netfilter: nfnetlink_{log,queue}: fix information leaks in netlink message
[linux/fpc-iii.git] / kernel / rtmutex.c
blob0dd6aec1cb6ad8bb41a44ba74f770ca4439fc022
1 /*
2 * RT-Mutexes: simple blocking mutual exclusion locks with PI support
4 * started by Ingo Molnar and Thomas Gleixner.
6 * Copyright (C) 2004-2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
7 * Copyright (C) 2005-2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
8 * Copyright (C) 2005 Kihon Technologies Inc., Steven Rostedt
9 * Copyright (C) 2006 Esben Nielsen
11 * See Documentation/rt-mutex-design.txt for details.
13 #include <linux/spinlock.h>
14 #include <linux/export.h>
15 #include <linux/sched.h>
16 #include <linux/sched/rt.h>
17 #include <linux/timer.h>
19 #include "rtmutex_common.h"
22 * lock->owner state tracking:
24 * lock->owner holds the task_struct pointer of the owner. Bit 0
25 * is used to keep track of the "lock has waiters" state.
27 * owner bit0
28 * NULL 0 lock is free (fast acquire possible)
29 * NULL 1 lock is free and has waiters and the top waiter
30 * is going to take the lock*
31 * taskpointer 0 lock is held (fast release possible)
32 * taskpointer 1 lock is held and has waiters**
34 * The fast atomic compare exchange based acquire and release is only
35 * possible when bit 0 of lock->owner is 0.
37 * (*) It also can be a transitional state when grabbing the lock
38 * with ->wait_lock is held. To prevent any fast path cmpxchg to the lock,
39 * we need to set the bit0 before looking at the lock, and the owner may be
40 * NULL in this small time, hence this can be a transitional state.
42 * (**) There is a small time when bit 0 is set but there are no
43 * waiters. This can happen when grabbing the lock in the slow path.
44 * To prevent a cmpxchg of the owner releasing the lock, we need to
45 * set this bit before looking at the lock.
48 static void
49 rt_mutex_set_owner(struct rt_mutex *lock, struct task_struct *owner)
51 unsigned long val = (unsigned long)owner;
53 if (rt_mutex_has_waiters(lock))
54 val |= RT_MUTEX_HAS_WAITERS;
56 lock->owner = (struct task_struct *)val;
59 static inline void clear_rt_mutex_waiters(struct rt_mutex *lock)
61 lock->owner = (struct task_struct *)
62 ((unsigned long)lock->owner & ~RT_MUTEX_HAS_WAITERS);
65 static void fixup_rt_mutex_waiters(struct rt_mutex *lock)
67 if (!rt_mutex_has_waiters(lock))
68 clear_rt_mutex_waiters(lock);
72 * We can speed up the acquire/release, if the architecture
73 * supports cmpxchg and if there's no debugging state to be set up
75 #if defined(__HAVE_ARCH_CMPXCHG) && !defined(CONFIG_DEBUG_RT_MUTEXES)
76 # define rt_mutex_cmpxchg(l,c,n) (cmpxchg(&l->owner, c, n) == c)
77 static inline void mark_rt_mutex_waiters(struct rt_mutex *lock)
79 unsigned long owner, *p = (unsigned long *) &lock->owner;
81 do {
82 owner = *p;
83 } while (cmpxchg(p, owner, owner | RT_MUTEX_HAS_WAITERS) != owner);
85 #else
86 # define rt_mutex_cmpxchg(l,c,n) (0)
87 static inline void mark_rt_mutex_waiters(struct rt_mutex *lock)
89 lock->owner = (struct task_struct *)
90 ((unsigned long)lock->owner | RT_MUTEX_HAS_WAITERS);
92 #endif
95 * Calculate task priority from the waiter list priority
97 * Return task->normal_prio when the waiter list is empty or when
98 * the waiter is not allowed to do priority boosting
100 int rt_mutex_getprio(struct task_struct *task)
102 if (likely(!task_has_pi_waiters(task)))
103 return task->normal_prio;
105 return min(task_top_pi_waiter(task)->pi_list_entry.prio,
106 task->normal_prio);
110 * Adjust the priority of a task, after its pi_waiters got modified.
112 * This can be both boosting and unboosting. task->pi_lock must be held.
