3 * Copyright (C) 1992 Krishna Balasubramanian
4 * Copyright (C) 1995 Eric Schenk, Bruno Haible
6 * /proc/sysvipc/sem support (c) 1999 Dragos Acostachioaie <dragos@iname.com>
8 * SMP-threaded, sysctl's added
9 * (c) 1999 Manfred Spraul <manfred@colorfullife.com>
10 * Enforced range limit on SEM_UNDO
11 * (c) 2001 Red Hat Inc
13 * (c) 2003 Manfred Spraul <manfred@colorfullife.com>
14 * Further wakeup optimizations, documentation
15 * (c) 2010 Manfred Spraul <manfred@colorfullife.com>
17 * support for audit of ipc object properties and permission changes
18 * Dustin Kirkland <dustin.kirkland@us.ibm.com>
22 * Pavel Emelianov <xemul@openvz.org>
24 * Implementation notes: (May 2010)
25 * This file implements System V semaphores.
27 * User space visible behavior:
28 * - FIFO ordering for semop() operations (just FIFO, not starvation
30 * - multiple semaphore operations that alter the same semaphore in
31 * one semop() are handled.
32 * - sem_ctime (time of last semctl()) is updated in the IPC_SET, SETVAL and
34 * - two Linux specific semctl() commands: SEM_STAT, SEM_INFO.
35 * - undo adjustments at process exit are limited to 0..SEMVMX.
36 * - namespace are supported.
37 * - SEMMSL, SEMMNS, SEMOPM and SEMMNI can be configured at runtine by writing
38 * to /proc/sys/kernel/sem.
39 * - statistics about the usage are reported in /proc/sysvipc/sem.
43 * - all global variables are read-mostly.
44 * - semop() calls and semctl(RMID) are synchronized by RCU.
45 * - most operations do write operations (actually: spin_lock calls) to
46 * the per-semaphore array structure.
47 * Thus: Perfect SMP scaling between independent semaphore arrays.
48 * If multiple semaphores in one array are used, then cache line
49 * trashing on the semaphore array spinlock will limit the scaling.
50 * - semncnt and semzcnt are calculated on demand in count_semcnt()
51 * - the task that performs a successful semop() scans the list of all
52 * sleeping tasks and completes any pending operations that can be fulfilled.
53 * Semaphores are actively given to waiting tasks (necessary for FIFO).
54 * (see update_queue())
55 * - To improve the scalability, the actual wake-up calls are performed after
56 * dropping all locks. (see wake_up_sem_queue_prepare(),
57 * wake_up_sem_queue_do())
58 * - All work is done by the waker, the woken up task does not have to do
59 * anything - not even acquiring a lock or dropping a refcount.
60 * - A woken up task may not even touch the semaphore array anymore, it may
61 * have been destroyed already by a semctl(RMID).
62 * - The synchronizations between wake-ups due to a timeout/signal and a
63 * wake-up due to a completed semaphore operation is achieved by using an
64 * intermediate state (IN_WAKEUP).
65 * - UNDO values are stored in an array (one per process and per
66 * semaphore array, lazily allocated). For backwards compatibility, multiple
67 * modes for the UNDO variables are supported (per process, per thread)
68 * (see copy_semundo, CLONE_SYSVSEM)
69 * - There are two lists of the pending operations: a per-array list
70 * and per-semaphore list (stored in the array). This allows to achieve FIFO
71 * ordering without always scanning all pending operations.
72 * The worst-case behavior is nevertheless O(N^2) for N wakeups.
75 #include <linux/slab.h>
76 #include <linux/spinlock.h>
77 #include <linux/init.h>
78 #include <linux/proc_fs.h>
79 #include <linux/time.h>
80 #include <linux/security.h>
81 #include <linux/syscalls.h>
82 #include <linux/audit.h>
83 #include <linux/capability.h>
84 #include <linux/seq_file.h>
85 #include <linux/rwsem.h>
86 #include <linux/nsproxy.h>
87 #include <linux/ipc_namespace.h>
89 #include <linux/uaccess.h>
92 /* One semaphore structure for each semaphore in the system. */
94 int semval
; /* current value */
95 int sempid
; /* pid of last operation */
96 spinlock_t lock
; /* spinlock for fine-grained semtimedop */
97 struct list_head pending_alter
; /* pending single-sop operations */
98 /* that alter the semaphore */
99 struct list_head pending_const
; /* pending single-sop operations */
100 /* that do not alter the semaphore*/
101 time_t sem_otime
; /* candidate for sem_otime */
102 } ____cacheline_aligned_in_smp
;
104 /* One queue for each sleeping process in the system. */
106 struct list_head list
; /* queue of pending operations */
107 struct task_struct
*sleeper
; /* this process */
108 struct sem_undo
*undo
; /* undo structure */
109 int pid
; /* process id of requesting process */
110 int status
; /* completion status of operation */
111 struct sembuf
*sops
; /* array of pending operations */
112 struct sembuf
*blocking
; /* the operation that blocked */
113 int nsops
; /* number of operations */
114 int alter
; /* does *sops alter the array? */
117 /* Each task has a list of undo requests. They are executed automatically
118 * when the process exits.
121 struct list_head list_proc
; /* per-process list: *
122 * all undos from one process
124 struct rcu_head rcu
; /* rcu struct for sem_undo */
125 struct sem_undo_list
*ulp
; /* back ptr to sem_undo_list */
126 struct list_head list_id
; /* per semaphore array list:
127 * all undos for one array */
128 int semid
; /* semaphore set identifier */
129 short *semadj
; /* array of adjustments */
130 /* one per semaphore */
133 /* sem_undo_list controls shared access to the list of sem_undo structures
134 * that may be shared among all a CLONE_SYSVSEM task group.
136 struct sem_undo_list
{
139 struct list_head list_proc
;
143 #define sem_ids(ns) ((ns)->ids[IPC_SEM_IDS])
145 #define sem_checkid(sma, semid) ipc_checkid(&sma->sem_perm, semid)
147 static int newary(struct ipc_namespace
*, struct ipc_params
*);
148 static void freeary(struct ipc_namespace
*, struct kern_ipc_perm
*);
149 #ifdef CONFIG_PROC_FS
150 static int sysvipc_sem_proc_show(struct seq_file
*s
, void *it
);
153 #define SEMMSL_FAST 256 /* 512 bytes on stack */
154 #define SEMOPM_FAST 64 /* ~ 372 bytes on stack */
159 * sem_array.complex_count,
160 * sem_array.pending{_alter,_cont},
161 * sem_array.sem_undo: global sem_lock() for read/write
162 * sem_undo.proc_next: only "current" is allowed to read/write that field.
164 * sem_array.sem_base[i].pending_{const,alter}:
165 * global or semaphore sem_lock() for read/write
168 #define sc_semmsl sem_ctls[0]
169 #define sc_semmns sem_ctls[1]
170 #define sc_semopm sem_ctls[2]
171 #define sc_semmni sem_ctls[3]
173 void sem_init_ns(struct ipc_namespace
*ns
)
175 ns
->sc_semmsl
= SEMMSL
;
176 ns
->sc_semmns
= SEMMNS
;
177 ns
->sc_semopm
= SEMOPM
;
178 ns
->sc_semmni
= SEMMNI
;
180 ipc_init_ids(&ns
->ids
[IPC_SEM_IDS
]);
184 void sem_exit_ns(struct ipc_namespace
*ns
)
186 free_ipcs(ns
, &sem_ids(ns
), freeary
);
187 idr_destroy(&ns
->ids
[IPC_SEM_IDS
].ipcs_idr
);
191 void __init
sem_init(void)
193 sem_init_ns(&init_ipc_ns
);
194 ipc_init_proc_interface("sysvipc/sem",
195 " key semid perms nsems uid gid cuid cgid otime ctime\n",
196 IPC_SEM_IDS
, sysvipc_sem_proc_show
);
200 * unmerge_queues - unmerge queues, if possible.
