2 * Copyright (C) 2011 STRATO. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/vmalloc.h>
24 #include "transaction.h"
25 #include "delayed-ref.h"
28 struct extent_inode_elem
{
31 struct extent_inode_elem
*next
;
34 static int check_extent_in_eb(struct btrfs_key
*key
, struct extent_buffer
*eb
,
35 struct btrfs_file_extent_item
*fi
,
37 struct extent_inode_elem
**eie
)
40 struct extent_inode_elem
*e
;
42 if (!btrfs_file_extent_compression(eb
, fi
) &&
43 !btrfs_file_extent_encryption(eb
, fi
) &&
44 !btrfs_file_extent_other_encoding(eb
, fi
)) {
48 data_offset
= btrfs_file_extent_offset(eb
, fi
);
49 data_len
= btrfs_file_extent_num_bytes(eb
, fi
);
51 if (extent_item_pos
< data_offset
||
52 extent_item_pos
>= data_offset
+ data_len
)
54 offset
= extent_item_pos
- data_offset
;
57 e
= kmalloc(sizeof(*e
), GFP_NOFS
);
62 e
->inum
= key
->objectid
;
63 e
->offset
= key
->offset
+ offset
;
69 static void free_inode_elem_list(struct extent_inode_elem
*eie
)
71 struct extent_inode_elem
*eie_next
;
73 for (; eie
; eie
= eie_next
) {
79 static int find_extent_in_eb(struct extent_buffer
*eb
, u64 wanted_disk_byte
,
81 struct extent_inode_elem
**eie
)
85 struct btrfs_file_extent_item
*fi
;
92 * from the shared data ref, we only have the leaf but we need
93 * the key. thus, we must look into all items and see that we
94 * find one (some) with a reference to our extent item.
96 nritems
= btrfs_header_nritems(eb
);
97 for (slot
= 0; slot
< nritems
; ++slot
) {
98 btrfs_item_key_to_cpu(eb
, &key
, slot
);
99 if (key
.type
!= BTRFS_EXTENT_DATA_KEY
)
101 fi
= btrfs_item_ptr(eb
, slot
, struct btrfs_file_extent_item
);
102 extent_type
= btrfs_file_extent_type(eb
, fi
);
103 if (extent_type
== BTRFS_FILE_EXTENT_INLINE
)
105 /* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
106 disk_byte
= btrfs_file_extent_disk_bytenr(eb
, fi
);
107 if (disk_byte
!= wanted_disk_byte
)
110 ret
= check_extent_in_eb(&key
, eb
, fi
, extent_item_pos
, eie
);
119 * this structure records all encountered refs on the way up to the root
121 struct __prelim_ref
{
122 struct list_head list
;
124 struct btrfs_key key_for_search
;
127 struct extent_inode_elem
*inode_list
;
129 u64 wanted_disk_byte
;
132 static struct kmem_cache
*btrfs_prelim_ref_cache
;
134 int __init
btrfs_prelim_ref_init(void)
136 btrfs_prelim_ref_cache
= kmem_cache_create("btrfs_prelim_ref",
137 sizeof(struct __prelim_ref
),
139 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
,
141 if (!btrfs_prelim_ref_cache
)
146 void btrfs_prelim_ref_exit(void)
148 if (btrfs_prelim_ref_cache
)
149 kmem_cache_destroy(btrfs_prelim_ref_cache
);
153 * the rules for all callers of this function are:
154 * - obtaining the parent is the goal
155 * - if you add a key, you must know that it is a correct key
156 * - if you cannot add the parent or a correct key, then we will look into the
157 * block later to set a correct key
161 * backref type | shared | indirect | shared | indirect
162 * information | tree | tree | data | data
163 * --------------------+--------+----------+--------+----------
164 * parent logical | y | - | - | -
165 * key to resolve | - | y | y | y
166 * tree block logical | - | - | - | -
167 * root for resolving | y | y | y | y
169 * - column 1: we've the parent -> done
170 * - column 2, 3, 4: we use the key to find the parent
172 * on disk refs (inline or keyed)
173 * ==============================
174 * backref type | shared | indirect | shared | indirect
175 * information | tree | tree | data | data
176 * --------------------+--------+----------+--------+----------
177 * parent logical | y | - | y | -
178 * key to resolve | - | - | - | y
179 * tree block logical | y | y | y | y
180 * root for resolving | - | y | y | y
182 * - column 1, 3: we've the parent -> done
183 * - column 2: we take the first key from the block to find the parent
184 * (see __add_missing_keys)
185 * - column 4: we use the key to find the parent
187 * additional information that's available but not required to find the parent
188 * block might help in merging entries to gain some speed.
191 static int __add_prelim_ref(struct list_head
*head
, u64 root_id
,
192 struct btrfs_key
*key
, int level
,
193 u64 parent
, u64 wanted_disk_byte
, int count
,
196 struct __prelim_ref
*ref
;
198 if (root_id
== BTRFS_DATA_RELOC_TREE_OBJECTID
)
201 ref
= kmem_cache_alloc(btrfs_prelim_ref_cache
, gfp_mask
);
205 ref
->root_id
= root_id
;
207 ref
->key_for_search
= *key
;
209 memset(&ref
->key_for_search
, 0, sizeof(ref
->key_for_search
));
211 ref
->inode_list
= NULL
;
214 ref
->parent
= parent
;
215 ref
->wanted_disk_byte
= wanted_disk_byte
;
216 list_add_tail(&ref
->list
, head
);
221 static int add_all_parents(struct btrfs_root
*root
, struct btrfs_path
*path
,
222 struct ulist
*parents
, struct __prelim_ref
*ref
,
223 int level
, u64 time_seq
, const u64
*extent_item_pos
)
227 struct extent_buffer
*eb
;
228 struct btrfs_key key
;
229 struct btrfs_key
*key_for_search
= &ref
->key_for_search
;
230 struct btrfs_file_extent_item
*fi
;
231 struct extent_inode_elem
*eie
= NULL
, *old
= NULL
;
233 u64 wanted_disk_byte
= ref
->wanted_disk_byte
;
237 eb
= path
->nodes
[level
];
238 ret
= ulist_add(parents
, eb
->start
, 0, GFP_NOFS
);
245 * We normally enter this function with the path already pointing to
246 * the first item to check. But sometimes, we may enter it with
247 * slot==nritems. In that case, go to the next leaf before we continue.