114 static void __rt_mutex_adjust_prio(struct task_struct *task)
116 int prio = rt_mutex_getprio(task);
118 if (task->prio != prio)
119 rt_mutex_setprio(task, prio);
123 * Adjust task priority (undo boosting). Called from the exit path of
124 * rt_mutex_slowunlock() and rt_mutex_slowlock().
126 * (Note: We do this outside of the protection of lock->wait_lock to
127 * allow the lock to be taken while or before we readjust the priority
128 * of task. We do not use the spin_xx_mutex() variants here as we are
129 * outside of the debug path.)
131 static void rt_mutex_adjust_prio(struct task_struct *task)
133 unsigned long flags;
135 raw_spin_lock_irqsave(&task->pi_lock, flags);
136 __rt_mutex_adjust_prio(task);
137 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
141 * Max number of times we'll walk the boosting chain:
143 int max_lock_depth = 1024;
146 * Adjust the priority chain. Also used for deadlock detection.
147 * Decreases task's usage by one - may thus free the task.
149 * @task: the task owning the mutex (owner) for which a chain walk is probably
150 * needed
151 * @deadlock_detect: do we have to carry out deadlock detection?
152 * @orig_lock: the mutex (can be NULL if we are walking the chain to recheck
153 * things for a task that has just got its priority adjusted, and
154 * is waiting on a mutex)
155 * @orig_waiter: rt_mutex_waiter struct for the task that has just donated
156 * its priority to the mutex owner (can be NULL in the case
157 * depicted above or if the top waiter is gone away and we are
158 * actually deboosting the owner)
159 * @top_task: the current top waiter
161 * Returns 0 or -EDEADLK.
163 static int rt_mutex_adjust_prio_chain(struct task_struct *task,
164 int deadlock_detect,
165 struct rt_mutex *orig_lock,
166 struct rt_mutex_waiter *orig_waiter,
167 struct task_struct *top_task)
169 struct rt_mutex *lock;
170 struct rt_mutex_waiter *waiter, *top_waiter = orig_waiter;
171 int detect_deadlock, ret = 0, depth = 0;
172 unsigned long flags;
174 detect_deadlock = debug_rt_mutex_detect_deadlock(orig_waiter,
175 deadlock_detect);
178 * The (de)boosting is a step by step approach with a lot of
179 * pitfalls. We want this to be preemptible and we want hold a
180 * maximum of two locks per step. So we have to check
181 * carefully whether things change under us.
183 again:
184 if (++depth > max_lock_depth) {
185 static int prev_max;
188 * Print this only once. If the admin changes the limit,
189 * print a new message when reaching the limit again.
191 if (prev_max != max_lock_depth) {
192 prev_max = max_lock_depth;
193 printk(KERN_WARNING "Maximum lock depth %d reached "
194 "task: %s (%d)\n", max_lock_depth,
195 top_task->comm, task_pid_nr(top_task));
197 put_task_struct(task);
199 return deadlock_detect ? -EDEADLK : 0;
201 retry:
203 * Task can not go away as we did a get_task() before !
205 raw_spin_lock_irqsave(&task->pi_lock, flags);
207 waiter = task->pi_blocked_on;
209 * Check whether the end of the boosting chain has been
210 * reached or the state of the chain has changed while we
211 * dropped the locks.
213 if (!waiter)
214 goto out_unlock_pi;
217 * Check the orig_waiter state. After we dropped the locks,
218 * the previous owner of the lock might have released the lock.
220 if (orig_waiter && !rt_mutex_owner(orig_lock))
221 goto out_unlock_pi;
224 * Drop out, when the task has no waiters. Note,
225 * top_waiter can be NULL, when we are in the deboosting
226 * mode!
228 if (top_waiter && (!task_has_pi_waiters(task) ||
229 top_waiter != task_top_pi_waiter(task)))
230 goto out_unlock_pi;
233 * When deadlock detection is off then we check, if further
234 * priority adjustment is necessary.