201 * @sma: semaphore array
203 * The function unmerges the wait queues if complex_count is 0.
204 * It must be called prior to dropping the global semaphore array lock.
206 static void unmerge_queues(struct sem_array
*sma
)
208 struct sem_queue
*q
, *tq
;
210 /* complex operations still around? */
211 if (sma
->complex_count
)
214 * We will switch back to simple mode.
215 * Move all pending operation back into the per-semaphore
218 list_for_each_entry_safe(q
, tq
, &sma
->pending_alter
, list
) {
220 curr
= &sma
->sem_base
[q
->sops
[0].sem_num
];
222 list_add_tail(&q
->list
, &curr
->pending_alter
);
224 INIT_LIST_HEAD(&sma
->pending_alter
);
228 * merge_queues - merge single semop queues into global queue
229 * @sma: semaphore array
231 * This function merges all per-semaphore queues into the global queue.
232 * It is necessary to achieve FIFO ordering for the pending single-sop
233 * operations when a multi-semop operation must sleep.
234 * Only the alter operations must be moved, the const operations can stay.
236 static void merge_queues(struct sem_array
*sma
)
239 for (i
= 0; i
< sma
->sem_nsems
; i
++) {
240 struct sem
*sem
= sma
->sem_base
+ i
;
242 list_splice_init(&sem
->pending_alter
, &sma
->pending_alter
);
246 static void sem_rcu_free(struct rcu_head
*head
)
248 struct ipc_rcu
*p
= container_of(head
, struct ipc_rcu
, rcu
);
249 struct sem_array
*sma
= ipc_rcu_to_struct(p
);
251 security_sem_free(sma
);
256 * spin_unlock_wait() and !spin_is_locked() are not memory barriers, they
257 * are only control barriers.
258 * The code must pair with spin_unlock(&sem->lock) or
259 * spin_unlock(&sem_perm.lock), thus just the control barrier is insufficient.
261 * smp_rmb() is sufficient, as writes cannot pass the control barrier.
263 #define ipc_smp_acquire__after_spin_is_unlocked() smp_rmb()
266 * Wait until all currently ongoing simple ops have completed.
267 * Caller must own sem_perm.lock.
268 * New simple ops cannot start, because simple ops first check
269 * that sem_perm.lock is free.
270 * that a) sem_perm.lock is free and b) complex_count is 0.
272 static void sem_wait_array(struct sem_array
*sma
)
277 if (sma
->complex_count
) {
278 /* The thread that increased sma->complex_count waited on
279 * all sem->lock locks. Thus we don't need to wait again.
284 for (i
= 0; i
< sma
->sem_nsems
; i
++) {
285 sem
= sma
->sem_base
+ i
;
286 spin_unlock_wait(&sem
->lock
);
288 ipc_smp_acquire__after_spin_is_unlocked();
292 * If the request contains only one semaphore operation, and there are
293 * no complex transactions pending, lock only the semaphore involved.
294 * Otherwise, lock the entire semaphore array, since we either have
295 * multiple semaphores in our own semops, or we need to look at
296 * semaphores from other pending complex operations.
298 static inline int sem_lock(struct sem_array
*sma
, struct sembuf
*sops
,
304 /* Complex operation - acquire a full lock */
305 ipc_lock_object(&sma
->sem_perm
);
307 /* And wait until all simple ops that are processed
308 * right now have dropped their locks.
315 * Only one semaphore affected - try to optimize locking.
317 * - optimized locking is possible if no complex operation
318 * is either enqueued or processed right now.
319 * - The test for enqueued complex ops is simple:
320 * sma->complex_count != 0
321 * - Testing for complex ops that are processed right now is
322 * a bit more difficult. Complex ops acquire the full lock
323 * and first wait that the running simple ops have completed.
325 * Thus: If we own a simple lock and the global lock is free
326 * and complex_count is now 0, then it will stay 0 and
327 * thus just locking sem->lock is sufficient.
329 sem
= sma
->sem_base
+ sops
->sem_num
;
331 if (sma
->complex_count
== 0) {
333 * It appears that no complex operation is around.
334 * Acquire the per-semaphore lock.
336 spin_lock(&sem
->lock
);
338 /* Then check that the global lock is free */
339 if (!spin_is_locked(&sma
->sem_perm
.lock
)) {
341 * We need a memory barrier with acquire semantics,
342 * otherwise we can race with another thread that does:
344 * spin_unlock(sem_perm.lock);
346 ipc_smp_acquire__after_spin_is_unlocked();
349 * Now repeat the test of complex_count:
350 * It can't change anymore until we drop sem->lock.
351 * Thus: if is now 0, then it will stay 0.
353 if (sma
->complex_count
== 0) {
354 /* fast path successful! */
355 return sops
->sem_num
;
358 spin_unlock(&sem
->lock
);
361 /* slow path: acquire the full lock */
362 ipc_lock_object(&sma
->sem_perm
);
364 if (sma
->complex_count
== 0) {
366 * There is no complex operation, thus we can switch
367 * back to the fast path.
369 spin_lock(&sem
->lock
);
370 ipc_unlock_object(&sma
->sem_perm
);
371 return sops
->sem_num
;
373 /* Not a false alarm, thus complete the sequence for a
381 static inline void sem_unlock(struct sem_array
*sma
, int locknum
)
385 ipc_unlock_object(&sma
->sem_perm
);
387 struct sem
*sem
= sma
->sem_base
+ locknum
;
388 spin_unlock(&sem
->lock
);
393 * sem_lock_(check_) routines are called in the paths where the rwsem
396 * The caller holds the RCU read lock.
398 static inline struct sem_array
*sem_obtain_lock(struct ipc_namespace
*ns
,
399 int id
, struct sembuf
*sops
, int nsops
, int *locknum
)
401 struct kern_ipc_perm
*ipcp
;
402 struct sem_array
*sma
;
404 ipcp
= ipc_obtain_object_idr(&sem_ids(ns
), id
);
406 return ERR_CAST(ipcp
);
408 sma
= container_of(ipcp
, struct sem_array
, sem_perm
);
409 *locknum
= sem_lock(sma
, sops
, nsops
);
411 /* ipc_rmid() may have already freed the ID while sem_lock
412 * was spinning: verify that the structure is still valid
414 if (ipc_valid_object(ipcp
))
415 return container_of(ipcp
, struct sem_array
, sem_perm
);
417 sem_unlock(sma
, *locknum
);
418 return ERR_PTR(-EINVAL
);
421 static inline struct sem_array
*sem_obtain_object(struct ipc_namespace
*ns
, int id
)
423 struct kern_ipc_perm
*ipcp
= ipc_obtain_object_idr(&sem_ids(ns
), id
);
426 return ERR_CAST(ipcp
);
428 return container_of(ipcp
, struct sem_array
, sem_perm
);
431 static inline struct sem_array
*sem_obtain_object_check(struct ipc_namespace
*ns
,
434 struct kern_ipc_perm
*ipcp
= ipc_obtain_object_check(&sem_ids(ns
), id
);
437 return ERR_CAST(ipcp
);
439 return container_of(ipcp
, struct sem_array
, sem_perm
);
442 static inline void sem_lock_and_putref(struct sem_array
*sma
)
444 sem_lock(sma
, NULL
, -1);
445 ipc_rcu_putref(sma
, ipc_rcu_free
);
448 static inline void sem_rmid(struct ipc_namespace
*ns
, struct sem_array
*s
)
450 ipc_rmid(&sem_ids(ns
), &s
->sem_perm
);
454 * Lockless wakeup algorithm:
455 * Without the check/retry algorithm a lockless wakeup is possible:
456 * - queue.status is initialized to -EINTR before blocking.
457 * - wakeup is performed by
458 * * unlinking the queue entry from the pending list
459 * * setting queue.status to IN_WAKEUP
460 * This is the notification for the blocked thread that a
461 * result value is imminent.
462 * * call wake_up_process
463 * * set queue.status to the final value.
