handle
, &et
, 0, block
, 1, 0, NULL
);
7025 inode
->i_blocks
= ocfs2_inode_sector_count(inode
);
7030 ocfs2_unlock_and_free_pages(pages
, num_pages
);
7033 if (ret
< 0 && did_quota
)
7034 dquot_free_space_nodirty(inode
,
7035 ocfs2_clusters_to_bytes(osb
->sb
, 1));
7038 if (data_ac
->ac_which
== OCFS2_AC_USE_LOCAL
)
7039 ocfs2_free_local_alloc_bits(osb
, handle
, data_ac
,
7042 ocfs2_free_clusters(handle
,
7045 ocfs2_clusters_to_blocks(osb
->sb
, bit_off
),
7049 ocfs2_commit_trans(osb
, handle
);
7053 ocfs2_free_alloc_context(data_ac
);
7060 * It is expected, that by the time you call this function,
7061 * inode->i_size and fe->i_size have been adjusted.
7063 * WARNING: This will kfree the truncate context
7065 int ocfs2_commit_truncate(struct ocfs2_super
*osb
,
7066 struct inode
*inode
,
7067 struct buffer_head
*di_bh
)
7069 int status
= 0, i
, flags
= 0;
7070 u32 new_highest_cpos
, range
, trunc_cpos
, trunc_len
, phys_cpos
, coff
;
7072 struct ocfs2_extent_list
*el
;
7073 struct ocfs2_extent_rec
*rec
;
7074 struct ocfs2_path
*path
= NULL
;
7075 struct ocfs2_dinode
*di
= (struct ocfs2_dinode
*)di_bh
->b_data
;
7076 struct ocfs2_extent_list
*root_el
= &(di
->id2
.i_list
);
7077 u64 refcount_loc
= le64_to_cpu(di
->i_refcount_loc
);
7078 struct ocfs2_extent_tree et
;
7079 struct ocfs2_cached_dealloc_ctxt dealloc
;
7080 struct ocfs2_refcount_tree
*ref_tree
= NULL
;
7082 ocfs2_init_dinode_extent_tree(&et
, INODE_CACHE(inode
), di_bh
);
7083 ocfs2_init_dealloc_ctxt(&dealloc
);
7085 new_highest_cpos
= ocfs2_clusters_for_bytes(osb
->sb
,
7086 i_size_read(inode
));
7088 path
= ocfs2_new_path(di_bh
, &di
->id2
.i_list
,
7089 ocfs2_journal_access_di
);
7096 ocfs2_extent_map_trunc(inode
, new_highest_cpos
);
7100 * Check that we still have allocation to delete.
7102 if (OCFS2_I(inode
)->ip_clusters
== 0) {
7108 * Truncate always works against the rightmost tree branch.
7110 status
= ocfs2_find_path(INODE_CACHE(inode
), path
, UINT_MAX
);
7116 trace_ocfs2_commit_truncate(
7117 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
7119 OCFS2_I(inode
)->ip_clusters
,
7120 path
->p_tree_depth
);
7123 * By now, el will point to the extent list on the bottom most
7124 * portion of this tree. Only the tail record is considered in
7127 * We handle the following cases, in order:
7128 * - empty extent: delete the remaining branch
7129 * - remove the entire record
7130 * - remove a partial record
7131 * - no record needs to be removed (truncate has completed)
7133 el
= path_leaf_el(path
);
7134 if (le16_to_cpu(el
->l_next_free_rec
) == 0) {
7135 ocfs2_error(inode
->i_sb
,
7136 "Inode %llu has empty extent block at %llu\n",
7137 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
7138 (unsigned long long)path_leaf_bh(path
)->b_blocknr
);
7143 i
= le16_to_cpu(el
->l_next_free_rec
) - 1;
7144 rec
= &el
->l_recs
[i
];
7145 flags
= rec
->e_flags
;
7146 range
= le32_to_cpu(rec
->e_cpos
) + ocfs2_rec_clusters(el
, rec
);
7148 if (i
== 0 && ocfs2_is_empty_extent(rec
)) {
7150 * Lower levels depend on this never happening, but it's best
7151 * to check it up here before changing the tree.
7153 if (root_el
->l_tree_depth
&& rec
->e_int_clusters
== 0) {
7154 mlog(ML_ERROR
, "Inode %lu has an empty "
7155 "extent record, depth %u\n", inode
->i_ino
,
7156 le16_to_cpu(root_el
->l_tree_depth
));
7157 status
= ocfs2_remove_rightmost_empty_extent(osb
,
7158 &et
, path
, &dealloc
);
7164 ocfs2_reinit_path(path
, 1);
7167 trunc_cpos
= le32_to_cpu(rec
->e_cpos
);
7171 } else if (le32_to_cpu(rec
->e_cpos
) >= new_highest_cpos
) {
7173 * Truncate entire record.