236 if (!detect_deadlock && waiter->list_entry.prio == task->prio)
237 goto out_unlock_pi;
239 lock = waiter->lock;
240 if (!raw_spin_trylock(&lock->wait_lock)) {
241 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
242 cpu_relax();
243 goto retry;
246 /* Deadlock detection */
247 if (lock == orig_lock || rt_mutex_owner(lock) == top_task) {
248 debug_rt_mutex_deadlock(deadlock_detect, orig_waiter, lock);
249 raw_spin_unlock(&lock->wait_lock);
250 ret = deadlock_detect ? -EDEADLK : 0;
251 goto out_unlock_pi;
254 top_waiter = rt_mutex_top_waiter(lock);
256 /* Requeue the waiter */
257 plist_del(&waiter->list_entry, &lock->wait_list);
258 waiter->list_entry.prio = task->prio;
259 plist_add(&waiter->list_entry, &lock->wait_list);
261 /* Release the task */
262 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
263 if (!rt_mutex_owner(lock)) {
265 * If the requeue above changed the top waiter, then we need
266 * to wake the new top waiter up to try to get the lock.
269 if (top_waiter != rt_mutex_top_waiter(lock))
270 wake_up_process(rt_mutex_top_waiter(lock)->task);
271 raw_spin_unlock(&lock->wait_lock);
272 goto out_put_task;
274 put_task_struct(task);
276 /* Grab the next task */
277 task = rt_mutex_owner(lock);
278 get_task_struct(task);
279 raw_spin_lock_irqsave(&task->pi_lock, flags);
281 if (waiter == rt_mutex_top_waiter(lock)) {
282 /* Boost the owner */
283 plist_del(&top_waiter->pi_list_entry, &task->pi_waiters);
284 waiter->pi_list_entry.prio = waiter->list_entry.prio;
285 plist_add(&waiter->pi_list_entry, &task->pi_waiters);
286 __rt_mutex_adjust_prio(task);
288 } else if (top_waiter == waiter) {
289 /* Deboost the owner */
290 plist_del(&waiter->pi_list_entry, &task->pi_waiters);
291 waiter = rt_mutex_top_waiter(lock);
292 waiter->pi_list_entry.prio = waiter->list_entry.prio;
293 plist_add(&waiter->pi_list_entry, &task->pi_waiters);
294 __rt_mutex_adjust_prio(task);
297 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
299 top_waiter = rt_mutex_top_waiter(lock);
300 raw_spin_unlock(&lock->wait_lock);
302 if (!detect_deadlock && waiter != top_waiter)
303 goto out_put_task;
305 goto again;
307 out_unlock_pi:
308 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
309 out_put_task:
310 put_task_struct(task);
312 return ret;
316 * Try to take an rt-mutex
318 * Must be called with lock->wait_lock held.
320 * @lock: the lock to be acquired.
321 * @task: the task which wants to acquire the lock
322 * @waiter: the waiter that is queued to the lock's wait list. (could be NULL)
324 static int try_to_take_rt_mutex(struct rt_mutex *lock, struct task_struct *task,
325 struct rt_mutex_waiter *waiter)
328 * We have to be careful here if the atomic speedups are
329 * enabled, such that, when
330 * - no other waiter is on the lock
331 * - the lock has been released since we did the cmpxchg
332 * the lock can be released or taken while we are doing the
333 * checks and marking the lock with RT_MUTEX_HAS_WAITERS.
335 * The atomic acquire/release aware variant of
336 * mark_rt_mutex_waiters uses a cmpxchg loop. After setting
337 * the WAITERS bit, the atomic release / acquire can not
338 * happen anymore and lock->wait_lock protects us from the
339 * non-atomic case.
341 * Note, that this might set lock->owner =
342 * RT_MUTEX_HAS_WAITERS in the case the lock is not contended
343 * any more. This is fixed up when we take the ownership.
344 * This is the transitional state explained at the top of this file.
346 mark_rt_mutex_waiters(lock);
348 if (rt_mutex_owner(lock))
349 return 0;
352 * It will get the lock because of one of these conditions:
353 * 1) there is no waiter
354 * 2) higher priority than waiters
355 * 3) it is top waiter
357 if (rt_mutex_has_waiters(lock)) {
358 if (task->prio >= rt_mutex_top_waiter(lock)->list_entry.prio) {
359 if (!waiter || waiter != rt_mutex_top_waiter(lock))
360 return 0;
364 if (waiter || rt_mutex_has_waiters(lock)) {
365 unsigned long flags;
366 struct rt_mutex_waiter *top;
368 raw_spin_lock_irqsave(&task->pi_lock, flags);
370 /* remove the queued waiter. */
371 if (waiter) {
372 plist_del(&waiter->list_entry, &lock->wait_list);
373 task->pi_blocked_on = NULL;
377 * We have to enqueue the top waiter(if it exists) into
378 * task->pi_waiters list.