464 * - the previously blocked thread checks queue.status:
465 * * if it's IN_WAKEUP, then it must wait until the value changes
466 * * if it's not -EINTR, then the operation was completed by
467 * update_queue. semtimedop can return queue.status without
468 * performing any operation on the sem array.
469 * * otherwise it must acquire the spinlock and check what's up.
471 * The two-stage algorithm is necessary to protect against the following
473 * - if queue.status is set after wake_up_process, then the woken up idle
474 * thread could race forward and try (and fail) to acquire sma->lock
475 * before update_queue had a chance to set queue.status
476 * - if queue.status is written before wake_up_process and if the
477 * blocked process is woken up by a signal between writing
478 * queue.status and the wake_up_process, then the woken up
479 * process could return from semtimedop and die by calling
480 * sys_exit before wake_up_process is called. Then wake_up_process
481 * will oops, because the task structure is already invalid.
482 * (yes, this happened on s390 with sysv msg).
488 * newary - Create a new semaphore set
490 * @params: ptr to the structure that contains key, semflg and nsems
492 * Called with sem_ids.rwsem held (as a writer)
494 static int newary(struct ipc_namespace
*ns
, struct ipc_params
*params
)
498 struct sem_array
*sma
;
500 key_t key
= params
->key
;
501 int nsems
= params
->u
.nsems
;
502 int semflg
= params
->flg
;
507 if (ns
->used_sems
+ nsems
> ns
->sc_semmns
)
510 size
= sizeof(*sma
) + nsems
* sizeof(struct sem
);
511 sma
= ipc_rcu_alloc(size
);
515 memset(sma
, 0, size
);
517 sma
->sem_perm
.mode
= (semflg
& S_IRWXUGO
);
518 sma
->sem_perm
.key
= key
;
520 sma
->sem_perm
.security
= NULL
;
521 retval
= security_sem_alloc(sma
);
523 ipc_rcu_putref(sma
, ipc_rcu_free
);
527 sma
->sem_base
= (struct sem
*) &sma
[1];
529 for (i
= 0; i
< nsems
; i
++) {
530 INIT_LIST_HEAD(&sma
->sem_base
[i
].pending_alter
);
531 INIT_LIST_HEAD(&sma
->sem_base
[i
].pending_const
);
532 spin_lock_init(&sma
->sem_base
[i
].lock
);
535 sma
->complex_count
= 0;
536 INIT_LIST_HEAD(&sma
->pending_alter
);
537 INIT_LIST_HEAD(&sma
->pending_const
);
538 INIT_LIST_HEAD(&sma
->list_id
);
539 sma
->sem_nsems
= nsems
;
540 sma
->sem_ctime
= get_seconds();
542 id
= ipc_addid(&sem_ids(ns
), &sma
->sem_perm
, ns
->sc_semmni
);
544 ipc_rcu_putref(sma
, sem_rcu_free
);
547 ns
->used_sems
+= nsems
;
552 return sma
->sem_perm
.id
;
557 * Called with sem_ids.rwsem and ipcp locked.
559 static inline int sem_security(struct kern_ipc_perm
*ipcp
, int semflg
)
561 struct sem_array
*sma
;
563 sma
= container_of(ipcp
, struct sem_array
, sem_perm
);
564 return security_sem_associate(sma
, semflg
);
568 * Called with sem_ids.rwsem and ipcp locked.
570 static inline int sem_more_checks(struct kern_ipc_perm
*ipcp
,
571 struct ipc_params
*params
)
573 struct sem_array
*sma
;
575 sma
= container_of(ipcp
, struct sem_array
, sem_perm
);
576 if (params
->u
.nsems
> sma
->sem_nsems
)
582 SYSCALL_DEFINE3(semget
, key_t
, key
, int, nsems
, int, semflg
)
584 struct ipc_namespace
*ns
;
585 static const struct ipc_ops sem_ops
= {
587 .associate
= sem_security
,
588 .more_checks
= sem_more_checks
,
590 struct ipc_params sem_params
;
592 ns
= current
->nsproxy
->ipc_ns
;
594 if (nsems
< 0 || nsems
> ns
->sc_semmsl
)
597 sem_params
.key
= key
;
598 sem_params
.flg
= semflg
;
599 sem_params
.u
.nsems
= nsems
;
601 return ipcget(ns
, &sem_ids(ns
), &sem_ops
, &sem_params
);
605 * perform_atomic_semop - Perform (if possible) a semaphore operation
606 * @sma: semaphore array
607 * @q: struct sem_queue that describes the operation
609 * Returns 0 if the operation was possible.
610 * Returns 1 if the operation is impossible, the caller must sleep.
611 * Negative values are error codes.
613 static int perform_atomic_semop(struct sem_array
*sma
, struct sem_queue
*q
)
615 int result
, sem_op
, nsops
, pid
;
625 for (sop
= sops
; sop
< sops
+ nsops
; sop
++) {
626 curr
= sma
->sem_base
+ sop
->sem_num
;
627 sem_op
= sop
->sem_op
;
628 result
= curr
->semval
;
630 if (!sem_op
&& result
)
639 if (sop
->sem_flg
& SEM_UNDO
) {
640 int undo
= un
->semadj
[sop
->sem_num
] - sem_op
;
641 /* Exceeding the undo range is an error. */
642 if (undo
< (-SEMAEM
- 1) || undo
> SEMAEM
)
644 un
->semadj
[sop
->sem_num
] = undo
;
647 curr
->semval
= result
;
652 while (sop
>= sops
) {
653 sma
->sem_base
[sop
->sem_num
].sempid
= pid
;
666 if (sop
->sem_flg
& IPC_NOWAIT
)
673 while (sop
>= sops
) {
674 sem_op
= sop
->sem_op
;
675 sma
->sem_base
[sop
->sem_num
].semval
-= sem_op
;
676 if (sop
->sem_flg
& SEM_UNDO
)
677 un
->semadj
[sop
->sem_num
] += sem_op
;
684 /** wake_up_sem_queue_prepare(q, error): Prepare wake-up
685 * @q: queue entry that must be signaled
686 * @error: Error value for the signal
688 * Prepare the wake-up of the queue entry q.
690 static void wake_up_sem_queue_prepare(struct list_head
*pt
,
691 struct sem_queue
*q
, int error
)
693 if (list_empty(pt
)) {
695 * Hold preempt off so that we don't get preempted and have the
696 * wakee busy-wait until we're scheduled back on.
700 q
->status
= IN_WAKEUP
;
703 list_add_tail(&q
->list
, pt
);
707 * wake_up_sem_queue_do - do the actual wake-up
708 * @pt: list of tasks to be woken up
710 * Do the actual wake-up.
711 * The function is called without any locks held, thus the semaphore array
712 * could be destroyed already and the tasks can disappear as soon as the
713 * status is set to the actual return code.
715 static void wake_up_sem_queue_do(struct list_head
*pt
)
717 struct sem_queue
*q
, *t
;
720 did_something
= !list_empty(pt
);
721 list_for_each_entry_safe(q
, t
, pt
, list
) {
722 wake_up_process(q
->sleeper
);
723 /* q can disappear immediately after writing q->status. */
731 static void unlink_queue(struct sem_array
*sma
, struct sem_queue
*q
)
735 sma
->complex_count
--;
738 /** check_restart(sma, q)
739 * @sma: semaphore array
740 * @q: the operation that just completed
742 * update_queue is O(N^2) when it restarts scanning the whole queue of
743 * waiting operations. Therefore this function checks if the restart is
744 * really necessary. It is called after a previously waiting operation
745 * modified the array.
746 * Note that wait-for-zero operations are handled without restart.
748 static int check_restart(struct sem_array
*sma
, struct sem_queue
*q
)
750 /* pending complex alter operations are too difficult to analyse */
751 if (!list_empty(&sma
->pending_alter
))
754 /* we were a sleeping complex operation. Too difficult */
758 /* It is impossible that someone waits for the new value:
759 * - complex operations always restart.
760 * - wait-for-zero are handled seperately.