7175 trunc_cpos
= le32_to_cpu(rec
->e_cpos
);
7176 trunc_len
= ocfs2_rec_clusters(el
, rec
);
7177 blkno
= le64_to_cpu(rec
->e_blkno
);
7178 } else if (range
> new_highest_cpos
) {
7180 * Partial truncate. it also should be
7181 * the last truncate we're doing.
7183 trunc_cpos
= new_highest_cpos
;
7184 trunc_len
= range
- new_highest_cpos
;
7185 coff
= new_highest_cpos
- le32_to_cpu(rec
->e_cpos
);
7186 blkno
= le64_to_cpu(rec
->e_blkno
) +
7187 ocfs2_clusters_to_blocks(inode
->i_sb
, coff
);
7190 * Truncate completed, leave happily.
7196 phys_cpos
= ocfs2_blocks_to_clusters(inode
->i_sb
, blkno
);
7198 if ((flags
& OCFS2_EXT_REFCOUNTED
) && trunc_len
&& !ref_tree
) {
7199 status
= ocfs2_lock_refcount_tree(osb
, refcount_loc
, 1,
7207 status
= ocfs2_remove_btree_range(inode
, &et
, trunc_cpos
,
7208 phys_cpos
, trunc_len
, flags
, &dealloc
,
7209 refcount_loc
, true);
7215 ocfs2_reinit_path(path
, 1);
7218 * The check above will catch the case where we've truncated
7219 * away all allocation.
7225 ocfs2_unlock_refcount_tree(osb
, ref_tree
, 1);
7227 ocfs2_schedule_truncate_log_flush(osb
, 1);
7229 ocfs2_run_deallocs(osb
, &dealloc
);
7231 ocfs2_free_path(path
);
7237 * 'start' is inclusive, 'end' is not.
7239 int ocfs2_truncate_inline(struct inode
*inode
, struct buffer_head
*di_bh
,
7240 unsigned int start
, unsigned int end
, int trunc
)
7243 unsigned int numbytes
;
7245 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
7246 struct ocfs2_dinode
*di
= (struct ocfs2_dinode
*)di_bh
->b_data
;
7247 struct ocfs2_inline_data
*idata
= &di
->id2
.i_data
;
7249 if (end
> i_size_read(inode
))
7250 end
= i_size_read(inode
);
7252 BUG_ON(start
> end
);
7254 if (!(OCFS2_I(inode
)->ip_dyn_features
& OCFS2_INLINE_DATA_FL
) ||
7255 !(le16_to_cpu(di
->i_dyn_features
) & OCFS2_INLINE_DATA_FL
) ||
7256 !ocfs2_supports_inline_data(osb
)) {
7257 ocfs2_error(inode
->i_sb
,
7258 "Inline data flags for inode %llu don't agree! Disk: 0x%x, Memory: 0x%x, Superblock: 0x%x\n",
7259 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
7260 le16_to_cpu(di
->i_dyn_features
),
7261 OCFS2_I(inode
)->ip_dyn_features
,
7262 osb
->s_feature_incompat
);
7267 handle
= ocfs2_start_trans(osb
, OCFS2_INODE_UPDATE_CREDITS
);
7268 if (IS_ERR(handle
)) {
7269 ret
= PTR_ERR(handle
);
7274 ret
= ocfs2_journal_access_di(handle
, INODE_CACHE(inode
), di_bh
,
7275 OCFS2_JOURNAL_ACCESS_WRITE
);
7281 numbytes
= end
- start
;
7282 memset(idata
->id_data
+ start
, 0, numbytes
);
7285 * No need to worry about the data page here - it's been
7286 * truncated already and inline data doesn't need it for
7287 * pushing zero's to disk, so we'll let readpage pick it up
7291 i_size_write(inode
, start
);
7292 di
->i_size
= cpu_to_le64(start
);
7295 inode
->i_blocks
= ocfs2_inode_sector_count(inode
);
7296 inode
->i_ctime
= inode
->i_mtime
= CURRENT_TIME
;
7298 di
->i_ctime
= di
->i_mtime
= cpu_to_le64(inode
->i_ctime
.tv_sec
);
7299 di
->i_ctime_nsec
= di
->i_mtime_nsec
= cpu_to_le32(inode
->i_ctime
.tv_nsec
);
7301 ocfs2_update_inode_fsync_trans(handle
, inode
, 1);
7302 ocfs2_journal_dirty(handle
, di_bh
);
7305 ocfs2_commit_trans(osb
, handle
);
7311 static int ocfs2_trim_extent(struct super_block
*sb
,
7312 struct ocfs2_group_desc
*gd
,
7313 u32 start
, u32 count
)
7315 u64 discard
, bcount
;
7317 bcount
= ocfs2_clusters_to_blocks(sb
, count
);
7318 discard