380 if (rt_mutex_has_waiters(lock)) {
381 top = rt_mutex_top_waiter(lock);
382 top->pi_list_entry.prio = top->list_entry.prio;
383 plist_add(&top->pi_list_entry, &task->pi_waiters);
385 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
388 /* We got the lock. */
389 debug_rt_mutex_lock(lock);
391 rt_mutex_set_owner(lock, task);
393 rt_mutex_deadlock_account_lock(lock, task);
395 return 1;
399 * Task blocks on lock.
401 * Prepare waiter and propagate pi chain
403 * This must be called with lock->wait_lock held.
405 static int task_blocks_on_rt_mutex(struct rt_mutex *lock,
406 struct rt_mutex_waiter *waiter,
407 struct task_struct *task,
408 int detect_deadlock)
410 struct task_struct *owner = rt_mutex_owner(lock);
411 struct rt_mutex_waiter *top_waiter = waiter;
412 unsigned long flags;
413 int chain_walk = 0, res;
415 raw_spin_lock_irqsave(&task->pi_lock, flags);
416 __rt_mutex_adjust_prio(task);
417 waiter->task = task;
418 waiter->lock = lock;
419 plist_node_init(&waiter->list_entry, task->prio);
420 plist_node_init(&waiter->pi_list_entry, task->prio);
422 /* Get the top priority waiter on the lock */
423 if (rt_mutex_has_waiters(lock))
424 top_waiter = rt_mutex_top_waiter(lock);
425 plist_add(&waiter->list_entry, &lock->wait_list);
427 task->pi_blocked_on = waiter;
429 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
431 if (!owner)
432 return 0;
434 if (waiter == rt_mutex_top_waiter(lock)) {
435 raw_spin_lock_irqsave(&owner->pi_lock, flags);
436 plist_del(&top_waiter->pi_list_entry, &owner->pi_waiters);
437 plist_add(&waiter->pi_list_entry, &owner->pi_waiters);
439 __rt_mutex_adjust_prio(owner);
440 if (owner->pi_blocked_on)
441 chain_walk = 1;
442 raw_spin_unlock_irqrestore(&owner->pi_lock, flags);
444 else if (debug_rt_mutex_detect_deadlock(waiter, detect_deadlock))
445 chain_walk = 1;
447 if (!chain_walk)
448 return 0;
451 * The owner can't disappear while holding a lock,
452 * so the owner struct is protected by wait_lock.
453 * Gets dropped in rt_mutex_adjust_prio_chain()!
455 get_task_struct(owner);
457 raw_spin_unlock(&lock->wait_lock);
459 res = rt_mutex_adjust_prio_chain(owner, detect_deadlock, lock, waiter,
460 task);
462 raw_spin_lock(&lock->wait_lock);
464 return res;
468 * Wake up the next waiter on the lock.
470 * Remove the top waiter from the current tasks waiter list and wake it up.
472 * Called with lock->wait_lock held.
474 static void wakeup_next_waiter(struct rt_mutex *lock)
476 struct rt_mutex_waiter *waiter;
477 unsigned long flags;
479 raw_spin_lock_irqsave(&current->pi_lock, flags);
481 waiter = rt_mutex_top_waiter(lock);
484 * Remove it from current->pi_waiters. We do not adjust a
485 * possible priority boost right now. We execute wakeup in the
486 * boosted mode and go back to normal after releasing
487 * lock->wait_lock.
489 plist_del(&waiter->pi_list_entry, &current->pi_waiters);
491 rt_mutex_set_owner(lock, NULL);
493 raw_spin_unlock_irqrestore(&current->pi_lock, flags);
495 wake_up_process(waiter->task);
499 * Remove a waiter from a lock and give up
501 * Must be called with lock->wait_lock held and
502 * have just failed to try_to_take_rt_mutex().