249 if (path
->slots
[0] >= btrfs_header_nritems(path
->nodes
[0]))
250 ret
= btrfs_next_old_leaf(root
, path
, time_seq
);
252 while (!ret
&& count
< ref
->count
) {
254 slot
= path
->slots
[0];
256 btrfs_item_key_to_cpu(eb
, &key
, slot
);
258 if (key
.objectid
!= key_for_search
->objectid
||
259 key
.type
!= BTRFS_EXTENT_DATA_KEY
)
262 fi
= btrfs_item_ptr(eb
, slot
, struct btrfs_file_extent_item
);
263 disk_byte
= btrfs_file_extent_disk_bytenr(eb
, fi
);
265 if (disk_byte
== wanted_disk_byte
) {
269 if (extent_item_pos
) {
270 ret
= check_extent_in_eb(&key
, eb
, fi
,
278 ret
= ulist_add_merge(parents
, eb
->start
,
280 (u64
*)&old
, GFP_NOFS
);
283 if (!ret
&& extent_item_pos
) {
291 ret
= btrfs_next_old_item(root
, path
, time_seq
);
297 free_inode_elem_list(eie
);
302 * resolve an indirect backref in the form (root_id, key, level)
303 * to a logical address
305 static int __resolve_indirect_ref(struct btrfs_fs_info
*fs_info
,
306 struct btrfs_path
*path
, u64 time_seq
,
307 struct __prelim_ref
*ref
,
308 struct ulist
*parents
,
309 const u64
*extent_item_pos
)
311 struct btrfs_root
*root
;
312 struct btrfs_key root_key
;
313 struct extent_buffer
*eb
;
316 int level
= ref
->level
;
319 root_key
.objectid
= ref
->root_id
;
320 root_key
.type
= BTRFS_ROOT_ITEM_KEY
;
321 root_key
.offset
= (u64
)-1;
323 index
= srcu_read_lock(&fs_info
->subvol_srcu
);
325 root
= btrfs_read_fs_root_no_name(fs_info
, &root_key
);
327 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
332 root_level
= btrfs_old_root_level(root
, time_seq
);
334 if (root_level
+ 1 == level
) {
335 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
339 path
->lowest_level
= level
;
340 ret
= btrfs_search_old_slot(root
, &ref
->key_for_search
, path
, time_seq
);
342 /* root node has been locked, we can release @subvol_srcu safely here */
343 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
345 pr_debug("search slot in root %llu (level %d, ref count %d) returned "
346 "%d for key (%llu %u %llu)\n",
347 ref
->root_id
, level
, ref
->count
, ret
,
348 ref
->key_for_search
.objectid
, ref
->key_for_search
.type
,
349 ref
->key_for_search
.offset
);
353 eb
= path
->nodes
[level
];
355 if (WARN_ON(!level
)) {
360 eb
= path
->nodes
[level
];
363 ret
= add_all_parents(root
, path
, parents
, ref
, level
, time_seq
,
366 path
->lowest_level
= 0;
367 btrfs_release_path(path
);
372 * resolve all indirect backrefs from the list
374 static int __resolve_indirect_refs(struct btrfs_fs_info
*fs_info
,
375 struct btrfs_path
*path
, u64 time_seq
,
376 struct list_head
*head
,
377 const u64
*extent_item_pos
)
381 struct __prelim_ref
*ref
;
382 struct __prelim_ref
*ref_safe
;
383 struct __prelim_ref
*new_ref
;
384 struct ulist
*parents
;
385 struct ulist_node
*node
;
386 struct ulist_iterator uiter
;
388 parents
= ulist_alloc(GFP_NOFS
);
393 * _safe allows us to insert directly after the current item without
394 * iterating over the newly inserted items.
395 * we're also allowed to re-assign ref during iteration.
397 list_for_each_entry_safe(ref
, ref_safe
, head
, list
) {
398 if (ref
->parent
) /* already direct */
402 err
= __resolve_indirect_ref(fs_info
, path
, time_seq
, ref
,
403 parents
, extent_item_pos
);
405 * we can only tolerate ENOENT,otherwise,we should catch error
406 * and return directly.
408 if (err
== -ENOENT
) {
415 /* we put the first parent into the ref at hand */
416 ULIST_ITER_INIT(&uiter
);
417 node
= ulist_next(parents
, &uiter
);
418 ref
->parent
= node
? node
->val
: 0;
419 ref
->inode_list
= node
?
420 (struct extent_inode_elem
*)(uintptr_t)node
->aux
: NULL
;
422 /* additional parents require new refs being added here */
423 while ((node
= ulist_next(parents
, &uiter
))) {
424 new_ref
= kmem_cache_alloc(btrfs_prelim_ref_cache
,
430 memcpy(new_ref
, ref
, sizeof(*ref
));
431 new_ref
->parent
= node
->val
;
432 new_ref
->inode_list
= (struct extent_inode_elem
*)
433 (uintptr_t)node
->aux
;
434 list_add(&new_ref
->list
, &ref
->list
);
436 ulist_reinit(parents
);
443 static inline int ref_for_same_block(struct __prelim_ref
*ref1
,
444 struct __prelim_ref
*ref2
)
446 if (ref1
->level
!= ref2
->level
)
448 if (ref1
->root_id
!= ref2
->root_id
)
450 if (ref1
->key_for_search
.type
!= ref2
->key_for_search
.type
)
452 if (ref1
->key_for_search
.objectid
!= ref2
->key_for_search
.objectid
)
454 if (ref1
->key_for_search
.offset
!= ref2
->key_for_search
.offset
)
456 if (ref1
->parent
!= ref2
->parent
)
463 * read tree blocks and add keys where required.
465 static int __add_missing_keys(struct btrfs_fs_info
*fs_info
,
466 struct list_head
*head
)
468 struct list_head
*pos
;
469 struct extent_buffer
*eb
;
471 list_for_each(pos
, head
) {
472 struct __prelim_ref
*ref
;
473 ref
= list_entry(pos
, struct __prelim_ref
, list
);
477 if (ref
->key_for_search
.type
)
479 BUG_ON(!ref
->wanted_disk_byte
);
480 eb
= read_tree_block(fs_info
->tree_root
, ref
->wanted_disk_byte
,
481 fs_info
->tree_root
->leafsize
, 0);
482 if (!eb
|| !extent_buffer_uptodate(eb
)) {
483 free_extent_buffer(eb
);
486 btrfs_tree_read_lock(eb
);
487 if (btrfs_header_level(eb
) == 0)
488 btrfs_item_key_to_cpu(eb
, &ref
->key_for_search
, 0);
490 btrfs_node_key_to_cpu(eb
, &ref
->key_for_search
, 0);
491 btrfs_tree_read_unlock(eb
);
492 free_extent_buffer(eb
);
498 * merge two lists of backrefs and adjust counts accordingly
500 * mode = 1: merge identical keys, if key is set
501 * FIXME: if we add more keys in __add_prelim_ref, we can merge more here.
