4 * Copyright (C) 1992 Rick Sladkey
6 * nfs directory handling functions
8 * 10 Apr 1996 Added silly rename for unlink --okir
9 * 28 Sep 1996 Improved directory cache --okir
10 * 23 Aug 1997 Claus Heine claus@momo.math.rwth-aachen.de
11 * Re-implemented silly rename for unlink, newly implemented
12 * silly rename for nfs_rename() following the suggestions
13 * of Olaf Kirch (okir) found in this file.
14 * Following Linus comments on my original hack, this version
15 * depends only on the dcache stuff and doesn't touch the inode
16 * layer (iput() and friends).
17 * 6 Jun 1999 Cache readdir lookups in the page cache. -DaveM
20 #include <linux/time.h>
21 #include <linux/errno.h>
22 #include <linux/stat.h>
23 #include <linux/fcntl.h>
24 #include <linux/string.h>
25 #include <linux/kernel.h>
26 #include <linux/slab.h>
28 #include <linux/sunrpc/clnt.h>
29 #include <linux/nfs_fs.h>
30 #include <linux/nfs_mount.h>
31 #include <linux/pagemap.h>
32 #include <linux/smp_lock.h>
33 #include <linux/pagevec.h>
34 #include <linux/namei.h>
35 #include <linux/mount.h>
36 #include <linux/sched.h>
39 #include "delegation.h"
43 /* #define NFS_DEBUG_VERBOSE 1 */
45 static int nfs_opendir(struct inode
*, struct file
*);
46 static int nfs_readdir(struct file
*, void *, filldir_t
);
47 static struct dentry
*nfs_lookup(struct inode
*, struct dentry
*, struct nameidata
*);
48 static int nfs_create(struct inode
*, struct dentry
*, int, struct nameidata
*);
49 static int nfs_mkdir(struct inode
*, struct dentry
*, int);
50 static int nfs_rmdir(struct inode
*, struct dentry
*);
51 static int nfs_unlink(struct inode
*, struct dentry
*);
52 static int nfs_symlink(struct inode
*, struct dentry
*, const char *);
53 static int nfs_link(struct dentry
*, struct inode
*, struct dentry
*);
54 static int nfs_mknod(struct inode
*, struct dentry
*, int, dev_t
);
55 static int nfs_rename(struct inode
*, struct dentry
*,
56 struct inode
*, struct dentry
*);
57 static int nfs_fsync_dir(struct file
*, struct dentry
*, int);
58 static loff_t
nfs_llseek_dir(struct file
*, loff_t
, int);
60 const struct file_operations nfs_dir_operations
= {
61 .llseek
= nfs_llseek_dir
,
62 .read
= generic_read_dir
,
63 .readdir
= nfs_readdir
,
65 .release
= nfs_release
,
66 .fsync
= nfs_fsync_dir
,
69 const struct inode_operations nfs_dir_inode_operations
= {
74 .symlink
= nfs_symlink
,
79 .permission
= nfs_permission
,
80 .getattr
= nfs_getattr
,
81 .setattr
= nfs_setattr
,
85 const struct inode_operations nfs3_dir_inode_operations
= {
90 .symlink
= nfs_symlink
,
95 .permission
= nfs_permission
,
96 .getattr
= nfs_getattr
,
97 .setattr
= nfs_setattr
,
98 .listxattr
= nfs3_listxattr
,
99 .getxattr
= nfs3_getxattr
,
100 .setxattr
= nfs3_setxattr
,
101 .removexattr
= nfs3_removexattr
,
103 #endif /* CONFIG_NFS_V3 */
107 static struct dentry
*nfs_atomic_lookup(struct inode
*, struct dentry
*, struct nameidata
*);
108 const struct inode_operations nfs4_dir_inode_operations
= {
109 .create
= nfs_create
,
110 .lookup
= nfs_atomic_lookup
,
112 .unlink
= nfs_unlink
,
113 .symlink
= nfs_symlink
,
117 .rename
= nfs_rename
,
118 .permission
= nfs_permission
,
119 .getattr
= nfs_getattr
,
120 .setattr
= nfs_setattr
,
121 .getxattr
= nfs4_getxattr
,
122 .setxattr
= nfs4_setxattr
,
123 .listxattr
= nfs4_listxattr
,
126 #endif /* CONFIG_NFS_V4 */
132 nfs_opendir(struct inode
*inode
, struct file
*filp
)
136 dfprintk(FILE, "NFS: open dir(%s/%s)\n",
137 filp
->f_path
.dentry
->d_parent
->d_name
.name
,
138 filp
->f_path
.dentry
->d_name
.name
);
140 nfs_inc_stats(inode
, NFSIOS_VFSOPEN
);
142 /* Call generic open code in order to cache credentials */
143 res
= nfs_open(inode
, filp
);
147 typedef __be32
* (*decode_dirent_t
)(__be32
*, struct nfs_entry
*, int);
151 unsigned long page_index
;
154 loff_t current_index
;
155 struct nfs_entry
*entry
;
156 decode_dirent_t decode
;
158 unsigned long timestamp
;
160 } nfs_readdir_descriptor_t
;
162 /* Now we cache directories properly, by stuffing the dirent
163 * data directly in the page cache.
165 * Inode invalidation due to refresh etc. takes care of
166 * _everything_, no sloppy entry flushing logic, no extraneous
167 * copying, network direct to page cache, the way it was meant
170 * NOTE: Dirent information verification is done always by the
171 * page-in of the RPC reply, nowhere else, this simplies
172 * things substantially.
175 int nfs_readdir_filler(nfs_readdir_descriptor_t
*desc
, struct page
*page
)
177 struct file
*file
= desc
->file
;
178 struct inode
*inode
= file
->f_path
.dentry
->d_inode
;
179 struct rpc_cred
*cred
= nfs_file_cred(file
);
180 unsigned long timestamp
;
183 dfprintk(DIRCACHE
, "NFS: %s: reading cookie %Lu into page %lu\n",
184 __func__
, (long long)desc
->entry
->cookie
,
189 error
= NFS_PROTO(inode
)->readdir(file
->f_path
.dentry
, cred
, desc
->entry
->cookie
, page
,
190 NFS_SERVER(inode
)->dtsize
, desc
->plus
);
192 /* We requested READDIRPLUS, but the server doesn't grok it */
193 if (error
== -ENOTSUPP
&& desc
->plus
) {
194 NFS_SERVER(inode
)->caps
&= ~NFS_CAP_READDIRPLUS
;
195 clear_bit(NFS_INO_ADVISE_RDPLUS
, &NFS_I(inode
)->flags
);
201 desc
->timestamp
= timestamp
;
202 desc
->timestamp_valid
= 1;
203 SetPageUptodate(page
);
204 /* Ensure consistent page alignment of the data.
205 * Note: assumes we have exclusive access to this mapping either
206 * through inode->i_mutex or some other mechanism.
208 if (invalidate_inode_pages2_range(inode
->i_mapping
, page
->index
+ 1, -1) < 0) {
209 /* Should never happen */
210 nfs_zap_mapping(inode
, inode
->i_mapping
);
220 int dir_decode(nfs_readdir_descriptor_t
*desc
)
222 __be32
*p
= desc
->ptr
;
223 p
= desc
->decode(p
, desc
->entry
, desc
->plus
);
227 if (desc
->timestamp_valid
)
228 desc
->entry
->fattr
->time_start
= desc
->timestamp
;
230 desc
->entry
->fattr
->valid
&= ~NFS_ATTR_FATTR
;
235 void dir_page_release(nfs_readdir_descriptor_t
*desc
)
238 page_cache_release(desc
->page
);
244 * Given a pointer to a buffer that has already been filled by a call
245 * to readdir, find the next entry with cookie '*desc->dir_cookie'.