504 static void remove_waiter(struct rt_mutex *lock,
505 struct rt_mutex_waiter *waiter)
507 int first = (waiter == rt_mutex_top_waiter(lock));
508 struct task_struct *owner = rt_mutex_owner(lock);
509 unsigned long flags;
510 int chain_walk = 0;
512 raw_spin_lock_irqsave(&current->pi_lock, flags);
513 plist_del(&waiter->list_entry, &lock->wait_list);
514 current->pi_blocked_on = NULL;
515 raw_spin_unlock_irqrestore(&current->pi_lock, flags);
517 if (!owner)
518 return;
520 if (first) {
522 raw_spin_lock_irqsave(&owner->pi_lock, flags);
524 plist_del(&waiter->pi_list_entry, &owner->pi_waiters);
526 if (rt_mutex_has_waiters(lock)) {
527 struct rt_mutex_waiter *next;
529 next = rt_mutex_top_waiter(lock);
530 plist_add(&next->pi_list_entry, &owner->pi_waiters);
532 __rt_mutex_adjust_prio(owner);
534 if (owner->pi_blocked_on)
535 chain_walk = 1;
537 raw_spin_unlock_irqrestore(&owner->pi_lock, flags);
540 WARN_ON(!plist_node_empty(&waiter->pi_list_entry));
542 if (!chain_walk)
543 return;
545 /* gets dropped in rt_mutex_adjust_prio_chain()! */
546 get_task_struct(owner);
548 raw_spin_unlock(&lock->wait_lock);
550 rt_mutex_adjust_prio_chain(owner, 0, lock, NULL, current);
552 raw_spin_lock(&lock->wait_lock);
556 * Recheck the pi chain, in case we got a priority setting
558 * Called from sched_setscheduler
560 void rt_mutex_adjust_pi(struct task_struct *task)
562 struct rt_mutex_waiter *waiter;
563 unsigned long flags;
565 raw_spin_lock_irqsave(&task->pi_lock, flags);
567 waiter = task->pi_blocked_on;
568 if (!waiter || waiter->list_entry.prio == task->prio) {
569 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
570 return;
573 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
575 /* gets dropped in rt_mutex_adjust_prio_chain()! */
576 get_task_struct(task);
577 rt_mutex_adjust_prio_chain(task, 0, NULL, NULL, task);
581 * __rt_mutex_slowlock() - Perform the wait-wake-try-to-take loop
582 * @lock: the rt_mutex to take
583 * @state: the state the task should block in (TASK_INTERRUPTIBLE
584 * or TASK_UNINTERRUPTIBLE)
585 * @timeout: the pre-initialized and started timer, or NULL for none
586 * @waiter: the pre-initialized rt_mutex_waiter
588 * lock->wait_lock must be held by the caller.
590 static int __sched
591 __rt_mutex_slowlock(struct rt_mutex *lock, int state,
592 struct hrtimer_sleeper *timeout,
593 struct rt_mutex_waiter *waiter)
595 int ret = 0;
597 for (;;) {
598 /* Try to acquire the lock: */
599 if (try_to_take_rt_mutex(lock, current, waiter))
600 break;
603 * TASK_INTERRUPTIBLE checks for signals and
604 * timeout. Ignored otherwise.
606 if (unlikely(state == TASK_INTERRUPTIBLE)) {
607 /* Signal pending? */
608 if (signal_pending(current))
609 ret = -EINTR;
610 if (timeout && !timeout->task)
611 ret = -ETIMEDOUT;
612 if (ret)
613 break;
616 raw_spin_unlock(&lock->wait_lock);
618 debug_rt_mutex_print_deadlock(waiter);
620 schedule_rt_mutex(lock);
622 raw_spin_lock(&lock->wait_lock);
623 set_current_state(state);
626 return ret;
630 * Slow path lock function:
632 static int __sched
633 rt_mutex_slowlock(struct rt_mutex *lock, int state,
634 struct hrtimer_sleeper *timeout,
635 int detect_deadlock)
637 struct rt_mutex_waiter waiter;
638 int ret = 0;
640 debug_rt_mutex_init_waiter(&waiter);
642 raw_spin_lock(&lock->wait_lock);
644 /* Try to acquire the lock again: */
645 if (try_to_take_rt_mutex(lock, current, NULL)) {
646 raw_spin_unlock(&lock->wait_lock);
647 return 0;
650 set_current_state(state);
652 /* Setup the timer, when timeout != NULL */
653 if (unlikely(timeout)) {
654 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
655 if (!hrtimer_active(&timeout->timer))
656 timeout->task = NULL;
659 ret = task_blocks_on_rt_mutex(lock, &waiter, current, detect_deadlock);
661 if (likely(!ret))
662 ret = __rt_mutex_slowlock(lock, state, timeout, &waiter);
664 set_current_state(TASK_RUNNING);
666 if (unlikely(ret))
667 remove_waiter(lock, &waiter);
670 * try_to_take_rt_mutex() sets the waiter bit
671 * unconditionally. We might have to fix that up.
