2 * Copyright (C) 2008 Red Hat. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/pagemap.h>
20 #include <linux/sched.h>
21 #include <linux/slab.h>
22 #include <linux/math64.h>
23 #include <linux/ratelimit.h>
25 #include "free-space-cache.h"
26 #include "transaction.h"
28 #include "extent_io.h"
29 #include "inode-map.h"
31 #define BITS_PER_BITMAP (PAGE_CACHE_SIZE * 8)
32 #define MAX_CACHE_BYTES_PER_GIG (32 * 1024)
34 static int link_free_space(struct btrfs_free_space_ctl
*ctl
,
35 struct btrfs_free_space
*info
);
36 static void unlink_free_space(struct btrfs_free_space_ctl
*ctl
,
37 struct btrfs_free_space
*info
);
39 static struct inode
*__lookup_free_space_inode(struct btrfs_root
*root
,
40 struct btrfs_path
*path
,
44 struct btrfs_key location
;
45 struct btrfs_disk_key disk_key
;
46 struct btrfs_free_space_header
*header
;
47 struct extent_buffer
*leaf
;
48 struct inode
*inode
= NULL
;
51 key
.objectid
= BTRFS_FREE_SPACE_OBJECTID
;
55 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
59 btrfs_release_path(path
);
60 return ERR_PTR(-ENOENT
);
63 leaf
= path
->nodes
[0];
64 header
= btrfs_item_ptr(leaf
, path
->slots
[0],
65 struct btrfs_free_space_header
);
66 btrfs_free_space_key(leaf
, header
, &disk_key
);
67 btrfs_disk_key_to_cpu(&location
, &disk_key
);
68 btrfs_release_path(path
);
70 inode
= btrfs_iget(root
->fs_info
->sb
, &location
, root
, NULL
);
72 return ERR_PTR(-ENOENT
);
75 if (is_bad_inode(inode
)) {
77 return ERR_PTR(-ENOENT
);
80 mapping_set_gfp_mask(inode
->i_mapping
,
81 mapping_gfp_mask(inode
->i_mapping
) & ~__GFP_FS
);
86 struct inode
*lookup_free_space_inode(struct btrfs_root
*root
,
87 struct btrfs_block_group_cache
88 *block_group
, struct btrfs_path
*path
)
90 struct inode
*inode
= NULL
;
91 u32 flags
= BTRFS_INODE_NODATASUM
| BTRFS_INODE_NODATACOW
;
93 spin_lock(&block_group
->lock
);
94 if (block_group
->inode
)
95 inode
= igrab(block_group
->inode
);
96 spin_unlock(&block_group
->lock
);
100 inode
= __lookup_free_space_inode(root
, path
,
101 block_group
->key
.objectid
);
105 spin_lock(&block_group
->lock
);
106 if (!((BTRFS_I(inode
)->flags
& flags
) == flags
)) {
107 btrfs_info(root
->fs_info
,
108 "Old style space inode found, converting.");
109 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NODATASUM
|
110 BTRFS_INODE_NODATACOW
;
111 block_group
->disk_cache_state
= BTRFS_DC_CLEAR
;
114 if (!block_group
->iref
) {
115 block_group
->inode
= igrab(inode
);
116 block_group
->iref
= 1;
118 spin_unlock(&block_group
->lock
);
123 static int __create_free_space_inode(struct btrfs_root
*root
,
124 struct btrfs_trans_handle
*trans
,
125 struct btrfs_path
*path
,
128 struct btrfs_key key
;
129 struct btrfs_disk_key disk_key
;
130 struct btrfs_free_space_header
*header
;
131 struct btrfs_inode_item
*inode_item
;
132 struct extent_buffer
*leaf
;
133 u64 flags
= BTRFS_INODE_NOCOMPRESS
| BTRFS_INODE_PREALLOC
;
136 ret
= btrfs_insert_empty_inode(trans
, root
, path
, ino
);
140 /* We inline crc's for the free disk space cache */
141 if (ino
!= BTRFS_FREE_INO_OBJECTID
)
142 flags
|= BTRFS_INODE_NODATASUM
| BTRFS_INODE_NODATACOW
;
144 leaf
= path
->nodes
[0];
145 inode_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
146 struct btrfs_inode_item
);
147 btrfs_item_key(leaf
, &disk_key
, path
->slots
[0]);
148 memset_extent_buffer(leaf
, 0, (unsigned long)inode_item
,
149 sizeof(*inode_item
));
150 btrfs_set_inode_generation(leaf
, inode_item
, trans
->transid
);
151 btrfs_set_inode_size(leaf
, inode_item
, 0);
152 btrfs_set_inode_nbytes(leaf
, inode_item
, 0);
153 btrfs_set_inode_uid(leaf
, inode_item
, 0);
154 btrfs_set_inode_gid(leaf
, inode_item
, 0);
155 btrfs_set_inode_mode(leaf
, inode_item
, S_IFREG
| 0600);
156 btrfs_set_inode_flags(leaf
, inode_item
, flags
);
157 btrfs_set_inode_nlink(leaf
, inode_item
, 1);
158 btrfs_set_inode_transid(leaf
, inode_item
, trans
->transid
);
159 btrfs_set_inode_block_group(leaf
, inode_item
, offset
);
160 btrfs_mark_buffer_dirty(leaf
);
161 btrfs_release_path(path
);
163 key
.objectid
= BTRFS_FREE_SPACE_OBJECTID
;
167 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
168 sizeof(struct btrfs_free_space_header
));
170 btrfs_release_path(path
);
173 leaf
= path
->nodes
[0];
174 header
= btrfs_item_ptr(leaf
, path
->slots
[0],
175 struct btrfs_free_space_header
);
176 memset_extent_buffer(leaf
, 0, (unsigned long)header
, sizeof(*header
));
177 btrfs_set_free_space_key(leaf
, header
, &disk_key
);
178 btrfs_mark_buffer_dirty(leaf
);
179 btrfs_release_path(path
);
184 int create_free_space_inode(struct btrfs_root
*root
,
185 struct btrfs_trans_handle
*trans
,
186 struct btrfs_block_group_cache
*block_group
,
187 struct btrfs_path
*path
)
192 ret
= btrfs_find_free_objectid(root
, &ino
);
196 return __create_free_space_inode(root
, trans
, path
, ino
,
197 block_group
->key
.objectid
);
200 int btrfs_check_trunc_cache_free_space(struct btrfs_root
*root
,
201 struct btrfs_block_rsv
*rsv
)
206 /* 1 for slack space, 1 for updating the inode */
207 needed_bytes
= btrfs_calc_trunc_metadata_size(root
, 1) +
208 btrfs_calc_trans_metadata_size(root
, 1);
210 spin_lock(&rsv
->lock
);
211 if (rsv
->reserved
< needed_bytes
)
215 spin_unlock(&rsv
->lock
);
219 int btrfs_truncate_free_space_cache(struct btrfs_root
*root
,
220 struct btrfs_trans_handle
*trans
,
225 btrfs_i_size_write(inode
, 0);
226 truncate_pagecache(inode
, 0);
229 * We don't need an orphan item because truncating the free space cache
230 * will never be split across transactions.