502 * additionally, we could even add a key range for the blocks we
503 * looked into to merge even more (-> replace unresolved refs by those
505 * mode = 2: merge identical parents
507 static void __merge_refs(struct list_head
*head
, int mode
)
509 struct list_head
*pos1
;
511 list_for_each(pos1
, head
) {
512 struct list_head
*n2
;
513 struct list_head
*pos2
;
514 struct __prelim_ref
*ref1
;
516 ref1
= list_entry(pos1
, struct __prelim_ref
, list
);
518 for (pos2
= pos1
->next
, n2
= pos2
->next
; pos2
!= head
;
519 pos2
= n2
, n2
= pos2
->next
) {
520 struct __prelim_ref
*ref2
;
521 struct __prelim_ref
*xchg
;
522 struct extent_inode_elem
*eie
;
524 ref2
= list_entry(pos2
, struct __prelim_ref
, list
);
527 if (!ref_for_same_block(ref1
, ref2
))
529 if (!ref1
->parent
&& ref2
->parent
) {
535 if (ref1
->parent
!= ref2
->parent
)
539 eie
= ref1
->inode_list
;
540 while (eie
&& eie
->next
)
543 eie
->next
= ref2
->inode_list
;
545 ref1
->inode_list
= ref2
->inode_list
;
546 ref1
->count
+= ref2
->count
;
548 list_del(&ref2
->list
);
549 kmem_cache_free(btrfs_prelim_ref_cache
, ref2
);
556 * add all currently queued delayed refs from this head whose seq nr is
557 * smaller or equal that seq to the list
559 static int __add_delayed_refs(struct btrfs_delayed_ref_head
*head
, u64 seq
,
560 struct list_head
*prefs
)
562 struct btrfs_delayed_extent_op
*extent_op
= head
->extent_op
;
563 struct rb_node
*n
= &head
->node
.rb_node
;
564 struct btrfs_key key
;
565 struct btrfs_key op_key
= {0};
569 if (extent_op
&& extent_op
->update_key
)
570 btrfs_disk_key_to_cpu(&op_key
, &extent_op
->key
);
572 spin_lock(&head
->lock
);
573 n
= rb_first(&head
->ref_root
);
575 struct btrfs_delayed_ref_node
*node
;
576 node
= rb_entry(n
, struct btrfs_delayed_ref_node
,
582 switch (node
->action
) {
583 case BTRFS_ADD_DELAYED_EXTENT
:
584 case BTRFS_UPDATE_DELAYED_HEAD
:
587 case BTRFS_ADD_DELAYED_REF
:
590 case BTRFS_DROP_DELAYED_REF
:
596 switch (node
->type
) {
597 case BTRFS_TREE_BLOCK_REF_KEY
: {
598 struct btrfs_delayed_tree_ref
*ref
;
600 ref
= btrfs_delayed_node_to_tree_ref(node
);
601 ret
= __add_prelim_ref(prefs
, ref
->root
, &op_key
,
602 ref
->level
+ 1, 0, node
->bytenr
,
603 node
->ref_mod
* sgn
, GFP_ATOMIC
);
606 case BTRFS_SHARED_BLOCK_REF_KEY
: {
607 struct btrfs_delayed_tree_ref
*ref
;
609 ref
= btrfs_delayed_node_to_tree_ref(node
);
610 ret
= __add_prelim_ref(prefs
, ref
->root
, NULL
,
611 ref
->level
+ 1, ref
->parent
,
613 node
->ref_mod
* sgn
, GFP_ATOMIC
);
616 case BTRFS_EXTENT_DATA_REF_KEY
: {
617 struct btrfs_delayed_data_ref
*ref
;
618 ref
= btrfs_delayed_node_to_data_ref(node
);
620 key
.objectid
= ref
->objectid
;
621 key
.type
= BTRFS_EXTENT_DATA_KEY
;
622 key
.offset
= ref
->offset
;
623 ret
= __add_prelim_ref(prefs
, ref
->root
, &key
, 0, 0,
625 node
->ref_mod
* sgn
, GFP_ATOMIC
);
628 case BTRFS_SHARED_DATA_REF_KEY
: {
629 struct btrfs_delayed_data_ref
*ref
;
631 ref
= btrfs_delayed_node_to_data_ref(node
);
633 key
.objectid
= ref
->objectid
;
634 key
.type
= BTRFS_EXTENT_DATA_KEY
;
635 key
.offset
= ref
->offset
;
636 ret
= __add_prelim_ref(prefs
, ref
->root
, &key
, 0,
637 ref
->parent
, node
->bytenr
,
638 node
->ref_mod
* sgn
, GFP_ATOMIC
);
647 spin_unlock(&head
->lock
);
652 * add all inline backrefs for bytenr to the list
654 static int __add_inline_refs(struct btrfs_fs_info
*fs_info
,
655 struct btrfs_path
*path
, u64 bytenr
,
656 int *info_level
, struct list_head
*prefs
)
660 struct extent_buffer
*leaf
;
661 struct btrfs_key key
;
662 struct btrfs_key found_key
;
665 struct btrfs_extent_item
*ei
;
670 * enumerate all inline refs
672 leaf
= path
->nodes
[0];
673 slot
= path
->slots
[0];
675 item_size
= btrfs_item_size_nr(leaf
, slot
);
676 BUG_ON(item_size
< sizeof(*ei
));
678 ei
= btrfs_item_ptr(leaf
, slot
, struct btrfs_extent_item
);
679 flags
= btrfs_extent_flags(leaf
, ei
);
680 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
682 ptr
= (unsigned long)(ei
+ 1);
683 end
= (unsigned long)ei
+ item_size
;
685 if (found_key
.type
== BTRFS_EXTENT_ITEM_KEY
&&
686 flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
) {
687 struct btrfs_tree_block_info
*info
;
689 info
= (struct btrfs_tree_block_info
*)ptr
;
690 *info_level
= btrfs_tree_block_level(leaf
, info
);
691 ptr
+= sizeof(struct btrfs_tree_block_info
);
693 } else if (found_key
.type
== BTRFS_METADATA_ITEM_KEY
) {
694 *info_level
= found_key
.offset
;
696 BUG_ON(!(flags
& BTRFS_EXTENT_FLAG_DATA
));
700 struct btrfs_extent_inline_ref
*iref
;
704 iref
= (struct btrfs_extent_inline_ref
*)ptr
;
705 type
= btrfs_extent_inline_ref_type(leaf
, iref
);
706 offset
= btrfs_extent_inline_ref_offset(leaf
, iref
);
709 case BTRFS_SHARED_BLOCK_REF_KEY
:
710 ret
= __add_prelim_ref(prefs
, 0, NULL
,
711 *info_level
+ 1, offset
,
712 bytenr
, 1, GFP_NOFS
);
714 case BTRFS_SHARED_DATA_REF_KEY
: {
715 struct btrfs_shared_data_ref
*sdref
;
718 sdref
= (struct btrfs_shared_data_ref
*)(iref
+ 1);
719 count
= btrfs_shared_data_ref_count(leaf
, sdref
);
720 ret
= __add_prelim_ref(prefs
, 0, NULL
, 0, offset
,
721 bytenr
, count
, GFP_NOFS
);
724 case BTRFS_TREE_BLOCK_REF_KEY
:
725 ret
= __add_prelim_ref(prefs
, offset
, NULL
,
727 bytenr
, 1, GFP_NOFS
);
729 case BTRFS_EXTENT_DATA_REF_KEY
: {
730 struct btrfs_extent_data_ref
*dref
;
734 dref