761 * - q is a previously sleeping simple operation that
762 * altered the array. It must be a decrement, because
763 * simple increments never sleep.
764 * - If there are older (higher priority) decrements
765 * in the queue, then they have observed the original
766 * semval value and couldn't proceed. The operation
767 * decremented to value - thus they won't proceed either.
773 * wake_const_ops - wake up non-alter tasks
774 * @sma: semaphore array.
775 * @semnum: semaphore that was modified.
776 * @pt: list head for the tasks that must be woken up.
778 * wake_const_ops must be called after a semaphore in a semaphore array
779 * was set to 0. If complex const operations are pending, wake_const_ops must
780 * be called with semnum = -1, as well as with the number of each modified
782 * The tasks that must be woken up are added to @pt. The return code
783 * is stored in q->pid.
784 * The function returns 1 if at least one operation was completed successfully.
786 static int wake_const_ops(struct sem_array
*sma
, int semnum
,
787 struct list_head
*pt
)
790 struct list_head
*walk
;
791 struct list_head
*pending_list
;
792 int semop_completed
= 0;
795 pending_list
= &sma
->pending_const
;
797 pending_list
= &sma
->sem_base
[semnum
].pending_const
;
799 walk
= pending_list
->next
;
800 while (walk
!= pending_list
) {
803 q
= container_of(walk
, struct sem_queue
, list
);
806 error
= perform_atomic_semop(sma
, q
);
809 /* operation completed, remove from queue & wakeup */
811 unlink_queue(sma
, q
);
813 wake_up_sem_queue_prepare(pt
, q
, error
);
818 return semop_completed
;
822 * do_smart_wakeup_zero - wakeup all wait for zero tasks
823 * @sma: semaphore array
824 * @sops: operations that were performed
825 * @nsops: number of operations
826 * @pt: list head of the tasks that must be woken up.
828 * Checks all required queue for wait-for-zero operations, based
829 * on the actual changes that were performed on the semaphore array.
830 * The function returns 1 if at least one operation was completed successfully.
832 static int do_smart_wakeup_zero(struct sem_array
*sma
, struct sembuf
*sops
,
833 int nsops
, struct list_head
*pt
)
836 int semop_completed
= 0;
839 /* first: the per-semaphore queues, if known */
841 for (i
= 0; i
< nsops
; i
++) {
842 int num
= sops
[i
].sem_num
;
844 if (sma
->sem_base
[num
].semval
== 0) {
846 semop_completed
|= wake_const_ops(sma
, num
, pt
);
851 * No sops means modified semaphores not known.
852 * Assume all were changed.
854 for (i
= 0; i
< sma
->sem_nsems
; i
++) {
855 if (sma
->sem_base
[i
].semval
== 0) {
857 semop_completed
|= wake_const_ops(sma
, i
, pt
);
862 * If one of the modified semaphores got 0,
863 * then check the global queue, too.
866 semop_completed
|= wake_const_ops(sma
, -1, pt
);
868 return semop_completed
;
873 * update_queue - look for tasks that can be completed.
874 * @sma: semaphore array.
875 * @semnum: semaphore that was modified.
876 * @pt: list head for the tasks that must be woken up.
878 * update_queue must be called after a semaphore in a semaphore array
879 * was modified. If multiple semaphores were modified, update_queue must
880 * be called with semnum = -1, as well as with the number of each modified
882 * The tasks that must be woken up are added to @pt. The return code
883 * is stored in q->pid.
884 * The function internally checks if const operations can now succeed.
886 * The function return 1 if at least one semop was completed successfully.
888 static int update_queue(struct sem_array
*sma
, int semnum
, struct list_head
*pt
)
891 struct list_head
*walk
;
892 struct list_head
*pending_list
;
893 int semop_completed
= 0;
896 pending_list
= &sma
->pending_alter
;
898 pending_list
= &sma
->sem_base
[semnum
].pending_alter
;
901 walk
= pending_list
->next
;
902 while (walk
!= pending_list
) {
905 q
= container_of(walk
, struct sem_queue
, list
);
908 /* If we are scanning the single sop, per-semaphore list of
909 * one semaphore and that semaphore is 0, then it is not
910 * necessary to scan further: simple increments
911 * that affect only one entry succeed immediately and cannot
912 * be in the per semaphore pending queue, and decrements
913 * cannot be successful if the value is already 0.
915 if (semnum
!= -1 && sma
->sem_base
[semnum
].semval
== 0)
918 error
= perform_atomic_semop(sma
, q
);
920 /* Does q->sleeper still need to sleep? */
924 unlink_queue(sma
, q
);
930 do_smart_wakeup_zero(sma
, q
->sops
, q
->nsops
, pt
);
931 restart
= check_restart(sma
, q
);
934 wake_up_sem_queue_prepare(pt
, q
, error
);
938 return semop_completed
;
942 * set_semotime - set sem_otime
943 * @sma: semaphore array
944 * @sops: operations that modified the array, may be NULL
946 * sem_otime is replicated to avoid cache line trashing.
947 * This function sets one instance to the current time.
949 static void set_semotime(struct sem_array
*sma
, struct sembuf
*sops
)
952 sma
->sem_base
[0].sem_otime
= get_seconds();
954 sma
->sem_base
[sops
[0].sem_num
].sem_otime
=
960 * do_smart_update - optimized update_queue
961 * @sma: semaphore array
962 * @sops: operations that were performed
963 * @nsops: number of operations
964 * @otime: force setting otime
965 * @pt: list head of the tasks that must be woken up.
967 * do_smart_update() does the required calls to update_queue and wakeup_zero,
968 * based on the actual changes that were performed on the semaphore array.
969 * Note that the function does not do the actual wake-up: the caller is
970 * responsible for calling wake_up_sem_queue_do(@pt).
971 * It is safe to perform this call after dropping all locks.
973 static void do_smart_update(struct sem_array
*sma
, struct sembuf
*sops
, int nsops
,
974 int otime
, struct list_head
*pt
)
978 otime
|= do_smart_wakeup_zero(sma
, sops
, nsops
, pt
);
980 if (!list_empty(&sma
->pending_alter
)) {
981 /* semaphore array uses the global queue - just process it. */
982 otime
|= update_queue(sma
, -1, pt
);
986 * No sops, thus the modified semaphores are not
989 for (i
= 0; i
< sma
->sem_nsems
; i
++)
990 otime
|= update_queue(sma
, i
, pt
);
993 * Check the semaphores that were increased:
994 * - No complex ops, thus all sleeping ops are
996 * - if we decreased the value, then any sleeping
997 * semaphore ops wont be able to run: If the
998 * previous value was too small, then the new
999 * value will be too small, too.
1001 for (i
= 0; i
< nsops
; i
++) {
1002 if (sops
[i
].sem_op
> 0) {
1003 otime
|= update_queue(sma
,
1004 sops
[i
].sem_num
, pt
);
1010 set_semotime(sma
, sops
);
1014 * check_qop: Test if a queued operation sleeps on the semaphore semnum
1016 static int check_qop(struct sem_array
*sma
, int semnum
, struct sem_queue
*q
,
1019 struct sembuf
*sop
= q
->blocking
;
1022 * Linux always (since 0.99.10) reported a task as sleeping on all
1023 * semaphores. This violates SUS, therefore it was changed to the
1024 * standard compliant behavior.
1025 * Give the administrators a chance to notice that an application
1026 * might misbehave because it relies on the Linux behavior.
1028 pr_info_once("semctl(GETNCNT/GETZCNT) is since 3.16 Single Unix Specification compliant.\n"
1029 "The task %s (%d) triggered the difference, watch for misbehavior.\n",
1030 current
->comm
, task_pid_nr(current
));
1032 if (sop
->sem_num
!= semnum
)
1035 if (count_zero
&& sop
->sem_op
== 0)
1037 if (!count_zero
&& sop
->sem_op
< 0)
1043 /* The following counts are associated to each semaphore:
1044 * semncnt number of tasks waiting on semval being nonzero
1045 * semzcnt number of tasks waiting on semval being zero
1047 * Per definition, a task waits only on the semaphore of the first semop
1048 * that cannot proceed, even if additional operation would block, too.