232 ret
= btrfs_truncate_inode_items(trans
, root
, inode
,
233 0, BTRFS_EXTENT_DATA_KEY
);
235 btrfs_abort_transaction(trans
, root
, ret
);
239 ret
= btrfs_update_inode(trans
, root
, inode
);
241 btrfs_abort_transaction(trans
, root
, ret
);
246 static int readahead_cache(struct inode
*inode
)
248 struct file_ra_state
*ra
;
249 unsigned long last_index
;
251 ra
= kzalloc(sizeof(*ra
), GFP_NOFS
);
255 file_ra_state_init(ra
, inode
->i_mapping
);
256 last_index
= (i_size_read(inode
) - 1) >> PAGE_CACHE_SHIFT
;
258 page_cache_sync_readahead(inode
->i_mapping
, ra
, NULL
, 0, last_index
);
269 struct btrfs_root
*root
;
273 unsigned check_crcs
:1;
276 static int io_ctl_init(struct io_ctl
*io_ctl
, struct inode
*inode
,
277 struct btrfs_root
*root
)
279 memset(io_ctl
, 0, sizeof(struct io_ctl
));
280 io_ctl
->num_pages
= (i_size_read(inode
) + PAGE_CACHE_SIZE
- 1) >>
282 io_ctl
->pages
= kzalloc(sizeof(struct page
*) * io_ctl
->num_pages
,
287 if (btrfs_ino(inode
) != BTRFS_FREE_INO_OBJECTID
)
288 io_ctl
->check_crcs
= 1;
292 static void io_ctl_free(struct io_ctl
*io_ctl
)
294 kfree(io_ctl
->pages
);
297 static void io_ctl_unmap_page(struct io_ctl
*io_ctl
)
300 kunmap(io_ctl
->page
);
306 static void io_ctl_map_page(struct io_ctl
*io_ctl
, int clear
)
308 ASSERT(io_ctl
->index
< io_ctl
->num_pages
);
309 io_ctl
->page
= io_ctl
->pages
[io_ctl
->index
++];
310 io_ctl
->cur
= kmap(io_ctl
->page
);
311 io_ctl
->orig
= io_ctl
->cur
;
312 io_ctl
->size
= PAGE_CACHE_SIZE
;
314 memset(io_ctl
->cur
, 0, PAGE_CACHE_SIZE
);
317 static void io_ctl_drop_pages(struct io_ctl
*io_ctl
)
321 io_ctl_unmap_page(io_ctl
);
323 for (i
= 0; i
< io_ctl
->num_pages
; i
++) {
324 if (io_ctl
->pages
[i
]) {
325 ClearPageChecked(io_ctl
->pages
[i
]);
326 unlock_page(io_ctl
->pages
[i
]);
327 page_cache_release(io_ctl
->pages
[i
]);
332 static int io_ctl_prepare_pages(struct io_ctl
*io_ctl
, struct inode
*inode
,
336 gfp_t mask
= btrfs_alloc_write_mask(inode
->i_mapping
);
339 for (i
= 0; i
< io_ctl
->num_pages
; i
++) {
340 page
= find_or_create_page(inode
->i_mapping
, i
, mask
);
342 io_ctl_drop_pages(io_ctl
);
345 io_ctl
->pages
[i
] = page
;
346 if (uptodate
&& !PageUptodate(page
)) {
347 btrfs_readpage(NULL
, page
);
349 if (!PageUptodate(page
)) {
350 btrfs_err(BTRFS_I(inode
)->root
->fs_info
,
351 "error reading free space cache");
352 io_ctl_drop_pages(io_ctl
);
358 for (i
= 0; i
< io_ctl
->num_pages
; i
++) {
359 clear_page_dirty_for_io(io_ctl
->pages
[i
]);
360 set_page_extent_mapped(io_ctl
->pages
[i
]);
366 static void io_ctl_set_generation(struct io_ctl
*io_ctl
, u64 generation
)
370 io_ctl_map_page(io_ctl
, 1);
373 * Skip the csum areas. If we don't check crcs then we just have a
374 * 64bit chunk at the front of the first page.
376 if (io_ctl
->check_crcs
) {
377 io_ctl
->cur
+= (sizeof(u32
) * io_ctl
->num_pages
);
378 io_ctl
->size
-= sizeof(u64
) + (sizeof(u32
) * io_ctl
->num_pages
);
380 io_ctl
->cur
+= sizeof(u64
);
381 io_ctl
->size
-= sizeof(u64
) * 2;
385 *val
= cpu_to_le64(generation
);
386 io_ctl
->cur
+= sizeof(u64
);
389 static int io_ctl_check_generation(struct io_ctl
*io_ctl
, u64 generation
)
394 * Skip the crc area. If we don't check crcs then we just have a 64bit
395 * chunk at the front of the first page.