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
735 count
= btrfs_extent_data_ref_count(leaf
, dref
);
736 key
.objectid
= btrfs_extent_data_ref_objectid(leaf
,
738 key
.type
= BTRFS_EXTENT_DATA_KEY
;
739 key
.offset
= btrfs_extent_data_ref_offset(leaf
, dref
);
740 root
= btrfs_extent_data_ref_root(leaf
, dref
);
741 ret
= __add_prelim_ref(prefs
, root
, &key
, 0, 0,
742 bytenr
, count
, GFP_NOFS
);
750 ptr
+= btrfs_extent_inline_ref_size(type
);
757 * add all non-inline backrefs for bytenr to the list
759 static int __add_keyed_refs(struct btrfs_fs_info
*fs_info
,
760 struct btrfs_path
*path
, u64 bytenr
,
761 int info_level
, struct list_head
*prefs
)
763 struct btrfs_root
*extent_root
= fs_info
->extent_root
;
766 struct extent_buffer
*leaf
;
767 struct btrfs_key key
;
770 ret
= btrfs_next_item(extent_root
, path
);
778 slot
= path
->slots
[0];
779 leaf
= path
->nodes
[0];
780 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
782 if (key
.objectid
!= bytenr
)
784 if (key
.type
< BTRFS_TREE_BLOCK_REF_KEY
)
786 if (key
.type
> BTRFS_SHARED_DATA_REF_KEY
)
790 case BTRFS_SHARED_BLOCK_REF_KEY
:
791 ret
= __add_prelim_ref(prefs
, 0, NULL
,
792 info_level
+ 1, key
.offset
,
793 bytenr
, 1, GFP_NOFS
);
795 case BTRFS_SHARED_DATA_REF_KEY
: {
796 struct btrfs_shared_data_ref
*sdref
;
799 sdref
= btrfs_item_ptr(leaf
, slot
,
800 struct btrfs_shared_data_ref
);
801 count
= btrfs_shared_data_ref_count(leaf
, sdref
);
802 ret
= __add_prelim_ref(prefs
, 0, NULL
, 0, key
.offset
,
803 bytenr
, count
, GFP_NOFS
);
806 case BTRFS_TREE_BLOCK_REF_KEY
:
807 ret
= __add_prelim_ref(prefs
, key
.offset
, NULL
,
809 bytenr
, 1, GFP_NOFS
);
811 case BTRFS_EXTENT_DATA_REF_KEY
: {
812 struct btrfs_extent_data_ref
*dref
;
816 dref
= btrfs_item_ptr(leaf
, slot
,
817 struct btrfs_extent_data_ref
);
818 count
= btrfs_extent_data_ref_count(leaf
, dref
);
819 key
.objectid
= btrfs_extent_data_ref_objectid(leaf
,
821 key
.type
= BTRFS_EXTENT_DATA_KEY
;
822 key
.offset
= btrfs_extent_data_ref_offset(leaf
, dref
);
823 root
= btrfs_extent_data_ref_root(leaf
, dref
);
824 ret
= __add_prelim_ref(prefs
, root
, &key
, 0, 0,
825 bytenr
, count
, GFP_NOFS
);
840 * this adds all existing backrefs (inline backrefs, backrefs and delayed
841 * refs) for the given bytenr to the refs list, merges duplicates and resolves
842 * indirect refs to their parent bytenr.
843 * When roots are found, they're added to the roots list
845 * FIXME some caching might speed things up
847 static int find_parent_nodes(struct btrfs_trans_handle
*trans
,
848 struct btrfs_fs_info
*fs_info
, u64 bytenr
,
849 u64 time_seq
, struct ulist
*refs
,
850 struct ulist
*roots
, const u64
*extent_item_pos
)
852 struct btrfs_key key
;
853 struct btrfs_path
*path
;
854 struct btrfs_delayed_ref_root
*delayed_refs
= NULL
;
855 struct btrfs_delayed_ref_head
*head
;
858 struct list_head prefs_delayed
;
859 struct list_head prefs
;
860 struct __prelim_ref
*ref
;
861 struct extent_inode_elem
*eie
= NULL
;
863 INIT_LIST_HEAD(&prefs
);
864 INIT_LIST_HEAD(&prefs_delayed
);
866 key
.objectid
= bytenr
;
867 key
.offset
= (u64
)-1;
868 if (btrfs_fs_incompat(fs_info
, SKINNY_METADATA
))
869 key
.type
= BTRFS_METADATA_ITEM_KEY
;
871 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
873 path
= btrfs_alloc_path();
877 path
->search_commit_root
= 1;
880 * grab both a lock on the path and a lock on the delayed ref head.
881 * We need both to get a consistent picture of how the refs look
882 * at a specified point in time
887 ret
= btrfs_search_slot(trans
, fs_info
->extent_root
, &key
, path
, 0, 0);
894 * look if there are updates for this ref queued and lock the
897 delayed_refs
= &trans
->transaction
->delayed_refs
;
898 spin_lock(&delayed_refs
->lock
);
899 head
= btrfs_find_delayed_ref_head(trans
, bytenr
);
901 if (!mutex_trylock(&head
->mutex
)) {
902 atomic_inc(&head
->node
.refs
);
903 spin_unlock(&delayed_refs
->lock
);
905 btrfs_release_path(path
);
908 * Mutex was contended, block until it's
909 * released and try again
911 mutex_lock(&head
->mutex
);
912 mutex_unlock(&head
->mutex
);
913 btrfs_put_delayed_ref(&head
->node
);
916 spin_unlock(&delayed_refs
->lock
);
917 ret
= __add_delayed_refs(head
, time_seq
,
919 mutex_unlock(&head
->mutex
);
923 spin_unlock(&delayed_refs
->lock
);
927 if (path
->slots
[0]) {
928 struct extent_buffer
*leaf
;
932 leaf
= path
->nodes
[0];
933 slot
= path
->slots
[0];
934 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
935 if (key
.objectid
== bytenr
&&
936 (key
.type
== BTRFS_EXTENT_ITEM_KEY
||
937 key
.type
== BTRFS_METADATA_ITEM_KEY
)) {
938 ret
= __add_inline_refs(fs_info
, path
, bytenr
,
939 &info_level
, &prefs
);
942 ret
= __add_keyed_refs(fs_info
, path
, bytenr
,
948 btrfs_release_path(path
);
950 list_splice_init(&prefs_delayed
, &prefs
);
952 ret
= __add_missing_keys(fs_info
, &prefs
);
956 __merge_refs(&prefs
, 1);
958 ret
= __resolve_indirect_refs(fs_info
, path
, time_seq
, &prefs
,
963 __merge_refs(&prefs
, 2);
965 while (!list_empty(&prefs
)) {
966 ref
= list_first_entry(&prefs
, struct __prelim_ref
, list
);
967 WARN_ON(ref
->count
< 0);
968 if (ref
->count
&& ref
->root_id
&& ref
->parent
== 0) {
969 /* no parent == root of tree */
970 ret
= ulist_add(roots
, ref
->root_id
, 0, GFP_NOFS
);
974 if (ref
->count
&& ref
->parent
) {
975 if (extent_item_pos
&& !ref
