2 * linux/fs/jbd2/journal.c
4 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
6 * Copyright 1998 Red Hat corp --- All Rights Reserved
8 * This file is part of the Linux kernel and is made available under
9 * the terms of the GNU General Public License, version 2, or at your
10 * option, any later version, incorporated herein by reference.
12 * Generic filesystem journal-writing code; part of the ext2fs
15 * This file manages journals: areas of disk reserved for logging
16 * transactional updates. This includes the kernel journaling thread
17 * which is responsible for scheduling updates to the log.
19 * We do not actually manage the physical storage of the journal in this
20 * file: that is left to a per-journal policy function, which allows us
21 * to store the journal within a filesystem-specified area for ext2
22 * journaling (ext2 can use a reserved inode for storing the log).
25 #include <linux/module.h>
26 #include <linux/time.h>
28 #include <linux/jbd2.h>
29 #include <linux/errno.h>
30 #include <linux/slab.h>
31 #include <linux/init.h>
33 #include <linux/freezer.h>
34 #include <linux/pagemap.h>
35 #include <linux/kthread.h>
36 #include <linux/poison.h>
37 #include <linux/proc_fs.h>
38 #include <linux/seq_file.h>
39 #include <linux/math64.h>
40 #include <linux/hash.h>
41 #include <linux/log2.h>
42 #include <linux/vmalloc.h>
43 #include <linux/backing-dev.h>
44 #include <linux/bitops.h>
45 #include <linux/ratelimit.h>
47 #define CREATE_TRACE_POINTS
48 #include <trace/events/jbd2.h>
50 #include <asm/uaccess.h>
53 #ifdef CONFIG_JBD2_DEBUG
54 ushort jbd2_journal_enable_debug __read_mostly
;
55 EXPORT_SYMBOL(jbd2_journal_enable_debug
);
57 module_param_named(jbd2_debug
, jbd2_journal_enable_debug
, ushort
, 0644);
58 MODULE_PARM_DESC(jbd2_debug
, "Debugging level for jbd2");
61 EXPORT_SYMBOL(jbd2_journal_extend
);
62 EXPORT_SYMBOL(jbd2_journal_stop
);
63 EXPORT_SYMBOL(jbd2_journal_lock_updates
);
64 EXPORT_SYMBOL(jbd2_journal_unlock_updates
);
65 EXPORT_SYMBOL(jbd2_journal_get_write_access
);
66 EXPORT_SYMBOL(jbd2_journal_get_create_access
);
67 EXPORT_SYMBOL(jbd2_journal_get_undo_access
);
68 EXPORT_SYMBOL(jbd2_journal_set_triggers
);
69 EXPORT_SYMBOL(jbd2_journal_dirty_metadata
);
70 EXPORT_SYMBOL(jbd2_journal_forget
);
72 EXPORT_SYMBOL(journal_sync_buffer
);
74 EXPORT_SYMBOL(jbd2_journal_flush
);
75 EXPORT_SYMBOL(jbd2_journal_revoke
);
77 EXPORT_SYMBOL(jbd2_journal_init_dev
);
78 EXPORT_SYMBOL(jbd2_journal_init_inode
);
79 EXPORT_SYMBOL(jbd2_journal_check_used_features
);
80 EXPORT_SYMBOL(jbd2_journal_check_available_features
);
81 EXPORT_SYMBOL(jbd2_journal_set_features
);
82 EXPORT_SYMBOL(jbd2_journal_load
);
83 EXPORT_SYMBOL(jbd2_journal_destroy
);
84 EXPORT_SYMBOL(jbd2_journal_abort
);
85 EXPORT_SYMBOL(jbd2_journal_errno
);
86 EXPORT_SYMBOL(jbd2_journal_ack_err
);
87 EXPORT_SYMBOL(jbd2_journal_clear_err
);
88 EXPORT_SYMBOL(jbd2_log_wait_commit
);
89 EXPORT_SYMBOL(jbd2_log_start_commit
);
90 EXPORT_SYMBOL(jbd2_journal_start_commit
);
91 EXPORT_SYMBOL(jbd2_journal_force_commit_nested
);
92 EXPORT_SYMBOL(jbd2_journal_wipe
);
93 EXPORT_SYMBOL(jbd2_journal_blocks_per_page
);
94 EXPORT_SYMBOL(jbd2_journal_invalidatepage
);
95 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers
);
96 EXPORT_SYMBOL(jbd2_journal_force_commit
);
97 EXPORT_SYMBOL(jbd2_journal_file_inode
);
98 EXPORT_SYMBOL(jbd2_journal_init_jbd_inode
);
99 EXPORT_SYMBOL(jbd2_journal_release_jbd_inode
);
100 EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate
);
101 EXPORT_SYMBOL(jbd2_inode_cache
);
103 static void __journal_abort_soft (journal_t
*journal
, int errno
);
104 static int jbd2_journal_create_slab(size_t slab_size
);
106 #ifdef CONFIG_JBD2_DEBUG
107 void __jbd2_debug(int level
, const char *file
, const char *func
,
108 unsigned int line
, const char *fmt
, ...)
110 struct va_format vaf
;
113 if (level
> jbd2_journal_enable_debug
)
118 printk(KERN_DEBUG
"%s: (%s, %u): %pV\n", file
, func
, line
, &vaf
);
121 EXPORT_SYMBOL(__jbd2_debug
);
124 /* Checksumming functions */
125 static int jbd2_verify_csum_type(journal_t
*j
, journal_superblock_t
*sb
)
127 if (!jbd2_journal_has_csum_v2or3(j
))
130 return sb
->s_checksum_type
== JBD2_CRC32C_CHKSUM
;
133 static __be32
jbd2_superblock_csum(journal_t
*j
, journal_superblock_t
*sb
)
138 old_csum
= sb
->s_checksum
;
140 csum
= jbd2_chksum(j
, ~0, (char *)sb
, sizeof(journal_superblock_t
));
141 sb
->s_checksum
= old_csum
;
143 return cpu_to_be32(csum
);
146 static int jbd2_superblock_csum_verify(journal_t
*j
, journal_superblock_t
*sb
)
148 if (!jbd2_journal_has_csum_v2or3(j
))
151 return sb
->s_checksum
== jbd2_superblock_csum(j
, sb
);
154 static void jbd2_superblock_csum_set(journal_t
*j
, journal_superblock_t
*sb
)
156 if (!jbd2_journal_has_csum_v2or3(j
))
159 sb
->s_checksum
= jbd2_superblock_csum(j
, sb
);
163 * Helper function used to manage commit timeouts
166 static void commit_timeout(unsigned long __data
)
168 struct task_struct
* p
= (struct task_struct
*) __data
;
174 * kjournald2: The main thread function used to manage a logging device
177 * This kernel thread is responsible for two things:
179 * 1) COMMIT: Every so often we need to commit the current state of the
180 * filesystem to disk. The journal thread is responsible for writing
181 * all of the metadata buffers to disk.
183 * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
184 * of the data in that part of the log has been rewritten elsewhere on
185 * the disk. Flushing these old buffers to reclaim space in the log is
186 * known as checkpointing, and this thread is responsible for that job.
189 static int kjournald2(void *arg
)
191 journal_t
*journal
= arg
;
192 transaction_t
*transaction
;
195 * Set up an interval timer which can be used to trigger a commit wakeup
196 * after the commit interval expires
198 setup_timer(&journal
->j_commit_timer
, commit_timeout
,
199 (unsigned long)current
);
203 /* Record that the journal thread is running */
204 journal
->j_task
= current
;
205 wake_up(&journal
->j_wait_done_commit
);
208 * And now, wait forever for commit wakeup events.
210 write_lock(&journal
->j_state_lock
);
213 if (journal
->j_flags
& JBD2_UNMOUNT
)
216 jbd_debug(1, "commit_sequence=%d, commit_request=%d\n",
217 journal
->j_commit_sequence
, journal
->j_commit_request
);
219 if (journal
->j_commit_sequence
!= journal
->j_commit_request
) {
220 jbd_debug(1, "OK, requests differ\n");
221 write_unlock(&journal
->j_state_lock
);
222 del_timer_sync(&journal
->j_commit_timer
);
223 jbd2_journal_commit_transaction(journal
);
224 write_lock(&journal
->j_state_lock
);
228 wake_up(&journal
->j_wait_done_commit
);
229 if (freezing(current
)) {
231 * The simpler the better. Flushing journal isn't a
232 * good idea, because that depends on threads that may
233 * be already stopped.
235 jbd_debug(1, "Now suspending kjournald2\n");
236 write_unlock(&journal
->j_state_lock
);
238 write_lock(&journal
->j_state_lock
);
241 * We assume on resume that commits are already there,
245 int should_sleep
= 1;
247 prepare_to_wait(&journal
->j_wait_commit
, &wait
,
249 if (journal
->j_commit_sequence
!= journal
->j_commit_request
)
251 transaction
= journal
->j_running_transaction
;
252 if (transaction
&& time_after_eq(jiffies
,
253 transaction
->t_expires
))
255 if (journal
->j_flags
& JBD2_UNMOUNT
)
258 write_unlock(&journal
->j_state_lock
);
260 write_lock(&journal
->j_state_lock
);
262 finish_wait(&journal
->j_wait_commit
, &wait
);
265 jbd_debug(1, "kjournald2 wakes\n");
268 * Were we woken up by a commit wakeup event?
270 transaction
= journal
->j_running_transaction
;
271 if (transaction
&& time_after_eq(jiffies
, transaction
->t_expires
)) {
272 journal
->j_commit_request
= transaction
->t_tid
;
273 jbd_debug(1, "woke because of timeout\n");
278 write_unlock(&journal
->j_state_lock
);
279 del_timer_sync(&journal
->j_commit_timer
);
280 journal
->j_task
= NULL
;
281 wake_up(&journal
->j_wait_done_commit
);
282 jbd_debug(1, "Journal thread exiting.\n");
286 static int jbd2_journal_start_thread(journal_t
*journal
)
288 struct task_struct
*t
;
290 t
= kthread_run(kjournald2
, journal
, "jbd2/%s",
295 wait_event(journal
->j_wait_done_commit
, journal
->j_task
!= NULL
);
299 static void journal_kill_thread(journal_t
*journal
)
301 write_lock(&journal
->j_state_lock
);
302 journal
->j_flags
|= JBD2_UNMOUNT
;
304 while (journal
->j_task
) {
305 write_unlock(&journal
->j_state_lock
);
306 wake_up(&journal
->j_wait_commit
);
307 wait_event(journal
->j_wait_done_commit
, journal
->j_task
== NULL
);
308 write_lock(&journal
->j_state_lock
);
310 write_unlock(&journal
->j_state_lock
);
314 * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal.
316 * Writes a metadata buffer to a given disk block. The actual IO is not
317 * performed but a new buffer_head is constructed which labels the data
318 * to be written with the correct destination disk block.