673 fixup_rt_mutex_waiters(lock);
675 raw_spin_unlock(&lock->wait_lock);
677 /* Remove pending timer: */
678 if (unlikely(timeout))
679 hrtimer_cancel(&timeout->timer);
681 debug_rt_mutex_free_waiter(&waiter);
683 return ret;
687 * Slow path try-lock function:
689 static inline int
690 rt_mutex_slowtrylock(struct rt_mutex *lock)
692 int ret = 0;
694 raw_spin_lock(&lock->wait_lock);
696 if (likely(rt_mutex_owner(lock) != current)) {
698 ret = try_to_take_rt_mutex(lock, current, NULL);
700 * try_to_take_rt_mutex() sets the lock waiters
701 * bit unconditionally. Clean this up.
703 fixup_rt_mutex_waiters(lock);
706 raw_spin_unlock(&lock->wait_lock);
708 return ret;
712 * Slow path to release a rt-mutex:
714 static void __sched
715 rt_mutex_slowunlock(struct rt_mutex *lock)
717 raw_spin_lock(&lock->wait_lock);
719 debug_rt_mutex_unlock(lock);
721 rt_mutex_deadlock_account_unlock(current);
723 if (!rt_mutex_has_waiters(lock)) {
724 lock->owner = NULL;
725 raw_spin_unlock(&lock->wait_lock);
726 return;
729 wakeup_next_waiter(lock);
731 raw_spin_unlock(&lock->wait_lock);
733 /* Undo pi boosting if necessary: */
734 rt_mutex_adjust_prio(current);
738 * debug aware fast / slowpath lock,trylock,unlock
740 * The atomic acquire/release ops are compiled away, when either the
741 * architecture does not support cmpxchg or when debugging is enabled.
743 static inline int
744 rt_mutex_fastlock(struct rt_mutex *lock, int state,
745 int detect_deadlock,
746 int (*slowfn)(struct rt_mutex *lock, int state,
747 struct hrtimer_sleeper *timeout,
748 int detect_deadlock))
750 if (!detect_deadlock && likely(rt_mutex_cmpxchg(lock, NULL, current))) {
751 rt_mutex_deadlock_account_lock(lock, current);
752 return 0;
753 } else
754 return slowfn(lock, state, NULL, detect_deadlock);
757 static inline int
758 rt_mutex_timed_fastlock(struct rt_mutex *lock, int state,
759 struct hrtimer_sleeper *timeout, int detect_deadlock,
760 int (*slowfn)(struct rt_mutex *lock, int state,
761 struct hrtimer_sleeper *timeout,
762 int detect_deadlock))
764 if (!detect_deadlock && likely(rt_mutex_cmpxchg(lock, NULL, current))) {
765 rt_mutex_deadlock_account_lock(lock, current);
766 return 0;
767 } else
768 return slowfn(lock, state, timeout, detect_deadlock);
771 static inline int
772 rt_mutex_fasttrylock(struct rt_mutex *lock,
773 int (*slowfn)(struct rt_mutex *lock))
775 if (likely(rt_mutex_cmpxchg(lock, NULL, current))) {
776 rt_mutex_deadlock_account_lock(lock, current);
777 return 1;
779 return slowfn(lock);
782 static inline void
783 rt_mutex_fastunlock(struct rt_mutex *lock,
784 void (*slowfn)(struct rt_mutex *lock))
786 if (likely(rt_mutex_cmpxchg(lock, current, NULL)))
787 rt_mutex_deadlock_account_unlock(current);