1050 static int count_semcnt(struct sem_array
*sma
, ushort semnum
,
1053 struct list_head
*l
;
1054 struct sem_queue
*q
;
1058 /* First: check the simple operations. They are easy to evaluate */
1060 l
= &sma
->sem_base
[semnum
].pending_const
;
1062 l
= &sma
->sem_base
[semnum
].pending_alter
;
1064 list_for_each_entry(q
, l
, list
) {
1065 /* all task on a per-semaphore list sleep on exactly
1071 /* Then: check the complex operations. */
1072 list_for_each_entry(q
, &sma
->pending_alter
, list
) {
1073 semcnt
+= check_qop(sma
, semnum
, q
, count_zero
);
1076 list_for_each_entry(q
, &sma
->pending_const
, list
) {
1077 semcnt
+= check_qop(sma
, semnum
, q
, count_zero
);
1083 /* Free a semaphore set. freeary() is called with sem_ids.rwsem locked
1084 * as a writer and the spinlock for this semaphore set hold. sem_ids.rwsem
1085 * remains locked on exit.
1087 static void freeary(struct ipc_namespace
*ns
, struct kern_ipc_perm
*ipcp
)
1089 struct sem_undo
*un
, *tu
;
1090 struct sem_queue
*q
, *tq
;
1091 struct sem_array
*sma
= container_of(ipcp
, struct sem_array
, sem_perm
);
1092 struct list_head tasks
;
1095 /* Free the existing undo structures for this semaphore set. */
1096 ipc_assert_locked_object(&sma
->sem_perm
);
1097 list_for_each_entry_safe(un
, tu
, &sma
->list_id
, list_id
) {
1098 list_del(&un
->list_id
);
1099 spin_lock(&un
->ulp
->lock
);
1101 list_del_rcu(&un
->list_proc
);
1102 spin_unlock(&un
->ulp
->lock
);
1106 /* Wake up all pending processes and let them fail with EIDRM. */
1107 INIT_LIST_HEAD(&tasks
);
1108 list_for_each_entry_safe(q
, tq
, &sma
->pending_const
, list
) {
1109 unlink_queue(sma
, q
);
1110 wake_up_sem_queue_prepare(&tasks
, q
, -EIDRM
);
1113 list_for_each_entry_safe(q
, tq
, &sma
->pending_alter
, list
) {
1114 unlink_queue(sma
, q
);
1115 wake_up_sem_queue_prepare(&tasks
, q
, -EIDRM
);
1117 for (i
= 0; i
< sma
->sem_nsems
; i
++) {
1118 struct sem
*sem
= sma
->sem_base
+ i
;
1119 list_for_each_entry_safe(q
, tq
, &sem
->pending_const
, list
) {
1120 unlink_queue(sma
, q
);
1121 wake_up_sem_queue_prepare(&tasks
, q
, -EIDRM
);
1123 list_for_each_entry_safe(q
, tq
, &sem
->pending_alter
, list
) {
1124 unlink_queue(sma
, q
);
1125 wake_up_sem_queue_prepare(&tasks
, q
, -EIDRM
);
1129 /* Remove the semaphore set from the IDR */
1131 sem_unlock(sma
, -1);
1134 wake_up_sem_queue_do(&tasks
);
1135 ns
->used_sems
-= sma
->sem_nsems
;
1136 ipc_rcu_putref(sma
, sem_rcu_free
);
1139 static unsigned long copy_semid_to_user(void __user
*buf
, struct semid64_ds
*in
, int version
)
1143 return copy_to_user(buf
, in
, sizeof(*in
));
1146 struct semid_ds out
;
1148 memset(&out
, 0, sizeof(out
));
1150 ipc64_perm_to_ipc_perm(&in
->sem_perm
, &out
.sem_perm
);
1152 out
.sem_otime
= in
->sem_otime
;
1153 out
.sem_ctime
= in
->sem_ctime
;
1154 out
.sem_nsems
= in
->sem_nsems
;
1156 return copy_to_user(buf
, &out
, sizeof(out
));
1163 static time_t get_semotime(struct sem_array
*sma
)
1168 res
= sma
->sem_base
[0].sem_otime
;
1169 for (i
= 1; i
< sma
->sem_nsems
; i
++) {
1170 time_t to
= sma
->sem_base
[i
].sem_otime
;
1178 static int semctl_nolock(struct ipc_namespace
*ns
, int semid
,
1179 int cmd
, int version
, void __user
*p
)
1182 struct sem_array
*sma
;
1188 struct seminfo seminfo
;
1191 err
= security_sem_semctl(NULL
, cmd
);
1195 memset(&seminfo
, 0, sizeof(seminfo
));
1196 seminfo
.semmni
= ns
->sc_semmni
;
1197 seminfo
.semmns
= ns
->sc_semmns
;
1198 seminfo
.semmsl
= ns
->sc_semmsl
;
1199 seminfo
.semopm
= ns
->sc_semopm
;
1200 seminfo
.semvmx
= SEMVMX
;
1201 seminfo
.semmnu
= SEMMNU
;
1202 seminfo
.semmap
= SEMMAP
;
1203 seminfo
.semume
= SEMUME
;
1204 down_read(&sem_ids(ns
).rwsem
);
1205 if (cmd
== SEM_INFO
) {
1206 seminfo
.semusz
= sem_ids(ns
).in_use
;
1207 seminfo
.semaem
= ns
->used_sems
;
1209 seminfo
.semusz
= SEMUSZ
;
1210 seminfo
.semaem
= SEMAEM
;
1212 max_id
= ipc_get_maxid(&sem_ids(ns
));
1213 up_read(&sem_ids(ns
).rwsem
);
1214 if (copy_to_user(p
, &seminfo
, sizeof(struct seminfo
)))
1216 return (max_id
< 0) ? 0 : max_id
;
1221 struct semid64_ds tbuf
;
1224 memset(&tbuf
, 0, sizeof(tbuf
));
1227 if (cmd
== SEM_STAT
) {
1228 sma
= sem_obtain_object(ns
, semid
);
1233 id
= sma
->sem_perm
.id
;
1235 sma
= sem_obtain_object_check(ns
, semid
);
1243 if (ipcperms(ns
, &sma
->sem_perm
, S_IRUGO
))
1246 err
= security_sem_semctl(sma
, cmd
);
1250 kernel_to_ipc64_perm(&sma
->sem_perm
, &tbuf
.sem_perm
);
1251 tbuf
.sem_otime
= get_semotime(sma
);
1252 tbuf
.sem_ctime
= sma
->sem_ctime
;
1253 tbuf
.sem_nsems
= sma
->sem_nsems
;
1255 if (copy_semid_to_user(p
, &tbuf
, version
))
1267 static int semctl_setval(struct ipc_namespace
*ns
, int semid
, int semnum
,
1270 struct sem_undo
*un
;
1271 struct sem_array
*sma
;
1274 struct list_head tasks
;
1276 #if defined(CONFIG_64BIT) && defined(__BIG_ENDIAN)
1277 /* big-endian 64bit */
1280 /* 32bit or little-endian 64bit */
1284 if (val
> SEMVMX
|| val
< 0)
1287 INIT_LIST_HEAD(&tasks
);
1290 sma
= sem_obtain_object_check(ns
, semid
);
1293 return PTR_ERR(sma
);
1296 if (semnum
< 0 || semnum
>= sma
->sem_nsems
) {
1302 if (ipcperms(ns
, &sma
->sem_perm
, S_IWUGO
)) {
1307 err
= security_sem_semctl(sma
, SETVAL
);
1313 sem_lock(sma
, NULL
, -1);
1315 if (!ipc_valid_object(&sma
->sem_perm
)) {
1316 sem_unlock(sma