->inode_list
) {
977 struct extent_buffer
*eb
;
978 bsz
= btrfs_level_size(fs_info
->extent_root
,
980 eb
= read_tree_block(fs_info
->extent_root
,
981 ref
->parent
, bsz
, 0);
982 if (!eb
|| !extent_buffer_uptodate(eb
)) {
983 free_extent_buffer(eb
);
987 ret
= find_extent_in_eb(eb
, bytenr
,
988 *extent_item_pos
, &eie
);
989 free_extent_buffer(eb
);
992 ref
->inode_list
= eie
;
994 ret
= ulist_add_merge(refs
, ref
->parent
,
995 (uintptr_t)ref
->inode_list
,
996 (u64
*)&eie
, GFP_NOFS
);
999 if (!ret
&& extent_item_pos
) {
1001 * we've recorded that parent, so we must extend
1002 * its inode list here
1007 eie
->next
= ref
->inode_list
;
1011 list_del(&ref
->list
);
1012 kmem_cache_free(btrfs_prelim_ref_cache
, ref
);
1016 btrfs_free_path(path
);
1017 while (!list_empty(&prefs
)) {
1018 ref
= list_first_entry(&prefs
, struct __prelim_ref
, list
);
1019 list_del(&ref
->list
);
1020 kmem_cache_free(btrfs_prelim_ref_cache
, ref
);
1022 while (!list_empty(&prefs_delayed
)) {
1023 ref
= list_first_entry(&prefs_delayed
, struct __prelim_ref
,
1025 list_del(&ref
->list
);
1026 kmem_cache_free(btrfs_prelim_ref_cache
, ref
);
1029 free_inode_elem_list(eie
);
1033 static void free_leaf_list(struct ulist
*blocks
)
1035 struct ulist_node
*node
= NULL
;
1036 struct extent_inode_elem
*eie
;
1037 struct ulist_iterator uiter
;
1039 ULIST_ITER_INIT(&uiter
);
1040 while ((node
= ulist_next(blocks
, &uiter
))) {
1043 eie
= (struct extent_inode_elem
*)(uintptr_t)node
->aux
;
1044 free_inode_elem_list(eie
);
1052 * Finds all leafs with a reference to the specified combination of bytenr and
1053 * offset. key_list_head will point to a list of corresponding keys (caller must
1054 * free each list element). The leafs will be stored in the leafs ulist, which
1055 * must be freed with ulist_free.
1057 * returns 0 on success, <0 on error
1059 static int btrfs_find_all_leafs(struct btrfs_trans_handle
*trans
,
1060 struct btrfs_fs_info
*fs_info
, u64 bytenr
,
1061 u64 time_seq
, struct ulist
**leafs
,
1062 const u64
*extent_item_pos
)
1067 tmp
= ulist_alloc(GFP_NOFS
);
1070 *leafs
= ulist_alloc(GFP_NOFS
);
1076 ret
= find_parent_nodes(trans
, fs_info
, bytenr
,
1077 time_seq
, *leafs
, tmp
, extent_item_pos
);
1080 if (ret
< 0 && ret
!= -ENOENT
) {
1081 free_leaf_list(*leafs
);
1089 * walk all backrefs for a given extent to find all roots that reference this
1090 * extent. Walking a backref means finding all extents that reference this
1091 * extent and in turn walk the backrefs of those, too. Naturally this is a
1092 * recursive process, but here it is implemented in an iterative fashion: We
1093 * find all referencing extents for the extent in question and put them on a
1094 * list. In turn, we find all referencing extents for those, further appending
1095 * to the list. The way we iterate the list allows adding more elements after
1096 * the current while iterating. The process stops when we reach the end of the
1097 * list. Found roots are added to the roots list.
1099 * returns 0 on success, < 0 on error.
1101 int btrfs_find_all_roots(struct btrfs_trans_handle
*trans
,
1102 struct btrfs_fs_info
*fs_info
, u64 bytenr
,
1103 u64 time_seq
, struct ulist
**roots
)
1106 struct ulist_node
*node
= NULL
;
1107 struct ulist_iterator uiter
;
1110 tmp
= ulist_alloc(GFP_NOFS
);
1113 *roots
= ulist_alloc(GFP_NOFS
);
1119 ULIST_ITER_INIT(&uiter
);
1121 ret
= find_parent_nodes(trans
, fs_info
, bytenr
,
1122 time_seq
, tmp
, *roots
, NULL
);
1123 if (ret
< 0 && ret
!= -ENOENT
) {
1128 node
= ulist_next(tmp
, &uiter
);
1140 * this makes the path point to (inum INODE_ITEM ioff)
1142 int inode_item_info(u64 inum
, u64 ioff
, struct btrfs_root
*fs_root
,
1143 struct btrfs_path
*path
)
1145 struct btrfs_key key
;
1146 return btrfs_find_item(fs_root
, path
, inum
, ioff
,
1147 BTRFS_INODE_ITEM_KEY
, &key
);
1150 static int inode_ref_info(u64 inum
, u64 ioff
, struct btrfs_root
*fs_root
,
1151 struct btrfs_path
*path
,
1152 struct btrfs_key
*found_key
)
1154 return btrfs_find_item(fs_root
, path
, inum
, ioff
,
1155 BTRFS_INODE_REF_KEY
, found_key
);
1158 int btrfs_find_one_extref(struct btrfs_root
*root
, u64 inode_objectid
,
1159 u64 start_off
, struct btrfs_path
*path
,
1160 struct btrfs_inode_extref
**ret_extref
,
1164 struct btrfs_key key
;
1165 struct btrfs_key found_key
;
1166 struct btrfs_inode_extref
*extref
;
1167 struct extent_buffer
*leaf
;
1170 key
.objectid
= inode_objectid
;
1171 btrfs_set_key_type(&key
, BTRFS_INODE_EXTREF_KEY
);
1172 key
.offset
= start_off
;
1174 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
1179 leaf
= path
->nodes
[0];
1180 slot
= path
->slots
[0];
1181 if (slot
>= btrfs_header_nritems(leaf
)) {
1183 * If the item at offset is not found,
1184 * btrfs_search_slot will point us to the slot
1185 * where it should be inserted. In our case
1186 * that will be the slot directly before the
1187 * next INODE_REF_KEY_V2 item. In the case
1188 * that we're pointing to the last slot in a
1189 * leaf, we must move one leaf over.
1191 ret
= btrfs_next_leaf(root
, path
);
1200 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
1203 * Check that we're still looking at an extended ref key for
1204 * this particular objectid. If we have different
1205 * objectid or type then there are no more to be found
1206 * in the tree and we can exit.
