2 * Kernel Probes (KProbes)
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 * Copyright IBM Corp. 2002, 2006
20 * s390 port, used ppc64 as template. Mike Grundy <grundym@us.ibm.com>
23 #include <linux/kprobes.h>
24 #include <linux/ptrace.h>
25 #include <linux/preempt.h>
26 #include <linux/stop_machine.h>
27 #include <linux/kdebug.h>
28 #include <linux/uaccess.h>
29 #include <linux/module.h>
30 #include <linux/slab.h>
31 #include <linux/hardirq.h>
32 #include <asm/cacheflush.h>
33 #include <asm/sections.h>
36 DEFINE_PER_CPU(struct kprobe
*, current_kprobe
);
37 DEFINE_PER_CPU(struct kprobe_ctlblk
, kprobe_ctlblk
);
39 struct kretprobe_blackpoint kretprobe_blacklist
[] = { };
41 DEFINE_INSN_CACHE_OPS(dmainsn
);
43 static void *alloc_dmainsn_page(void)
45 return (void *)__get_free_page(GFP_KERNEL
| GFP_DMA
);
48 static void free_dmainsn_page(void *page
)
50 free_page((unsigned long)page
);
53 struct kprobe_insn_cache kprobe_dmainsn_slots
= {
54 .mutex
= __MUTEX_INITIALIZER(kprobe_dmainsn_slots
.mutex
),
55 .alloc
= alloc_dmainsn_page
,
56 .free
= free_dmainsn_page
,
57 .pages
= LIST_HEAD_INIT(kprobe_dmainsn_slots
.pages
),
58 .insn_size
= MAX_INSN_SIZE
,
61 static int __kprobes
is_prohibited_opcode(kprobe_opcode_t
*insn
)
63 if (!is_known_insn((unsigned char *)insn
))
65 switch (insn
[0] >> 8) {
66 case 0x0c: /* bassm */
70 case 0xac: /* stnsm */
71 case 0xad: /* stosm */
74 switch (insn
[0] & 0x0f) {
81 case 0xb25a: /* bsa */
82 case 0xb240: /* bakr */
83 case 0xb258: /* bsg */
86 case 0xb98d: /* epsw */
92 static int __kprobes
get_fixup_type(kprobe_opcode_t
*insn
)
94 /* default fixup method */
95 int fixup
= FIXUP_PSW_NORMAL
;
97 switch (insn
[0] >> 8) {
100 fixup
= FIXUP_RETURN_REGISTER
;
101 /* if r2 = 0, no branch will be taken */
102 if ((insn
[0] & 0x0f) == 0)
103 fixup
|= FIXUP_BRANCH_NOT_TAKEN
;
105 case 0x06: /* bctr */
107 fixup
= FIXUP_BRANCH_NOT_TAKEN
;
111 fixup
= FIXUP_RETURN_REGISTER
;
116 case 0x87: /* bxle */
117 fixup
= FIXUP_BRANCH_NOT_TAKEN
;
119 case 0x82: /* lpsw */
120 fixup
= FIXUP_NOT_REQUIRED
;
122 case 0xb2: /* lpswe */
123 if ((insn
[0] & 0xff) == 0xb2)
124 fixup
= FIXUP_NOT_REQUIRED
;
126 case 0xa7: /* bras */
127 if ((insn
[0] & 0x0f) == 0x05)
128 fixup
|= FIXUP_RETURN_REGISTER
;
131 if ((insn
[0] & 0x0f) == 0x05) /* brasl */
132 fixup
|= FIXUP_RETURN_REGISTER
;
135 switch (insn
[2] & 0xff) {
136 case 0x44: /* bxhg */
137 case 0x45: /* bxleg */
138 fixup
= FIXUP_BRANCH_NOT_TAKEN
;
142 case 0xe3: /* bctg */
143 if ((insn
[2] & 0xff) == 0x46)
144 fixup
= FIXUP_BRANCH_NOT_TAKEN
;
147 switch (insn
[2] & 0xff) {
148 case 0xe5: /* clgrb */
149 case 0xe6: /* cgrb */
151 case 0xf7: /* clrb */
152 case 0xfc: /* cgib */
153 case 0xfd: /* cglib */
155 case 0xff: /* clib */
156 fixup
= FIXUP_BRANCH_NOT_TAKEN
;
164 static int __kprobes
is_insn_relative_long(kprobe_opcode_t
*insn
)
166 /* Check if we have a RIL-b or RIL-c format instruction which
167 * we need to modify in order to avoid instruction emulation. */
168 switch (insn
[0] >> 8) {
170 if ((insn
[0] & 0x0f) == 0x00) /* larl */
174 switch (insn
[0] & 0x0f) {
175 case 0x02: /* llhrl */
176 case 0x04: /* lghrl */