247 * If the end of the buffer has been reached, return -EAGAIN, if not,
248 * return the offset within the buffer of the next entry to be
252 int find_dirent(nfs_readdir_descriptor_t
*desc
)
254 struct nfs_entry
*entry
= desc
->entry
;
258 while((status
= dir_decode(desc
)) == 0) {
259 dfprintk(DIRCACHE
, "NFS: %s: examining cookie %Lu\n",
260 __func__
, (unsigned long long)entry
->cookie
);
261 if (entry
->prev_cookie
== *desc
->dir_cookie
)
263 if (loop_count
++ > 200) {
272 * Given a pointer to a buffer that has already been filled by a call
273 * to readdir, find the entry at offset 'desc->file->f_pos'.
275 * If the end of the buffer has been reached, return -EAGAIN, if not,
276 * return the offset within the buffer of the next entry to be
280 int find_dirent_index(nfs_readdir_descriptor_t
*desc
)
282 struct nfs_entry
*entry
= desc
->entry
;
287 status
= dir_decode(desc
);
291 dfprintk(DIRCACHE
, "NFS: found cookie %Lu at index %Ld\n",
292 (unsigned long long)entry
->cookie
, desc
->current_index
);
294 if (desc
->file
->f_pos
== desc
->current_index
) {
295 *desc
->dir_cookie
= entry
->cookie
;
298 desc
->current_index
++;
299 if (loop_count
++ > 200) {
308 * Find the given page, and call find_dirent() or find_dirent_index in
309 * order to try to return the next entry.
312 int find_dirent_page(nfs_readdir_descriptor_t
*desc
)
314 struct inode
*inode
= desc
->file
->f_path
.dentry
->d_inode
;
318 dfprintk(DIRCACHE
, "NFS: %s: searching page %ld for target %Lu\n",
319 __func__
, desc
->page_index
,
320 (long long) *desc
->dir_cookie
);
322 /* If we find the page in the page_cache, we cannot be sure
323 * how fresh the data is, so we will ignore readdir_plus attributes.
325 desc
->timestamp_valid
= 0;
326 page
= read_cache_page(inode
->i_mapping
, desc
->page_index
,
327 (filler_t
*)nfs_readdir_filler
, desc
);
329 status
= PTR_ERR(page
);
333 /* NOTE: Someone else may have changed the READDIRPLUS flag */
335 desc
->ptr
= kmap(page
); /* matching kunmap in nfs_do_filldir */
336 if (*desc
->dir_cookie
!= 0)
337 status
= find_dirent(desc
);
339 status
= find_dirent_index(desc
);
341 dir_page_release(desc
);
343 dfprintk(DIRCACHE
, "NFS: %s: returns %d\n", __func__
, status
);
348 * Recurse through the page cache pages, and return a
349 * filled nfs_entry structure of the next directory entry if possible.
351 * The target for the search is '*desc->dir_cookie' if non-0,
352 * 'desc->file->f_pos' otherwise
355 int readdir_search_pagecache(nfs_readdir_descriptor_t
*desc
)
360 /* Always search-by-index from the beginning of the cache */
361 if (*desc
->dir_cookie
== 0) {
362 dfprintk(DIRCACHE
, "NFS: readdir_search_pagecache() searching for offset %Ld\n",
363 (long long)desc
->file
->f_pos
);
364 desc
->page_index
= 0;
365 desc
->entry
->cookie
= desc
->entry
->prev_cookie
= 0;
366 desc
->entry
->eof
= 0;
367 desc
->current_index
= 0;
369 dfprintk(DIRCACHE
, "NFS: readdir_search_pagecache() searching for cookie %Lu\n",
370 (unsigned long long)*desc
->dir_cookie
);
373 res
= find_dirent_page(desc
);
376 /* Align to beginning of next page */
378 if (loop_count
++ > 200) {
384 dfprintk(DIRCACHE
, "NFS: %s: returns %d\n", __func__
, res
);
388 static inline unsigned int dt_type(struct inode
*inode
)
390 return (inode
->i_mode
>> 12) & 15;
393 static struct dentry
*nfs_readdir_lookup(nfs_readdir_descriptor_t
*desc
);
396 * Once we've found the start of the dirent within a page: fill 'er up...
399 int nfs_do_filldir(nfs_readdir_descriptor_t
*desc
, void *dirent
,
402 struct file
*file
= desc
->file
;
403 struct nfs_entry
*entry
= desc
->entry
;
404 struct dentry
*dentry
= NULL
;
409 dfprintk(DIRCACHE
, "NFS: nfs_do_filldir() filling starting @ cookie %Lu\n",
410 (unsigned long long)entry
->cookie
);
413 unsigned d_type
= DT_UNKNOWN
;
414 /* Note: entry->prev_cookie contains the cookie for
415 * retrieving the current dirent on the server */
418 /* Get a dentry if we have one */
421 dentry
= nfs_readdir_lookup(desc
);
423 /* Use readdirplus info */
424 if (dentry
!= NULL
&& dentry
->d_inode
!= NULL
) {
425 d_type
= dt_type(dentry
->d_inode
);
426 fileid
= NFS_FILEID(dentry
->d_inode
);
429 res
= filldir(dirent
, entry
->name
, entry
->len
,
430 file
->f_pos
, nfs_compat_user_ino64(fileid
),
435 *desc
->dir_cookie
= entry
->cookie
;
436 if (dir_decode(desc
) != 0) {
440 if (loop_count
++ > 200) {
445 dir_page_release(desc
);
448 dfprintk(DIRCACHE
, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n",
449 (unsigned long long)*desc
->dir_cookie
, res
);
454 * If we cannot find a cookie in our cache, we suspect that this is
455 * because it points to a deleted file, so we ask the server to return
456 * whatever it thinks is the next entry. We then feed this to filldir.
457 * If all goes well, we should then be able to find our way round the
458 * cache on the next call to readdir_search_pagecache();
460 * NOTE: we cannot add the anonymous page to the pagecache because
461 * the data it contains might not be page aligned. Besides,
462 * we should already have a complete representation of the
463 * directory in the page cache by the time we get here.
466 int uncached_readdir(nfs_readdir_descriptor_t
*desc
, void *dirent
,
469 struct file
*file
= desc
->file
;
470 struct inode
*inode
= file
->f_path
.dentry
->d_inode
;
471 struct rpc_cred
*cred
= nfs_file_cred(file
);
472 struct page
*page
= NULL
;
474 unsigned long timestamp
;
476 dfprintk(DIRCACHE
, "NFS: uncached_readdir() searching for cookie %Lu\n",
477 (unsigned long long)*desc
->dir_cookie
);
479 page
= alloc_page(GFP_HIGHUSER
);
485 status
= NFS_PROTO(inode
)->readdir(file
->f_path
.dentry
, cred
,
486 *desc
->dir_cookie
, page
,
487 NFS_SERVER(inode
)->dtsize
,
490 desc
->ptr
= kmap(page
); /* matching kunmap in nfs_do_filldir */
492 desc
->timestamp
= timestamp
;
493 desc
->timestamp_valid
= 1;
494 if ((status
= dir_decode(desc
)) == 0)
495 desc
->entry
->prev_cookie
= *desc
->dir_cookie
;
501 status
= nfs_do_filldir(desc
, dirent
, filldir
);
503 /* Reset read descriptor so it searches the page cache from
504 * the start upon the next call to readdir_search_pagecache() */
505 desc
->page_index
= 0;
506 desc
->entry
->cookie
= desc
->entry
->prev_cookie
= 0;
507 desc
->entry
->eof
= 0;
509 dfprintk(DIRCACHE
, "NFS: %s: returns %d\n",
513 dir_page_release(desc
);
517 /* The file offset position represents the dirent entry number. A
518 last cookie cache takes care of the common case of reading the
521 static int nfs_readdir(struct file
*filp
, void *dirent
, filldir_t filldir
)
523 struct dentry
*dentry
= filp
->f_path
.dentry
;
524 struct inode
*inode
= dentry
->d_inode
;
525 nfs_readdir_descriptor_t my_desc
,
527 struct nfs_entry my_entry
;
529 struct nfs_fattr fattr
;
532 dfprintk(FILE, "NFS: readdir(%s/%s) starting at cookie %llu\n",
533 dentry
->d_parent
->d_name
.name
, dentry
->d_name
.name
,
534 (long long)filp
->f_pos
);
535 nfs_inc_stats(inode
, NFSIOS_VFSGETDENTS
);
538 * filp->f_pos points to the dirent entry number.