320 * Any magic-number escaping which needs to be done will cause a
321 * copy-out here. If the buffer happens to start with the
322 * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the
323 * magic number is only written to the log for descripter blocks. In
324 * this case, we copy the data and replace the first word with 0, and we
325 * return a result code which indicates that this buffer needs to be
326 * marked as an escaped buffer in the corresponding log descriptor
327 * block. The missing word can then be restored when the block is read
330 * If the source buffer has already been modified by a new transaction
331 * since we took the last commit snapshot, we use the frozen copy of
332 * that data for IO. If we end up using the existing buffer_head's data
333 * for the write, then we have to make sure nobody modifies it while the
334 * IO is in progress. do_get_write_access() handles this.
336 * The function returns a pointer to the buffer_head to be used for IO.
344 * Bit 0 set == escape performed on the data
345 * Bit 1 set == buffer copy-out performed (kfree the data after IO)
348 int jbd2_journal_write_metadata_buffer(transaction_t
*transaction
,
349 struct journal_head
*jh_in
,
350 struct buffer_head
**bh_out
,
353 int need_copy_out
= 0;
354 int done_copy_out
= 0;
357 struct buffer_head
*new_bh
;
358 struct page
*new_page
;
359 unsigned int new_offset
;
360 struct buffer_head
*bh_in
= jh2bh(jh_in
);
361 journal_t
*journal
= transaction
->t_journal
;
364 * The buffer really shouldn't be locked: only the current committing
365 * transaction is allowed to write it, so nobody else is allowed
368 * akpm: except if we're journalling data, and write() output is
369 * also part of a shared mapping, and another thread has
370 * decided to launch a writepage() against this buffer.
372 J_ASSERT_BH(bh_in
, buffer_jbddirty(bh_in
));
375 new_bh
= alloc_buffer_head(GFP_NOFS
);
378 * Failure is not an option, but __GFP_NOFAIL is going
379 * away; so we retry ourselves here.
381 congestion_wait(BLK_RW_ASYNC
, HZ
/50);
385 /* keep subsequent assertions sane */
386 atomic_set(&new_bh
->b_count
, 1);
388 jbd_lock_bh_state(bh_in
);
391 * If a new transaction has already done a buffer copy-out, then
392 * we use that version of the data for the commit.
394 if (jh_in
->b_frozen_data
) {
396 new_page
= virt_to_page(jh_in
->b_frozen_data
);
397 new_offset
= offset_in_page(jh_in
->b_frozen_data
);
399 new_page
= jh2bh(jh_in
)->b_page
;
400 new_offset
= offset_in_page(jh2bh(jh_in
)->b_data
);
403 mapped_data
= kmap_atomic(new_page
);
405 * Fire data frozen trigger if data already wasn't frozen. Do this
406 * before checking for escaping, as the trigger may modify the magic
407 * offset. If a copy-out happens afterwards, it will have the correct
408 * data in the buffer.
411 jbd2_buffer_frozen_trigger(jh_in
, mapped_data
+ new_offset
,
417 if (*((__be32
*)(mapped_data
+ new_offset
)) ==
418 cpu_to_be32(JBD2_MAGIC_NUMBER
)) {
422 kunmap_atomic(mapped_data
);
425 * Do we need to do a data copy?
427 if (need_copy_out
&& !done_copy_out
) {
430 jbd_unlock_bh_state(bh_in
);
431 tmp
= jbd2_alloc(bh_in
->b_size
, GFP_NOFS
);
436 jbd_lock_bh_state(bh_in
);
437 if (jh_in
->b_frozen_data
) {
438 jbd2_free(tmp
, bh_in
->b_size
);
442 jh_in
->b_frozen_data
= tmp
;
443 mapped_data
= kmap_atomic(new_page
);
444 memcpy(tmp
, mapped_data
+ new_offset
, bh_in
->b_size
);
445 kunmap_atomic(mapped_data
);
447 new_page
= virt_to_page(tmp
);
448 new_offset
= offset_in_page(tmp
);
452 * This isn't strictly necessary, as we're using frozen
453 * data for the escaping, but it keeps consistency with
454 * b_frozen_data usage.
456 jh_in
->b_frozen_triggers
= jh_in
->b_triggers
;
460 * Did we need to do an escaping? Now we've done all the
461 * copying, we can finally do so.
464 mapped_data
= kmap_atomic(new_page
);
465 *((unsigned int *)(mapped_data
+ new_offset
)) = 0;
466 kunmap_atomic(mapped_data
);
469 set_bh_page(new_bh
, new_page
, new_offset
);
470 new_bh
->b_size
= bh_in
->b_size
;
471 new_bh
->b_bdev
= journal
->j_dev
;
472 new_bh
->b_blocknr
= blocknr
;
473 new_bh
->b_private
= bh_in
;
474 set_buffer_mapped(new_bh
);
475 set_buffer_dirty(new_bh
);
480 * The to-be-written buffer needs to get moved to the io queue,
481 * and the original buffer whose contents we are shadowing or
482 * copying is moved to the transaction's shadow queue.
484 JBUFFER_TRACE(jh_in
, "file as BJ_Shadow");
485 spin_lock(&journal
->j_list_lock
);
486 __jbd2_journal_file_buffer(jh_in
, transaction
, BJ_Shadow
);
487 spin_unlock(&journal
->j_list_lock
);
488 set_buffer_shadow(bh_in
);
489 jbd_unlock_bh_state(bh_in
);
491 return do_escape
| (done_copy_out
<< 1);
495 * Allocation code for the journal file. Manage the space left in the
496 * journal, so that we can begin checkpointing when appropriate.
500 * Called with j_state_lock locked for writing.
501 * Returns true if a transaction commit was started.
503 int __jbd2_log_start_commit(journal_t
*journal
, tid_t target
)
505 /* Return if the txn has already requested to be committed */
506 if (journal
->j_commit_request
== target
)
510 * The only transaction we can possibly wait upon is the
511 * currently running transaction (if it exists). Otherwise,
512 * the target tid must be an old one.
514 if (journal
->j_running_transaction
&&
515 journal
->j_running_transaction
->t_tid
== target
) {
517 * We want a new commit: OK, mark the request and wakeup the
518 * commit thread. We do _not_ do the commit ourselves.
521 journal
->j_commit_request
= target
;
522 jbd_debug(1, "JBD2: requesting commit %d/%d\n",
523 journal
->j_commit_request
,
524 journal
->j_commit_sequence
);
525 journal
->j_running_transaction
->t_requested
= jiffies
;
526 wake_up(&journal
->j_wait_commit
);
528 } else if (!tid_geq(journal
->j_commit_request
, target
))
529 /* This should never happen, but if it does, preserve
530 the evidence before kjournald goes into a loop and
531 increments j_commit_sequence beyond all recognition. */
532 WARN_ONCE(1, "JBD2: bad log_start_commit: %u %u %u %u\n",
533 journal
->j_commit_request
,
534 journal
->j_commit_sequence
,
535 target
, journal
->j_running_transaction
?
536 journal
->j_running_transaction
->t_tid
: 0);
540 int jbd2_log_start_commit(journal_t
*journal
, tid_t tid
)
544 write_lock(&journal
->j_state_lock
);
545 ret
= __jbd2_log_start_commit(journal
, tid
);
546 write_unlock(&journal
->j_state_lock
);
551 * Force and wait any uncommitted transactions. We can only force the running
552 * transaction if we don't have an active handle, otherwise, we will deadlock.
553 * Returns: <0 in case of error,
554 * 0 if nothing to commit,
555 * 1 if transaction was successfully committed.
557 static int __jbd2_journal_force_commit(journal_t
*journal
)
559 transaction_t
*transaction
= NULL
;
561 int need_to_start
= 0, ret
= 0;
563 read_lock(&journal
->j_state_lock
);
564 if (journal
->j_running_transaction
&& !current
->journal_info
) {
565 transaction
= journal
->j_running_transaction
;
566 if (!tid_geq(journal
->j_commit_request
, transaction
->t_tid
))
568 } else if (journal
->j_committing_transaction
)
569 transaction
= journal
->j_committing_transaction
;
572 /* Nothing to commit */
573 read_unlock(&journal
->j_state_lock
);
576 tid
= transaction
->t_tid
;
577 read_unlock(&journal
->j_state_lock
);
579 jbd2_log_start_commit(journal
, tid
);
580 ret
= jbd2_log_wait_commit(journal
, tid
);
588 * Force and wait upon a commit if the calling process is not within
589 * transaction. This is used for forcing out undo-protected data which contains
590 * bitmaps, when the fs is running out of space.
592 * @journal: journal to force
593 * Returns true if progress was made.
595 int jbd2_journal_force_commit_nested(journal_t
*journal
)
599 ret
= __jbd2_journal_force_commit(journal
);
604 * int journal_force_commit() - force any uncommitted transactions
605 * @journal: journal to force
607 * Caller want unconditional commit. We can only force the running transaction
608 * if we don't have an active handle, otherwise, we will deadlock.
610 int jbd2_journal_force_commit(journal_t
*journal
)
614 J_ASSERT(!current
->journal_info
);
615 ret
= __jbd2_journal_force_commit(journal
);
622 * Start a commit of the current running transaction (if any). Returns true
623 * if a transaction is going to be committed (or is currently already
624 * committing), and fills its tid in at *ptid
626 int jbd2_journal_start_commit(journal_t
*journal
, tid_t
*ptid
)
630 write_lock(&journal
->j_state_lock
);
631 if (journal
->j_running_transaction
) {
632 tid_t tid
= journal
->j_running_transaction
->t_tid
;
634 __jbd2_log_start_commit(journal
, tid
);
635 /* There's a running transaction and we've just made sure
636 * it's commit has been scheduled. */
640 } else if (journal
->j_committing_transaction
) {
642 * If commit has been started, then we have to wait for
643 * completion of that transaction.
646 *ptid
= journal
->j_committing_transaction
->t_tid
;
649 write_unlock(&journal
->j_state_lock
);
654 * Return 1 if a given transaction has not yet sent barrier request
655 * connected with a transaction commit. If 0 is returned, transaction
656 * may or may not have sent the barrier. Used to avoid sending barrier
657 * twice in common cases.
659 int jbd2_trans_will_send_data_barrier(journal_t
*journal
, tid_t tid
)
662 transaction_t
*commit_trans
;
664 if (!(journal
->j_flags
& JBD2_BARRIER
))
666 read_lock(&journal
->j_state_lock
);
667 /* Transaction already committed? */
668 if (tid_geq(journal
->j_commit_sequence
, tid
))
670 commit_trans
= journal
->j_committing_transaction
;
671 if (!commit_trans
|| commit_trans
->t_tid
!= tid
) {
676 * Transaction is being committed and we already proceeded to
677 * submitting a flush to fs partition?
679 if (journal
->j_fs_dev
!= journal
->j_dev
) {
680 if (!commit_trans
->t_need_data_flush
||
681 commit_trans
->t_state
>= T_COMMIT_DFLUSH
)
684 if (commit_trans
->t_state
>= T_COMMIT_JFLUSH
)
689 read_unlock(&journal
->j_state_lock
);
692 EXPORT_SYMBOL(jbd2_trans_will_send_data_barrier
);
695 * Wait for a specified commit to complete.
696 * The caller may not hold the journal lock.