397 if (io_ctl
->check_crcs
) {
398 io_ctl
->cur
+= sizeof(u32
) * io_ctl
->num_pages
;
399 io_ctl
->size
-= sizeof(u64
) +
400 (sizeof(u32
) * io_ctl
->num_pages
);
402 io_ctl
->cur
+= sizeof(u64
);
403 io_ctl
->size
-= sizeof(u64
) * 2;
407 if (le64_to_cpu(*gen
) != generation
) {
408 printk_ratelimited(KERN_ERR
"BTRFS: space cache generation "
409 "(%Lu) does not match inode (%Lu)\n", *gen
,
411 io_ctl_unmap_page(io_ctl
);
414 io_ctl
->cur
+= sizeof(u64
);
418 static void io_ctl_set_crc(struct io_ctl
*io_ctl
, int index
)
424 if (!io_ctl
->check_crcs
) {
425 io_ctl_unmap_page(io_ctl
);
430 offset
= sizeof(u32
) * io_ctl
->num_pages
;
432 crc
= btrfs_csum_data(io_ctl
->orig
+ offset
, crc
,
433 PAGE_CACHE_SIZE
- offset
);
434 btrfs_csum_final(crc
, (char *)&crc
);
435 io_ctl_unmap_page(io_ctl
);
436 tmp
= kmap(io_ctl
->pages
[0]);
439 kunmap(io_ctl
->pages
[0]);
442 static int io_ctl_check_crc(struct io_ctl
*io_ctl
, int index
)
448 if (!io_ctl
->check_crcs
) {
449 io_ctl_map_page(io_ctl
, 0);
454 offset
= sizeof(u32
) * io_ctl
->num_pages
;
456 tmp
= kmap(io_ctl
->pages
[0]);
459 kunmap(io_ctl
->pages
[0]);
461 io_ctl_map_page(io_ctl
, 0);
462 crc
= btrfs_csum_data(io_ctl
->orig
+ offset
, crc
,
463 PAGE_CACHE_SIZE
- offset
);
464 btrfs_csum_final(crc
, (char *)&crc
);
466 printk_ratelimited(KERN_ERR
"BTRFS: csum mismatch on free "
468 io_ctl_unmap_page(io_ctl
);
475 static int io_ctl_add_entry(struct io_ctl
*io_ctl
, u64 offset
, u64 bytes
,
478 struct btrfs_free_space_entry
*entry
;
484 entry
->offset
= cpu_to_le64(offset
);
485 entry
->bytes
= cpu_to_le64(bytes
);
486 entry
->type
= (bitmap
) ? BTRFS_FREE_SPACE_BITMAP
:
487 BTRFS_FREE_SPACE_EXTENT
;
488 io_ctl
->cur
+= sizeof(struct btrfs_free_space_entry
);
489 io_ctl
->size
-= sizeof(struct btrfs_free_space_entry
);
491 if (io_ctl
->size
>= sizeof(struct btrfs_free_space_entry
))
494 io_ctl_set_crc(io_ctl
, io_ctl
->index
- 1);
496 /* No more pages to map */
497 if (io_ctl
->index
>= io_ctl
->num_pages
)
500 /* map the next page */
501 io_ctl_map_page(io_ctl
, 1);
505 static int io_ctl_add_bitmap(struct io_ctl
*io_ctl
, void *bitmap
)
511 * If we aren't at the start of the current page, unmap this one and
512 * map the next one if there is any left.
514 if (io_ctl
->cur
!= io_ctl
->orig
) {
515 io_ctl_set_crc(io_ctl
, io_ctl
->index
- 1);
516 if (io_ctl
->index
>= io_ctl
->num_pages
)
518 io_ctl_map_page(io_ctl
, 0);
521 memcpy(io_ctl
->cur
, bitmap
, PAGE_CACHE_SIZE
);
522 io_ctl_set_crc(io_ctl
, io_ctl
->index
- 1);
523 if (io_ctl
->index
< io_ctl
->num_pages
)
524 io_ctl_map_page(io_ctl
, 0);
528 static void io_ctl_zero_remaining_pages(struct io_ctl
*io_ctl
)
531 * If we're not on the boundary we know we've modified the page and we
532 * need to crc the page.
534 if (io_ctl
->cur
!= io_ctl
->orig
)
535 io_ctl_set_crc(io_ctl
, io_ctl
->index
- 1);
537 io_ctl_unmap_page(io_ctl
);
539 while (io_ctl
->index
< io_ctl
->num_pages
) {
540 io_ctl_map_page(io_ctl
, 1);
541 io_ctl_set_crc(io_ctl
, io_ctl
->index
- 1);
545 static int io_ctl_read_entry(struct io_ctl
*io_ctl
,
546 struct btrfs_free_space
*entry
, u8
*type
)
548 struct btrfs_free_space_entry
*e
;
552 ret
= io_ctl_check_crc(io_ctl
, io_ctl
->index
);
558 entry
->offset
= le64_to_cpu(e
->offset
);
559 entry
->bytes
= le64_to_cpu(e
->bytes
);
561 io_ctl
->cur
+= sizeof(struct btrfs_free_space_entry
);
562 io_ctl
->size
-= sizeof(struct btrfs_free_space_entry
);
564 if (io_ctl
->size
>= sizeof(struct btrfs_free_space_entry
))
567 io_ctl_unmap_page(io_ctl
);
572 static int io_ctl_read_bitmap(struct io_ctl
*io_ctl
,
573 struct btrfs_free_space
*entry
)
577 ret
= io_ctl_check_crc(io_ctl
, io_ctl
->index
);
581 memcpy(entry
->bitmap
, io_ctl
->cur
, PAGE_CACHE_SIZE
);
582 io_ctl_unmap_page(io_ctl
);
588 * Since we attach pinned extents after the fact we can have contiguous sections
589 * of free space that are split up in entries. This poses a problem with the
590 * tree logging stuff since it could have allocated across what appears to be 2
591 * entries since we would have merged the entries when adding the pinned extents
592 * back to the free space cache. So run through the space cache that we just
593 * loaded and merge contiguous entries. This will make the log replay stuff not
594 * blow up and it will make for nicer allocator behavior.