177 case 0x05: /* lhrl */
178 case 0x06: /* llghrl */
179 case 0x07: /* sthrl */
180 case 0x08: /* lgrl */
181 case 0x0b: /* stgrl */
182 case 0x0c: /* lgfrl */
184 case 0x0e: /* llgfrl */
185 case 0x0f: /* strl */
190 switch (insn
[0] & 0x0f) {
191 case 0x02: /* pfdrl */
192 case 0x04: /* cghrl */
193 case 0x05: /* chrl */
194 case 0x06: /* clghrl */
195 case 0x07: /* clhrl */
196 case 0x08: /* cgrl */
197 case 0x0a: /* clgrl */
198 case 0x0c: /* cgfrl */
200 case 0x0e: /* clgfrl */
201 case 0x0f: /* clrl */
209 static void __kprobes
copy_instruction(struct kprobe
*p
)
214 memcpy(p
->ainsn
.insn
, p
->addr
, insn_length(p
->opcode
>> 8));
215 if (!is_insn_relative_long(p
->ainsn
.insn
))
218 * For pc-relative instructions in RIL-b or RIL-c format patch the
219 * RI2 displacement field. We have already made sure that the insn
220 * slot for the patched instruction is within the same 2GB area
221 * as the original instruction (either kernel image or module area).
222 * Therefore the new displacement will always fit.
224 disp
= *(s32
*)&p
->ainsn
.insn
[1];
225 addr
= (u64
)(unsigned long)p
->addr
;
226 new_addr
= (u64
)(unsigned long)p
->ainsn
.insn
;
227 new_disp
= ((addr
+ (disp
* 2)) - new_addr
) / 2;
228 *(s32
*)&p
->ainsn
.insn
[1] = new_disp
;
231 static inline int is_kernel_addr(void *addr
)
233 return addr
< (void *)_end
;
236 static inline int is_module_addr(void *addr
)
239 BUILD_BUG_ON(MODULES_LEN
> (1UL << 31));
240 if (addr
< (void *)MODULES_VADDR
)
242 if (addr
> (void *)MODULES_END
)
248 static int __kprobes
s390_get_insn_slot(struct kprobe
*p
)
251 * Get an insn slot that is within the same 2GB area like the original
252 * instruction. That way instructions with a 32bit signed displacement
253 * field can be patched and executed within the insn slot.
255 p
->ainsn
.insn
= NULL
;
256 if (is_kernel_addr(p
->addr
))
257 p
->ainsn
.insn
= get_dmainsn_slot();
258 else if (is_module_addr(p
->addr
))
259 p
->ainsn
.insn
= get_insn_slot();
260 return p
->ainsn
.insn
? 0 : -ENOMEM
;
263 static void __kprobes
s390_free_insn_slot(struct kprobe
*p
)
267 if (is_kernel_addr(p
->addr
))
268 free_dmainsn_slot(p
->ainsn
.insn
, 0);
270 free_insn_slot(p
->ainsn
.insn
, 0);
271 p
->ainsn
.insn
= NULL
;
274 int __kprobes
arch_prepare_kprobe(struct kprobe
*p
)
276 if ((unsigned long) p
->addr
& 0x01)
278 /* Make sure the probe isn't going on a difficult instruction */
279 if (is_prohibited_opcode(p
->addr
))
281 if (s390_get_insn_slot(p
))
283 p
->opcode
= *p
->addr
;
288 struct ins_replace_args
{
289 kprobe_opcode_t
*ptr
;
290 kprobe_opcode_t opcode
;
293 static int __kprobes
swap_instruction(void *aref
)
295 struct kprobe_ctlblk
*kcb
= get_kprobe_ctlblk();
296 unsigned long status
= kcb
->kprobe_status
;
297 struct ins_replace_args
*args
= aref
;
299 kcb
->kprobe_status
= KPROBE_SWAP_INST
;
300 probe_kernel_write(args
->ptr
, &args
->opcode
, sizeof(args
->opcode
));
301 kcb
->kprobe_status
= status
;
305 void __kprobes
arch_arm_kprobe(struct kprobe
*p
)
307 struct ins_replace_args args
;
310 args
.opcode
= BREAKPOINT_INSTRUCTION
;
311 stop_machine(swap_instruction
, &args