= le64_to_cpu(gd
->bg_blkno
) +
7319 ocfs2_clusters_to_blocks(sb
, start
);
7321 trace_ocfs2_trim_extent(sb
, (unsigned long long)discard
, bcount
);
7323 return sb_issue_discard(sb
, discard
, bcount
, GFP_NOFS
, 0);
7326 static int ocfs2_trim_group(struct super_block
*sb
,
7327 struct ocfs2_group_desc
*gd
,
7328 u32 start
, u32 max
, u32 minbits
)
7330 int ret
= 0, count
= 0, next
;
7331 void *bitmap
= gd
->bg_bitmap
;
7333 if (le16_to_cpu(gd
->bg_free_bits_count
) < minbits
)
7336 trace_ocfs2_trim_group((unsigned long long)le64_to_cpu(gd
->bg_blkno
),
7337 start
, max
, minbits
);
7339 while (start
< max
) {
7340 start
= ocfs2_find_next_zero_bit(bitmap
, max
, start
);
7343 next
= ocfs2_find_next_bit(bitmap
, max
, start
);
7345 if ((next
- start
) >= minbits
) {
7346 ret
= ocfs2_trim_extent(sb
, gd
,
7347 start
, next
- start
);
7352 count
+= next
- start
;
7356 if (fatal_signal_pending(current
)) {
7357 count
= -ERESTARTSYS
;
7361 if ((le16_to_cpu(gd
->bg_free_bits_count
) - count
) < minbits
)
7371 int ocfs2_trim_fs(struct super_block
*sb
, struct fstrim_range
*range
)
7373 struct ocfs2_super
*osb
= OCFS2_SB(sb
);
7374 u64 start
, len
, trimmed
, first_group
, last_group
, group
;
7376 u32 first_bit
, last_bit
, minlen
;
7377 struct buffer_head
*main_bm_bh
= NULL
;
7378 struct inode
*main_bm_inode
= NULL
;
7379 struct buffer_head
*gd_bh
= NULL
;
7380 struct ocfs2_dinode
*main_bm
;
7381 struct ocfs2_group_desc
*gd
= NULL
;
7383 start
= range
->start
>> osb
->s_clustersize_bits
;
7384 len
= range
->len
>> osb
->s_clustersize_bits
;
7385 minlen
= range
->minlen
>> osb
->s_clustersize_bits
;
7387 if (minlen
>= osb
->bitmap_cpg
|| range
->len
< sb
->s_blocksize
)
7390 main_bm_inode
= ocfs2_get_system_file_inode(osb
,
7391 GLOBAL_BITMAP_SYSTEM_INODE
,
7392 OCFS2_INVALID_SLOT
);
7393 if (!main_bm_inode
) {
7399 inode_lock(main_bm_inode
);
7401 ret
= ocfs2_inode_lock(main_bm_inode
, &main_bm_bh
, 0);
7406 main_bm
= (struct ocfs2_dinode
*)main_bm_bh
->b_data
;
7408 if (start
>= le32_to_cpu(main_bm
->i_clusters
)) {
7413 len
= range
->len
>> osb
->s_clustersize_bits
;
7414 if (start
+ len
> le32_to_cpu(main_bm
->i_clusters
))
7415 len
= le32_to_cpu(main_bm
->i_clusters
) - start
;
7417 trace_ocfs2_trim_fs(start
, len
, minlen
);
7419 /* Determine first and last group to examine based on start and len */
7420 first_group
= ocfs2_which_cluster_group(main_bm_inode
, start
);
7421 if (first_group
== osb
->first_cluster_group_blkno
)
7424 first_bit
= start
- ocfs2_blocks_to_clusters(sb
, first_group
);
7425 last_group
= ocfs2_which_cluster_group(main_bm_inode
, start
+ len
- 1);
7426 last_bit
= osb
->bitmap_cpg
;
7429 for (group
= first_group
; group
<= last_group
;) {
7430 if (first_bit
+ len
>= osb
->bitmap_cpg
)
7431 last_bit
= osb
->bitmap_cpg
;
7433 last_bit
= first_bit
+ len
;
7435 ret
= ocfs2_read_group_descriptor(main_bm_inode
,
7443 gd
= (struct ocfs2_group_desc
*)gd_bh
->b_data
;
7444 cnt
= ocfs2_trim_group(sb
, gd
, first_bit
, last_bit
, minlen
);
7454 len
-= osb
->bitmap_cpg
- first_bit
;
7456 if (group
== osb
->first_cluster_group_blkno
)
7457 group
= ocfs2_clusters_to_blocks(sb
, osb
->bitmap_cpg
);
7459 group
+= ocfs2_clusters_to_blocks(sb
, osb
->bitmap_cpg
);
7461 range
->len
= trimmed
* sb
->s_blocksize
;
7463 ocfs2_inode_unlock(main_bm_inode
, 0);
7466 inode_unlock(main_bm_inode
);
7467 iput(main_bm_inode
);