, -1);
1321 curr
= &sma
->sem_base
[semnum
];
1323 ipc_assert_locked_object(&sma
->sem_perm
);
1324 list_for_each_entry(un
, &sma
->list_id
, list_id
)
1325 un
->semadj
[semnum
] = 0;
1328 curr
->sempid
= task_tgid_vnr(current
);
1329 sma
->sem_ctime
= get_seconds();
1330 /* maybe some queued-up processes were waiting for this */
1331 do_smart_update(sma
, NULL
, 0, 0, &tasks
);
1332 sem_unlock(sma
, -1);
1334 wake_up_sem_queue_do(&tasks
);
1338 static int semctl_main(struct ipc_namespace
*ns
, int semid
, int semnum
,
1339 int cmd
, void __user
*p
)
1341 struct sem_array
*sma
;
1344 ushort fast_sem_io
[SEMMSL_FAST
];
1345 ushort
*sem_io
= fast_sem_io
;
1346 struct list_head tasks
;
1348 INIT_LIST_HEAD(&tasks
);
1351 sma
= sem_obtain_object_check(ns
, semid
);
1354 return PTR_ERR(sma
);
1357 nsems
= sma
->sem_nsems
;
1360 if (ipcperms(ns
, &sma
->sem_perm
, cmd
== SETALL
? S_IWUGO
: S_IRUGO
))
1361 goto out_rcu_wakeup
;
1363 err
= security_sem_semctl(sma
, cmd
);
1365 goto out_rcu_wakeup
;
1371 ushort __user
*array
= p
;
1374 sem_lock(sma
, NULL
, -1);
1375 if (!ipc_valid_object(&sma
->sem_perm
)) {
1379 if (nsems
> SEMMSL_FAST
) {
1380 if (!ipc_rcu_getref(sma
)) {
1384 sem_unlock(sma
, -1);
1386 sem_io
= ipc_alloc(sizeof(ushort
)*nsems
);
1387 if (sem_io
== NULL
) {
1388 ipc_rcu_putref(sma
, ipc_rcu_free
);
1393 sem_lock_and_putref(sma
);
1394 if (!ipc_valid_object(&sma
->sem_perm
)) {
1399 for (i
= 0; i
< sma
->sem_nsems
; i
++)
1400 sem_io
[i
] = sma
->sem_base
[i
].semval
;
1401 sem_unlock(sma
, -1);
1404 if (copy_to_user(array
, sem_io
, nsems
*sizeof(ushort
)))
1411 struct sem_undo
*un
;
1413 if (!ipc_rcu_getref(sma
)) {
1415 goto out_rcu_wakeup
;
1419 if (nsems
> SEMMSL_FAST
) {
1420 sem_io
= ipc_alloc(sizeof(ushort
)*nsems
);
1421 if (sem_io
== NULL
) {
1422 ipc_rcu_putref(sma
, ipc_rcu_free
);
1427 if (copy_from_user(sem_io
, p
, nsems
*sizeof(ushort
))) {
1428 ipc_rcu_putref(sma
, ipc_rcu_free
);
1433 for (i
= 0; i
< nsems
; i
++) {
1434 if (sem_io
[i
] > SEMVMX
) {
1435 ipc_rcu_putref(sma
, ipc_rcu_free
);
1441 sem_lock_and_putref(sma
);
1442 if (!ipc_valid_object(&sma
->sem_perm
)) {
1447 for (i
= 0; i
< nsems
; i
++)
1448 sma
->sem_base
[i
].semval
= sem_io
[i
];
1450 ipc_assert_locked_object(&sma
->sem_perm
);
1451 list_for_each_entry(un
, &sma
->list_id
, list_id
) {
1452 for (i
= 0; i
< nsems
; i
++)
1455 sma
->sem_ctime
= get_seconds();
1456 /* maybe some queued-up processes were waiting for this */
1457 do_smart_update(sma
, NULL
, 0, 0, &tasks
);
1461 /* GETVAL, GETPID, GETNCTN, GETZCNT: fall-through */
1464 if (semnum
< 0 || semnum
>= nsems
)
1465 goto out_rcu_wakeup
;
1467 sem_lock(sma
, NULL
, -1);
1468 if (!ipc_valid_object(&sma
->sem_perm
)) {
1472 curr
= &sma
->sem_base
[semnum
];
1482 err
= count_semcnt(sma
, semnum
, 0);
1485 err
= count_semcnt(sma
, semnum
, 1);
1490 sem_unlock(sma
, -1);
1493 wake_up_sem_queue_do(&tasks
);
1495 if (sem_io
!= fast_sem_io
)
1500 static inline unsigned long
1501 copy_semid_from_user(struct semid64_ds
*out
, void __user
*buf
, int version
)
1505 if (copy_from_user(out
, buf
, sizeof(*out
)))
1510 struct semid_ds tbuf_old
;
1512 if (copy_from_user(&tbuf_old
, buf
, sizeof(tbuf_old
)))
1515 out
->sem_perm
.uid
= tbuf_old
.sem_perm
.uid
;
1516 out
->sem_perm
.gid
= tbuf_old
.sem_perm
.gid
;
1517 out
->sem_perm
.mode
= tbuf_old
.sem_perm
.mode
;
1527 * This function handles some semctl commands which require the rwsem
1528 * to be held in write mode.
1529 * NOTE: no locks must be held, the rwsem is taken inside this function.
1531 static int semctl_down(struct ipc_namespace
*ns
, int semid
,
1532 int cmd
, int version
, void __user
*p
)
1534 struct sem_array
*sma
;
1536 struct semid64_ds semid64
;
1537 struct kern_ipc_perm
*ipcp
;
1539 if (cmd
== IPC_SET
) {
1540 if (copy_semid_from_user(&semid64
, p
, version
))
1544 down_write(&sem_ids(ns
).rwsem
);
1547 ipcp
= ipcctl_pre_down_nolock(ns
, &sem_ids(ns
), semid
, cmd
,
1548 &semid64
.sem_perm
, 0);
1550 err
= PTR_ERR(ipcp
);
1554 sma
= container_of(ipcp
, struct sem_array
, sem_perm
);
1556 err
= security_sem_semctl(sma
, cmd
);
1562 sem_lock(sma
, NULL
, -1);
1563 /* freeary unlocks the ipc object and rcu */
1567 sem_lock(sma
, NULL
, -1);
1568 err
= ipc_update_perm(&semid64
.sem_perm
, ipcp
);
1571 sma
->sem_ctime
= get_seconds();
1579 sem_unlock(sma
, -1);
1583 up_write(&sem_ids(ns
).rwsem
);
1587 SYSCALL_DEFINE4(semctl
, int, semid
, int, semnum
, int, cmd
, unsigned long, arg
)
1590 struct ipc_namespace
*ns
;
1591 void __user
*p
= (void __user
*)arg
;
1596 version
= ipc_parse_version(&cmd
);
1597 ns
= current
->nsproxy
->ipc_ns
;
1604 return semctl_nolock(ns
, semid
, cmd
, version
, p
);
1611 return semctl_main(ns
, semid
, semnum
, cmd
, p
);
1613 return semctl_setval(ns
, semid
, semnum
, arg
);
1616 return semctl_down(ns
, semid
, cmd
, version
, p
);
1622 /* If the task doesn't already have a undo_list, then allocate one
1623 * here. We guarantee there is only one thread using this undo list,
1624 * and current is THE ONE
1626 * If this allocation and assignment succeeds, but later
1627 * portions of this code fail, there is no need to free the sem_undo_list.
1628 * Just let it stay associated with the task, and it'll be freed later
1631 * This can block, so callers must hold no locks.