596 static void merge_space_tree(struct btrfs_free_space_ctl
*ctl
)
598 struct btrfs_free_space
*e
, *prev
= NULL
;
602 spin_lock(&ctl
->tree_lock
);
603 for (n
= rb_first(&ctl
->free_space_offset
); n
; n
= rb_next(n
)) {
604 e
= rb_entry(n
, struct btrfs_free_space
, offset_index
);
607 if (e
->bitmap
|| prev
->bitmap
)
609 if (prev
->offset
+ prev
->bytes
== e
->offset
) {
610 unlink_free_space(ctl
, prev
);
611 unlink_free_space(ctl
, e
);
612 prev
->bytes
+= e
->bytes
;
613 kmem_cache_free(btrfs_free_space_cachep
, e
);
614 link_free_space(ctl
, prev
);
616 spin_unlock(&ctl
->tree_lock
);
622 spin_unlock(&ctl
->tree_lock
);
625 static int __load_free_space_cache(struct btrfs_root
*root
, struct inode
*inode
,
626 struct btrfs_free_space_ctl
*ctl
,
627 struct btrfs_path
*path
, u64 offset
)
629 struct btrfs_free_space_header
*header
;
630 struct extent_buffer
*leaf
;
631 struct io_ctl io_ctl
;
632 struct btrfs_key key
;
633 struct btrfs_free_space
*e
, *n
;
634 struct list_head bitmaps
;
641 INIT_LIST_HEAD(&bitmaps
);
643 /* Nothing in the space cache, goodbye */
644 if (!i_size_read(inode
))
647 key
.objectid
= BTRFS_FREE_SPACE_OBJECTID
;
651 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
655 btrfs_release_path(path
);
661 leaf
= path
->nodes
[0];
662 header
= btrfs_item_ptr(leaf
, path
->slots
[0],
663 struct btrfs_free_space_header
);
664 num_entries
= btrfs_free_space_entries(leaf
, header
);
665 num_bitmaps
= btrfs_free_space_bitmaps(leaf
, header
);
666 generation
= btrfs_free_space_generation(leaf
, header
);
667 btrfs_release_path(path
);
669 if (BTRFS_I(inode
)->generation
!= generation
) {
670 btrfs_err(root
->fs_info
,
671 "free space inode generation (%llu) "
672 "did not match free space cache generation (%llu)",
673 BTRFS_I(inode
)->generation
, generation
);
680 ret
= io_ctl_init(&io_ctl
, inode
, root
);
684 ret
= readahead_cache(inode
);
688 ret
= io_ctl_prepare_pages(&io_ctl
, inode
, 1);
692 ret
= io_ctl_check_crc(&io_ctl
, 0);
696 ret
= io_ctl_check_generation(&io_ctl
, generation
);
700 while (num_entries
) {
701 e
= kmem_cache_zalloc(btrfs_free_space_cachep
,
706 ret
= io_ctl_read_entry(&io_ctl
, e
, &type
);
708 kmem_cache_free(btrfs_free_space_cachep
, e
);
713 kmem_cache_free(btrfs_free_space_cachep
, e
);
717 if (type
== BTRFS_FREE_SPACE_EXTENT
) {
718 spin_lock(&ctl
->tree_lock
);
719 ret
= link_free_space(ctl
, e
);
720 spin_unlock(&ctl
->tree_lock
);
722 btrfs_err(root
->fs_info
,
723 "Duplicate entries in free space cache, dumping");
724 kmem_cache_free(btrfs_free_space_cachep
, e
);
730 e
->bitmap
= kzalloc(PAGE_CACHE_SIZE
, GFP_NOFS
);
733 btrfs_free_space_cachep
, e
);
736 spin_lock(&ctl
->tree_lock
);
737 ret
= link_free_space(ctl
, e
);
738 ctl
->total_bitmaps
++;
739 ctl
->op
->recalc_thresholds(ctl
);
740 spin_unlock(&ctl
->tree_lock
);
742 btrfs_err(root
->fs_info
,
743 "Duplicate entries in free space cache, dumping");
744 kmem_cache_free(btrfs_free_space_cachep
, e
);
747 list_add_tail(&e
->list
, &bitmaps
);
753 io_ctl_unmap_page(&io_ctl
);
756 * We add the bitmaps at the end of the entries in order that
757 * the bitmap entries are added to the cache.
759 list_for_each_entry_safe(e
, n
, &bitmaps
, list
) {
760 list_del_init(&e
->list
);
761 ret
= io_ctl_read_bitmap(&io_ctl
, e
);
766 io_ctl_drop_pages(&io_ctl
);
767 merge_space_tree(ctl
);
770 io_ctl_free(&io_ctl
);
773 io_ctl_drop_pages(&io_ctl
);
774 __btrfs_remove_free_space_cache(ctl
);
778 int load_free_space_cache(struct btrfs_fs_info
*fs_info
,
779 struct btrfs_block_group_cache
*block_group
)
781 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
782 struct btrfs_root
*root
= fs_info
->tree_root
;
784 struct btrfs_path
*path
;
787 u64 used
= btrfs_block_group_used(&block_group
->item
);
790 * If this block group has been marked to be cleared for one reason or
791 * another then we can't trust the on disk cache, so just return.
793 spin_lock(&block_group
->lock
);
794 if (block_group
->disk_cache_state
!= BTRFS_DC_WRITTEN
) {
795 spin_unlock(&block_group
->lock
);
798 spin_unlock(&block_group
->lock
);
800 path
= btrfs_alloc_path();
803 path
->search_commit_root
= 1;
804 path
->skip_locking
= 1;
806 inode
= lookup_free_space_inode(root
, block_group
, path
);
808 btrfs_free_path(path
);
812 /* We may have converted the inode and made the cache invalid. */
813 spin_lock(&block_group
->lock
);
814 if (block_group
->disk_cache_state
!= BTRFS_DC_WRITTEN
) {
815 spin_unlock(&block_group
->lock
);
816 btrfs_free_path(path
);
819 spin_unlock(&block_group
->lock
);
821 ret
= __load_free_space_cache(fs_info
->tree_root
, inode
, ctl
,
822 path
, block_group
->key
.objectid
);
823 btrfs_free_path(path
);
827 spin_lock(&ctl
->tree_lock
);
828 matched
= (ctl
->free_space
== (block_group
->key
.offset
- used
-
829 block_group
->bytes_super
));
830 spin_unlock(&ctl
->tree_lock
);
833 __btrfs_remove_free_space_cache(ctl
);
834 btrfs_err(fs_info
, "block group %llu has wrong amount of free space",
835 block_group
->key
.objectid
);
840 /* This cache is bogus, make sure it gets cleared */
841 spin_lock(&block_group
->lock
);
842 block_group
->disk_cache_state
= BTRFS_DC_CLEAR
;
843 spin_unlock(&block_group
->lock
);
846 btrfs_err(fs_info
, "failed to load free space cache for block group %llu",
847 block_group
->key
.objectid
);
855 * __btrfs_write_out_cache - write out cached info to an inode
856 * @root - the root the inode belongs to
857 * @ctl - the free space cache we are going to write out
858 * @block_group - the block_group for this cache if it belongs to a block_group
859 * @trans - the trans handle
860 * @path - the path to use
861 * @offset - the offset for the key we'll insert
863 * This function writes out a free space cache struct to disk for quick recovery
864 * on mount. This will return 0 if it was successfull in writing the cache out,
865 * and -1 if it was not.