698 int jbd2_log_wait_commit(journal_t
*journal
, tid_t tid
)
702 read_lock(&journal
->j_state_lock
);
703 #ifdef CONFIG_JBD2_DEBUG
704 if (!tid_geq(journal
->j_commit_request
, tid
)) {
706 "%s: error: j_commit_request=%d, tid=%d\n",
707 __func__
, journal
->j_commit_request
, tid
);
710 while (tid_gt(tid
, journal
->j_commit_sequence
)) {
711 jbd_debug(1, "JBD2: want %d, j_commit_sequence=%d\n",
712 tid
, journal
->j_commit_sequence
);
713 read_unlock(&journal
->j_state_lock
);
714 wake_up(&journal
->j_wait_commit
);
715 wait_event(journal
->j_wait_done_commit
,
716 !tid_gt(tid
, journal
->j_commit_sequence
));
717 read_lock(&journal
->j_state_lock
);
719 read_unlock(&journal
->j_state_lock
);
721 if (unlikely(is_journal_aborted(journal
)))
727 * When this function returns the transaction corresponding to tid
728 * will be completed. If the transaction has currently running, start
729 * committing that transaction before waiting for it to complete. If
730 * the transaction id is stale, it is by definition already completed,
731 * so just return SUCCESS.
733 int jbd2_complete_transaction(journal_t
*journal
, tid_t tid
)
735 int need_to_wait
= 1;
737 read_lock(&journal
->j_state_lock
);
738 if (journal
->j_running_transaction
&&
739 journal
->j_running_transaction
->t_tid
== tid
) {
740 if (journal
->j_commit_request
!= tid
) {
741 /* transaction not yet started, so request it */
742 read_unlock(&journal
->j_state_lock
);
743 jbd2_log_start_commit(journal
, tid
);
746 } else if (!(journal
->j_committing_transaction
&&
747 journal
->j_committing_transaction
->t_tid
== tid
))
749 read_unlock(&journal
->j_state_lock
);
753 return jbd2_log_wait_commit(journal
, tid
);
755 EXPORT_SYMBOL(jbd2_complete_transaction
);
758 * Log buffer allocation routines:
761 int jbd2_journal_next_log_block(journal_t
*journal
, unsigned long long *retp
)
763 unsigned long blocknr
;
765 write_lock(&journal
->j_state_lock
);
766 J_ASSERT(journal
->j_free
> 1);
768 blocknr
= journal
->j_head
;
771 if (journal
->j_head
== journal
->j_last
)
772 journal
->j_head
= journal
->j_first
;
773 write_unlock(&journal
->j_state_lock
);
774 return jbd2_journal_bmap(journal
, blocknr
, retp
);
778 * Conversion of logical to physical block numbers for the journal
780 * On external journals the journal blocks are identity-mapped, so
781 * this is a no-op. If needed, we can use j_blk_offset - everything is
784 int jbd2_journal_bmap(journal_t
*journal
, unsigned long blocknr
,
785 unsigned long long *retp
)
788 unsigned long long ret
;
790 if (journal
->j_inode
) {
791 ret
= bmap(journal
->j_inode
, blocknr
);
795 printk(KERN_ALERT
"%s: journal block not found "
796 "at offset %lu on %s\n",
797 __func__
, blocknr
, journal
->j_devname
);
799 __journal_abort_soft(journal
, err
);
802 *retp
= blocknr
; /* +journal->j_blk_offset */
808 * We play buffer_head aliasing tricks to write data/metadata blocks to
809 * the journal without copying their contents, but for journal
810 * descriptor blocks we do need to generate bona fide buffers.
812 * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying
813 * the buffer's contents they really should run flush_dcache_page(bh->b_page).
814 * But we don't bother doing that, so there will be coherency problems with
815 * mmaps of blockdevs which hold live JBD-controlled filesystems.
817 struct buffer_head
*jbd2_journal_get_descriptor_buffer(journal_t
*journal
)
819 struct buffer_head
*bh
;
820 unsigned long long blocknr
;
823 err
= jbd2_journal_next_log_block(journal
, &blocknr
);
828 bh
= __getblk(journal
->j_dev
, blocknr
, journal
->j_blocksize
);
832 memset(bh
->b_data
, 0, journal
->j_blocksize
);
833 set_buffer_uptodate(bh
);
835 BUFFER_TRACE(bh
, "return this buffer");
840 * Return tid of the oldest transaction in the journal and block in the journal
841 * where the transaction starts.
843 * If the journal is now empty, return which will be the next transaction ID
844 * we will write and where will that transaction start.
846 * The return value is 0 if journal tail cannot be pushed any further, 1 if
849 int jbd2_journal_get_log_tail(journal_t
*journal
, tid_t
*tid
,
850 unsigned long *block
)
852 transaction_t
*transaction
;
855 read_lock(&journal
->j_state_lock
);
856 spin_lock(&journal
->j_list_lock
);
857 transaction
= journal
->j_checkpoint_transactions
;
859 *tid
= transaction
->t_tid
;
860 *block
= transaction
->t_log_start
;
861 } else if ((transaction
= journal
->j_committing_transaction
) != NULL
) {
862 *tid
= transaction
->t_tid
;
863 *block
= transaction
->t_log_start
;
864 } else if ((transaction
= journal
->j_running_transaction
) != NULL
) {
865 *tid
= transaction
->t_tid
;
866 *block
= journal
->j_head
;
868 *tid
= journal
->j_transaction_sequence
;
869 *block
= journal
->j_head
;
871 ret
= tid_gt(*tid
, journal
->j_tail_sequence
);
872 spin_unlock(&journal
->j_list_lock
);
873 read_unlock(&journal
->j_state_lock
);
879 * Update information in journal structure and in on disk journal superblock
880 * about log tail. This function does not check whether information passed in
881 * really pushes log tail further. It's responsibility of the caller to make
882 * sure provided log tail information is valid (e.g. by holding
883 * j_checkpoint_mutex all the time between computing log tail and calling this
884 * function as is the case with jbd2_cleanup_journal_tail()).
886 * Requires j_checkpoint_mutex
888 void __jbd2_update_log_tail(journal_t
*journal
, tid_t tid
, unsigned long block
)
892 BUG_ON(!mutex_is_locked(&journal
->j_checkpoint_mutex
));
895 * We cannot afford for write to remain in drive's caches since as
896 * soon as we update j_tail, next transaction can start reusing journal
897 * space and if we lose sb update during power failure we'd replay
898 * old transaction with possibly newly overwritten data.
900 jbd2_journal_update_sb_log_tail(journal
, tid
, block
, WRITE_FUA
);
901 write_lock(&journal
->j_state_lock
);
902 freed
= block
- journal
->j_tail
;
903 if (block
< journal
->j_tail
)
904 freed
+= journal
->j_last
- journal
->j_first
;
906 trace_jbd2_update_log_tail(journal
, tid
, block
, freed
);
908 "Cleaning journal tail from %d to %d (offset %lu), "
910 journal
->j_tail_sequence
, tid
, block
, freed
);
912 journal
->j_free
+= freed
;
913 journal
->j_tail_sequence
= tid
;
914 journal
->j_tail
= block
;
915 write_unlock(&journal
->j_state_lock
);
919 * This is a variaon of __jbd2_update_log_tail which checks for validity of
920 * provided log tail and locks j_checkpoint_mutex. So it is safe against races
921 * with other threads updating log tail.
923 void jbd2_update_log_tail(journal_t
*journal
, tid_t tid
, unsigned long block
)
925 mutex_lock(&journal
->j_checkpoint_mutex
);
926 if (tid_gt(tid
, journal
->j_tail_sequence
))
927 __jbd2_update_log_tail(journal
, tid
, block
);
928 mutex_unlock(&journal
->j_checkpoint_mutex
);
931 struct jbd2_stats_proc_session
{
933 struct transaction_stats_s
*stats
;
938 static void *jbd2_seq_info_start(struct seq_file
*seq
, loff_t
*pos
)
940 return *pos
? NULL
: SEQ_START_TOKEN
;
943 static void *jbd2_seq_info_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
948 static int jbd2_seq_info_show(struct seq_file
*seq
, void *v
)
950 struct jbd2_stats_proc_session
*s
= seq
->private;
952 if (v
!= SEQ_START_TOKEN
)
954 seq_printf(seq
, "%lu transactions (%lu requested), "
955 "each up to %u blocks\n",
956 s
->stats
->ts_tid
, s
->stats
->ts_requested
,
957 s
->journal
->j_max_transaction_buffers
);
958 if (s
->stats
->ts_tid
== 0)
960 seq_printf(seq
, "average: \n %ums waiting for transaction\n",
961 jiffies_to_msecs(s
->stats
->run
.rs_wait
/ s
->stats
->ts_tid
));
962 seq_printf(seq
, " %ums request delay\n",
963 (s
->stats
->ts_requested
== 0) ? 0 :
964 jiffies_to_msecs(s
->stats
->run
.rs_request_delay
/
965 s
->stats
->ts_requested
));
966 seq_printf(seq
, " %ums running transaction\n",
967 jiffies_to_msecs(s
->stats
->run
.rs_running
/ s
->stats
->ts_tid
));
968 seq_printf(seq
, " %ums transaction was being locked\n",
969 jiffies_to_msecs(s
->stats
->run
.rs_locked
/ s
->stats
->ts_tid
));
970 seq_printf(seq
, " %ums flushing data (in ordered mode)\n",
971 jiffies_to_msecs(s
->stats
->run
.rs_flushing
/ s
->stats
->ts_tid
));
972 seq_printf(seq
, " %ums logging transaction\n",
973 jiffies_to_msecs(s
->stats
->run
.rs_logging
/ s
->stats
->ts_tid
));
974 seq_printf(seq
, " %lluus average transaction commit time\n",
975 div_u64(s
->journal
->j_average_commit_time
, 1000));
976 seq_printf(seq
, " %lu handles per transaction\n",
977 s
->stats
->run
.rs_handle_count
/ s
->stats
->ts_tid
);
978 seq_printf(seq
, " %lu blocks per transaction\n",
979 s
->stats
->run
.rs_blocks
/ s
->stats
->ts_tid
);
980 seq_printf(seq
, " %lu logged blocks per transaction\n",
981 s
->stats
->run
.rs_blocks_logged
/ s
->stats
->ts_tid
);
985 static void jbd2_seq_info_stop(struct seq_file
*seq
, void *v
)
989 static const struct seq_operations jbd2_seq_info_ops
= {
990 .start
= jbd2_seq_info_start
,
991 .next
= jbd2_seq_info_next
,
992 .stop
= jbd2_seq_info_stop
,
993 .show
= jbd2_seq_info_show
,
996 static int jbd2_seq_info_open(struct inode
*inode
, struct file
*file
)
998 journal_t
*journal
= PDE_DATA(inode
);
999 struct jbd2_stats_proc_session
*s
;
1002 s
= kmalloc(sizeof(*s
), GFP_KERNEL
);
1005 size
= sizeof(struct transaction_stats_s
);
1006 s
->stats
= kmalloc(size
, GFP_KERNEL
);
1007 if (s
->stats
== NULL
) {
1011 spin_lock(&journal
->j_history_lock
);
1012 memcpy(s
->stats
, &journal
->j_stats
, size
);
1013 s
->journal
= journal
;
1014 spin_unlock(&journal
->j_history_lock
);
1016 rc
= seq_open(file