539 * *desc->dir_cookie has the cookie for the next entry. We have
540 * to either find the entry with the appropriate number or
541 * revalidate the cookie.
543 memset(desc
, 0, sizeof(*desc
));
546 desc
->dir_cookie
= &nfs_file_open_context(filp
)->dir_cookie
;
547 desc
->decode
= NFS_PROTO(inode
)->decode_dirent
;
548 desc
->plus
= NFS_USE_READDIRPLUS(inode
);
550 my_entry
.cookie
= my_entry
.prev_cookie
= 0;
553 my_entry
.fattr
= &fattr
;
554 nfs_fattr_init(&fattr
);
555 desc
->entry
= &my_entry
;
557 nfs_block_sillyrename(dentry
);
558 res
= nfs_revalidate_mapping_nolock(inode
, filp
->f_mapping
);
562 while(!desc
->entry
->eof
) {
563 res
= readdir_search_pagecache(desc
);
565 if (res
== -EBADCOOKIE
) {
566 /* This means either end of directory */
567 if (*desc
->dir_cookie
&& desc
->entry
->cookie
!= *desc
->dir_cookie
) {
568 /* Or that the server has 'lost' a cookie */
569 res
= uncached_readdir(desc
, dirent
, filldir
);
576 if (res
== -ETOOSMALL
&& desc
->plus
) {
577 clear_bit(NFS_INO_ADVISE_RDPLUS
, &NFS_I(inode
)->flags
);
578 nfs_zap_caches(inode
);
580 desc
->entry
->eof
= 0;
586 res
= nfs_do_filldir(desc
, dirent
, filldir
);
593 nfs_unblock_sillyrename(dentry
);
596 dfprintk(FILE, "NFS: readdir(%s/%s) returns %ld\n",
597 dentry
->d_parent
->d_name
.name
, dentry
->d_name
.name
,
602 static loff_t
nfs_llseek_dir(struct file
*filp
, loff_t offset
, int origin
)
604 struct dentry
*dentry
= filp
->f_path
.dentry
;
605 struct inode
*inode
= dentry
->d_inode
;
607 dfprintk(FILE, "NFS: llseek dir(%s/%s, %lld, %d)\n",
608 dentry
->d_parent
->d_name
.name
,
612 mutex_lock(&inode
->i_mutex
);
615 offset
+= filp
->f_pos
;
623 if (offset
!= filp
->f_pos
) {
624 filp
->f_pos
= offset
;
625 nfs_file_open_context(filp
)->dir_cookie
= 0;
628 mutex_unlock(&inode
->i_mutex
);
633 * All directory operations under NFS are synchronous, so fsync()
634 * is a dummy operation.
636 static int nfs_fsync_dir(struct file
*filp
, struct dentry
*dentry
, int datasync
)
638 dfprintk(FILE, "NFS: fsync dir(%s/%s) datasync %d\n",
639 dentry
->d_parent
->d_name
.name
, dentry
->d_name
.name
,
642 nfs_inc_stats(dentry
->d_inode
, NFSIOS_VFSFSYNC
);
647 * nfs_force_lookup_revalidate - Mark the directory as having changed
648 * @dir - pointer to directory inode
650 * This forces the revalidation code in nfs_lookup_revalidate() to do a
651 * full lookup on all child dentries of 'dir' whenever a change occurs
652 * on the server that might have invalidated our dcache.
654 * The caller should be holding dir->i_lock
656 void nfs_force_lookup_revalidate(struct inode
*dir
)
658 NFS_I(dir
)->cache_change_attribute
= jiffies
;
662 * A check for whether or not the parent directory has changed.
663 * In the case it has, we assume that the dentries are untrustworthy
664 * and may need to be looked up again.
666 static int nfs_check_verifier(struct inode
*dir
, struct dentry
*dentry
)
670 if (!nfs_verify_change_attribute(dir
, dentry
->d_time
))
672 /* Revalidate nfsi->cache_change_attribute before we declare a match */
673 if (nfs_revalidate_inode(NFS_SERVER(dir
), dir
) < 0)
675 if (!nfs_verify_change_attribute(dir
, dentry
->d_time
))
681 * Return the intent data that applies to this particular path component
683 * Note that the current set of intents only apply to the very last
684 * component of the path.
685 * We check for this using LOOKUP_CONTINUE and LOOKUP_PARENT.
687 static inline unsigned int nfs_lookup_check_intent(struct nameidata
*nd
, unsigned int mask
)
689 if (nd
->flags
& (LOOKUP_CONTINUE
|LOOKUP_PARENT
))
691 return nd
->flags
& mask
;
695 * Use intent information to check whether or not we're going to do
696 * an O_EXCL create using this path component.
698 static int nfs_is_exclusive_create(struct inode
*dir
, struct nameidata
*nd
)
700 if (NFS_PROTO(dir
)->version
== 2)
702 if (nd
== NULL
|| nfs_lookup_check_intent(nd
, LOOKUP_CREATE
) == 0)
704 return (nd
->intent
.open
.flags
& O_EXCL
) != 0;
708 * Inode and filehandle revalidation for lookups.
710 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
711 * or if the intent information indicates that we're about to open this
712 * particular file and the "nocto" mount flag is not set.
716 int nfs_lookup_verify_inode(struct inode
*inode
, struct nameidata
*nd
)
718 struct nfs_server
*server
= NFS_SERVER(inode
);
720 if (test_bit(NFS_INO_MOUNTPOINT
, &NFS_I(inode
)->flags
))
723 /* VFS wants an on-the-wire revalidation */
724 if (nd
->flags
& LOOKUP_REVAL
)
726 /* This is an open(2) */
727 if (nfs_lookup_check_intent(nd
, LOOKUP_OPEN
) != 0 &&
728 !(server
->flags
& NFS_MOUNT_NOCTO
) &&
729 (S_ISREG(inode
->i_mode
) ||
730 S_ISDIR(inode
->i_mode
)))
734 return nfs_revalidate_inode(server
, inode
);
736 return __nfs_revalidate_inode(server
, inode
);
740 * We judge how long we want to trust negative
741 * dentries by looking at the parent inode mtime.
743 * If parent mtime has changed, we revalidate, else we wait for a
744 * period corresponding to the parent's attribute cache timeout value.
747 int nfs_neg_need_reval(struct inode
*dir
, struct dentry
*dentry
,
748 struct nameidata
*nd
)
750 /* Don't revalidate a negative dentry if we're creating a new file */
751 if (nd
!= NULL
&& nfs_lookup_check_intent(nd
, LOOKUP_CREATE
) != 0)
753 return !nfs_check_verifier(dir
, dentry
);
757 * This is called every time the dcache has a lookup hit,
758 * and we should check whether we can really trust that
761 * NOTE! The hit can be a negative hit too, don't assume
764 * If the parent directory is seen to have changed, we throw out the
765 * cached dentry and do a new lookup.