1209 if (found_key
.objectid
!= inode_objectid
)
1211 if (btrfs_key_type(&found_key
) != BTRFS_INODE_EXTREF_KEY
)
1215 ptr
= btrfs_item_ptr_offset(leaf
, path
->slots
[0]);
1216 extref
= (struct btrfs_inode_extref
*)ptr
;
1217 *ret_extref
= extref
;
1219 *found_off
= found_key
.offset
;
1227 * this iterates to turn a name (from iref/extref) into a full filesystem path.
1228 * Elements of the path are separated by '/' and the path is guaranteed to be
1229 * 0-terminated. the path is only given within the current file system.
1230 * Therefore, it never starts with a '/'. the caller is responsible to provide
1231 * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
1232 * the start point of the resulting string is returned. this pointer is within
1234 * in case the path buffer would overflow, the pointer is decremented further
1235 * as if output was written to the buffer, though no more output is actually
1236 * generated. that way, the caller can determine how much space would be
1237 * required for the path to fit into the buffer. in that case, the returned
1238 * value will be smaller than dest. callers must check this!
1240 char *btrfs_ref_to_path(struct btrfs_root
*fs_root
, struct btrfs_path
*path
,
1241 u32 name_len
, unsigned long name_off
,
1242 struct extent_buffer
*eb_in
, u64 parent
,
1243 char *dest
, u32 size
)
1248 s64 bytes_left
= ((s64
)size
) - 1;
1249 struct extent_buffer
*eb
= eb_in
;
1250 struct btrfs_key found_key
;
1251 int leave_spinning
= path
->leave_spinning
;
1252 struct btrfs_inode_ref
*iref
;
1254 if (bytes_left
>= 0)
1255 dest
[bytes_left
] = '\0';
1257 path
->leave_spinning
= 1;
1259 bytes_left
-= name_len
;
1260 if (bytes_left
>= 0)
1261 read_extent_buffer(eb
, dest
+ bytes_left
,
1262 name_off
, name_len
);
1264 btrfs_tree_read_unlock_blocking(eb
);
1265 free_extent_buffer(eb
);
1267 ret
= inode_ref_info(parent
, 0, fs_root
, path
, &found_key
);
1273 next_inum
= found_key
.offset
;
1275 /* regular exit ahead */
1276 if (parent
== next_inum
)
1279 slot
= path
->slots
[0];
1280 eb
= path
->nodes
[0];
1281 /* make sure we can use eb after releasing the path */
1283 atomic_inc(&eb
->refs
);
1284 btrfs_tree_read_lock(eb
);
1285 btrfs_set_lock_blocking_rw(eb
, BTRFS_READ_LOCK
);
1287 btrfs_release_path(path
);
1288 iref
= btrfs_item_ptr(eb
, slot
, struct btrfs_inode_ref
);
1290 name_len
= btrfs_inode_ref_name_len(eb
, iref
);
1291 name_off
= (unsigned long)(iref
+ 1);
1295 if (bytes_left
>= 0)
1296 dest
[bytes_left
] = '/';
1299 btrfs_release_path(path
);
1300 path
->leave_spinning
= leave_spinning
;
1303 return ERR_PTR(ret
);
1305 return dest
+ bytes_left
;
1309 * this makes the path point to (logical EXTENT_ITEM *)
1310 * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
1311 * tree blocks and <0 on error.
1313 int extent_from_logical(struct btrfs_fs_info
*fs_info
, u64 logical
,
1314 struct btrfs_path
*path
, struct btrfs_key
*found_key
,
1321 struct extent_buffer
*eb
;
1322 struct btrfs_extent_item
*ei
;
1323 struct btrfs_key key
;
1325 if (btrfs_fs_incompat(fs_info
, SKINNY_METADATA
))
1326 key
.type
= BTRFS_METADATA_ITEM_KEY
;
1328 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
1329 key
.objectid
= logical
;
1330 key
.offset
= (u64
)-1;
1332 ret
= btrfs_search_slot(NULL
, fs_info
->extent_root
, &key
, path
, 0, 0);
1338 if (path
->slots
[0] == 0) {
1339 btrfs_set_path_blocking(path
);
1340 ret
= btrfs_prev_leaf(fs_info
->extent_root
, path
);
1343 pr_debug("logical %llu is not within "
1344 "any extent\n", logical
);
1352 nritems
= btrfs_header_nritems(path
->nodes
[0]);
1354 pr_debug("logical %llu is not within any extent\n",
1358 if (path
->slots
[0] == nritems
)
1361 btrfs_item_key_to_cpu(path
->nodes
[0], found_key
,
1363 if (found_key
->type
== BTRFS_EXTENT_ITEM_KEY
||
1364 found_key
->type
== BTRFS_METADATA_ITEM_KEY
)
1368 if (found_key
->type
== BTRFS_METADATA_ITEM_KEY
)
1369 size
= fs_info
->extent_root
->leafsize
;
1370 else if (found_key
->type
== BTRFS_EXTENT_ITEM_KEY
)
1371 size
= found_key
->offset
;
1373 if (found_key
->objectid
> logical
||
1374 found_key
->objectid
+ size
<= logical
) {
1375 pr_debug("logical %llu is not within any extent\n", logical
);
1379 eb
= path
->nodes
[0];
1380 item_size
= btrfs_item_size_nr(eb
, path
->slots
[0]);
1381 BUG_ON(item_size
< sizeof(*ei
));
1383 ei
= btrfs_item_ptr(eb
, path
->slots
[0], struct btrfs_extent_item
);
1384 flags
= btrfs_extent_flags(eb
, ei
);
1386 pr_debug("logical %llu is at position %llu within the extent (%llu "
1387 "EXTENT_ITEM %llu) flags %#llx size %u\n",
1388 logical
, logical
- found_key
->objectid
, found_key
->objectid
,
1389 found_key
->offset
, flags
, item_size
);
1391 WARN_ON(!flags_ret
);
1393 if (flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
)
1394 *flags_ret
= BTRFS_EXTENT_FLAG_TREE_BLOCK
;
1395 else if (flags
& BTRFS_EXTENT_FLAG_DATA
)
1396 *flags_ret
= BTRFS_EXTENT_FLAG_DATA
;
1406 * helper function to iterate extent inline refs. ptr must point to a 0 value
1407 * for the first call and may be modified. it is used to track state.
1408 * if more refs exist, 0 is returned and the next call to
1409 * __get_extent_inline_ref must pass the modified ptr parameter to get the
1410 * next ref. after the last ref was processed, 1 is returned.