, &jbd2_seq_info_ops
);
1018 struct seq_file
*m
= file
->private_data
;
1028 static int jbd2_seq_info_release(struct inode
*inode
, struct file
*file
)
1030 struct seq_file
*seq
= file
->private_data
;
1031 struct jbd2_stats_proc_session
*s
= seq
->private;
1034 return seq_release(inode
, file
);
1037 static const struct file_operations jbd2_seq_info_fops
= {
1038 .owner
= THIS_MODULE
,
1039 .open
= jbd2_seq_info_open
,
1041 .llseek
= seq_lseek
,
1042 .release
= jbd2_seq_info_release
,
1045 static struct proc_dir_entry
*proc_jbd2_stats
;
1047 static void jbd2_stats_proc_init(journal_t
*journal
)
1049 journal
->j_proc_entry
= proc_mkdir(journal
->j_devname
, proc_jbd2_stats
);
1050 if (journal
->j_proc_entry
) {
1051 proc_create_data("info", S_IRUGO
, journal
->j_proc_entry
,
1052 &jbd2_seq_info_fops
, journal
);
1056 static void jbd2_stats_proc_exit(journal_t
*journal
)
1058 remove_proc_entry("info", journal
->j_proc_entry
);
1059 remove_proc_entry(journal
->j_devname
, proc_jbd2_stats
);
1063 * Management for journal control blocks: functions to create and
1064 * destroy journal_t structures, and to initialise and read existing
1065 * journal blocks from disk. */
1067 /* First: create and setup a journal_t object in memory. We initialise
1068 * very few fields yet: that has to wait until we have created the
1069 * journal structures from from scratch, or loaded them from disk. */
1071 static journal_t
* journal_init_common (void)
1076 journal
= kzalloc(sizeof(*journal
), GFP_KERNEL
);
1080 init_waitqueue_head(&journal
->j_wait_transaction_locked
);
1081 init_waitqueue_head(&journal
->j_wait_done_commit
);
1082 init_waitqueue_head(&journal
->j_wait_commit
);
1083 init_waitqueue_head(&journal
->j_wait_updates
);
1084 init_waitqueue_head(&journal
->j_wait_reserved
);
1085 mutex_init(&journal
->j_barrier
);
1086 mutex_init(&journal
->j_checkpoint_mutex
);
1087 spin_lock_init(&journal
->j_revoke_lock
);
1088 spin_lock_init(&journal
->j_list_lock
);
1089 rwlock_init(&journal
->j_state_lock
);
1091 journal
->j_commit_interval
= (HZ
* JBD2_DEFAULT_MAX_COMMIT_AGE
);
1092 journal
->j_min_batch_time
= 0;
1093 journal
->j_max_batch_time
= 15000; /* 15ms */
1094 atomic_set(&journal
->j_reserved_credits
, 0);
1096 /* The journal is marked for error until we succeed with recovery! */
1097 journal
->j_flags
= JBD2_ABORT
;
1099 /* Set up a default-sized revoke table for the new mount. */
1100 err
= jbd2_journal_init_revoke(journal
, JOURNAL_REVOKE_DEFAULT_HASH
);
1106 spin_lock_init(&journal
->j_history_lock
);
1111 /* jbd2_journal_init_dev and jbd2_journal_init_inode:
1113 * Create a journal structure assigned some fixed set of disk blocks to
1114 * the journal. We don't actually touch those disk blocks yet, but we
1115 * need to set up all of the mapping information to tell the journaling
1116 * system where the journal blocks are.
1121 * journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure
1122 * @bdev: Block device on which to create the journal
1123 * @fs_dev: Device which hold journalled filesystem for this journal.
1124 * @start: Block nr Start of journal.
1125 * @len: Length of the journal in blocks.
1126 * @blocksize: blocksize of journalling device
1128 * Returns: a newly created journal_t *
1130 * jbd2_journal_init_dev creates a journal which maps a fixed contiguous
1131 * range of blocks on an arbitrary block device.
1134 journal_t
* jbd2_journal_init_dev(struct block_device
*bdev
,
1135 struct block_device
*fs_dev
,
1136 unsigned long long start
, int len
, int blocksize
)
1138 journal_t
*journal
= journal_init_common();
1139 struct buffer_head
*bh
;
1146 /* journal descriptor can store up to n blocks -bzzz */
1147 journal
->j_blocksize
= blocksize
;
1148 journal
->j_dev
= bdev
;
1149 journal
->j_fs_dev
= fs_dev
;
1150 journal
->j_blk_offset
= start
;
1151 journal
->j_maxlen
= len
;
1152 bdevname(journal
->j_dev
, journal
->j_devname
);
1153 p
= journal
->j_devname
;
1154 while ((p
= strchr(p
, '/')))
1156 jbd2_stats_proc_init(journal
);
1157 n
= journal
->j_blocksize
/ sizeof(journal_block_tag_t
);
1158 journal
->j_wbufsize
= n
;
1159 journal
->j_wbuf
= kmalloc(n
* sizeof(struct buffer_head
*), GFP_KERNEL
);
1160 if (!journal
->j_wbuf
) {
1161 printk(KERN_ERR
"%s: Can't allocate bhs for commit thread\n",
1166 bh
= __getblk(journal
->j_dev
, start
, journal
->j_blocksize
);
1169 "%s: Cannot get buffer for journal superblock\n",
1173 journal
->j_sb_buffer
= bh
;
1174 journal
->j_superblock
= (journal_superblock_t
*)bh
->b_data
;
1178 kfree(journal
->j_wbuf
);
1179 jbd2_stats_proc_exit(journal
);
1185 * journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode.
1186 * @inode: An inode to create the journal in
1188 * jbd2_journal_init_inode creates a journal which maps an on-disk inode as
1189 * the journal. The inode must exist already, must support bmap() and
1190 * must have all data blocks preallocated.
1192 journal_t
* jbd2_journal_init_inode (struct inode
*inode
)
1194 struct buffer_head
*bh
;
1195 journal_t
*journal
= journal_init_common();
1199 unsigned long long blocknr
;
1204 journal
->j_dev
= journal
->j_fs_dev
= inode
->i_sb
->s_bdev
;
1205 journal
->j_inode
= inode
;
1206 bdevname(journal
->j_dev
, journal
->j_devname
);
1207 p
= journal
->j_devname
;
1208 while ((p
= strchr(p
, '/')))
1210 p
= journal
->j_devname
+ strlen(journal
->j_devname
);
1211 sprintf(p
, "-%lu", journal
->j_inode
->i_ino
);
1213 "journal %p: inode %s/%ld, size %Ld, bits %d, blksize %ld\n",
1214 journal
, inode
->i_sb
->s_id
, inode
->i_ino
,
1215 (long long) inode
->i_size
,
1216 inode
->i_sb
->s_blocksize_bits
, inode
->i_sb
->s_blocksize
);
1218 journal
->j_maxlen
= inode
->i_size
>> inode
->i_sb
->s_blocksize_bits
;
1219 journal
->j_blocksize
= inode
->i_sb
->s_blocksize
;
1220 jbd2_stats_proc_init(journal
);
1222 /* journal descriptor can store up to n blocks -bzzz */
1223 n
= journal
->j_blocksize
/ sizeof(journal_block_tag_t
);
1224 journal
->j_wbufsize
= n
;
1225 journal
->j_wbuf
= kmalloc(n
* sizeof(struct buffer_head
*), GFP_KERNEL
);
1226 if (!journal
->j_wbuf
) {
1227 printk(KERN_ERR
"%s: Can't allocate bhs for commit thread\n",
1232 err
= jbd2_journal_bmap(journal
, 0, &blocknr
);
1233 /* If that failed, give up */
1235 printk(KERN_ERR
"%s: Cannot locate journal superblock\n",
1240 bh
= getblk_unmovable(journal
->j_dev
, blocknr
, journal
->j_blocksize
);
1243 "%s: Cannot get buffer for journal superblock\n",
1247 journal
->j_sb_buffer
= bh
;
1248 journal
->j_superblock
= (journal_superblock_t
*)bh
->b_data
;
1252 kfree(journal
->j_wbuf
);
1253 jbd2_stats_proc_exit(journal
);
1259 * If the journal init or create aborts, we need to mark the journal
1260 * superblock as being NULL to prevent the journal destroy from writing
1261 * back a bogus superblock.
1263 static void journal_fail_superblock (journal_t
*journal
)
1265 struct buffer_head
*bh
= journal
->j_sb_buffer
;
1267 journal
->j_sb_buffer
= NULL
;
1271 * Given a journal_t structure, initialise the various fields for
1272 * startup of a new journaling session. We use this both when creating
1273 * a journal, and after recovering an old journal to reset it for
1277 static int journal_reset(journal_t
*journal
)
1279 journal_superblock_t
*sb
= journal
->j_superblock
;
1280 unsigned long long first
, last
;
1282 first
= be32_to_cpu(sb
->s_first
);
1283 last
= be32_to_cpu(sb
->s_maxlen
);
1284 if (first
+ JBD2_MIN_JOURNAL_BLOCKS
> last
+ 1) {
1285 printk(KERN_ERR
"JBD2: Journal too short (blocks %llu-%llu).\n",
1287 journal_fail_superblock(journal
);
1291 journal
->j_first
= first
;
1292 journal
->j_last
= last
;
1294 journal
->j_head
= first
;
1295 journal
->j_tail
= first
;
1296 journal
->j_free
= last
- first
;
1298 journal
->j_tail_sequence
= journal
->j_transaction_sequence
;
1299 journal
->j_commit_sequence
= journal
->j_transaction_sequence
- 1;
1300 journal
->j_commit_request
= journal
->j_commit_sequence
;
1302 journal
->j_max_transaction_buffers
= journal
->j_maxlen
/ 4;
1305 * As a special case, if the on-disk copy is already marked as needing
1306 * no recovery (s_start == 0), then we can safely defer the superblock
1307 * update until the next commit by setting JBD2_FLUSHED. This avoids
1308 * attempting a write to a potential-readonly device.
1310 if (sb
->s_start
== 0) {
1311 jbd_debug(1, "JBD2: Skipping superblock update on recovered sb "
1312 "(start %ld, seq %d, errno %d)\n",
1313 journal
->j_tail
, journal
->j_tail_sequence
,
1315 journal
->j_flags
|= JBD2_FLUSHED
;
1317 /* Lock here to make assertions happy... */
1318 mutex_lock(&journal
->j_checkpoint_mutex
);
1320 * Update log tail information. We use WRITE_FUA since new
1321 * transaction will start reusing journal space and so we
1322 * must make sure information about current log tail is on
1325 jbd2_journal_update_sb_log_tail(journal
,
1326 journal
->j_tail_sequence
,
1329 mutex_unlock(&journal
->j_checkpoint_mutex
);
1331 return jbd2_journal_start_thread(journal
);
1334 static void jbd2_write_superblock(journal_t
*journal
, int write_op
)
1336 struct buffer_head
*bh
= journal
->j_sb_buffer
;
1337 journal_superblock_t
*sb
= journal
->j_superblock
;
1340 trace_jbd2_write_superblock(journal
, write_op
);
1341 if (!(journal
->j_flags
& JBD2_BARRIER
))
1342 write_op
&= ~(REQ_FUA
| REQ_FLUSH
);
1344 if (buffer_write_io_error(bh
)) {
1346 * Oh, dear. A previous attempt to write the journal
1347 * superblock failed. This could happen because the
1348 * USB device was yanked out. Or it could happen to
1349 * be a transient write error and maybe the block will
1350 * be remapped. Nothing we can do but to retry the
1351 * write and hope for the best.