1633 static inline int get_undo_list(struct sem_undo_list
**undo_listp
)
1635 struct sem_undo_list
*undo_list
;
1637 undo_list
= current
->sysvsem
.undo_list
;
1639 undo_list
= kzalloc(sizeof(*undo_list
), GFP_KERNEL
);
1640 if (undo_list
== NULL
)
1642 spin_lock_init(&undo_list
->lock
);
1643 atomic_set(&undo_list
->refcnt
, 1);
1644 INIT_LIST_HEAD(&undo_list
->list_proc
);
1646 current
->sysvsem
.undo_list
= undo_list
;
1648 *undo_listp
= undo_list
;
1652 static struct sem_undo
*__lookup_undo(struct sem_undo_list
*ulp
, int semid
)
1654 struct sem_undo
*un
;
1656 list_for_each_entry_rcu(un
, &ulp
->list_proc
, list_proc
) {
1657 if (un
->semid
== semid
)
1663 static struct sem_undo
*lookup_undo(struct sem_undo_list
*ulp
, int semid
)
1665 struct sem_undo
*un
;
1667 assert_spin_locked(&ulp
->lock
);
1669 un
= __lookup_undo(ulp
, semid
);
1671 list_del_rcu(&un
->list_proc
);
1672 list_add_rcu(&un
->list_proc
, &ulp
->list_proc
);
1678 * find_alloc_undo - lookup (and if not present create) undo array
1680 * @semid: semaphore array id
1682 * The function looks up (and if not present creates) the undo structure.
1683 * The size of the undo structure depends on the size of the semaphore
1684 * array, thus the alloc path is not that straightforward.
1685 * Lifetime-rules: sem_undo is rcu-protected, on success, the function
1686 * performs a rcu_read_lock().
1688 static struct sem_undo
*find_alloc_undo(struct ipc_namespace
*ns
, int semid
)
1690 struct sem_array
*sma
;
1691 struct sem_undo_list
*ulp
;
1692 struct sem_undo
*un
, *new;
1695 error
= get_undo_list(&ulp
);
1697 return ERR_PTR(error
);
1700 spin_lock(&ulp
->lock
);
1701 un
= lookup_undo(ulp
, semid
);
1702 spin_unlock(&ulp
->lock
);
1703 if (likely(un
!= NULL
))
1706 /* no undo structure around - allocate one. */
1707 /* step 1: figure out the size of the semaphore array */
1708 sma
= sem_obtain_object_check(ns
, semid
);
1711 return ERR_CAST(sma
);
1714 nsems
= sma
->sem_nsems
;
1715 if (!ipc_rcu_getref(sma
)) {
1717 un
= ERR_PTR(-EIDRM
);
1722 /* step 2: allocate new undo structure */
1723 new = kzalloc(sizeof(struct sem_undo
) + sizeof(short)*nsems
, GFP_KERNEL
);
1725 ipc_rcu_putref(sma
, ipc_rcu_free
);
1726 return ERR_PTR(-ENOMEM
);
1729 /* step 3: Acquire the lock on semaphore array */
1731 sem_lock_and_putref(sma
);
1732 if (!ipc_valid_object(&sma
->sem_perm
)) {
1733 sem_unlock(sma
, -1);
1736 un
= ERR_PTR(-EIDRM
);
1739 spin_lock(&ulp
->lock
);
1742 * step 4: check for races: did someone else allocate the undo struct?
1744 un
= lookup_undo(ulp
, semid
);
1749 /* step 5: initialize & link new undo structure */
1750 new->semadj
= (short *) &new[1];
1753 assert_spin_locked(&ulp
->lock
);
1754 list_add_rcu(&new->list_proc
, &ulp
->list_proc
);
1755 ipc_assert_locked_object(&sma
->sem_perm
);
1756 list_add(&new->list_id
, &sma
->list_id
);
1760 spin_unlock(&ulp
->lock
);
1761 sem_unlock(sma
, -1);
1768 * get_queue_result - retrieve the result code from sem_queue
1769 * @q: Pointer to queue structure
1771 * Retrieve the return code from the pending queue. If IN_WAKEUP is found in
1772 * q->status, then we must loop until the value is replaced with the final
1773 * value: This may happen if a task is woken up by an unrelated event (e.g.
1774 * signal) and in parallel the task is woken up by another task because it got
1775 * the requested semaphores.
1777 * The function can be called with or without holding the semaphore spinlock.
1779 static int get_queue_result(struct sem_queue
*q
)
1784 while (unlikely(error
== IN_WAKEUP
)) {
1792 SYSCALL_DEFINE4(semtimedop
, int, semid
, struct sembuf __user
*, tsops
,
1793 unsigned, nsops
, const struct timespec __user
*, timeout
)
1795 int error
= -EINVAL
;
1796 struct sem_array
*sma
;
1797 struct sembuf fast_sops
[SEMOPM_FAST
];
1798 struct sembuf
*sops
= fast_sops
, *sop
;
1799 struct sem_undo
*un
;
1800 int undos
= 0, alter
= 0, max
, locknum
;
1801 struct sem_queue queue
;
1802 unsigned long jiffies_left
= 0;
1803 struct ipc_namespace
*ns
;
1804 struct list_head tasks
;
1806 ns
= current
->nsproxy
->ipc_ns
;
1808 if (nsops
< 1 || semid
< 0)
1810 if (nsops
> ns
->sc_semopm
)
1812 if (nsops
> SEMOPM_FAST
) {
1813 sops
= kmalloc(sizeof(*sops
)*nsops
, GFP_KERNEL
);
1817 if (copy_from_user(sops
, tsops
, nsops
* sizeof(*tsops
))) {
1822 struct timespec _timeout
;
1823 if (copy_from_user(&_timeout
, timeout
, sizeof(*timeout
))) {
1827 if (_timeout
.tv_sec
< 0 || _timeout
.tv_nsec
< 0 ||
1828 _timeout
.tv_nsec
>= 1000000000L) {
1832 jiffies_left
= timespec_to_jiffies(&_timeout
);
1835 for (sop
= sops
; sop
< sops
+ nsops
; sop
++) {
1836 if (sop
->sem_num
>= max
)
1838 if (sop
->sem_flg
& SEM_UNDO
)
1840 if (sop
->sem_op
!= 0)
1844 INIT_LIST_HEAD(&tasks
);
1847 /* On success, find_alloc_undo takes the rcu_read_lock */
1848 un
= find_alloc_undo(ns
, semid
);
1850 error
= PTR_ERR(un
);
1858 sma
= sem_obtain_object_check(ns
, semid
);
1861 error
= PTR_ERR(sma
);
1866 if (max
>= sma
->sem_nsems
)
1867 goto out_rcu_wakeup
;
1870 if (ipcperms(ns
, &sma
->sem_perm
, alter
? S_IWUGO
: S_IRUGO
))
1871 goto out_rcu_wakeup
;
1873 error
= security_sem_semop(sma
, sops
, nsops
, alter
);
1875 goto out_rcu_wakeup
;
1878 locknum
= sem_lock(sma
, sops
, nsops
);
1880 * We eventually might perform the following check in a lockless
1881 * fashion, considering ipc_valid_object() locking constraints.
1882 * If nsops == 1 and there is no contention for sem_perm.lock, then
1883 * only a per-semaphore lock is held and it's OK to proceed with the
1884 * check below. More details on the fine grained locking scheme
1885 * entangled here and why it's RMID race safe on comments at sem_lock()
1887 if (!ipc_valid_object(&sma
->sem_perm
))
1888 goto out_unlock_free
;
1890 * semid identifiers are not unique - find_alloc_undo may have
1891 * allocated an undo structure, it was invalidated by an RMID
1892 * and now a new array with received the same id. Check and fail.
1893 * This case can be detected checking un->semid. The existence of
1894 * "un" itself is guaranteed by rcu.
1896 if (un
&& un
->semid
== -1)
1897 goto out_unlock_free
;
1900 queue
.nsops
= nsops
;
1902 queue
.pid
= task_tgid_vnr(current
);
1903 queue
.alter
= alter
;
1905 error
= perform_atomic_semop(sma
, &queue
);
1907 /* If the operation was successful, then do
1908 * the required updates.
1911 do_smart_update(sma
, sops
, nsops
, 1, &tasks
);
1913 set_semotime(sma
, sops
);
1916 goto out_unlock_free
;
1918 /* We need to sleep on this operation, so we put the current
1919 * task into the pending queue and go to sleep.