788 else
789 slowfn(lock);
793 * rt_mutex_lock - lock a rt_mutex
795 * @lock: the rt_mutex to be locked
797 void __sched rt_mutex_lock(struct rt_mutex *lock)
799 might_sleep();
801 rt_mutex_fastlock(lock, TASK_UNINTERRUPTIBLE, 0, rt_mutex_slowlock);
803 EXPORT_SYMBOL_GPL(rt_mutex_lock);
806 * rt_mutex_lock_interruptible - lock a rt_mutex interruptible
808 * @lock: the rt_mutex to be locked
809 * @detect_deadlock: deadlock detection on/off
811 * Returns:
812 * 0 on success
813 * -EINTR when interrupted by a signal
814 * -EDEADLK when the lock would deadlock (when deadlock detection is on)
816 int __sched rt_mutex_lock_interruptible(struct rt_mutex *lock,
817 int detect_deadlock)
819 might_sleep();
821 return rt_mutex_fastlock(lock, TASK_INTERRUPTIBLE,
822 detect_deadlock, rt_mutex_slowlock);
824 EXPORT_SYMBOL_GPL(rt_mutex_lock_interruptible);
827 * rt_mutex_timed_lock - lock a rt_mutex interruptible
828 * the timeout structure is provided
829 * by the caller
831 * @lock: the rt_mutex to be locked
832 * @timeout: timeout structure or NULL (no timeout)
833 * @detect_deadlock: deadlock detection on/off
835 * Returns:
836 * 0 on success
837 * -EINTR when interrupted by a signal
838 * -ETIMEDOUT when the timeout expired
839 * -EDEADLK when the lock would deadlock (when deadlock detection is on)
842 rt_mutex_timed_lock(struct rt_mutex *lock, struct hrtimer_sleeper *timeout,
843 int detect_deadlock)
845 might_sleep();
847 return rt_mutex_timed_fastlock(lock, TASK_INTERRUPTIBLE, timeout,
848 detect_deadlock, rt_mutex_slowlock);
850 EXPORT_SYMBOL_GPL(rt_mutex_timed_lock);
853 * rt_mutex_trylock - try to lock a rt_mutex
855 * @lock: the rt_mutex to be locked
857 * Returns 1 on success and 0 on contention
859 int __sched rt_mutex_trylock(struct rt_mutex *lock)
861 return rt_mutex_fasttrylock(lock, rt_mutex_slowtrylock);
863 EXPORT_SYMBOL_GPL(rt_mutex_trylock);
866 * rt_mutex_unlock - unlock a rt_mutex
868 * @lock: the rt_mutex to be unlocked
870 void __sched rt_mutex_unlock(struct rt_mutex *lock)
872 rt_mutex_fastunlock(lock, rt_mutex_slowunlock);
874 EXPORT_SYMBOL_GPL(rt_mutex_unlock);
877 * rt_mutex_destroy - mark a mutex unusable
878 * @lock: the mutex to be destroyed
880 * This function marks the mutex uninitialized, and any subsequent
881 * use of the mutex is forbidden. The mutex must not be locked when
882 * this function is called.
884 void rt_mutex_destroy(struct rt_mutex *lock)
886 WARN_ON(rt_mutex_is_locked(lock));
887 #ifdef CONFIG_DEBUG_RT_MUTEXES
888 lock->magic = NULL;
889 #endif
892 EXPORT_SYMBOL_GPL(rt_mutex_destroy);
895 * __rt_mutex_init - initialize the rt lock
897 * @lock: the rt lock to be initialized
899 * Initialize the rt lock to unlocked state.