, NULL
);
314 void __kprobes
arch_disarm_kprobe(struct kprobe
*p
)
316 struct ins_replace_args args
;
319 args
.opcode
= p
->opcode
;
320 stop_machine(swap_instruction
, &args
, NULL
);
323 void __kprobes
arch_remove_kprobe(struct kprobe
*p
)
325 s390_free_insn_slot(p
);
328 static void __kprobes
enable_singlestep(struct kprobe_ctlblk
*kcb
,
329 struct pt_regs
*regs
,
332 struct per_regs per_kprobe
;
334 /* Set up the PER control registers %cr9-%cr11 */
335 per_kprobe
.control
= PER_EVENT_IFETCH
;
336 per_kprobe
.start
= ip
;
339 /* Save control regs and psw mask */
340 __ctl_store(kcb
->kprobe_saved_ctl
, 9, 11);
341 kcb
->kprobe_saved_imask
= regs
->psw
.mask
&
342 (PSW_MASK_PER
| PSW_MASK_IO
| PSW_MASK_EXT
);
344 /* Set PER control regs, turns on single step for the given address */
345 __ctl_load(per_kprobe
, 9, 11);
346 regs
->psw
.mask
|= PSW_MASK_PER
;
347 regs
->psw
.mask
&= ~(PSW_MASK_IO
| PSW_MASK_EXT
);
348 regs
->psw
.addr
= ip
| PSW_ADDR_AMODE
;
351 static void __kprobes
disable_singlestep(struct kprobe_ctlblk
*kcb
,
352 struct pt_regs
*regs
,
355 /* Restore control regs and psw mask, set new psw address */
356 __ctl_load(kcb
->kprobe_saved_ctl
, 9, 11);
357 regs
->psw
.mask
&= ~PSW_MASK_PER
;
358 regs
->psw
.mask
|= kcb
->kprobe_saved_imask
;
359 regs
->psw
.addr
= ip
| PSW_ADDR_AMODE
;
363 * Activate a kprobe by storing its pointer to current_kprobe. The
364 * previous kprobe is stored in kcb->prev_kprobe. A stack of up to
365 * two kprobes can be active, see KPROBE_REENTER.
367 static void __kprobes
push_kprobe(struct kprobe_ctlblk
*kcb
, struct kprobe
*p
)
369 kcb
->prev_kprobe
.kp
= __get_cpu_var(current_kprobe
);
370 kcb
->prev_kprobe
.status
= kcb
->kprobe_status
;
371 __get_cpu_var(current_kprobe
) = p
;
375 * Deactivate a kprobe by backing up to the previous state. If the
376 * current state is KPROBE_REENTER prev_kprobe.kp will be non-NULL,
377 * for any other state prev_kprobe.kp will be NULL.
379 static void __kprobes
pop_kprobe(struct kprobe_ctlblk
*kcb
)
381 __get_cpu_var(current_kprobe
) = kcb
->prev_kprobe
.kp
;
382 kcb
->kprobe_status
= kcb
->prev_kprobe
.status
;
385 void __kprobes
arch_prepare_kretprobe(struct kretprobe_instance
*ri
,
386 struct pt_regs
*regs
)
388 ri
->ret_addr
= (kprobe_opcode_t
*) regs
->gprs
[14];
390 /* Replace the return addr with trampoline addr */
391 regs
->gprs
[14] = (unsigned long) &kretprobe_trampoline
;
394 static void __kprobes
kprobe_reenter_check(struct kprobe_ctlblk
*kcb
,
397 switch (kcb
->kprobe_status
) {
398 case KPROBE_HIT_SSDONE
:
399 case KPROBE_HIT_ACTIVE
:
400 kprobes_inc_nmissed_count(p
);
406 * A kprobe on the code path to single step an instruction
407 * is a BUG. The code path resides in the .kprobes.text
408 * section and is executed with interrupts disabled.
410 printk(KERN_EMERG
"Invalid kprobe detected at %p.\n", p
->addr
);
416 static int __kprobes
kprobe_handler(struct pt_regs
*regs
)
418 struct kprobe_ctlblk
*kcb
;
422 * We want to disable preemption for the entire duration of kprobe
423 * processing. That includes the calls to the pre/post handlers
424 * and single stepping the kprobe instruction.