1411 * returns <0 on error
1413 static int __get_extent_inline_ref(unsigned long *ptr
, struct extent_buffer
*eb
,
1414 struct btrfs_extent_item
*ei
, u32 item_size
,
1415 struct btrfs_extent_inline_ref
**out_eiref
,
1420 struct btrfs_tree_block_info
*info
;
1424 flags
= btrfs_extent_flags(eb
, ei
);
1425 if (flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
) {
1426 info
= (struct btrfs_tree_block_info
*)(ei
+ 1);
1428 (struct btrfs_extent_inline_ref
*)(info
+ 1);
1430 *out_eiref
= (struct btrfs_extent_inline_ref
*)(ei
+ 1);
1432 *ptr
= (unsigned long)*out_eiref
;
1433 if ((void *)*ptr
>= (void *)ei
+ item_size
)
1437 end
= (unsigned long)ei
+ item_size
;
1438 *out_eiref
= (struct btrfs_extent_inline_ref
*)*ptr
;
1439 *out_type
= btrfs_extent_inline_ref_type(eb
, *out_eiref
);
1441 *ptr
+= btrfs_extent_inline_ref_size(*out_type
);
1442 WARN_ON(*ptr
> end
);
1444 return 1; /* last */
1450 * reads the tree block backref for an extent. tree level and root are returned
1451 * through out_level and out_root. ptr must point to a 0 value for the first
1452 * call and may be modified (see __get_extent_inline_ref comment).
1453 * returns 0 if data was provided, 1 if there was no more data to provide or
1456 int tree_backref_for_extent(unsigned long *ptr
, struct extent_buffer
*eb
,
1457 struct btrfs_extent_item
*ei
, u32 item_size
,
1458 u64
*out_root
, u8
*out_level
)
1462 struct btrfs_tree_block_info
*info
;
1463 struct btrfs_extent_inline_ref
*eiref
;
1465 if (*ptr
== (unsigned long)-1)
1469 ret
= __get_extent_inline_ref(ptr
, eb
, ei
, item_size
,
1474 if (type
== BTRFS_TREE_BLOCK_REF_KEY
||
1475 type
== BTRFS_SHARED_BLOCK_REF_KEY
)
1482 /* we can treat both ref types equally here */
1483 info
= (struct btrfs_tree_block_info
*)(ei
+ 1);
1484 *out_root
= btrfs_extent_inline_ref_offset(eb
, eiref
);
1485 *out_level
= btrfs_tree_block_level(eb
, info
);
1488 *ptr
= (unsigned long)-1;
1493 static int iterate_leaf_refs(struct extent_inode_elem
*inode_list
,
1494 u64 root
, u64 extent_item_objectid
,
1495 iterate_extent_inodes_t
*iterate
, void *ctx
)
1497 struct extent_inode_elem
*eie
;
1500 for (eie
= inode_list
; eie
; eie
= eie
->next
) {
1501 pr_debug("ref for %llu resolved, key (%llu EXTEND_DATA %llu), "
1502 "root %llu\n", extent_item_objectid
,
1503 eie
->inum
, eie
->offset
, root
);
1504 ret
= iterate(eie
->inum
, eie
->offset
, root
, ctx
);
1506 pr_debug("stopping iteration for %llu due to ret=%d\n",
1507 extent_item_objectid
, ret
);
1516 * calls iterate() for every inode that references the extent identified by
1517 * the given parameters.
1518 * when the iterator function returns a non-zero value, iteration stops.
1520 int iterate_extent_inodes(struct btrfs_fs_info
*fs_info
,
1521 u64 extent_item_objectid
, u64 extent_item_pos
,
1522 int search_commit_root
,
1523 iterate_extent_inodes_t
*iterate
, void *ctx
)
1526 struct btrfs_trans_handle
*trans
= NULL
;
1527 struct ulist
*refs
= NULL
;
1528 struct ulist
*roots
= NULL
;
1529 struct ulist_node
*ref_node
= NULL
;
1530 struct ulist_node
*root_node
= NULL
;
1531 struct seq_list tree_mod_seq_elem
= {};
1532 struct ulist_iterator ref_uiter
;
1533 struct ulist_iterator root_uiter
;
1535 pr_debug("resolving all inodes for extent %llu\n",
1536 extent_item_objectid
);
1538 if (!search_commit_root
) {
1539 trans
= btrfs_join_transaction(fs_info
->extent_root
);
1541 return PTR_ERR(trans
);
1542 btrfs_get_tree_mod_seq(fs_info
, &tree_mod_seq_elem
);
1545 ret
= btrfs_find_all_leafs(trans
, fs_info
, extent_item_objectid
,
1546 tree_mod_seq_elem
.seq
, &refs
,
1551 ULIST_ITER_INIT(&ref_uiter
);
1552 while (!ret
&& (ref_node
= ulist_next(refs
, &ref_uiter
))) {
1553 ret
= btrfs_find_all_roots(trans
, fs_info
, ref_node
->val
,
1554 tree_mod_seq_elem
.seq
, &roots
);
1557 ULIST_ITER_INIT(&root_uiter
);
1558 while (!ret
&& (root_node
= ulist_next(roots
, &root_uiter
))) {
1559 pr_debug("root %llu references leaf %llu, data list "
1560 "%#llx\n", root_node
->val
, ref_node
->val
,
1562 ret
= iterate_leaf_refs((struct extent_inode_elem
*)
1563 (uintptr_t)ref_node
->aux
,
1565 extent_item_objectid
,
1571 free_leaf_list(refs
);
1573 if (!search_commit_root
) {
1574 btrfs_put_tree_mod_seq(fs_info
, &tree_mod_seq_elem
);
1575 btrfs_end_transaction(trans
, fs_info
->extent_root
);
1581 int iterate_inodes_from_logical(u64 logical
, struct btrfs_fs_info
*fs_info
,
1582 struct btrfs_path
*path
,
1583 iterate_extent_inodes_t
*iterate
, void *ctx
)
1586 u64 extent_item_pos
;
1588 struct btrfs_key found_key
;
1589 int search_commit_root
= path
->search_commit_root
;
1591 ret
= extent_from_logical(fs_info
, logical
, path
, &found_key
, &flags
);
1592 btrfs_release_path(path
);
1595 if (flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
)
1598 extent_item_pos
= logical
- found_key
.objectid
;
1599 ret
= iterate_extent_inodes(fs_info
, found_key
.objectid
,
1600 extent_item_pos
, search_commit_root
,
1606 typedef int (iterate_irefs_t
)(u64 parent
, u32 name_len
, unsigned long name_off
,
1607 struct extent_buffer
*eb
, void *ctx
);
1609 static int iterate_inode_refs(u64 inum
, struct btrfs_root
*fs_root
,
1610 struct btrfs_path
*path
,
1611 iterate_irefs_t
*iterate
, void *ctx
)
1620 struct extent_buffer
*eb
;
1621 struct btrfs_item
*item
;
1622 struct btrfs_inode_ref
*iref
;
1623 struct btrfs_key found_key
;
1626 ret
= inode_ref_info(inum
, parent
? parent
+1 : 0, fs_root
, path
,
1631 ret
= found
? 0 : -ENOENT
;
1636 parent
= found_key
.offset
;
1637 slot
= path