1353 printk(KERN_ERR
"JBD2: previous I/O error detected "
1354 "for journal superblock update for %s.\n",
1355 journal
->j_devname
);
1356 clear_buffer_write_io_error(bh
);
1357 set_buffer_uptodate(bh
);
1359 jbd2_superblock_csum_set(journal
, sb
);
1361 bh
->b_end_io
= end_buffer_write_sync
;
1362 ret
= submit_bh(write_op
, bh
);
1364 if (buffer_write_io_error(bh
)) {
1365 clear_buffer_write_io_error(bh
);
1366 set_buffer_uptodate(bh
);
1370 printk(KERN_ERR
"JBD2: Error %d detected when updating "
1371 "journal superblock for %s.\n", ret
,
1372 journal
->j_devname
);
1377 * jbd2_journal_update_sb_log_tail() - Update log tail in journal sb on disk.
1378 * @journal: The journal to update.
1379 * @tail_tid: TID of the new transaction at the tail of the log
1380 * @tail_block: The first block of the transaction at the tail of the log
1381 * @write_op: With which operation should we write the journal sb
1383 * Update a journal's superblock information about log tail and write it to
1384 * disk, waiting for the IO to complete.
1386 void jbd2_journal_update_sb_log_tail(journal_t
*journal
, tid_t tail_tid
,
1387 unsigned long tail_block
, int write_op
)
1389 journal_superblock_t
*sb
= journal
->j_superblock
;
1391 BUG_ON(!mutex_is_locked(&journal
->j_checkpoint_mutex
));
1392 jbd_debug(1, "JBD2: updating superblock (start %lu, seq %u)\n",
1393 tail_block
, tail_tid
);
1395 sb
->s_sequence
= cpu_to_be32(tail_tid
);
1396 sb
->s_start
= cpu_to_be32(tail_block
);
1398 jbd2_write_superblock(journal
, write_op
);
1400 /* Log is no longer empty */
1401 write_lock(&journal
->j_state_lock
);
1402 WARN_ON(!sb
->s_sequence
);
1403 journal
->j_flags
&= ~JBD2_FLUSHED
;
1404 write_unlock(&journal
->j_state_lock
);
1408 * jbd2_mark_journal_empty() - Mark on disk journal as empty.
1409 * @journal: The journal to update.
1411 * Update a journal's dynamic superblock fields to show that journal is empty.
1412 * Write updated superblock to disk waiting for IO to complete.
1414 static void jbd2_mark_journal_empty(journal_t
*journal
)
1416 journal_superblock_t
*sb
= journal
->j_superblock
;
1418 BUG_ON(!mutex_is_locked(&journal
->j_checkpoint_mutex
));
1419 read_lock(&journal
->j_state_lock
);
1420 /* Is it already empty? */
1421 if (sb
->s_start
== 0) {
1422 read_unlock(&journal
->j_state_lock
);
1425 jbd_debug(1, "JBD2: Marking journal as empty (seq %d)\n",
1426 journal
->j_tail_sequence
);
1428 sb
->s_sequence
= cpu_to_be32(journal
->j_tail_sequence
);
1429 sb
->s_start
= cpu_to_be32(0);
1430 read_unlock(&journal
->j_state_lock
);
1432 jbd2_write_superblock(journal
, WRITE_FUA
);
1434 /* Log is no longer empty */
1435 write_lock(&journal
->j_state_lock
);
1436 journal
->j_flags
|= JBD2_FLUSHED
;
1437 write_unlock(&journal
->j_state_lock
);
1442 * jbd2_journal_update_sb_errno() - Update error in the journal.
1443 * @journal: The journal to update.
1445 * Update a journal's errno. Write updated superblock to disk waiting for IO
1448 void jbd2_journal_update_sb_errno(journal_t
*journal
)
1450 journal_superblock_t
*sb
= journal
->j_superblock
;
1452 read_lock(&journal
->j_state_lock
);
1453 jbd_debug(1, "JBD2: updating superblock error (errno %d)\n",
1455 sb
->s_errno
= cpu_to_be32(journal
->j_errno
);
1456 read_unlock(&journal
->j_state_lock
);
1458 jbd2_write_superblock(journal
, WRITE_SYNC
);
1460 EXPORT_SYMBOL(jbd2_journal_update_sb_errno
);
1463 * Read the superblock for a given journal, performing initial
1464 * validation of the format.
1466 static int journal_get_superblock(journal_t
*journal
)
1468 struct buffer_head
*bh
;
1469 journal_superblock_t
*sb
;
1472 bh
= journal
->j_sb_buffer
;
1474 J_ASSERT(bh
!= NULL
);
1475 if (!buffer_uptodate(bh
)) {
1476 ll_rw_block(READ
, 1, &bh
);
1478 if (!buffer_uptodate(bh
)) {
1480 "JBD2: IO error reading journal superblock\n");
1485 if (buffer_verified(bh
))
1488 sb
= journal
->j_superblock
;
1492 if (sb
->s_header
.h_magic
!= cpu_to_be32(JBD2_MAGIC_NUMBER
) ||
1493 sb
->s_blocksize
!= cpu_to_be32(journal
->j_blocksize
)) {
1494 printk(KERN_WARNING
"JBD2: no valid journal superblock found\n");
1498 switch(be32_to_cpu(sb
->s_header
.h_blocktype
)) {
1499 case JBD2_SUPERBLOCK_V1
:
1500 journal
->j_format_version
= 1;
1502 case JBD2_SUPERBLOCK_V2
:
1503 journal
->j_format_version
= 2;
1506 printk(KERN_WARNING
"JBD2: unrecognised superblock format ID\n");
1510 if (be32_to_cpu(sb
->s_maxlen
) < journal
->j_maxlen
)
1511 journal
->j_maxlen
= be32_to_cpu(sb
->s_maxlen
);
1512 else if (be32_to_cpu(sb
->s_maxlen
) > journal
->j_maxlen
) {
1513 printk(KERN_WARNING
"JBD2: journal file too short\n");
1517 if (be32_to_cpu(sb
->s_first
) == 0 ||
1518 be32_to_cpu(sb
->s_first
) >= journal
->j_maxlen
) {
1520 "JBD2: Invalid start block of journal: %u\n",
1521 be32_to_cpu(sb
->s_first
));
1525 if (JBD2_HAS_INCOMPAT_FEATURE(journal
, JBD2_FEATURE_INCOMPAT_CSUM_V2
) &&
1526 JBD2_HAS_INCOMPAT_FEATURE(journal
, JBD2_FEATURE_INCOMPAT_CSUM_V3
)) {
1527 /* Can't have checksum v2 and v3 at the same time! */
1528 printk(KERN_ERR
"JBD2: Can't enable checksumming v2 and v3 "
1529 "at the same time!\n");
1533 if (jbd2_journal_has_csum_v2or3(journal
) &&
1534 JBD2_HAS_COMPAT_FEATURE(journal
, JBD2_FEATURE_COMPAT_CHECKSUM
)) {
1535 /* Can't have checksum v1 and v2 on at the same time! */
1536 printk(KERN_ERR
"JBD2: Can't enable checksumming v1 and v2/3 "
1537 "at the same time!\n");
1541 if (!jbd2_verify_csum_type(journal
, sb
)) {
1542 printk(KERN_ERR
"JBD2: Unknown checksum type\n");
1546 /* Load the checksum driver */
1547 if (jbd2_journal_has_csum_v2or3(journal
)) {
1548 journal
->j_chksum_driver
= crypto_alloc_shash("crc32c", 0, 0);
1549 if (IS_ERR(journal
->j_chksum_driver
)) {
1550 printk(KERN_ERR
"JBD2: Cannot load crc32c driver.\n");
1551 err
= PTR_ERR(journal
->j_chksum_driver
);
1552 journal
->j_chksum_driver
= NULL
;
1557 /* Check superblock checksum */
1558 if (!jbd2_superblock_csum_verify(journal
, sb
)) {
1559 printk(KERN_ERR
"JBD2: journal checksum error\n");
1563 /* Precompute checksum seed for all metadata */
1564 if (jbd2_journal_has_csum_v2or3(journal
))
1565 journal
->j_csum_seed
= jbd2_chksum(journal
, ~0, sb
->s_uuid
,
1566 sizeof(sb
->s_uuid
));
1568 set_buffer_verified(bh
);
1573 journal_fail_superblock(journal
);
1578 * Load the on-disk journal superblock and read the key fields into the
1582 static int load_superblock(journal_t
*journal
)
1585 journal_superblock_t
*sb
;
1587 err
= journal_get_superblock(journal
);
1591 sb
= journal
->j_superblock
;
1593 journal
->j_tail_sequence
= be32_to_cpu(sb
->s_sequence
);
1594 journal
->j_tail
= be32_to_cpu(sb
->s_start
);
1595 journal
->j_first
= be32_to_cpu(sb
->s_first
);
1596 journal
->j_last
= be32_to_cpu(sb
->s_maxlen
);
1597 journal
->j_errno
= be32_to_cpu(sb
->s_errno
);
1604 * int jbd2_journal_load() - Read journal from disk.
1605 * @journal: Journal to act on.
1607 * Given a journal_t structure which tells us which disk blocks contain
1608 * a journal, read the journal from disk to initialise the in-memory
1611 int jbd2_journal_load(journal_t
*journal
)
1614 journal_superblock_t
*sb
;
1616 err
= load_superblock(journal
);
1620 sb
= journal
->j_superblock
;
1621 /* If this is a V2 superblock, then we have to check the
1622 * features flags on it. */
1624 if (journal
->j_format_version
>= 2) {
1625 if ((sb
->s_feature_ro_compat
&
1626 ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES
)) ||
1627 (sb
->s_feature_incompat
&
1628 ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES
))) {
1630 "JBD2: Unrecognised features on journal\n");
1636 * Create a slab for this blocksize
1638 err
= jbd2_journal_create_slab(be32_to_cpu(sb
->s_blocksize
));
1642 /* Let the recovery code check whether it needs to recover any
1643 * data from the journal. */
1644 if (jbd2_journal_recover(journal
))
1645 goto recovery_error
;
1647 if (journal
->j_failed_commit
) {
1648 printk(KERN_ERR
"JBD2: journal transaction %u on %s "
1649 "is corrupt.\n", journal
->j_failed_commit
,
1650 journal
->j_devname
);
1654 /* OK, we've finished with the dynamic journal bits:
1655 * reinitialise the dynamic contents of the superblock in memory
1656 * and reset them on disk. */
1657 if (journal_reset(journal
))
1658 goto recovery_error
;
1660 journal
->j_flags
&= ~JBD2_ABORT
;
1661 journal
->j_flags
|= JBD2_LOADED
;
1665 printk(KERN_WARNING
"JBD2: recovery failed\n");
1670 * void jbd2_journal_destroy() - Release a journal_t structure.