767 static int nfs_lookup_revalidate(struct dentry
* dentry
, struct nameidata
*nd
)
771 struct dentry
*parent
;
773 struct nfs_fh fhandle
;
774 struct nfs_fattr fattr
;
776 parent
= dget_parent(dentry
);
777 dir
= parent
->d_inode
;
778 nfs_inc_stats(dir
, NFSIOS_DENTRYREVALIDATE
);
779 inode
= dentry
->d_inode
;
782 if (nfs_neg_need_reval(dir
, dentry
, nd
))
787 if (is_bad_inode(inode
)) {
788 dfprintk(LOOKUPCACHE
, "%s: %s/%s has dud inode\n",
789 __func__
, dentry
->d_parent
->d_name
.name
,
790 dentry
->d_name
.name
);
794 /* Force a full look up iff the parent directory has changed */
795 if (!nfs_is_exclusive_create(dir
, nd
) && nfs_check_verifier(dir
, dentry
)) {
796 if (nfs_lookup_verify_inode(inode
, nd
))
801 if (NFS_STALE(inode
))
804 error
= NFS_PROTO(dir
)->lookup(dir
, &dentry
->d_name
, &fhandle
, &fattr
);
807 if (nfs_compare_fh(NFS_FH(inode
), &fhandle
))
809 if ((error
= nfs_refresh_inode(inode
, &fattr
)) != 0)
812 nfs_set_verifier(dentry
, nfs_save_change_attribute(dir
));
815 dfprintk(LOOKUPCACHE
, "NFS: %s(%s/%s) is valid\n",
816 __func__
, dentry
->d_parent
->d_name
.name
,
817 dentry
->d_name
.name
);
822 nfs_mark_for_revalidate(dir
);
823 if (inode
&& S_ISDIR(inode
->i_mode
)) {
824 /* Purge readdir caches. */
825 nfs_zap_caches(inode
);
826 /* If we have submounts, don't unhash ! */
827 if (have_submounts(dentry
))
829 shrink_dcache_parent(dentry
);
833 dfprintk(LOOKUPCACHE
, "NFS: %s(%s/%s) is invalid\n",
834 __func__
, dentry
->d_parent
->d_name
.name
,
835 dentry
->d_name
.name
);
840 * This is called from dput() when d_count is going to 0.
842 static int nfs_dentry_delete(struct dentry
*dentry
)
844 dfprintk(VFS
, "NFS: dentry_delete(%s/%s, %x)\n",
845 dentry
->d_parent
->d_name
.name
, dentry
->d_name
.name
,
848 /* Unhash any dentry with a stale inode */
849 if (dentry
->d_inode
!= NULL
&& NFS_STALE(dentry
->d_inode
))
852 if (dentry
->d_flags
& DCACHE_NFSFS_RENAMED
) {
853 /* Unhash it, so that ->d_iput() would be called */
856 if (!(dentry
->d_sb
->s_flags
& MS_ACTIVE
)) {
857 /* Unhash it, so that ancestors of killed async unlink
858 * files will be cleaned up during umount */
865 static void nfs_drop_nlink(struct inode
*inode
)
867 spin_lock(&inode
->i_lock
);
868 if (inode
->i_nlink
> 0)
870 spin_unlock(&inode
->i_lock
);
874 * Called when the dentry loses inode.
875 * We use it to clean up silly-renamed files.
877 static void nfs_dentry_iput(struct dentry
*dentry
, struct inode
*inode
)
879 if (S_ISDIR(inode
->i_mode
))
880 /* drop any readdir cache as it could easily be old */
881 NFS_I(inode
)->cache_validity
|= NFS_INO_INVALID_DATA
;
883 if (dentry
->d_flags
& DCACHE_NFSFS_RENAMED
) {
885 nfs_complete_unlink(dentry
, inode
);
890 struct dentry_operations nfs_dentry_operations
= {
891 .d_revalidate
= nfs_lookup_revalidate
,
892 .d_delete
= nfs_dentry_delete
,
893 .d_iput
= nfs_dentry_iput
,
896 static struct dentry
*nfs_lookup(struct inode
*dir
, struct dentry
* dentry
, struct nameidata
*nd
)
899 struct dentry
*parent
;
900 struct inode
*inode
= NULL
;
902 struct nfs_fh fhandle
;
903 struct nfs_fattr fattr
;
905 dfprintk(VFS
, "NFS: lookup(%s/%s)\n",
906 dentry
->d_parent
->d_name
.name
, dentry
->d_name
.name
);
907 nfs_inc_stats(dir
, NFSIOS_VFSLOOKUP
);
909 res
= ERR_PTR(-ENAMETOOLONG
);
910 if (dentry
->d_name
.len
> NFS_SERVER(dir
)->namelen
)
913 res
= ERR_PTR(-ENOMEM
);
914 dentry
->d_op
= NFS_PROTO(dir
)->dentry_ops
;
917 * If we're doing an exclusive create, optimize away the lookup
918 * but don't hash the dentry.
920 if (nfs_is_exclusive_create(dir
, nd
)) {
921 d_instantiate(dentry
, NULL
);
926 parent
= dentry
->d_parent
;
927 /* Protect against concurrent sillydeletes */
928 nfs_block_sillyrename(parent
);
929 error
= NFS_PROTO(dir
)->lookup(dir
, &dentry
->d_name
, &fhandle
, &fattr
);
930 if (error
== -ENOENT
)
933 res
= ERR_PTR(error
);
934 goto out_unblock_sillyrename
;
936 inode
= nfs_fhget(dentry
->d_sb
, &fhandle
, &fattr
);
937 res
= (struct dentry
*)inode
;
939 goto out_unblock_sillyrename
;
942 res
= d_materialise_unique(dentry
, inode
);
945 goto out_unblock_sillyrename
;
948 nfs_set_verifier(dentry
, nfs_save_change_attribute(dir
));
949 out_unblock_sillyrename
:
950 nfs_unblock_sillyrename(parent
);
956 static int nfs_open_revalidate(struct dentry
*, struct nameidata
*);
958 struct dentry_operations nfs4_dentry_operations
= {
959 .d_revalidate
= nfs_open_revalidate
,
960 .d_delete
= nfs_dentry_delete
,
961 .d_iput
= nfs_dentry_iput
,
965 * Use intent information to determine whether we need to substitute
966 * the NFSv4-style stateful OPEN for the LOOKUP call
968 static int is_atomic_open(struct inode
*dir
, struct nameidata
*nd
)
970 if (nd
== NULL
|| nfs_lookup_check_intent(nd
, LOOKUP_OPEN
) == 0)
972 /* NFS does not (yet) have a stateful open for directories */
973 if (nd
->flags
& LOOKUP_DIRECTORY
)
975 /* Are we trying to write to a read only partition? */
976 if (__mnt_is_readonly(nd
->path
.mnt
) &&
977 (nd
->intent
.open
.flags
& (O_CREAT
|O_TRUNC
|FMODE_WRITE
)))
982 static struct dentry
*nfs_atomic_lookup(struct inode
*dir
, struct dentry
*dentry
, struct nameidata
*nd
)
984 struct dentry
*res
= NULL
;
987 dfprintk(VFS
, "NFS: atomic_lookup(%s/%ld), %s\n",
988 dir
->i_sb
->s_id
, dir
->i_ino
, dentry
->d_name
.name
);
990 /* Check that we are indeed trying to open this file */
991 if (!is_atomic_open(dir
, nd
))
994 if (dentry
->d_name
.len
> NFS_SERVER(dir
)->namelen
) {
995 res
= ERR_PTR(-ENAMETOOLONG
);
998 dentry
->d_op
= NFS_PROTO(dir
)->dentry_ops
;
1000 /* Let vfs_create() deal with O_EXCL. Instantiate, but don't hash
1002 if (nd
->intent
.open
.flags
& O_EXCL
) {
1003 d_instantiate(dentry
, NULL
);
1007 /* Open the file on the server */
1008 res
= nfs4_atomic_open(dir
, dentry
, nd
);
1010 error
= PTR_ERR(res
);
1012 /* Make a negative dentry */
1016 /* This turned out not to be a regular file */
1021 if (!(nd
->intent
.open
.flags
& O_NOFOLLOW
))
1027 } else if (res
!= NULL
)
1032 return nfs_lookup(dir
, dentry
, nd
);
1035 static int nfs_open_revalidate(struct dentry
*dentry
, struct nameidata
*nd
)
1037 struct dentry
*parent
= NULL
;
1038 struct inode
*inode
= dentry
->d_inode
;
1040 int openflags
, ret
= 0;
1042 parent
= dget_parent(dentry
);
1043 dir
= parent
->d_inode
;
1044 if (!is_atomic_open(dir
, nd
))
1046 /* We can't create new files in nfs_open_revalidate(), so we
1047 * optimize away revalidation of negative dentries.