901 * Initializing of a locked rt lock is not allowed
903 void __rt_mutex_init(struct rt_mutex *lock, const char *name)
905 lock->owner = NULL;
906 raw_spin_lock_init(&lock->wait_lock);
907 plist_head_init(&lock->wait_list);
909 debug_rt_mutex_init(lock, name);
911 EXPORT_SYMBOL_GPL(__rt_mutex_init);
914 * rt_mutex_init_proxy_locked - initialize and lock a rt_mutex on behalf of a
915 * proxy owner
917 * @lock: the rt_mutex to be locked
918 * @proxy_owner:the task to set as owner
920 * No locking. Caller has to do serializing itself
921 * Special API call for PI-futex support
923 void rt_mutex_init_proxy_locked(struct rt_mutex *lock,
924 struct task_struct *proxy_owner)
926 __rt_mutex_init(lock, NULL);
927 debug_rt_mutex_proxy_lock(lock, proxy_owner);
928 rt_mutex_set_owner(lock, proxy_owner);
929 rt_mutex_deadlock_account_lock(lock, proxy_owner);
933 * rt_mutex_proxy_unlock - release a lock on behalf of owner
935 * @lock: the rt_mutex to be locked
937 * No locking. Caller has to do serializing itself
938 * Special API call for PI-futex support
940 void rt_mutex_proxy_unlock(struct rt_mutex *lock,
941 struct task_struct *proxy_owner)
943 debug_rt_mutex_proxy_unlock(lock);
944 rt_mutex_set_owner(lock, NULL);
945 rt_mutex_deadlock_account_unlock(proxy_owner);
949 * rt_mutex_start_proxy_lock() - Start lock acquisition for another task
950 * @lock: the rt_mutex to take
951 * @waiter: the pre-initialized rt_mutex_waiter
952 * @task: the task to prepare
953 * @detect_deadlock: perform deadlock detection (1) or not (0)
955 * Returns:
956 * 0 - task blocked on lock
957 * 1 - acquired the lock for task, caller should wake it up
958 * <0 - error
960 * Special API call for FUTEX_REQUEUE_PI support.
962 int rt_mutex_start_proxy_lock(struct rt_mutex *lock,
963 struct rt_mutex_waiter *waiter,
964 struct task_struct *task, int detect_deadlock)
966 int ret;
968 raw_spin_lock(&lock->wait_lock);
970 if (try_to_take_rt_mutex(lock, task, NULL)) {
971 raw_spin_unlock(&lock->wait_lock);
972 return 1;
975 ret = task_blocks_on_rt_mutex(lock, waiter, task, detect_deadlock);
977 if (ret && !rt_mutex_owner(lock)) {
979 * Reset the return value. We might have
980 * returned with -EDEADLK and the owner
981 * released the lock while we were walking the
982 * pi chain. Let the waiter sort it out.
984 ret = 0;
987 if (unlikely(ret))
988 remove_waiter(lock, waiter);
990 raw_spin_unlock(&lock->wait_lock);
992 debug_rt_mutex_print_deadlock(waiter);
994 return ret;
998 * rt_mutex_next_owner - return the next owner of the lock
1000 * @lock: the rt lock query
1002 * Returns the next owner of the lock or NULL
1004 * Caller has to serialize against other accessors to the lock
1005 * itself.
1007 * Special API call for PI-futex support
1009 struct task_struct *rt_mutex_next_owner(struct rt_mutex *lock)
1011 if (!rt_mutex_has_waiters(lock))
1012 return NULL;
1014 return rt_mutex_top_waiter(lock)->task;
1018 * rt_mutex_finish_proxy_lock() - Complete lock acquisition
1019 * @lock: the rt_mutex we were woken on
1020 * @to: the timeout, null if none. hrtimer should already have
1021 * been started.
1022 * @waiter: the pre-initialized rt_mutex_waiter
1023 * @detect_deadlock: perform deadlock detection (1) or not (0)
1025 * Complete the lock acquisition started our behalf by another thread.
1027 * Returns:
1028 * 0 - success
1029 * <0 - error, one of -EINTR, -ETIMEDOUT, or -EDEADLK
1031 * Special API call for PI-futex requeue support
1033 int rt_mutex_finish_proxy_lock(struct rt_mutex *lock,
1034 struct hrtimer_sleeper *to,
1035 struct rt_mutex_waiter *waiter,
1036 int detect_deadlock)
1038 int ret;
1040 raw_spin_lock(&lock->wait_lock);
1042 set_current_state(TASK_INTERRUPTIBLE);
1044 ret = __rt_mutex_slowlock(lock, TASK_INTERRUPTIBLE, to, waiter);
1046 set_current_state(TASK_RUNNING);
1048 if (unlikely(ret))
1049 remove_waiter(lock, waiter);
1052 * try_to_take_rt_mutex() sets the waiter bit unconditionally. We might
1053 * have to fix that up.
1055 fixup_rt_mutex_waiters(lock);
1057 raw_spin_unlock(&lock->wait_lock);
1059 return ret;