427 kcb
= get_kprobe_ctlblk();
428 p
= get_kprobe((void *)((regs
->psw
.addr
& PSW_ADDR_INSN
) - 2));
431 if (kprobe_running()) {
433 * We have hit a kprobe while another is still
434 * active. This can happen in the pre and post
435 * handler. Single step the instruction of the
436 * new probe but do not call any handler function
437 * of this secondary kprobe.
438 * push_kprobe and pop_kprobe saves and restores
439 * the currently active kprobe.
441 kprobe_reenter_check(kcb
, p
);
443 kcb
->kprobe_status
= KPROBE_REENTER
;
446 * If we have no pre-handler or it returned 0, we
447 * continue with single stepping. If we have a
448 * pre-handler and it returned non-zero, it prepped
449 * for calling the break_handler below on re-entry
450 * for jprobe processing, so get out doing nothing
454 kcb
->kprobe_status
= KPROBE_HIT_ACTIVE
;
455 if (p
->pre_handler
&& p
->pre_handler(p
, regs
))
457 kcb
->kprobe_status
= KPROBE_HIT_SS
;
459 enable_singlestep(kcb
, regs
, (unsigned long) p
->ainsn
.insn
);
461 } else if (kprobe_running()) {
462 p
= __get_cpu_var(current_kprobe
);
463 if (p
->break_handler
&& p
->break_handler(p
, regs
)) {
465 * Continuation after the jprobe completed and
466 * caused the jprobe_return trap. The jprobe
467 * break_handler "returns" to the original
468 * function that still has the kprobe breakpoint
469 * installed. We continue with single stepping.
471 kcb
->kprobe_status
= KPROBE_HIT_SS
;
472 enable_singlestep(kcb
, regs
,
473 (unsigned long) p
->ainsn
.insn
);
476 * No kprobe at this address and the current kprobe
477 * has no break handler (no jprobe!). The kernel just
478 * exploded, let the standard trap handler pick up the
482 * No kprobe at this address and no active kprobe. The trap has
483 * not been caused by a kprobe breakpoint. The race of breakpoint
484 * vs. kprobe remove does not exist because on s390 as we use
485 * stop_machine to arm/disarm the breakpoints.
487 preempt_enable_no_resched();
492 * Function return probe trampoline:
493 * - init_kprobes() establishes a probepoint here
494 * - When the probed function returns, this probe
495 * causes the handlers to fire
497 static void __used
kretprobe_trampoline_holder(void)
499 asm volatile(".global kretprobe_trampoline\n"
500 "kretprobe_trampoline: bcr 0,0\n");
504 * Called when the probe at kretprobe trampoline is hit
506 static int __kprobes
trampoline_probe_handler(struct kprobe
*p
,
507 struct pt_regs
*regs
)
509 struct kretprobe_instance
*ri
;
510 struct hlist_head
*head
, empty_rp
;
511 struct hlist_node
*tmp
;
512 unsigned long flags
, orig_ret_address
;
513 unsigned long trampoline_address
;
514 kprobe_opcode_t
*correct_ret_addr
;
516 INIT_HLIST_HEAD(&empty_rp
);
517 kretprobe_hash_lock(current
, &head
, &flags
);
520 * It is possible to have multiple instances associated with a given
521 * task either because an multiple functions in the call path
522 * have a return probe installed on them, and/or more than one return
523 * return probe was registered for a target function.