->slots
[0];
1638 eb
= btrfs_clone_extent_buffer(path
->nodes
[0]);
1643 extent_buffer_get(eb
);
1644 btrfs_tree_read_lock(eb
);
1645 btrfs_set_lock_blocking_rw(eb
, BTRFS_READ_LOCK
);
1646 btrfs_release_path(path
);
1648 item
= btrfs_item_nr(slot
);
1649 iref
= btrfs_item_ptr(eb
, slot
, struct btrfs_inode_ref
);
1651 for (cur
= 0; cur
< btrfs_item_size(eb
, item
); cur
+= len
) {
1652 name_len
= btrfs_inode_ref_name_len(eb
, iref
);
1653 /* path must be released before calling iterate()! */
1654 pr_debug("following ref at offset %u for inode %llu in "
1655 "tree %llu\n", cur
, found_key
.objectid
,
1657 ret
= iterate(parent
, name_len
,
1658 (unsigned long)(iref
+ 1), eb
, ctx
);
1661 len
= sizeof(*iref
) + name_len
;
1662 iref
= (struct btrfs_inode_ref
*)((char *)iref
+ len
);
1664 btrfs_tree_read_unlock_blocking(eb
);
1665 free_extent_buffer(eb
);
1668 btrfs_release_path(path
);
1673 static int iterate_inode_extrefs(u64 inum
, struct btrfs_root
*fs_root
,
1674 struct btrfs_path
*path
,
1675 iterate_irefs_t
*iterate
, void *ctx
)
1682 struct extent_buffer
*eb
;
1683 struct btrfs_inode_extref
*extref
;
1684 struct extent_buffer
*leaf
;
1690 ret
= btrfs_find_one_extref(fs_root
, inum
, offset
, path
, &extref
,
1695 ret
= found
? 0 : -ENOENT
;
1700 slot
= path
->slots
[0];
1701 eb
= btrfs_clone_extent_buffer(path
->nodes
[0]);
1706 extent_buffer_get(eb
);
1708 btrfs_tree_read_lock(eb
);
1709 btrfs_set_lock_blocking_rw(eb
, BTRFS_READ_LOCK
);
1710 btrfs_release_path(path
);
1712 leaf
= path
->nodes
[0];
1713 item_size
= btrfs_item_size_nr(leaf
, slot
);
1714 ptr
= btrfs_item_ptr_offset(leaf
, slot
);
1717 while (cur_offset
< item_size
) {
1720 extref
= (struct btrfs_inode_extref
*)(ptr
+ cur_offset
);
1721 parent
= btrfs_inode_extref_parent(eb
, extref
);
1722 name_len
= btrfs_inode_extref_name_len(eb
, extref
);
1723 ret
= iterate(parent
, name_len
,
1724 (unsigned long)&extref
->name
, eb
, ctx
);
1728 cur_offset
+= btrfs_inode_extref_name_len(leaf
, extref
);
1729 cur_offset
+= sizeof(*extref
);
1731 btrfs_tree_read_unlock_blocking(eb
);
1732 free_extent_buffer(eb
);
1737 btrfs_release_path(path
);
1742 static int iterate_irefs(u64 inum
, struct btrfs_root
*fs_root
,
1743 struct btrfs_path
*path
, iterate_irefs_t
*iterate
,
1749 ret
= iterate_inode_refs(inum
, fs_root
, path
, iterate
, ctx
);
1752 else if (ret
!= -ENOENT
)
1755 ret
= iterate_inode_extrefs(inum
, fs_root
, path
, iterate
, ctx
);
1756 if (ret
== -ENOENT
&& found_refs
)
1763 * returns 0 if the path could be dumped (probably truncated)
1764 * returns <0 in case of an error
1766 static int inode_to_path(u64 inum
, u32 name_len
, unsigned long name_off
,
1767 struct extent_buffer
*eb
, void *ctx
)
1769 struct inode_fs_paths
*ipath
= ctx
;
1772 int i
= ipath
->fspath
->elem_cnt
;
1773 const int s_ptr
= sizeof(char *);
1776 bytes_left
= ipath
->fspath
->bytes_left
> s_ptr
?
1777 ipath
->fspath
->bytes_left
- s_ptr
: 0;
1779 fspath_min
= (char *)ipath
->fspath
->val
+ (i
+ 1) * s_ptr
;
1780 fspath
= btrfs_ref_to_path(ipath
->fs_root
, ipath
->btrfs_path
, name_len
,
1781 name_off
, eb
, inum
, fspath_min
, bytes_left
);
1783 return PTR_ERR(fspath
);
1785 if (fspath
> fspath_min
) {
1786 ipath
->fspath
->val
[i
] = (u64
)(unsigned long)fspath
;
1787 ++ipath
->fspath
->elem_cnt
;
1788 ipath
->fspath
->bytes_left
= fspath
- fspath_min
;
1790 ++ipath
->fspath
->elem_missed
;
1791 ipath
->fspath
->bytes_missing
+= fspath_min
- fspath
;
1792 ipath
->fspath
->bytes_left
= 0;
1799 * this dumps all file system paths to the inode into the ipath struct, provided
1800 * is has been created large enough. each path is zero-terminated and accessed
1801 * from ipath->fspath->val[i].
1802 * when it returns, there are ipath->fspath->elem_cnt number of paths available
1803 * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
1804 * number of missed paths in recored in ipath->fspath->elem_missed, otherwise,
1805 * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
1806 * have been needed to return all paths.
1808 int paths_from_inode(u64 inum
, struct inode_fs_paths
*ipath
)
1810 return iterate_irefs(inum
, ipath
->fs_root
, ipath
->btrfs_path
,
1811 inode_to_path
, ipath
);
1814 struct btrfs_data_container
*init_data_container(u32 total_bytes
)
1816 struct btrfs_data_container
*data
;
1819 alloc_bytes
= max_t(size_t, total_bytes
, sizeof(*data
));
1820 data
= vmalloc(alloc_bytes
);
1822 return ERR_PTR(-ENOMEM
);
1824 if (total_bytes
>= sizeof(*data
)) {
1825 data
->bytes_left
= total_bytes
- sizeof(*data
);
1826 data
->bytes_missing
= 0;
1828 data
->bytes_missing
= sizeof(*data
) - total_bytes
;
1829 data
->bytes_left
= 0;
1833 data
->elem_missed
= 0;
1839 * allocates space to return multiple file system paths for an inode.
1840 * total_bytes to allocate are passed, note that space usable for actual path
1841 * information will be total_bytes - sizeof(struct inode_fs_paths).
1842 * the returned pointer must be freed with free_ipath() in the end.
1844 struct inode_fs_paths
*init_ipath(s32 total_bytes
, struct btrfs_root
*fs_root
,
1845 struct btrfs_path
*path
)
1847 struct inode_fs_paths
*ifp
;
1848 struct btrfs_data_container
*fspath
;
1850 fspath
= init_data_container(total_bytes
);
1852 return (void *)fspath
;
1854 ifp
= kmalloc(sizeof(*ifp
), GFP_NOFS
);
1857 return ERR_PTR(-ENOMEM
);
1860 ifp
->btrfs_path
= path
;
1861 ifp
->fspath
= fspath
;
1862 ifp
->fs_root
= fs_root
;
1867 void free_ipath(struct inode_fs_paths
*ipath
)
1871 vfree(ipath
->fspath
);