867 static int __btrfs_write_out_cache(struct btrfs_root
*root
, struct inode
*inode
,
868 struct btrfs_free_space_ctl
*ctl
,
869 struct btrfs_block_group_cache
*block_group
,
870 struct btrfs_trans_handle
*trans
,
871 struct btrfs_path
*path
, u64 offset
)
873 struct btrfs_free_space_header
*header
;
874 struct extent_buffer
*leaf
;
875 struct rb_node
*node
;
876 struct list_head
*pos
, *n
;
877 struct extent_state
*cached_state
= NULL
;
878 struct btrfs_free_cluster
*cluster
= NULL
;
879 struct extent_io_tree
*unpin
= NULL
;
880 struct io_ctl io_ctl
;
881 struct list_head bitmap_list
;
882 struct btrfs_key key
;
883 u64 start
, extent_start
, extent_end
, len
;
889 INIT_LIST_HEAD(&bitmap_list
);
891 if (!i_size_read(inode
))
894 ret
= io_ctl_init(&io_ctl
, inode
, root
);
898 /* Get the cluster for this block_group if it exists */
899 if (block_group
&& !list_empty(&block_group
->cluster_list
))
900 cluster
= list_entry(block_group
->cluster_list
.next
,
901 struct btrfs_free_cluster
,
904 /* Lock all pages first so we can lock the extent safely. */
905 io_ctl_prepare_pages(&io_ctl
, inode
, 0);
907 lock_extent_bits(&BTRFS_I(inode
)->io_tree
, 0, i_size_read(inode
) - 1,
910 node
= rb_first(&ctl
->free_space_offset
);
911 if (!node
&& cluster
) {
912 node
= rb_first(&cluster
->root
);
916 /* Make sure we can fit our crcs into the first page */
917 if (io_ctl
.check_crcs
&&
918 (io_ctl
.num_pages
* sizeof(u32
)) >= PAGE_CACHE_SIZE
)
921 io_ctl_set_generation(&io_ctl
, trans
->transid
);
923 /* Write out the extent entries */
925 struct btrfs_free_space
*e
;
927 e
= rb_entry(node
, struct btrfs_free_space
, offset_index
);
930 ret
= io_ctl_add_entry(&io_ctl
, e
->offset
, e
->bytes
,
936 list_add_tail(&e
->list
, &bitmap_list
);
939 node
= rb_next(node
);
940 if (!node
&& cluster
) {
941 node
= rb_first(&cluster
->root
);
947 * We want to add any pinned extents to our free space cache
948 * so we don't leak the space
952 * We shouldn't have switched the pinned extents yet so this is the
955 unpin
= root
->fs_info
->pinned_extents
;
958 start
= block_group
->key
.objectid
;
960 while (block_group
&& (start
< block_group
->key
.objectid
+
961 block_group
->key
.offset
)) {
962 ret
= find_first_extent_bit(unpin
, start
,
963 &extent_start
, &extent_end
,
970 /* This pinned extent is out of our range */
971 if (extent_start
>= block_group
->key
.objectid
+
972 block_group
->key
.offset
)
975 extent_start
= max(extent_start
, start
);
976 extent_end
= min(block_group
->key
.objectid
+
977 block_group
->key
.offset
, extent_end
+ 1);
978 len
= extent_end
- extent_start
;
981 ret
= io_ctl_add_entry(&io_ctl
, extent_start
, len
, NULL
);
988 /* Write out the bitmaps */
989 list_for_each_safe(pos
, n
, &bitmap_list
) {
990 struct btrfs_free_space
*entry
=
991 list_entry(pos
, struct btrfs_free_space
, list
);
993 ret
= io_ctl_add_bitmap(&io_ctl
, entry
->bitmap
);
996 list_del_init(&entry
->list
);
999 /* Zero out the rest of the pages just to make sure */
1000 io_ctl_zero_remaining_pages(&io_ctl
);
1002 ret
= btrfs_dirty_pages(root
, inode
, io_ctl
.pages
, io_ctl
.num_pages
,
1003 0, i_size_read(inode
), &cached_state
);
1004 io_ctl_drop_pages(&io_ctl
);
1005 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, 0,
1006 i_size_read(inode
) - 1, &cached_state
, GFP_NOFS
);
1011 ret
= btrfs_wait_ordered_range(inode
, 0, (u64
)-1);
1013 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, 0, inode
->i_size
- 1,
1014 EXTENT_DIRTY
| EXTENT_DELALLOC
, 0, 0, NULL
,
1019 key
.objectid
= BTRFS_FREE_SPACE_OBJECTID
;
1020 key
.offset
= offset
;
1023 ret
= btrfs_search_slot(trans
, root
, &key
, path
, 0, 1);
1025 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, 0, inode
->i_size
- 1,
1026 EXTENT_DIRTY
| EXTENT_DELALLOC
, 0, 0, NULL
,
1030 leaf
= path
->nodes
[0];
1032 struct btrfs_key found_key
;
1033 ASSERT(path
->slots
[0]);
1035 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
1036 if (found_key
.objectid
!= BTRFS_FREE_SPACE_OBJECTID
||
1037 found_key
.offset
!= offset
) {
1038 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, 0,
1040 EXTENT_DIRTY
| EXTENT_DELALLOC
, 0, 0,
1042 btrfs_release_path(path
);
1047 BTRFS_I(inode
)->generation
= trans
->transid
;
1048 header
= btrfs_item_ptr(leaf
, path
->slots
[0],
1049 struct btrfs_free_space_header