1049 if (inode
== NULL
) {
1050 if (!nfs_neg_need_reval(dir
, dentry
, nd
))
1055 /* NFS only supports OPEN on regular files */
1056 if (!S_ISREG(inode
->i_mode
))
1058 openflags
= nd
->intent
.open
.flags
;
1059 /* We cannot do exclusive creation on a positive dentry */
1060 if ((openflags
& (O_CREAT
|O_EXCL
)) == (O_CREAT
|O_EXCL
))
1062 /* We can't create new files, or truncate existing ones here */
1063 openflags
&= ~(O_CREAT
|O_TRUNC
);
1066 * Note: we're not holding inode->i_mutex and so may be racing with
1067 * operations that change the directory. We therefore save the
1068 * change attribute *before* we do the RPC call.
1070 ret
= nfs4_open_revalidate(dir
, dentry
, openflags
, nd
);
1078 if (inode
!= NULL
&& nfs_have_delegation(inode
, FMODE_READ
))
1080 return nfs_lookup_revalidate(dentry
, nd
);
1082 #endif /* CONFIG_NFSV4 */
1084 static struct dentry
*nfs_readdir_lookup(nfs_readdir_descriptor_t
*desc
)
1086 struct dentry
*parent
= desc
->file
->f_path
.dentry
;
1087 struct inode
*dir
= parent
->d_inode
;
1088 struct nfs_entry
*entry
= desc
->entry
;
1089 struct dentry
*dentry
, *alias
;
1090 struct qstr name
= {
1091 .name
= entry
->name
,
1094 struct inode
*inode
;
1095 unsigned long verf
= nfs_save_change_attribute(dir
);
1099 if (name
.name
[0] == '.' && name
.name
[1] == '.')
1100 return dget_parent(parent
);
1103 if (name
.name
[0] == '.')
1104 return dget(parent
);
1107 spin_lock(&dir
->i_lock
);
1108 if (NFS_I(dir
)->cache_validity
& NFS_INO_INVALID_DATA
) {
1109 spin_unlock(&dir
->i_lock
);
1112 spin_unlock(&dir
->i_lock
);
1114 name
.hash
= full_name_hash(name
.name
, name
.len
);
1115 dentry
= d_lookup(parent
, &name
);
1116 if (dentry
!= NULL
) {
1117 /* Is this a positive dentry that matches the readdir info? */
1118 if (dentry
->d_inode
!= NULL
&&
1119 (NFS_FILEID(dentry
->d_inode
) == entry
->ino
||
1120 d_mountpoint(dentry
))) {
1121 if (!desc
->plus
|| entry
->fh
->size
== 0)
1123 if (nfs_compare_fh(NFS_FH(dentry
->d_inode
),
1127 /* No, so d_drop to allow one to be created */
1131 if (!desc
->plus
|| !(entry
->fattr
->valid
& NFS_ATTR_FATTR
))
1133 if (name
.len
> NFS_SERVER(dir
)->namelen
)
1135 /* Note: caller is already holding the dir->i_mutex! */
1136 dentry
= d_alloc(parent
, &name
);
1139 dentry
->d_op
= NFS_PROTO(dir
)->dentry_ops
;
1140 inode
= nfs_fhget(dentry
->d_sb
, entry
->fh
, entry
->fattr
);
1141 if (IS_ERR(inode
)) {
1146 alias
= d_materialise_unique(dentry
, inode
);
1147 if (alias
!= NULL
) {
1155 nfs_set_verifier(dentry
, verf
);
1160 * Code common to create, mkdir, and mknod.
1162 int nfs_instantiate(struct dentry
*dentry
, struct nfs_fh
*fhandle
,
1163 struct nfs_fattr
*fattr
)
1165 struct dentry
*parent
= dget_parent(dentry
);
1166 struct inode
*dir
= parent
->d_inode
;
1167 struct inode
*inode
;
1168 int error
= -EACCES
;
1172 /* We may have been initialized further down */
1173 if (dentry
->d_inode
)
1175 if (fhandle
->size
== 0) {
1176 error
= NFS_PROTO(dir
)->lookup(dir
, &dentry
->d_name
, fhandle
, fattr
);
1180 nfs_set_verifier(dentry
, nfs_save_change_attribute(dir
));
1181 if (!(fattr
->valid
& NFS_ATTR_FATTR
)) {
1182 struct nfs_server
*server
= NFS_SB(dentry
->d_sb
);
1183 error
= server
->nfs_client
->rpc_ops
->getattr(server
, fhandle
, fattr
);
1187 inode
= nfs_fhget(dentry
->d_sb
, fhandle
, fattr
);
1188 error
= PTR_ERR(inode
);
1191 d_add(dentry
, inode
);
1196 nfs_mark_for_revalidate(dir
);
1202 * Following a failed create operation, we drop the dentry rather
1203 * than retain a negative dentry. This avoids a problem in the event
1204 * that the operation succeeded on the server, but an error in the
1205 * reply path made it appear to have failed.
1207 static int nfs_create(struct inode
*dir
, struct dentry
*dentry
, int mode
,
1208 struct nameidata
*nd
)
1214 dfprintk(VFS
, "NFS: create(%s/%ld), %s\n",
1215 dir
->i_sb
->s_id
, dir
->i_ino
, dentry
->d_name
.name
);
1217 attr
.ia_mode
= mode
;
1218 attr
.ia_valid
= ATTR_MODE
;
1220 if ((nd
->flags
& LOOKUP_CREATE
) != 0)
1221 open_flags
= nd
->intent
.open
.flags
;
1223 error
= NFS_PROTO(dir
)->create(dir
, dentry
, &attr
, open_flags
, nd
);
1233 * See comments for nfs_proc_create regarding failed operations.
1236 nfs_mknod(struct inode
*dir
, struct dentry
*dentry
, int mode
, dev_t rdev
)
1241 dfprintk(VFS
, "NFS: mknod(%s/%ld), %s\n",
1242 dir
->i_sb
->s_id
, dir
->i_ino
, dentry
->d_name
.name
);
1244 if (!new_valid_dev(rdev
))
1247 attr
.ia_mode
= mode
;
1248 attr
.ia_valid
= ATTR_MODE
;
1250 status
= NFS_PROTO(dir
)->mknod(dir
, dentry
, &attr
, rdev
);
1260 * See comments for nfs_proc_create regarding failed operations.
1262 static int nfs_mkdir(struct inode
*dir
, struct dentry
*dentry
, int mode
)
1267 dfprintk(VFS
, "NFS: mkdir(%s/%ld), %s\n",
1268 dir
->i_sb
->s_id
, dir
->i_ino
, dentry
->d_name
.name
);
1270 attr
.ia_valid
= ATTR_MODE
;
1271 attr
.ia_mode
= mode
| S_IFDIR
;
1273 error
= NFS_PROTO(dir
)->mkdir(dir
, dentry
, &attr
);
1282 static void nfs_dentry_handle_enoent(struct dentry
*dentry
)
1284 if (dentry
->d_inode
!= NULL
&& !d_unhashed(dentry
))
1288 static int nfs_rmdir(struct inode
*dir
, struct dentry
*dentry
)
1292 dfprintk(VFS
, "NFS: rmdir(%s/%ld), %s\n",
1293 dir
->i_sb
->s_id
, dir
->i_ino
, dentry
->d_name
.name
);
1295 error
= NFS_PROTO(dir
)->rmdir(dir
, &dentry
->d_name
);
1296 /* Ensure the VFS deletes this inode */
1297 if (error
== 0 && dentry
->d_inode
!= NULL
)
1298 clear_nlink(dentry
->d_inode
);
1299 else if (error
== -ENOENT
)
1300 nfs_dentry_handle_enoent(dentry
);
1305 static int nfs_sillyrename(struct inode
*dir
, struct dentry
*dentry
)
1307 static unsigned int sillycounter
;
1308 const int fileidsize
= sizeof(NFS_FILEID(dentry
->d_inode
))*2;
1309 const int countersize
= sizeof(sillycounter
)*2;
1310 const int slen
= sizeof(".nfs")+fileidsize
+countersize
-1;
1313 struct dentry
*sdentry
;
1316 dfprintk(VFS
, "NFS: silly-rename(%s/%s, ct=%d)\n",
1317 dentry
->d_parent
->d_name
.name
, dentry
->d_name
.name
,
1318 atomic_read(&dentry
->d_count
));
1319 nfs_inc_stats(dir
, NFSIOS_SILLYRENAME
);
1322 * We don't allow a dentry to be silly-renamed twice.