525 * We can handle this because:
526 * - instances are always inserted at the head of the list
527 * - when multiple return probes are registered for the same
528 * function, the first instance's ret_addr will point to the
529 * real return address, and all the rest will point to
530 * kretprobe_trampoline
533 orig_ret_address
= 0;
534 correct_ret_addr
= NULL
;
535 trampoline_address
= (unsigned long) &kretprobe_trampoline
;
536 hlist_for_each_entry_safe(ri
, tmp
, head
, hlist
) {
537 if (ri
->task
!= current
)
538 /* another task is sharing our hash bucket */
541 orig_ret_address
= (unsigned long) ri
->ret_addr
;
543 if (orig_ret_address
!= trampoline_address
)
545 * This is the real return address. Any other
546 * instances associated with this task are for
547 * other calls deeper on the call stack
552 kretprobe_assert(ri
, orig_ret_address
, trampoline_address
);
554 correct_ret_addr
= ri
->ret_addr
;
555 hlist_for_each_entry_safe(ri
, tmp
, head
, hlist
) {
556 if (ri
->task
!= current
)
557 /* another task is sharing our hash bucket */
560 orig_ret_address
= (unsigned long) ri
->ret_addr
;
562 if (ri
->rp
&& ri
->rp
->handler
) {
563 ri
->ret_addr
= correct_ret_addr
;
564 ri
->rp
->handler(ri
, regs
);
567 recycle_rp_inst(ri
, &empty_rp
);
569 if (orig_ret_address
!= trampoline_address
)
571 * This is the real return address. Any other
572 * instances associated with this task are for
573 * other calls deeper on the call stack
578 regs
->psw
.addr
= orig_ret_address
| PSW_ADDR_AMODE
;
580 pop_kprobe(get_kprobe_ctlblk());
581 kretprobe_hash_unlock(current
, &flags
);
582 preempt_enable_no_resched();
584 hlist_for_each_entry_safe(ri
, tmp
, &empty_rp
, hlist
) {
585 hlist_del(&ri
->hlist
);
589 * By returning a non-zero value, we are telling
590 * kprobe_handler() that we don't want the post_handler
591 * to run (and have re-enabled preemption)
597 * Called after single-stepping. p->addr is the address of the
598 * instruction whose first byte has been replaced by the "breakpoint"
599 * instruction. To avoid the SMP problems that can occur when we
600 * temporarily put back the original opcode to single-step, we
601 * single-stepped a copy of the instruction. The address of this
602 * copy is p->ainsn.insn.
604 static void __kprobes
resume_execution(struct kprobe
*p
, struct pt_regs
*regs
)
606 struct kprobe_ctlblk
*kcb
= get_kprobe_ctlblk();
607 unsigned long ip
= regs
->psw
.addr
& PSW_ADDR_INSN
;
608 int fixup
= get_fixup_type(p
->ainsn
.insn
);
610 if (fixup
& FIXUP_PSW_NORMAL
)
611 ip
+= (unsigned long) p
->addr
- (unsigned long) p
->ainsn
.insn
;
613 if (fixup
& FIXUP_BRANCH_NOT_TAKEN
) {
614 int ilen
= insn_length(p
->ainsn
.insn
[0] >> 8);
615 if (ip
- (unsigned long) p
->ainsn
.insn
== ilen
)
616 ip
= (unsigned long) p
->addr
+ ilen
;
619 if (fixup
& FIXUP_RETURN_REGISTER
) {
620 int reg
= (p
->ainsn
.insn
[0] & 0xf0) >> 4;
621 regs
->gprs
[reg
] += (unsigned long) p
->addr
-
622 (unsigned long) p
->ainsn
.insn
;
625 disable_singlestep(kcb
, regs
, ip
);
628 static int __kprobes
post_kprobe_handler(struct pt_regs
*regs
)
630 struct kprobe_ctlblk
*kcb
= get_kprobe_ctlblk();
631 struct kprobe
*p
= kprobe_running();
636 if (kcb
->kprobe_status
!= KPROBE_REENTER
&& p
->post_handler
) {
637 kcb
->kprobe_status
= KPROBE_HIT_SSDONE
;
638 p
->post_handler(p
, regs
, 0);
641 resume_execution(p
, regs
);
643 preempt_enable_no_resched();
646 * if somebody else is singlestepping across a probe point, psw mask
647 * will have PER set, in which case, continue the remaining processing
648 * of do_single_step, as if this is not a probe hit.
650 if (regs
->psw
.mask
& PSW_MASK_PER
)
656 static int __kprobes
kprobe_trap_handler(struct pt_regs
*regs
, int trapnr
)
658 struct kprobe_ctlblk
*kcb
= get_kprobe_ctlblk();
659 struct kprobe
*p
= kprobe_running();
660 const struct exception_table_entry
*entry
;
662 switch(kcb
->kprobe_status
) {
663 case KPROBE_SWAP_INST
:
664 /* We are here because the instruction replacement failed */
669 * We are here because the instruction being single
670 * stepped caused a page fault. We reset the current
671 * kprobe and the nip points back to the probe address
672 * and allow the page fault handler to continue as a
675 disable_singlestep(kcb
, regs
, (unsigned long) p
->addr
);
677 preempt_enable_no_resched();
679 case KPROBE_HIT_ACTIVE
:
680 case KPROBE_HIT_SSDONE
:
682 * We increment the nmissed count for accounting,
683 * we can also use npre/npostfault count for accounting
684 * these specific fault cases.