);
1050 btrfs_set_free_space_entries(leaf
, header
, entries
);
1051 btrfs_set_free_space_bitmaps(leaf
, header
, bitmaps
);
1052 btrfs_set_free_space_generation(leaf
, header
, trans
->transid
);
1053 btrfs_mark_buffer_dirty(leaf
);
1054 btrfs_release_path(path
);
1058 io_ctl_free(&io_ctl
);
1060 invalidate_inode_pages2(inode
->i_mapping
);
1061 BTRFS_I(inode
)->generation
= 0;
1063 btrfs_update_inode(trans
, root
, inode
);
1067 list_for_each_safe(pos
, n
, &bitmap_list
) {
1068 struct btrfs_free_space
*entry
=
1069 list_entry(pos
, struct btrfs_free_space
, list
);
1070 list_del_init(&entry
->list
);
1072 io_ctl_drop_pages(&io_ctl
);
1073 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, 0,
1074 i_size_read(inode
) - 1, &cached_state
, GFP_NOFS
);
1078 int btrfs_write_out_cache(struct btrfs_root
*root
,
1079 struct btrfs_trans_handle
*trans
,
1080 struct btrfs_block_group_cache
*block_group
,
1081 struct btrfs_path
*path
)
1083 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
1084 struct inode
*inode
;
1087 root
= root
->fs_info
->tree_root
;
1089 spin_lock(&block_group
->lock
);
1090 if (block_group
->disk_cache_state
< BTRFS_DC_SETUP
) {
1091 spin_unlock(&block_group
->lock
);
1094 spin_unlock(&block_group
->lock
);
1096 inode
= lookup_free_space_inode(root
, block_group
, path
);
1100 ret
= __btrfs_write_out_cache(root
, inode
, ctl
, block_group
, trans
,
1101 path
, block_group
->key
.objectid
);
1103 spin_lock(&block_group
->lock
);
1104 block_group
->disk_cache_state
= BTRFS_DC_ERROR
;
1105 spin_unlock(&block_group
->lock
);
1108 btrfs_err(root
->fs_info
,
1109 "failed to write free space cache for block group %llu",
1110 block_group
->key
.objectid
);
1118 static inline unsigned long offset_to_bit(u64 bitmap_start
, u32 unit
,
1121 ASSERT(offset
>= bitmap_start
);
1122 offset
-= bitmap_start
;
1123 return (unsigned long)(div_u64(offset
, unit
));
1126 static inline unsigned long bytes_to_bits(u64 bytes
, u32 unit
)
1128 return (unsigned long)(div_u64(bytes
, unit
));
1131 static inline u64
offset_to_bitmap(struct btrfs_free_space_ctl
*ctl
,
1135 u64 bytes_per_bitmap
;
1137 bytes_per_bitmap
= BITS_PER_BITMAP
* ctl
->unit
;
1138 bitmap_start
= offset
- ctl
->start
;
1139 bitmap_start
= div64_u64(bitmap_start
, bytes_per_bitmap
);
1140 bitmap_start
*= bytes_per_bitmap
;
1141 bitmap_start
+= ctl
->start
;
1143 return bitmap_start
;
1146 static int tree_insert_offset(struct rb_root
*root
, u64 offset
,
1147 struct rb_node
*node
, int bitmap
)
1149 struct rb_node
**p
= &root
->rb_node
;
1150 struct rb_node
*parent
= NULL
;
1151 struct btrfs_free_space
*info
;
1155 info
= rb_entry(parent
, struct btrfs_free_space
, offset_index
);
1157 if (offset
< info
->offset
) {
1159 } else if (offset
> info
->offset
) {
1160 p
= &(*p
)->rb_right
;
1163 * we could have a bitmap entry and an extent entry
1164 * share the same offset. If this is the case, we want
1165 * the extent entry to always be found first if we do a
1166 * linear search through the tree, since we want to have
1167 * the quickest allocation time, and allocating from an
1168 * extent is faster than allocating from a bitmap. So
1169 * if we're inserting a bitmap and we find an entry at
1170 * this offset, we want to go right, or after this entry
1171 * logically. If we are inserting an extent and we've
1172 * found a bitmap, we want to go left, or before
1180 p
= &(*p
)->rb_right
;
1182 if (!info
->bitmap
) {
1191 rb_link_node(node
, parent
, p
);
1192 rb_insert_color(node
, root
);
1198 * searches the tree for the given offset.
1200 * fuzzy - If this is set, then we are trying to make an allocation, and we just
1201 * want a section that has at least bytes size and comes at or after the given
1204 static struct btrfs_free_space
*
1205 tree_search_offset(struct btrfs_free_space_ctl
*ctl
,
1206 u64 offset
, int bitmap_only
, int fuzzy
)
1208 struct rb_node
*n
= ctl
->free_space_offset
.rb_node
;
1209 struct btrfs_free_space
*entry
, *prev
= NULL
;
1211 /* find entry that is closest to the 'offset' */
1218 entry
= rb_entry(n
, struct btrfs_free_space
, offset_index
);
1221 if (offset
< entry
->offset
)
1223 else if (offset
> entry
->offset
)
1236 * bitmap entry and extent entry may share same offset,
1237 * in that case, bitmap entry comes after extent entry.