1924 curr
= &sma
->sem_base
[sops
->sem_num
];
1927 if (sma
->complex_count
) {
1928 list_add_tail(&queue
.list
,
1929 &sma
->pending_alter
);
1932 list_add_tail(&queue
.list
,
1933 &curr
->pending_alter
);
1936 list_add_tail(&queue
.list
, &curr
->pending_const
);
1939 if (!sma
->complex_count
)
1943 list_add_tail(&queue
.list
, &sma
->pending_alter
);
1945 list_add_tail(&queue
.list
, &sma
->pending_const
);
1947 sma
->complex_count
++;
1950 queue
.status
= -EINTR
;
1951 queue
.sleeper
= current
;
1954 __set_current_state(TASK_INTERRUPTIBLE
);
1955 sem_unlock(sma
, locknum
);
1959 jiffies_left
= schedule_timeout(jiffies_left
);
1963 error
= get_queue_result(&queue
);
1965 if (error
!= -EINTR
) {
1966 /* fast path: update_queue already obtained all requested
1968 * Perform a smp_mb(): User space could assume that semop()
1969 * is a memory barrier: Without the mb(), the cpu could
1970 * speculatively read in user space stale data that was
1971 * overwritten by the previous owner of the semaphore.
1979 sma
= sem_obtain_lock(ns
, semid
, sops
, nsops
, &locknum
);
1982 * Wait until it's guaranteed that no wakeup_sem_queue_do() is ongoing.
1984 error
= get_queue_result(&queue
);
1987 * Array removed? If yes, leave without sem_unlock().
1996 * If queue.status != -EINTR we are woken up by another process.
1997 * Leave without unlink_queue(), but with sem_unlock().
1999 if (error
!= -EINTR
)
2000 goto out_unlock_free
;
2003 * If an interrupt occurred we have to clean up the queue
2005 if (timeout
&& jiffies_left
== 0)
2009 * If the wakeup was spurious, just retry
2011 if (error
== -EINTR
&& !signal_pending(current
))
2014 unlink_queue(sma
, &queue
);
2017 sem_unlock(sma
, locknum
);
2020 wake_up_sem_queue_do(&tasks
);
2022 if (sops
!= fast_sops
)
2027 SYSCALL_DEFINE3(semop
, int, semid
, struct sembuf __user
*, tsops
,
2030 return sys_semtimedop(semid
, tsops
, nsops
, NULL
);
2033 /* If CLONE_SYSVSEM is set, establish sharing of SEM_UNDO state between
2034 * parent and child tasks.
2037 int copy_semundo(unsigned long clone_flags
, struct task_struct
*tsk
)
2039 struct sem_undo_list
*undo_list
;
2042 if (clone_flags
& CLONE_SYSVSEM
) {
2043 error
= get_undo_list(&undo_list
);
2046 atomic_inc(&undo_list
->refcnt
);
2047 tsk
->sysvsem
.undo_list
= undo_list
;
2049 tsk
->sysvsem
.undo_list
= NULL
;
2055 * add semadj values to semaphores, free undo structures.
2056 * undo structures are not freed when semaphore arrays are destroyed
2057 * so some of them may be out of date.
2058 * IMPLEMENTATION NOTE: There is some confusion over whether the
2059 * set of adjustments that needs to be done should be done in an atomic
2060 * manner or not. That is, if we are attempting to decrement the semval
2061 * should we queue up and wait until we can do so legally?
2062 * The original implementation attempted to do this (queue and wait).
2063 * The current implementation does not do so. The POSIX standard
2064 * and SVID should be consulted to determine what behavior is mandated.
2066 void exit_sem(struct task_struct
*tsk
)
2068 struct sem_undo_list
*ulp
;
2070 ulp
= tsk
->sysvsem
.undo_list
;
2073 tsk
->sysvsem
.undo_list
= NULL
;
2075 if (!atomic_dec_and_test(&ulp
->refcnt
))
2079 struct sem_array
*sma
;
2080 struct sem_undo
*un
;
2081 struct list_head tasks
;
2085 un
= list_entry_rcu(ulp
->list_proc
.next
,
2086 struct sem_undo
, list_proc
);
2087 if (&un
->list_proc
== &ulp
->list_proc
) {
2089 * We must wait for freeary() before freeing this ulp,
2090 * in case we raced with last sem_undo. There is a small
2091 * possibility where we exit while freeary() didn't
2092 * finish unlocking sem_undo_list.
2094 spin_unlock_wait(&ulp
->lock
);
2098 spin_lock(&ulp
->lock
);
2100 spin_unlock(&ulp
->lock
);
2102 /* exit_sem raced with IPC_RMID, nothing to do */
2108 sma
= sem_obtain_object_check(tsk
->nsproxy
->ipc_ns
, semid
);
2109 /* exit_sem raced with IPC_RMID, nothing to do */
2115 sem_lock(sma
, NULL
, -1);
2116 /* exit_sem raced with IPC_RMID, nothing to do */
2117 if (!ipc_valid_object(&sma
->sem_perm
)) {
2118 sem_unlock(sma
, -1);
2122 un
= __lookup_undo(ulp
, semid
);
2124 /* exit_sem raced with IPC_RMID+semget() that created
2125 * exactly the same semid. Nothing to do.
2127 sem_unlock(sma
, -1);
2132 /* remove un from the linked lists */
2133 ipc_assert_locked_object(&sma
->sem_perm
);
2134 list_del(&un
->list_id
);
2136 /* we are the last process using this ulp, acquiring ulp->lock
2137 * isn't required. Besides that, we are also protected against
2138 * IPC_RMID as we hold sma->sem_perm lock now
2140 list_del_rcu(&un
->list_proc
);
2142 /* perform adjustments registered in un */
2143 for (i
= 0; i
< sma
->sem_nsems
; i
++) {
2144 struct sem
*semaphore
= &sma
->sem_base
[i
];
2145 if (un
->semadj
[i
]) {
2146 semaphore
->semval
+= un
->semadj
[i
];
2148 * Range checks of the new semaphore value,
2149 * not defined by sus:
2150 * - Some unices ignore the undo entirely
2151 * (e.g. HP UX 11i 11.22, Tru64 V5.1)
2152 * - some cap the value (e.g. FreeBSD caps
2153 * at 0, but doesn't enforce SEMVMX)
2155 * Linux caps the semaphore value, both at 0
2158 * Manfred <manfred@colorfullife.com>
2160 if (semaphore
->semval
< 0)
2161 semaphore
->semval
= 0;
2162 if (semaphore
->semval
> SEMVMX
)
2163 semaphore
->semval
= SEMVMX
;
2164 semaphore
->sempid
= task_tgid_vnr(current
);
2167 /* maybe some queued-up processes were waiting for this */
2168 INIT_LIST_HEAD(&tasks
);
2169 do_smart_update(sma
, NULL
, 0, 1, &tasks
);
2170 sem_unlock(sma
, -1);
2172 wake_up_sem_queue_do(&tasks
);
2179 #ifdef CONFIG_PROC_FS
2180 static int sysvipc_sem_proc_show(struct seq_file
*s
, void *it
)
2182 struct user_namespace
*user_ns
= seq_user_ns(s
);
2183 struct sem_array
*sma
= it
;
2187 * The proc interface isn't aware of sem_lock(), it calls
2188 * ipc_lock_object() directly (in sysvipc_find_ipc).
2189 * In order to stay compatible with sem_lock(), we must wait until
2190 * all simple semop() calls have left their critical regions.
2192 sem_wait_array(sma
);
2194 sem_otime
= get_semotime(sma
);
2197 "%10d %10d %4o %10u %5u %5u %5u %5u %10lu %10lu\n",
2202 from_kuid_munged(user_ns
, sma
->sem_perm
.uid
),
2203 from_kgid_munged(user_ns
, sma
->sem_perm
.gid
),
2204 from_kuid_munged(user_ns
, sma
->sem_perm
.cuid
),
2205 from_kgid_munged(user_ns
, sma
->sem_perm
.cgid
),