1671 * @journal: Journal to act on.
1673 * Release a journal_t structure once it is no longer in use by the
1675 * Return <0 if we couldn't clean up the journal.
1677 int jbd2_journal_destroy(journal_t
*journal
)
1681 /* Wait for the commit thread to wake up and die. */
1682 journal_kill_thread(journal
);
1684 /* Force a final log commit */
1685 if (journal
->j_running_transaction
)
1686 jbd2_journal_commit_transaction(journal
);
1688 /* Force any old transactions to disk */
1690 /* Totally anal locking here... */
1691 spin_lock(&journal
->j_list_lock
);
1692 while (journal
->j_checkpoint_transactions
!= NULL
) {
1693 spin_unlock(&journal
->j_list_lock
);
1694 mutex_lock(&journal
->j_checkpoint_mutex
);
1695 jbd2_log_do_checkpoint(journal
);
1696 mutex_unlock(&journal
->j_checkpoint_mutex
);
1697 spin_lock(&journal
->j_list_lock
);
1700 J_ASSERT(journal
->j_running_transaction
== NULL
);
1701 J_ASSERT(journal
->j_committing_transaction
== NULL
);
1702 J_ASSERT(journal
->j_checkpoint_transactions
== NULL
);
1703 spin_unlock(&journal
->j_list_lock
);
1705 if (journal
->j_sb_buffer
) {
1706 if (!is_journal_aborted(journal
)) {
1707 mutex_lock(&journal
->j_checkpoint_mutex
);
1708 jbd2_mark_journal_empty(journal
);
1709 mutex_unlock(&journal
->j_checkpoint_mutex
);
1712 brelse(journal
->j_sb_buffer
);
1715 if (journal
->j_proc_entry
)
1716 jbd2_stats_proc_exit(journal
);
1717 iput(journal
->j_inode
);
1718 if (journal
->j_revoke
)
1719 jbd2_journal_destroy_revoke(journal
);
1720 if (journal
->j_chksum_driver
)
1721 crypto_free_shash(journal
->j_chksum_driver
);
1722 kfree(journal
->j_wbuf
);
1730 *int jbd2_journal_check_used_features () - Check if features specified are used.
1731 * @journal: Journal to check.
1732 * @compat: bitmask of compatible features
1733 * @ro: bitmask of features that force read-only mount
1734 * @incompat: bitmask of incompatible features
1736 * Check whether the journal uses all of a given set of
1737 * features. Return true (non-zero) if it does.
1740 int jbd2_journal_check_used_features (journal_t
*journal
, unsigned long compat
,
1741 unsigned long ro
, unsigned long incompat
)
1743 journal_superblock_t
*sb
;
1745 if (!compat
&& !ro
&& !incompat
)
1747 /* Load journal superblock if it is not loaded yet. */
1748 if (journal
->j_format_version
== 0 &&
1749 journal_get_superblock(journal
) != 0)
1751 if (journal
->j_format_version
== 1)
1754 sb
= journal
->j_superblock
;
1756 if (((be32_to_cpu(sb
->s_feature_compat
) & compat
) == compat
) &&
1757 ((be32_to_cpu(sb
->s_feature_ro_compat
) & ro
) == ro
) &&
1758 ((be32_to_cpu(sb
->s_feature_incompat
) & incompat
) == incompat
))
1765 * int jbd2_journal_check_available_features() - Check feature set in journalling layer
1766 * @journal: Journal to check.
1767 * @compat: bitmask of compatible features
1768 * @ro: bitmask of features that force read-only mount
1769 * @incompat: bitmask of incompatible features
1771 * Check whether the journaling code supports the use of
1772 * all of a given set of features on this journal. Return true
1773 * (non-zero) if it can. */
1775 int jbd2_journal_check_available_features (journal_t
*journal
, unsigned long compat
,
1776 unsigned long ro
, unsigned long incompat
)
1778 if (!compat
&& !ro
&& !incompat
)
1781 /* We can support any known requested features iff the
1782 * superblock is in version 2. Otherwise we fail to support any
1783 * extended sb features. */
1785 if (journal
->j_format_version
!= 2)
1788 if ((compat
& JBD2_KNOWN_COMPAT_FEATURES
) == compat
&&
1789 (ro
& JBD2_KNOWN_ROCOMPAT_FEATURES
) == ro
&&
1790 (incompat
& JBD2_KNOWN_INCOMPAT_FEATURES
) == incompat
)
1797 * int jbd2_journal_set_features () - Mark a given journal feature in the superblock
1798 * @journal: Journal to act on.
1799 * @compat: bitmask of compatible features
1800 * @ro: bitmask of features that force read-only mount
1801 * @incompat: bitmask of incompatible features
1803 * Mark a given journal feature as present on the
1804 * superblock. Returns true if the requested features could be set.
1808 int jbd2_journal_set_features (journal_t
*journal
, unsigned long compat
,
1809 unsigned long ro
, unsigned long incompat
)
1811 #define INCOMPAT_FEATURE_ON(f) \
1812 ((incompat & (f)) && !(sb->s_feature_incompat & cpu_to_be32(f)))
1813 #define COMPAT_FEATURE_ON(f) \
1814 ((compat & (f)) && !(sb->s_feature_compat & cpu_to_be32(f)))
1815 journal_superblock_t
*sb
;
1817 if (jbd2_journal_check_used_features(journal
, compat
, ro
, incompat
))
1820 if (!jbd2_journal_check_available_features(journal
, compat
, ro
, incompat
))
1823 /* If enabling v2 checksums, turn on v3 instead */
1824 if (incompat
& JBD2_FEATURE_INCOMPAT_CSUM_V2
) {
1825 incompat
&= ~JBD2_FEATURE_INCOMPAT_CSUM_V2
;
1826 incompat
|= JBD2_FEATURE_INCOMPAT_CSUM_V3
;
1829 /* Asking for checksumming v3 and v1? Only give them v3. */
1830 if (incompat
& JBD2_FEATURE_INCOMPAT_CSUM_V3
&&
1831 compat
& JBD2_FEATURE_COMPAT_CHECKSUM
)
1832 compat
&= ~JBD2_FEATURE_COMPAT_CHECKSUM
;
1834 jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
1835 compat
, ro
, incompat
);
1837 sb
= journal
->j_superblock
;
1839 /* If enabling v3 checksums, update superblock */
1840 if (INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3
)) {
1841 sb
->s_checksum_type
= JBD2_CRC32C_CHKSUM
;
1842 sb
->s_feature_compat
&=
1843 ~cpu_to_be32(JBD2_FEATURE_COMPAT_CHECKSUM
);
1845 /* Load the checksum driver */
1846 if (journal
->j_chksum_driver
== NULL
) {
1847 journal
->j_chksum_driver
= crypto_alloc_shash("crc32c",
1849 if (IS_ERR(journal
->j_chksum_driver
)) {
1850 printk(KERN_ERR
"JBD2: Cannot load crc32c "
1852 journal
->j_chksum_driver
= NULL
;
1856 /* Precompute checksum seed for all metadata */
1857 journal
->j_csum_seed
= jbd2_chksum(journal
, ~0,
1859 sizeof(sb
->s_uuid
));
1863 /* If enabling v1 checksums, downgrade superblock */
1864 if (COMPAT_FEATURE_ON(JBD2_FEATURE_COMPAT_CHECKSUM
))
1865 sb
->s_feature_incompat
&=
1866 ~cpu_to_be32(JBD2_FEATURE_INCOMPAT_CSUM_V2
|
1867 JBD2_FEATURE_INCOMPAT_CSUM_V3
);
1869 sb
->s_feature_compat
|= cpu_to_be32(compat
);
1870 sb
->s_feature_ro_compat
|= cpu_to_be32(ro
);
1871 sb
->s_feature_incompat
|= cpu_to_be32(incompat
);
1874 #undef COMPAT_FEATURE_ON
1875 #undef INCOMPAT_FEATURE_ON
1879 * jbd2_journal_clear_features () - Clear a given journal feature in the
1881 * @journal: Journal to act on.
1882 * @compat: bitmask of compatible features
1883 * @ro: bitmask of features that force read-only mount
1884 * @incompat: bitmask of incompatible features
1886 * Clear a given journal feature as present on the
1889 void jbd2_journal_clear_features(journal_t
*journal
, unsigned long compat
,
1890 unsigned long ro
, unsigned long incompat
)
1892 journal_superblock_t
*sb
;
1894 jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n",
1895 compat
, ro
, incompat
);
1897 sb
= journal
->j_superblock
;
1899 sb
->s_feature_compat
&= ~cpu_to_be32(compat
);
1900 sb
->s_feature_ro_compat
&= ~cpu_to_be32(ro
);
1901 sb
->s_feature_incompat
&= ~cpu_to_be32(incompat
);
1903 EXPORT_SYMBOL(jbd2_journal_clear_features
);
1906 * int jbd2_journal_flush () - Flush journal
1907 * @journal: Journal to act on.
1909 * Flush all data for a given journal to disk and empty the journal.
1910 * Filesystems can use this when remounting readonly to ensure that
1911 * recovery does not need to happen on remount.
1914 int jbd2_journal_flush(journal_t
*journal
)
1917 transaction_t
*transaction
= NULL
;
1919 write_lock(&journal
->j_state_lock
);
1921 /* Force everything buffered to the log... */
1922 if (journal
->j_running_transaction
) {
1923 transaction
= journal
->j_running_transaction
;
1924 __jbd2_log_start_commit(journal
, transaction
->t_tid
);
1925 } else if (journal
->j_committing_transaction
)
1926 transaction
= journal
->j_committing_transaction
;
1928 /* Wait for the log commit to complete... */
1930 tid_t tid
= transaction
->t_tid
;
1932 write_unlock(&journal
->j_state_lock
);
1933 jbd2_log_wait_commit(journal
, tid
);
1935 write_unlock(&journal
->j_state_lock
);
1938 /* ...and flush everything in the log out to disk. */
1939 spin_lock(&journal
->j_list_lock
);
1940 while (!err
&& journal
->j_checkpoint_transactions
!= NULL
) {
1941 spin_unlock(&journal
->j_list_lock
);
1942 mutex_lock(&journal
->j_checkpoint_mutex
);
1943 err
= jbd2_log_do_checkpoint(journal
);
1944 mutex_unlock(&journal
->j_checkpoint_mutex
);
1945 spin_lock(&journal
->j_list_lock
);
1947 spin_unlock(&journal
->j_list_lock
);
1949 if (is_journal_aborted(journal
))
1952 mutex_lock(&journal
->j_checkpoint_mutex
);
1953 jbd2_cleanup_journal_tail(journal
);
1955 /* Finally, mark the journal as really needing no recovery.
1956 * This sets s_start==0 in the underlying superblock, which is
1957 * the magic code for a fully-recovered superblock. Any future
1958 * commits of data to the journal will restore the current
1960 jbd2_mark_journal_empty(journal
);
1961 mutex_unlock(&journal
->j_checkpoint_mutex
);
1962 write_lock(&journal
->j_state_lock
);
1963 J_ASSERT(!journal
->j_running_transaction
);
1964 J_ASSERT(!journal
->j_committing_transaction
);
1965 J_ASSERT(!journal
->j_checkpoint_transactions
);
1966 J_ASSERT(journal
->j_head
== journal
->j_tail
);
1967 J_ASSERT(journal
->j_tail_sequence
== journal
->j_transaction_sequence
);
1968 write_unlock(&journal
->j_state_lock
);
1973 * int jbd2_journal_wipe() - Wipe journal contents
1974 * @journal: Journal to act on.