1242 entry
= rb_entry(n
, struct btrfs_free_space
, offset_index
);
1243 if (entry
->offset
!= offset
)
1246 WARN_ON(!entry
->bitmap
);
1249 if (entry
->bitmap
) {
1251 * if previous extent entry covers the offset,
1252 * we should return it instead of the bitmap entry
1254 n
= rb_prev(&entry
->offset_index
);
1256 prev
= rb_entry(n
, struct btrfs_free_space
,
1258 if (!prev
->bitmap
&&
1259 prev
->offset
+ prev
->bytes
> offset
)
1269 /* find last entry before the 'offset' */
1271 if (entry
->offset
> offset
) {
1272 n
= rb_prev(&entry
->offset_index
);
1274 entry
= rb_entry(n
, struct btrfs_free_space
,
1276 ASSERT(entry
->offset
<= offset
);
1285 if (entry
->bitmap
) {
1286 n
= rb_prev(&entry
->offset_index
);
1288 prev
= rb_entry(n
, struct btrfs_free_space
,
1290 if (!prev
->bitmap
&&
1291 prev
->offset
+ prev
->bytes
> offset
)
1294 if (entry
->offset
+ BITS_PER_BITMAP
* ctl
->unit
> offset
)
1296 } else if (entry
->offset
+ entry
->bytes
> offset
)
1303 if (entry
->bitmap
) {
1304 if (entry
->offset
+ BITS_PER_BITMAP
*
1308 if (entry
->offset
+ entry
->bytes
> offset
)
1312 n
= rb_next(&entry
->offset_index
);
1315 entry
= rb_entry(n
, struct btrfs_free_space
, offset_index
);
1321 __unlink_free_space(struct btrfs_free_space_ctl
*ctl
,
1322 struct btrfs_free_space
*info
)
1324 rb_erase(&info
->offset_index
, &ctl
->free_space_offset
);
1325 ctl
->free_extents
--;
1328 static void unlink_free_space(struct btrfs_free_space_ctl
*ctl
,
1329 struct btrfs_free_space
*info
)
1331 __unlink_free_space(ctl
, info
);
1332 ctl
->free_space
-= info
->bytes
;
1335 static int link_free_space(struct btrfs_free_space_ctl
*ctl
,
1336 struct btrfs_free_space
*info
)
1340 ASSERT(info
->bytes
|| info
->bitmap
);
1341 ret
= tree_insert_offset(&ctl
->free_space_offset
, info
->offset
,
1342 &info
->offset_index
, (info
->bitmap
!= NULL
));
1346 ctl
->free_space
+= info
->bytes
;
1347 ctl
->free_extents
++;
1351 static void recalculate_thresholds(struct btrfs_free_space_ctl
*ctl
)
1353 struct btrfs_block_group_cache
*block_group
= ctl
->private;
1357 u64 size
= block_group
->key
.offset
;
1358 u64 bytes_per_bg
= BITS_PER_BITMAP
* ctl
->unit
;
1359 int max_bitmaps
= div64_u64(size
+ bytes_per_bg
- 1, bytes_per_bg
);
1361 max_bitmaps
= max(max_bitmaps
, 1);
1363 ASSERT(ctl
->total_bitmaps
<= max_bitmaps
);
1366 * The goal is to keep the total amount of memory used per 1gb of space
1367 * at or below 32k, so we need to adjust how much memory we allow to be
1368 * used by extent based free space tracking
1370 if (size
< 1024 * 1024 * 1024)
1371 max_bytes
= MAX_CACHE_BYTES_PER_GIG
;
1373 max_bytes
= MAX_CACHE_BYTES_PER_GIG
*
1374 div64_u64(size
, 1024 * 1024 * 1024);
1377 * we want to account for 1 more bitmap than what we have so we can make
1378 * sure we don't go over our overall goal of MAX_CACHE_BYTES_PER_GIG as
1379 * we add more bitmaps.
1381 bitmap_bytes
= (ctl
->total_bitmaps
+ 1) * PAGE_CACHE_SIZE
;
1383 if (bitmap_bytes
>= max_bytes
) {
1384 ctl
->extents_thresh
= 0;
1389 * we want the extent entry threshold to always be at most 1/2 the maxw
1390 * bytes we can have, or whatever is less than that.
1392 extent_bytes
= max_bytes
- bitmap_bytes
;
1393 extent_bytes
= min_t(u64
, extent_bytes
, div64_u64(max_bytes
, 2));
1395 ctl
->extents_thresh
=
1396 div64_u64(extent_bytes
, (sizeof(struct btrfs_free_space
)));
1399 static inline void __bitmap_clear_bits(struct btrfs_free_space_ctl
*ctl
,
1400 struct btrfs_free_space
*info
,
1401 u64 offset
, u64 bytes
)
1403 unsigned long start
, count
;
1405 start
= offset_to_bit(info
->offset
, ctl
->unit
, offset
);
1406 count
= bytes_to_bits(bytes
, ctl
->unit
);
1407 ASSERT(start
+ count
<= BITS_PER_BITMAP
);
1409 bitmap_clear(info
->bitmap
, start
, count
);
1411 info
->bytes
-= bytes
;
1414 static void bitmap_clear_bits(struct btrfs_free_space_ctl
*ctl
,
1415 struct btrfs_free_space
*info
, u64 offset
,
1418 __bitmap_clear_bits(ctl
, info
, offset
, bytes
);
1419 ctl
->free_space
-= bytes
;
1422 static void bitmap_set_bits(struct btrfs_free_space_ctl
*ctl
,
1423 struct btrfs_free_space
*info
, u64 offset
,
1426 unsigned long start
, count
;
1428 start
= offset_to_bit(info
->offset
, ctl
->unit
, offset
);
1429 count
= bytes_to_bits(bytes
, ctl
->unit
);
1430 ASSERT(start
+ count
<= BITS_PER_BITMAP
);
1432 bitmap_set(info
->bitmap
, start
, count
);
1434 info
->bytes
+= bytes
;
1435 ctl
->free_space
+= bytes
;
1439 * If we can not find suitable extent, we will use bytes to record
1440 * the size of the max extent.