1325 if (dentry
->d_flags
& DCACHE_NFSFS_RENAMED
)
1328 sprintf(silly
, ".nfs%*.*Lx",
1329 fileidsize
, fileidsize
,
1330 (unsigned long long)NFS_FILEID(dentry
->d_inode
));
1332 /* Return delegation in anticipation of the rename */
1333 nfs_inode_return_delegation(dentry
->d_inode
);
1337 char *suffix
= silly
+ slen
- countersize
;
1341 sprintf(suffix
, "%*.*x", countersize
, countersize
, sillycounter
);
1343 dfprintk(VFS
, "NFS: trying to rename %s to %s\n",
1344 dentry
->d_name
.name
, silly
);
1346 sdentry
= lookup_one_len(silly
, dentry
->d_parent
, slen
);
1348 * N.B. Better to return EBUSY here ... it could be
1349 * dangerous to delete the file while it's in use.
1351 if (IS_ERR(sdentry
))
1353 } while(sdentry
->d_inode
!= NULL
); /* need negative lookup */
1355 qsilly
.name
= silly
;
1356 qsilly
.len
= strlen(silly
);
1357 if (dentry
->d_inode
) {
1358 error
= NFS_PROTO(dir
)->rename(dir
, &dentry
->d_name
,
1360 nfs_mark_for_revalidate(dentry
->d_inode
);
1362 error
= NFS_PROTO(dir
)->rename(dir
, &dentry
->d_name
,
1365 nfs_set_verifier(dentry
, nfs_save_change_attribute(dir
));
1366 d_move(dentry
, sdentry
);
1367 error
= nfs_async_unlink(dir
, dentry
);
1368 /* If we return 0 we don't unlink */
1376 * Remove a file after making sure there are no pending writes,
1377 * and after checking that the file has only one user.
1379 * We invalidate the attribute cache and free the inode prior to the operation
1380 * to avoid possible races if the server reuses the inode.
1382 static int nfs_safe_remove(struct dentry
*dentry
)
1384 struct inode
*dir
= dentry
->d_parent
->d_inode
;
1385 struct inode
*inode
= dentry
->d_inode
;
1388 dfprintk(VFS
, "NFS: safe_remove(%s/%s)\n",
1389 dentry
->d_parent
->d_name
.name
, dentry
->d_name
.name
);
1391 /* If the dentry was sillyrenamed, we simply call d_delete() */
1392 if (dentry
->d_flags
& DCACHE_NFSFS_RENAMED
) {
1397 if (inode
!= NULL
) {
1398 nfs_inode_return_delegation(inode
);
1399 error
= NFS_PROTO(dir
)->remove(dir
, &dentry
->d_name
);
1400 /* The VFS may want to delete this inode */
1402 nfs_drop_nlink(inode
);
1403 nfs_mark_for_revalidate(inode
);
1405 error
= NFS_PROTO(dir
)->remove(dir
, &dentry
->d_name
);
1406 if (error
== -ENOENT
)
1407 nfs_dentry_handle_enoent(dentry
);
1412 /* We do silly rename. In case sillyrename() returns -EBUSY, the inode
1413 * belongs to an active ".nfs..." file and we return -EBUSY.
1415 * If sillyrename() returns 0, we do nothing, otherwise we unlink.
1417 static int nfs_unlink(struct inode
*dir
, struct dentry
*dentry
)
1420 int need_rehash
= 0;
1422 dfprintk(VFS
, "NFS: unlink(%s/%ld, %s)\n", dir
->i_sb
->s_id
,
1423 dir
->i_ino
, dentry
->d_name
.name
);
1425 spin_lock(&dcache_lock
);
1426 spin_lock(&dentry
->d_lock
);
1427 if (atomic_read(&dentry
->d_count
) > 1) {
1428 spin_unlock(&dentry
->d_lock
);
1429 spin_unlock(&dcache_lock
);
1430 /* Start asynchronous writeout of the inode */
1431 write_inode_now(dentry
->d_inode
, 0);
1432 error
= nfs_sillyrename(dir
, dentry
);
1435 if (!d_unhashed(dentry
)) {
1439 spin_unlock(&dentry
->d_lock
);
1440 spin_unlock(&dcache_lock
);
1441 error
= nfs_safe_remove(dentry
);
1442 if (!error
|| error
== -ENOENT
) {
1443 nfs_set_verifier(dentry
, nfs_save_change_attribute(dir
));
1444 } else if (need_rehash
)
1450 * To create a symbolic link, most file systems instantiate a new inode,
1451 * add a page to it containing the path, then write it out to the disk
1452 * using prepare_write/commit_write.
1454 * Unfortunately the NFS client can't create the in-core inode first
1455 * because it needs a file handle to create an in-core inode (see
1456 * fs/nfs/inode.c:nfs_fhget). We only have a file handle *after* the
1457 * symlink request has completed on the server.
1459 * So instead we allocate a raw page, copy the symname into it, then do
1460 * the SYMLINK request with the page as the buffer. If it succeeds, we
1461 * now have a new file handle and can instantiate an in-core NFS inode
1462 * and move the raw page into its mapping.
1464 static int nfs_symlink(struct inode
*dir
, struct dentry
*dentry
, const char *symname
)
1466 struct pagevec lru_pvec
;
1470 unsigned int pathlen
= strlen(symname
);
1473 dfprintk(VFS
, "NFS: symlink(%s/%ld, %s, %s)\n", dir
->i_sb
->s_id
,
1474 dir
->i_ino
, dentry
->d_name
.name
, symname
);
1476 if (pathlen
> PAGE_SIZE
)
1477 return -ENAMETOOLONG
;
1479 attr
.ia_mode
= S_IFLNK
| S_IRWXUGO
;
1480 attr
.ia_valid
= ATTR_MODE
;
1482 page
= alloc_page(GFP_HIGHUSER
);
1486 kaddr
= kmap_atomic(page
, KM_USER0
);
1487 memcpy(kaddr
, symname
, pathlen
);
1488 if (pathlen
< PAGE_SIZE
)
1489 memset(kaddr
+ pathlen
, 0, PAGE_SIZE
- pathlen
);
1490 kunmap_atomic(kaddr
, KM_USER0
);
1492 error
= NFS_PROTO(dir
)->symlink(dir
, dentry
, page
, pathlen
, &attr
);
1494 dfprintk(VFS
, "NFS: symlink(%s/%ld, %s, %s) error %d\n",
1495 dir
->i_sb
->s_id
, dir
->i_ino
,
1496 dentry
->d_name
.name
, symname
, error
);
1503 * No big deal if we can't add this page to the page cache here.
1504 * READLINK will get the missing page from the server if needed.