686 kprobes_inc_nmissed_count(p
);
689 * We come here because instructions in the pre/post
690 * handler caused the page_fault, this could happen
691 * if handler tries to access user space by
692 * copy_from_user(), get_user() etc. Let the
693 * user-specified handler try to fix it first.
695 if (p
->fault_handler
&& p
->fault_handler(p
, regs
, trapnr
))
699 * In case the user-specified fault handler returned
700 * zero, try to fix up.
702 entry
= search_exception_tables(regs
->psw
.addr
& PSW_ADDR_INSN
);
704 regs
->psw
.addr
= extable_fixup(entry
) | PSW_ADDR_AMODE
;
709 * fixup_exception() could not handle it,
710 * Let do_page_fault() fix it.
719 int __kprobes
kprobe_fault_handler(struct pt_regs
*regs
, int trapnr
)
723 if (regs
->psw
.mask
& (PSW_MASK_IO
| PSW_MASK_EXT
))
725 ret
= kprobe_trap_handler(regs
, trapnr
);
726 if (regs
->psw
.mask
& (PSW_MASK_IO
| PSW_MASK_EXT
))
727 local_irq_restore(regs
->psw
.mask
& ~PSW_MASK_PER
);
732 * Wrapper routine to for handling exceptions.
734 int __kprobes
kprobe_exceptions_notify(struct notifier_block
*self
,
735 unsigned long val
, void *data
)
737 struct die_args
*args
= (struct die_args
*) data
;
738 struct pt_regs
*regs
= args
->regs
;
739 int ret
= NOTIFY_DONE
;
741 if (regs
->psw
.mask
& (PSW_MASK_IO
| PSW_MASK_EXT
))
746 if (kprobe_handler(regs
))
750 if (post_kprobe_handler(regs
))
754 if (!preemptible() && kprobe_running() &&
755 kprobe_trap_handler(regs
, args
->trapnr
))
762 if (regs
->psw
.mask
& (PSW_MASK_IO
| PSW_MASK_EXT
))
763 local_irq_restore(regs
->psw
.mask
& ~PSW_MASK_PER
);
768 int __kprobes
setjmp_pre_handler(struct kprobe
*p
, struct pt_regs
*regs
)
770 struct jprobe
*jp
= container_of(p
, struct jprobe
, kp
);
771 struct kprobe_ctlblk
*kcb
= get_kprobe_ctlblk();
774 memcpy(&kcb
->jprobe_saved_regs
, regs
, sizeof(struct pt_regs
));
776 /* setup return addr to the jprobe handler routine */
777 regs
->psw
.addr
= (unsigned long) jp
->entry
| PSW_ADDR_AMODE
;
778 regs
->psw
.mask
&= ~(PSW_MASK_IO
| PSW_MASK_EXT
);
780 /* r15 is the stack pointer */
781 stack
= (unsigned long) regs
->gprs
[15];
783 memcpy(kcb
->jprobes_stack
, (void *) stack
, MIN_STACK_SIZE(stack
));
787 void __kprobes
jprobe_return(void)
789 asm volatile(".word 0x0002");
792 static void __used __kprobes
jprobe_return_end(void)
794 asm volatile("bcr 0,0");
797 int __kprobes
longjmp_break_handler(struct kprobe
*p
, struct pt_regs
*regs
)
799 struct kprobe_ctlblk
*kcb
= get_kprobe_ctlblk();
802 stack
= (unsigned long) kcb
->jprobe_saved_regs
.gprs
[15];
804 /* Put the regs back */
805 memcpy(regs
, &kcb
->jprobe_saved_regs
, sizeof(struct pt_regs
));
806 /* put the stack back */
807 memcpy((void *) stack
, kcb
->jprobes_stack
, MIN_STACK_SIZE(stack
));
808 preempt_enable_no_resched();
812 static struct kprobe trampoline
= {
813 .addr
= (kprobe_opcode_t
*) &kretprobe_trampoline
,
814 .pre_handler
= trampoline_probe_handler
817 int __init
arch_init_kprobes(void)
819 return register_kprobe(&trampoline
);
822 int __kprobes
arch_trampoline_kprobe(struct kprobe
*p
)
824 return p
->addr
== (kprobe_opcode_t
*) &kretprobe_trampoline
;