1975 * @write: flag (see below)
1977 * Wipe out all of the contents of a journal, safely. This will produce
1978 * a warning if the journal contains any valid recovery information.
1979 * Must be called between journal_init_*() and jbd2_journal_load().
1981 * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
1982 * we merely suppress recovery.
1985 int jbd2_journal_wipe(journal_t
*journal
, int write
)
1989 J_ASSERT (!(journal
->j_flags
& JBD2_LOADED
));
1991 err
= load_superblock(journal
);
1995 if (!journal
->j_tail
)
1998 printk(KERN_WARNING
"JBD2: %s recovery information on journal\n",
1999 write
? "Clearing" : "Ignoring");
2001 err
= jbd2_journal_skip_recovery(journal
);
2003 /* Lock to make assertions happy... */
2004 mutex_lock(&journal
->j_checkpoint_mutex
);
2005 jbd2_mark_journal_empty(journal
);
2006 mutex_unlock(&journal
->j_checkpoint_mutex
);
2014 * Journal abort has very specific semantics, which we describe
2015 * for journal abort.
2017 * Two internal functions, which provide abort to the jbd layer
2022 * Quick version for internal journal use (doesn't lock the journal).
2023 * Aborts hard --- we mark the abort as occurred, but do _nothing_ else,
2024 * and don't attempt to make any other journal updates.
2026 void __jbd2_journal_abort_hard(journal_t
*journal
)
2028 transaction_t
*transaction
;
2030 if (journal
->j_flags
& JBD2_ABORT
)
2033 printk(KERN_ERR
"Aborting journal on device %s.\n",
2034 journal
->j_devname
);
2036 write_lock(&journal
->j_state_lock
);
2037 journal
->j_flags
|= JBD2_ABORT
;
2038 transaction
= journal
->j_running_transaction
;
2040 __jbd2_log_start_commit(journal
, transaction
->t_tid
);
2041 write_unlock(&journal
->j_state_lock
);
2044 /* Soft abort: record the abort error status in the journal superblock,
2045 * but don't do any other IO. */
2046 static void __journal_abort_soft (journal_t
*journal
, int errno
)
2048 if (journal
->j_flags
& JBD2_ABORT
)
2051 if (!journal
->j_errno
)
2052 journal
->j_errno
= errno
;
2054 __jbd2_journal_abort_hard(journal
);
2057 jbd2_journal_update_sb_errno(journal
);
2061 * void jbd2_journal_abort () - Shutdown the journal immediately.
2062 * @journal: the journal to shutdown.
2063 * @errno: an error number to record in the journal indicating
2064 * the reason for the shutdown.
2066 * Perform a complete, immediate shutdown of the ENTIRE
2067 * journal (not of a single transaction). This operation cannot be
2068 * undone without closing and reopening the journal.
2070 * The jbd2_journal_abort function is intended to support higher level error
2071 * recovery mechanisms such as the ext2/ext3 remount-readonly error
2074 * Journal abort has very specific semantics. Any existing dirty,
2075 * unjournaled buffers in the main filesystem will still be written to
2076 * disk by bdflush, but the journaling mechanism will be suspended
2077 * immediately and no further transaction commits will be honoured.
2079 * Any dirty, journaled buffers will be written back to disk without
2080 * hitting the journal. Atomicity cannot be guaranteed on an aborted
2081 * filesystem, but we _do_ attempt to leave as much data as possible
2082 * behind for fsck to use for cleanup.
2084 * Any attempt to get a new transaction handle on a journal which is in
2085 * ABORT state will just result in an -EROFS error return. A
2086 * jbd2_journal_stop on an existing handle will return -EIO if we have
2087 * entered abort state during the update.
2089 * Recursive transactions are not disturbed by journal abort until the
2090 * final jbd2_journal_stop, which will receive the -EIO error.
2092 * Finally, the jbd2_journal_abort call allows the caller to supply an errno
2093 * which will be recorded (if possible) in the journal superblock. This
2094 * allows a client to record failure conditions in the middle of a
2095 * transaction without having to complete the transaction to record the
2096 * failure to disk. ext3_error, for example, now uses this
2099 * Errors which originate from within the journaling layer will NOT
2100 * supply an errno; a null errno implies that absolutely no further
2101 * writes are done to the journal (unless there are any already in
2106 void jbd2_journal_abort(journal_t
*journal
, int errno
)
2108 __journal_abort_soft(journal
, errno
);
2112 * int jbd2_journal_errno () - returns the journal's error state.
2113 * @journal: journal to examine.
2115 * This is the errno number set with jbd2_journal_abort(), the last
2116 * time the journal was mounted - if the journal was stopped
2117 * without calling abort this will be 0.
2119 * If the journal has been aborted on this mount time -EROFS will
2122 int jbd2_journal_errno(journal_t
*journal
)
2126 read_lock(&journal
->j_state_lock
);
2127 if (journal
->j_flags
& JBD2_ABORT
)
2130 err
= journal
->j_errno
;
2131 read_unlock(&journal
->j_state_lock
);
2136 * int jbd2_journal_clear_err () - clears the journal's error state
2137 * @journal: journal to act on.
2139 * An error must be cleared or acked to take a FS out of readonly
2142 int jbd2_journal_clear_err(journal_t
*journal
)
2146 write_lock(&journal
->j_state_lock
);
2147 if (journal
->j_flags
& JBD2_ABORT
)
2150 journal
->j_errno
= 0;
2151 write_unlock(&journal
->j_state_lock
);
2156 * void jbd2_journal_ack_err() - Ack journal err.
2157 * @journal: journal to act on.
2159 * An error must be cleared or acked to take a FS out of readonly
2162 void jbd2_journal_ack_err(journal_t
*journal
)
2164 write_lock(&journal
->j_state_lock
);
2165 if (journal
->j_errno
)
2166 journal
->j_flags
|= JBD2_ACK_ERR
;
2167 write_unlock(&journal
->j_state_lock
);
2170 int jbd2_journal_blocks_per_page(struct inode
*inode
)
2172 return 1 << (PAGE_CACHE_SHIFT
- inode
->i_sb
->s_blocksize_bits
);
2176 * helper functions to deal with 32 or 64bit block numbers.
2178 size_t journal_tag_bytes(journal_t
*journal
)
2182 if (JBD2_HAS_INCOMPAT_FEATURE(journal
, JBD2_FEATURE_INCOMPAT_CSUM_V3
))
2183 return sizeof(journal_block_tag3_t
);
2185 sz
= sizeof(journal_block_tag_t
);
2187 if (JBD2_HAS_INCOMPAT_FEATURE(journal
, JBD2_FEATURE_INCOMPAT_CSUM_V2
))
2188 sz
+= sizeof(__u16
);
2190 if (JBD2_HAS_INCOMPAT_FEATURE(journal
, JBD2_FEATURE_INCOMPAT_64BIT
))
2193 return sz
- sizeof(__u32
);
2197 * JBD memory management
2199 * These functions are used to allocate block-sized chunks of memory
2200 * used for making copies of buffer_head data. Very often it will be
2201 * page-sized chunks of data, but sometimes it will be in
2202 * sub-page-size chunks. (For example, 16k pages on Power systems
2203 * with a 4k block file system.) For blocks smaller than a page, we
2204 * use a SLAB allocator. There are slab caches for each block size,
2205 * which are allocated at mount time, if necessary, and we only free
2206 * (all of) the slab caches when/if the jbd2 module is unloaded. For
2207 * this reason we don't need to a mutex to protect access to
2208 * jbd2_slab[] allocating or releasing memory; only in
2209 * jbd2_journal_create_slab().
2211 #define JBD2_MAX_SLABS 8
2212 static struct kmem_cache
*jbd2_slab
[JBD2_MAX_SLABS
];
2214 static const char *jbd2_slab_names
[JBD2_MAX_SLABS
] = {
2215 "jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k",
2216 "jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k"
2220 static void jbd2_journal_destroy_slabs(void)
2224 for (i
= 0; i
< JBD2_MAX_SLABS
; i
++) {
2226 kmem_cache_destroy(jbd2_slab
[i
]);
2227 jbd2_slab
[i
] = NULL
;
2231 static int jbd2_journal_create_slab(size_t size
)
2233 static DEFINE_MUTEX(jbd2_slab_create_mutex
);
2234 int i
= order_base_2(size
) - 10;
2237 if (size
== PAGE_SIZE
)
2240 if (i
>= JBD2_MAX_SLABS
)
2243 if (unlikely(i
< 0))
2245 mutex_lock(&jbd2_slab_create_mutex
);
2247 mutex_unlock(&jbd2_slab_create_mutex
);
2248 return 0; /* Already created */
2251 slab_size
= 1 << (i
+10);
2252 jbd2_slab
[i
] = kmem_cache_create(jbd2_slab_names
[i
], slab_size
,
2253 slab_size
, 0, NULL
);
2254 mutex_unlock(&jbd2_slab_create_mutex
);
2255 if (!jbd2_slab
[i
]) {
2256 printk(KERN_EMERG
"JBD2: no memory for jbd2_slab cache\n");
2262 static struct kmem_cache
*get_slab(size_t size
)
2264 int i
= order_base_2(size
) - 10;
2266 BUG_ON(i
>= JBD2_MAX_SLABS
);
2267 if (unlikely(i
< 0))
2269 BUG_ON(jbd2_slab
[i
] == NULL
);
2270 return jbd2_slab
[i
];
2273 void *jbd2_alloc(size_t size
, gfp_t flags
)
2277 BUG_ON(size
& (size
-1)); /* Must be a power of 2 */
2279 flags
|= __GFP_REPEAT
;
2280 if (size
== PAGE_SIZE
)
2281 ptr
= (void *)__get_free_pages(flags
, 0);
2282 else if (size
> PAGE_SIZE
) {
2283 int order
= get_order(size
);
2286 ptr
= (void *)__get_free_pages(flags
, order
);
2288 ptr
= vmalloc(size
);
2290 ptr
= kmem_cache_alloc(get_slab(size
), flags
);
2292 /* Check alignment; SLUB has gotten this wrong in the past,
2293 * and this can lead to user data corruption! */
2294 BUG_ON(((unsigned long) ptr
) & (size
-1));
2299 void jbd2_free(void *ptr
, size_t size
)
2301 if (size
== PAGE_SIZE
) {
2302 free_pages((unsigned long)ptr
, 0);
2305 if (size
> PAGE_SIZE
) {
2306 int order
= get_order(size
);
2309 free_pages((unsigned long)ptr
, order
);
2314 kmem_cache_free(get_slab(size
), ptr
);
2318 * Journal_head storage management
2320 static struct kmem_cache
*jbd2_journal_head_cache
;
2321 #ifdef CONFIG_JBD2_DEBUG
2322 static atomic_t nr_journal_heads
= ATOMIC_INIT(0);
2325 static int jbd2_journal_init_journal_head_cache(void)
2329 J_ASSERT(jbd2_journal_head_cache
== NULL
);
2330 jbd2_journal_head_cache
= kmem_cache_create("jbd2_journal_head",
2331 sizeof(struct journal_head
),
2333 SLAB_TEMPORARY
, /* flags */
2336 if (!jbd2_journal_head_cache
) {
2338 printk(KERN_EMERG
"JBD2: no memory for journal_head cache\n");
2343 static void jbd2_journal_destroy_journal_head_cache(void)
2345 if (jbd2_journal_head_cache
) {
2346 kmem_cache_destroy(jbd2_journal_head_cache
);
2347 jbd2_journal_head_cache
= NULL
;
2352 * journal_head splicing and dicing
2354 static struct journal_head
*journal_alloc_journal_head(void)
2356 struct journal_head
*ret
;
2358 #ifdef CONFIG_JBD2_DEBUG
2359 atomic_inc(&nr_journal_heads
);
2361 ret
= kmem_cache_zalloc(jbd2_journal_head_cache
, GFP_NOFS
);
2363 jbd_debug(1, "out of memory for journal_head\n");
2364 pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__
);
2367 ret
= kmem_cache_zalloc(jbd2_journal_head_cache
, GFP_NOFS
);
2373 static void journal_free_journal_head(struct journal_head
*jh
)
2375 #ifdef CONFIG_JBD2_DEBUG
2376 atomic_dec(&nr_journal_heads
);
2377 memset(jh
, JBD2_POISON_FREE
, sizeof(*jh
));
2379 kmem_cache_free(jbd2_journal_head_cache
, jh
);
2383 * A journal_head is attached to a buffer_head whenever JBD has an
2384 * interest in the buffer.