1506 pagevec_init(&lru_pvec
, 0);
1507 if (!add_to_page_cache(page
, dentry
->d_inode
->i_mapping
, 0,
1509 pagevec_add(&lru_pvec
, page
);
1510 pagevec_lru_add(&lru_pvec
);
1511 SetPageUptodate(page
);
1520 nfs_link(struct dentry
*old_dentry
, struct inode
*dir
, struct dentry
*dentry
)
1522 struct inode
*inode
= old_dentry
->d_inode
;
1525 dfprintk(VFS
, "NFS: link(%s/%s -> %s/%s)\n",
1526 old_dentry
->d_parent
->d_name
.name
, old_dentry
->d_name
.name
,
1527 dentry
->d_parent
->d_name
.name
, dentry
->d_name
.name
);
1530 error
= NFS_PROTO(dir
)->link(inode
, dir
, &dentry
->d_name
);
1532 atomic_inc(&inode
->i_count
);
1533 d_add(dentry
, inode
);
1540 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
1541 * different file handle for the same inode after a rename (e.g. when
1542 * moving to a different directory). A fail-safe method to do so would
1543 * be to look up old_dir/old_name, create a link to new_dir/new_name and
1544 * rename the old file using the sillyrename stuff. This way, the original
1545 * file in old_dir will go away when the last process iput()s the inode.
1549 * It actually works quite well. One needs to have the possibility for
1550 * at least one ".nfs..." file in each directory the file ever gets
1551 * moved or linked to which happens automagically with the new
1552 * implementation that only depends on the dcache stuff instead of
1553 * using the inode layer
1555 * Unfortunately, things are a little more complicated than indicated
1556 * above. For a cross-directory move, we want to make sure we can get
1557 * rid of the old inode after the operation. This means there must be
1558 * no pending writes (if it's a file), and the use count must be 1.
1559 * If these conditions are met, we can drop the dentries before doing
1562 static int nfs_rename(struct inode
*old_dir
, struct dentry
*old_dentry
,
1563 struct inode
*new_dir
, struct dentry
*new_dentry
)
1565 struct inode
*old_inode
= old_dentry
->d_inode
;
1566 struct inode
*new_inode
= new_dentry
->d_inode
;
1567 struct dentry
*dentry
= NULL
, *rehash
= NULL
;
1571 * To prevent any new references to the target during the rename,
1572 * we unhash the dentry and free the inode in advance.
1574 if (!d_unhashed(new_dentry
)) {
1576 rehash
= new_dentry
;
1579 dfprintk(VFS
, "NFS: rename(%s/%s -> %s/%s, ct=%d)\n",
1580 old_dentry
->d_parent
->d_name
.name
, old_dentry
->d_name
.name
,
1581 new_dentry
->d_parent
->d_name
.name
, new_dentry
->d_name
.name
,
1582 atomic_read(&new_dentry
->d_count
));
1585 * First check whether the target is busy ... we can't
1586 * safely do _any_ rename if the target is in use.
1588 * For files, make a copy of the dentry and then do a
1589 * silly-rename. If the silly-rename succeeds, the
1590 * copied dentry is hashed and becomes the new target.
1594 if (S_ISDIR(new_inode
->i_mode
)) {
1596 if (!S_ISDIR(old_inode
->i_mode
))
1598 } else if (atomic_read(&new_dentry
->d_count
) > 2) {
1600 /* copy the target dentry's name */
1601 dentry
= d_alloc(new_dentry
->d_parent
,
1602 &new_dentry
->d_name
);
1606 /* silly-rename the existing target ... */
1607 err
= nfs_sillyrename(new_dir
, new_dentry
);
1609 new_dentry
= rehash
= dentry
;
1611 /* instantiate the replacement target */
1612 d_instantiate(new_dentry
, NULL
);
1613 } else if (atomic_read(&new_dentry
->d_count
) > 1)
1614 /* dentry still busy? */
1617 nfs_drop_nlink(new_inode
);
1621 * ... prune child dentries and writebacks if needed.
1623 if (atomic_read(&old_dentry
->d_count
) > 1) {
1624 if (S_ISREG(old_inode
->i_mode
))
1625 nfs_wb_all(old_inode
);
1626 shrink_dcache_parent(old_dentry
);
1628 nfs_inode_return_delegation(old_inode
);
1630 if (new_inode
!= NULL
) {
1631 nfs_inode_return_delegation(new_inode
);
1632 d_delete(new_dentry
);
1635 error
= NFS_PROTO(old_dir
)->rename(old_dir
, &old_dentry
->d_name
,
1636 new_dir
, &new_dentry
->d_name
);
1637 nfs_mark_for_revalidate(old_inode
);
1642 d_move(old_dentry
, new_dentry
);
1643 nfs_set_verifier(new_dentry
,
1644 nfs_save_change_attribute(new_dir
));
1645 } else if (error
== -ENOENT
)
1646 nfs_dentry_handle_enoent(old_dentry
);
1648 /* new dentry created? */
1654 static DEFINE_SPINLOCK(nfs_access_lru_lock
);
1655 static LIST_HEAD(nfs_access_lru_list
);
1656 static atomic_long_t nfs_access_nr_entries
;
1658 static void nfs_access_free_entry(struct nfs_access_entry
*entry
)
1660 put_rpccred(entry
->cred
);
1662 smp_mb__before_atomic_dec();
1663 atomic_long_dec(&nfs_access_nr_entries
);
1664 smp_mb__after_atomic_dec();
1667 int nfs_access_cache_shrinker(int nr_to_scan
, gfp_t gfp_mask
)
1670 struct nfs_inode
*nfsi
;
1671 struct nfs_access_entry
*cache
;
1674 spin_lock(&nfs_access_lru_lock
);
1675 list_for_each_entry(nfsi
, &nfs_access_lru_list
, access_cache_inode_lru
) {
1676 struct rw_semaphore
*s_umount
;
1677 struct inode
*inode
;
1679 if (nr_to_scan
-- == 0)
1681 s_umount
= &nfsi
->vfs_inode
.i_sb
->s_umount
;
1682 if (!down_read_trylock(s_umount
))
1684 inode
= igrab(&nfsi
->vfs_inode
);
1685 if (inode
== NULL
) {
1689 spin_lock(&inode
->i_lock
);
1690 if (list_empty(&nfsi
->access_cache_entry_lru
))
1691 goto remove_lru_entry
;
1692 cache
= list_entry(nfsi
->access_cache_entry_lru
.next
,
1693 struct nfs_access_entry
, lru
);
1694 list_move(&cache
->lru
, &head
);
1695 rb_erase(&cache
->rb_node
, &nfsi
->access_cache
);
1696 if (!list_empty(&nfsi
->access_cache_entry_lru
))
1697 list_move_tail(&nfsi
->access_cache_inode_lru
,
1698 &nfs_access_lru_list
);
1701 list_del_init(&nfsi
->access_cache_inode_lru
);
1702 clear_bit(NFS_INO_ACL_LRU_SET
, &nfsi
->flags
);
1704 spin_unlock(&inode
->i_lock
);
1705 spin_unlock(&nfs_access_lru_lock
);
1710 spin_unlock(&nfs_access_lru_lock
);
1711 while (!list_empty(&head
)) {
1712 cache
= list_entry(head
.next
, struct nfs_access_entry
, lru
);
1713 list_del(&cache
->lru
);
1714 nfs_access_free_entry(cache
);
1716 return (atomic_long_read(&nfs_access_nr_entries
) / 100) * sysctl_vfs_cache_pressure
;
1719 static void __nfs_access_zap_cache(struct inode
*inode
)
1721 struct nfs_inode
*nfsi
= NFS_I(inode
);
1722 struct rb_root
*root_node
= &nfsi
->access_cache
;
1723 struct rb_node
*n
, *dispose
= NULL
;
1724 struct nfs_access_entry
*entry
;
1726 /* Unhook entries from the cache */
1727 while ((n
= rb_first(root_node
)) != NULL
) {
1728 entry
= rb_entry(n
, struct nfs_access_entry
, rb_node
);
1729 rb_erase(n
, root_node
);
1730 list_del(&entry
->lru
);
1731 n
->rb_left
= dispose
;
1734 nfsi
->cache_validity
&= ~NFS_INO_INVALID_ACCESS
;
1735 spin_unlock(&inode
->i_lock
);
1737 /* Now kill them all! */
1738 while (dispose
!= NULL
) {
1740 dispose
= n
->rb_left
;
1741 nfs_access_free_entry(rb_entry(n
, struct nfs_access_entry
, rb_node
));
1745 void nfs_access_zap_cache(struct inode
*inode
)
1747 /* Remove from global LRU init */
1748 if (test_and_clear_bit(NFS_INO_ACL_LRU_SET
, &NFS_I(inode
)->flags
)) {
1749 spin_lock(&nfs_access_lru_lock
);
1750 list_del_init(&NFS_I(inode
)->access_cache_inode_lru
);
1751 spin_unlock(&nfs_access_lru_lock
);
1754 spin_lock(&inode
->i_lock
);
1755 /* This will release the spinlock */
1756 __nfs_access_zap_cache(inode
);
1759 static struct nfs_access_entry
*nfs_access_search_rbtree(struct inode
*inode
, struct rpc_cred
*cred
)
1761 struct rb_node
*n
= NFS_I(inode
)->access_cache
.rb_node
;
1762 struct nfs_access_entry
*entry
;
1765 entry
= rb_entry(n
, struct nfs_access_entry
, rb_node
);
1767 if (cred
< entry
->cred
)
1769 else if (cred
> entry
->cred
)
1777 static int nfs_access_get_cached(struct inode
*inode
, struct rpc_cred
*cred
, struct nfs_access_entry
*res
)
1779 struct nfs_inode
*nfsi
= NFS_I(inode
);
1780 struct nfs_access_entry
*cache
;
1783 spin_lock(&inode
->i_lock
);
1784 if (nfsi
->cache_validity
& NFS_INO_INVALID_ACCESS
)
1786 cache
= nfs_access_search_rbtree(inode
, cred
);
1789 if (!time_in_range(jiffies
, cache
->jiffies
, cache
->jiffies
+ nfsi
->attrtimeo
))
1791 res
->jiffies
= cache
->jiffies
;
1792 res
->cred
= cache
->cred
;
1793 res
->mask
= cache
->mask
;
1794 list_move_tail(&cache
->lru
, &nfsi
->access_cache_entry_lru
);
1797 spin_unlock(&inode
->i_lock
);
1800 rb_erase(&cache
->rb_node
, &nfsi
->access_cache
);
1801 list_del(&cache
->lru
);
1802 spin_unlock(&inode
->i_lock
);
1803 nfs_access_free_entry(cache
);
1806 /* This will release the spinlock */
1807 __nfs_access_zap_cache(inode
);
1811 static void nfs_access_add_rbtree(struct inode
*inode
, struct nfs_access_entry
*set
)
1813 struct nfs_inode
*nfsi
= NFS_I(inode
);
1814 struct rb_root
*root_node
= &nfsi
->access_cache
;
1815 struct rb_node
**p
= &root_node
->rb_node
;
1816 struct rb_node
*parent
= NULL
;
1817 struct nfs_access_entry
*entry
;
1819 spin_lock(&inode
->i_lock
);
1820 while (*p
!= NULL
) {
1822 entry
= rb_entry(parent
, struct nfs_access_entry
, rb_node
);
1824 if (set
->cred
< entry
->cred
)
1825 p
= &parent
->rb_left
;
1826 else if (set
->cred
> entry
->cred
)
1827 p
= &parent
->rb_right
;
1831 rb_link_node(&set
->rb_node
, parent
, p
);
1832 rb_insert_color(&set
->rb_node
, root_node
);
1833 list_add_tail(&set
->lru
, &nfsi
->access_cache_entry_lru
);
1834 spin_unlock(&inode
->i_lock
);
1837 rb_replace_node(parent
, &set
->rb_node
, root_node
);
1838 list_add_tail(&set
->lru
, &nfsi
->access_cache_entry_lru
);
1839 list_del(&entry
->lru
);
1840 spin_unlock(&inode
->i_lock
);
1841 nfs_access_free_entry(entry
);
1844 static void nfs_access_add_cache(struct inode
*inode
, struct nfs_access_entry
*set
)
1846 struct nfs_access_entry
*cache
= kmalloc(sizeof(*cache
), GFP_KERNEL
);
1849 RB_CLEAR_NODE(&cache
->rb_node
);
1850 cache
->jiffies
= set
->jiffies
;
1851 cache
->cred
= get_rpccred(set
->cred
);
1852 cache
->mask
= set
->mask
;
1854 nfs_access_add_rbtree(inode
, cache
);
1856 /* Update accounting */
1857 smp_mb__before_atomic_inc();
1858 atomic_long_inc(&nfs_access_nr_entries
);
1859 smp_mb__after_atomic_inc();
1861 /* Add inode to global LRU list */
1862 if (!test_and_set_bit(NFS_INO_ACL_LRU_SET
, &NFS_I(inode
)->flags
)) {
1863 spin_lock(&nfs_access_lru_lock
);
1864 list_add_tail(&NFS_I(inode
)->access_cache_inode_lru
, &nfs_access_lru_list
);
1865 spin_unlock(&nfs_access_lru_lock
);
1869 static int nfs_do_access(struct inode
*inode
, struct rpc_cred
*cred
, int mask
)
1871 struct nfs_access_entry cache
;
1874 status
= nfs_access_get_cached(inode
, cred
, &cache
);
1878 /* Be clever: ask server to check for all possible rights */
1879 cache
.mask
= MAY_EXEC
| MAY_WRITE
| MAY_READ
;
1881 cache
.jiffies
= jiffies
;
1882 status
= NFS_PROTO(inode
)->access(inode
, &cache
);
1885 nfs_access_add_cache(inode
, &cache
);
1887 if ((mask
& ~cache
.mask
& (MAY_READ
| MAY_WRITE
| MAY_EXEC
)) == 0)
1892 static int nfs_open_permission_mask(int openflags
)
1896 if (openflags
& FMODE_READ
)
1898 if (openflags
& FMODE_WRITE
)
1900 if (openflags
& FMODE_EXEC
)
1905 int nfs_may_open(struct inode
*inode
, struct rpc_cred
*cred
, int openflags
)
1907 return nfs_do_access(inode
, cred
, nfs_open_permission_mask(openflags
));
1910 int nfs_permission(struct inode
*inode
, int mask
)
1912 struct rpc_cred
*cred
;
1915 nfs_inc_stats(inode
, NFSIOS_VFSACCESS
);
1917 if ((mask
& (MAY_READ
| MAY_WRITE
| MAY_EXEC
)) == 0)
1919 /* Is this sys_access() ? */
1920 if (mask
& MAY_ACCESS
)
1923 switch (inode
->i_mode
& S_IFMT
) {
1927 /* NFSv4 has atomic_open... */
1928 if (nfs_server_capable(inode
, NFS_CAP_ATOMIC_OPEN
)
1929 && (mask
& MAY_OPEN
))
1934 * Optimize away all write operations, since the server
1935 * will check permissions when we perform the op.
1937 if ((mask
& MAY_WRITE
) && !(mask
& MAY_READ
))
1942 if (!NFS_PROTO(inode
)->access
)
1945 cred
= rpc_lookup_cred();
1946 if (!IS_ERR(cred
)) {
1947 res
= nfs_do_access(inode
, cred
, mask
);
1950 res
= PTR_ERR(cred
);
1952 dfprintk(VFS
, "NFS: permission(%s/%ld), mask=0x%x, res=%d\n",
1953 inode
->i_sb
->s_id
, inode
->i_ino
, mask
, res
);
1956 res
= nfs_revalidate_inode(NFS_SERVER(inode
), inode
);
1958 res
= generic_permission(inode
, mask
, NULL
);
1964 * version-control: t
1965 * kept-new-versions: 5