2386 * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
2387 * is set. This bit is tested in core kernel code where we need to take
2388 * JBD-specific actions. Testing the zeroness of ->b_private is not reliable
2391 * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
2393 * When a buffer has its BH_JBD bit set it is immune from being released by
2394 * core kernel code, mainly via ->b_count.
2396 * A journal_head is detached from its buffer_head when the journal_head's
2397 * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint
2398 * transaction (b_cp_transaction) hold their references to b_jcount.
2400 * Various places in the kernel want to attach a journal_head to a buffer_head
2401 * _before_ attaching the journal_head to a transaction. To protect the
2402 * journal_head in this situation, jbd2_journal_add_journal_head elevates the
2403 * journal_head's b_jcount refcount by one. The caller must call
2404 * jbd2_journal_put_journal_head() to undo this.
2406 * So the typical usage would be:
2408 * (Attach a journal_head if needed. Increments b_jcount)
2409 * struct journal_head *jh = jbd2_journal_add_journal_head(bh);
2411 * (Get another reference for transaction)
2412 * jbd2_journal_grab_journal_head(bh);
2413 * jh->b_transaction = xxx;
2414 * (Put original reference)
2415 * jbd2_journal_put_journal_head(jh);
2419 * Give a buffer_head a journal_head.
2423 struct journal_head
*jbd2_journal_add_journal_head(struct buffer_head
*bh
)
2425 struct journal_head
*jh
;
2426 struct journal_head
*new_jh
= NULL
;
2429 if (!buffer_jbd(bh
))
2430 new_jh
= journal_alloc_journal_head();
2432 jbd_lock_bh_journal_head(bh
);
2433 if (buffer_jbd(bh
)) {
2437 (atomic_read(&bh
->b_count
) > 0) ||
2438 (bh
->b_page
&& bh
->b_page
->mapping
));
2441 jbd_unlock_bh_journal_head(bh
);
2446 new_jh
= NULL
; /* We consumed it */
2451 BUFFER_TRACE(bh
, "added journal_head");
2454 jbd_unlock_bh_journal_head(bh
);
2456 journal_free_journal_head(new_jh
);
2457 return bh
->b_private
;
2461 * Grab a ref against this buffer_head's journal_head. If it ended up not
2462 * having a journal_head, return NULL
2464 struct journal_head
*jbd2_journal_grab_journal_head(struct buffer_head
*bh
)
2466 struct journal_head
*jh
= NULL
;
2468 jbd_lock_bh_journal_head(bh
);
2469 if (buffer_jbd(bh
)) {
2473 jbd_unlock_bh_journal_head(bh
);
2477 static void __journal_remove_journal_head(struct buffer_head
*bh
)
2479 struct journal_head
*jh
= bh2jh(bh
);
2481 J_ASSERT_JH(jh
, jh
->b_jcount
>= 0);
2482 J_ASSERT_JH(jh
, jh
->b_transaction
== NULL
);
2483 J_ASSERT_JH(jh
, jh
->b_next_transaction
== NULL
);
2484 J_ASSERT_JH(jh
, jh
->b_cp_transaction
== NULL
);
2485 J_ASSERT_JH(jh
, jh
->b_jlist
== BJ_None
);
2486 J_ASSERT_BH(bh
, buffer_jbd(bh
));
2487 J_ASSERT_BH(bh
, jh2bh(jh
) == bh
);
2488 BUFFER_TRACE(bh
, "remove journal_head");
2489 if (jh
->b_frozen_data
) {
2490 printk(KERN_WARNING
"%s: freeing b_frozen_data\n", __func__
);
2491 jbd2_free(jh
->b_frozen_data
, bh
->b_size
);
2493 if (jh
->b_committed_data
) {
2494 printk(KERN_WARNING
"%s: freeing b_committed_data\n", __func__
);
2495 jbd2_free(jh
->b_committed_data
, bh
->b_size
);
2497 bh
->b_private
= NULL
;
2498 jh
->b_bh
= NULL
; /* debug, really */
2499 clear_buffer_jbd(bh
);
2500 journal_free_journal_head(jh
);
2504 * Drop a reference on the passed journal_head. If it fell to zero then
2505 * release the journal_head from the buffer_head.
2507 void jbd2_journal_put_journal_head(struct journal_head
*jh
)
2509 struct buffer_head
*bh
= jh2bh(jh
);
2511 jbd_lock_bh_journal_head(bh
);
2512 J_ASSERT_JH(jh
, jh
->b_jcount
> 0);
2514 if (!jh
->b_jcount
) {
2515 __journal_remove_journal_head(bh
);
2516 jbd_unlock_bh_journal_head(bh
);
2519 jbd_unlock_bh_journal_head(bh
);
2523 * Initialize jbd inode head
2525 void jbd2_journal_init_jbd_inode(struct jbd2_inode
*jinode
, struct inode
*inode
)
2527 jinode
->i_transaction
= NULL
;
2528 jinode
->i_next_transaction
= NULL
;
2529 jinode
->i_vfs_inode
= inode
;
2530 jinode
->i_flags
= 0;
2531 INIT_LIST_HEAD(&jinode
->i_list
);
2535 * Function to be called before we start removing inode from memory (i.e.,
2536 * clear_inode() is a fine place to be called from). It removes inode from
2537 * transaction's lists.
2539 void jbd2_journal_release_jbd_inode(journal_t
*journal
,
2540 struct jbd2_inode
*jinode
)
2545 spin_lock(&journal
->j_list_lock
);
2546 /* Is commit writing out inode - we have to wait */
2547 if (test_bit(__JI_COMMIT_RUNNING
, &jinode
->i_flags
)) {
2548 wait_queue_head_t
*wq
;
2549 DEFINE_WAIT_BIT(wait
, &jinode
->i_flags
, __JI_COMMIT_RUNNING
);
2550 wq
= bit_waitqueue(&jinode
->i_flags
, __JI_COMMIT_RUNNING
);
2551 prepare_to_wait(wq
, &wait
.wait
, TASK_UNINTERRUPTIBLE
);
2552 spin_unlock(&journal
->j_list_lock
);
2554 finish_wait(wq
, &wait
.wait
);
2558 if (jinode
->i_transaction
) {
2559 list_del(&jinode
->i_list
);
2560 jinode
->i_transaction
= NULL
;
2562 spin_unlock(&journal
->j_list_lock
);
2566 #ifdef CONFIG_PROC_FS
2568 #define JBD2_STATS_PROC_NAME "fs/jbd2"
2570 static void __init
jbd2_create_jbd_stats_proc_entry(void)
2572 proc_jbd2_stats
= proc_mkdir(JBD2_STATS_PROC_NAME
, NULL
);
2575 static void __exit
jbd2_remove_jbd_stats_proc_entry(void)
2577 if (proc_jbd2_stats
)
2578 remove_proc_entry(JBD2_STATS_PROC_NAME
, NULL
);
2583 #define jbd2_create_jbd_stats_proc_entry() do {} while (0)
2584 #define jbd2_remove_jbd_stats_proc_entry() do {} while (0)
2588 struct kmem_cache
*jbd2_handle_cache
, *jbd2_inode_cache
;
2590 static int __init
jbd2_journal_init_handle_cache(void)
2592 jbd2_handle_cache
= KMEM_CACHE(jbd2_journal_handle
, SLAB_TEMPORARY
);
2593 if (jbd2_handle_cache
== NULL
) {
2594 printk(KERN_EMERG
"JBD2: failed to create handle cache\n");
2597 jbd2_inode_cache
= KMEM_CACHE(jbd2_inode
, 0);
2598 if (jbd2_inode_cache
== NULL
) {
2599 printk(KERN_EMERG
"JBD2: failed to create inode cache\n");
2600 kmem_cache_destroy(jbd2_handle_cache
);
2606 static void jbd2_journal_destroy_handle_cache(void)
2608 if (jbd2_handle_cache
)
2609 kmem_cache_destroy(jbd2_handle_cache
);
2610 if (jbd2_inode_cache
)
2611 kmem_cache_destroy(jbd2_inode_cache
);
2616 * Module startup and shutdown
2619 static int __init
journal_init_caches(void)
2623 ret
= jbd2_journal_init_revoke_caches();
2625 ret
= jbd2_journal_init_journal_head_cache();
2627 ret
= jbd2_journal_init_handle_cache();
2629 ret
= jbd2_journal_init_transaction_cache();
2633 static void jbd2_journal_destroy_caches(void)
2635 jbd2_journal_destroy_revoke_caches();
2636 jbd2_journal_destroy_journal_head_cache();
2637 jbd2_journal_destroy_handle_cache();
2638 jbd2_journal_destroy_transaction_cache();
2639 jbd2_journal_destroy_slabs();
2642 static int __init
journal_init(void)
2646 BUILD_BUG_ON(sizeof(struct journal_superblock_s
) != 1024);
2648 ret
= journal_init_caches();
2650 jbd2_create_jbd_stats_proc_entry();
2652 jbd2_journal_destroy_caches();
2657 static void __exit
journal_exit(void)
2659 #ifdef CONFIG_JBD2_DEBUG
2660 int n
= atomic_read(&nr_journal_heads
);
2662 printk(KERN_ERR
"JBD2: leaked %d journal_heads!\n", n
);
2664 jbd2_remove_jbd_stats_proc_entry();
2665 jbd2_journal_destroy_caches();
2668 MODULE_LICENSE("GPL");
2669 module_init(journal_init
);
2670 module_exit(journal_exit
);