1442 static int search_bitmap(struct btrfs_free_space_ctl
*ctl
,
1443 struct btrfs_free_space
*bitmap_info
, u64
*offset
,
1446 unsigned long found_bits
= 0;
1447 unsigned long max_bits
= 0;
1448 unsigned long bits
, i
;
1449 unsigned long next_zero
;
1450 unsigned long extent_bits
;
1452 i
= offset_to_bit(bitmap_info
->offset
, ctl
->unit
,
1453 max_t(u64
, *offset
, bitmap_info
->offset
));
1454 bits
= bytes_to_bits(*bytes
, ctl
->unit
);
1456 for_each_set_bit_from(i
, bitmap_info
->bitmap
, BITS_PER_BITMAP
) {
1457 next_zero
= find_next_zero_bit(bitmap_info
->bitmap
,
1458 BITS_PER_BITMAP
, i
);
1459 extent_bits
= next_zero
- i
;
1460 if (extent_bits
>= bits
) {
1461 found_bits
= extent_bits
;
1463 } else if (extent_bits
> max_bits
) {
1464 max_bits
= extent_bits
;
1470 *offset
= (u64
)(i
* ctl
->unit
) + bitmap_info
->offset
;
1471 *bytes
= (u64
)(found_bits
) * ctl
->unit
;
1475 *bytes
= (u64
)(max_bits
) * ctl
->unit
;
1479 /* Cache the size of the max extent in bytes */
1480 static struct btrfs_free_space
*
1481 find_free_space(struct btrfs_free_space_ctl
*ctl
, u64
*offset
, u64
*bytes
,
1482 unsigned long align
, u64
*max_extent_size
)
1484 struct btrfs_free_space
*entry
;
1485 struct rb_node
*node
;
1490 if (!ctl
->free_space_offset
.rb_node
)
1493 entry
= tree_search_offset(ctl
, offset_to_bitmap(ctl
, *offset
), 0, 1);
1497 for (node
= &entry
->offset_index
; node
; node
= rb_next(node
)) {
1498 entry
= rb_entry(node
, struct btrfs_free_space
, offset_index
);
1499 if (entry
->bytes
< *bytes
) {
1500 if (entry
->bytes
> *max_extent_size
)
1501 *max_extent_size
= entry
->bytes
;
1505 /* make sure the space returned is big enough
1506 * to match our requested alignment
1508 if (*bytes
>= align
) {
1509 tmp
= entry
->offset
- ctl
->start
+ align
- 1;
1511 tmp
= tmp
* align
+ ctl
->start
;
1512 align_off
= tmp
- entry
->offset
;
1515 tmp
= entry
->offset
;
1518 if (entry
->bytes
< *bytes
+ align_off
) {
1519 if (entry
->bytes
> *max_extent_size
)
1520 *max_extent_size
= entry
->bytes
;
1524 if (entry
->bitmap
) {
1527 ret
= search_bitmap(ctl
, entry
, &tmp
, &size
);
1532 } else if (size
> *max_extent_size
) {
1533 *max_extent_size
= size
;
1539 *bytes
= entry
->bytes
- align_off
;
1546 static void add_new_bitmap(struct btrfs_free_space_ctl
*ctl
,
1547 struct btrfs_free_space
*info
, u64 offset
)
1549 info
->offset
= offset_to_bitmap(ctl
, offset
);
1551 INIT_LIST_HEAD(&info
->list
);
1552 link_free_space(ctl
, info
);
1553 ctl
->total_bitmaps
++;
1555 ctl
->op
->recalc_thresholds(ctl
);
1558 static void free_bitmap(struct btrfs_free_space_ctl
*ctl
,
1559 struct btrfs_free_space
*bitmap_info
)
1561 unlink_free_space(ctl
, bitmap_info
);
1562 kfree(bitmap_info
->bitmap
);
1563 kmem_cache_free(btrfs_free_space_cachep
, bitmap_info
);
1564 ctl
->total_bitmaps
--;
1565 ctl
->op
->recalc_thresholds(ctl
);
1568 static noinline
int remove_from_bitmap(struct btrfs_free_space_ctl
*ctl
,
1569 struct btrfs_free_space
*bitmap_info
,
1570 u64
*offset
, u64
*bytes
)
1573 u64 search_start
, search_bytes
;
1577 end
= bitmap_info
->offset
+ (u64
)(BITS_PER_BITMAP
* ctl
->unit
) - 1;
1580 * We need to search for bits in this bitmap. We could only cover some
1581 * of the extent in this bitmap thanks to how we add space, so we need
1582 * to search for as much as it as we can and clear that amount, and then
1583 * go searching for the next bit.
1585 search_start
= *offset
;
1586 search_bytes
= ctl
->unit
;
1587 search_bytes
= min(search_bytes
, end
- search_start
+ 1);
1588 ret
= search_bitmap(ctl
, bitmap_info
, &search_start
, &search_bytes
);
1589 if (ret
< 0 || search_start
!= *offset
)
1592 /* We may have found more bits than what we need */
1593 search_bytes
= min(search_bytes
, *bytes
);
1595 /* Cannot clear past the end of the bitmap */
1596 search_bytes
= min(search_bytes
, end
- search_start
+ 1);
1598 bitmap_clear_bits(ctl
, bitmap_info
, search_start
, search_bytes
);
1599 *offset
+= search_bytes
;
1600 *bytes
-= search_bytes
;
1603 struct rb_node
*next
= rb_next(&bitmap_info
->offset_index
);
1604 if (!bitmap_info
->bytes
)
1605 free_bitmap(ctl
, bitmap_info
);
1608 * no entry after this bitmap, but we still have bytes to
1609 * remove, so something has gone wrong.
1614 bitmap_info
= rb_entry(next
, struct btrfs_free_space
,
1618 * if the next entry isn't a bitmap we need to return to let the
1619 * extent stuff do its work.
1621 if (!bitmap_info
->bitmap
)
1625 * Ok the next item is a bitmap, but it may not actually hold
1626 * the information for the rest of this free space stuff, so
1627 * look for it, and if we don't find it return so we can try
1628 * everything over again.
1630 search_start
= *offset
;
1631 search_bytes
= ctl
->unit
;
1632 ret
= search_bitmap(ctl
, bitmap_info
, &search_start
,
1634 if (ret
< 0 || search_start
!= *offset
)
1638 } else if (!bitmap_info
->bytes
)
1639 free_bitmap(ctl
, bitmap_info
);
1644 static u64
add_bytes_to_bitmap(struct btrfs_free_space_ctl
*ctl
,
1645 struct btrfs_free_space
*info
, u64 offset
,
1648 u64 bytes_to_set
= 0;
1651 end
= info
->offset
+ (u64
)(BITS_PER_BITMAP
* ctl
->unit
);
1653 bytes_to_set
= min(end
- offset
, bytes
);
1655 bitmap_set_bits(ctl
, info
, offset
, bytes_to_set
);
1657 return bytes_to_set
;
1661 static bool use_bitmap(struct btrfs_free_space_ctl
*ctl
,
1662 struct btrfs_free_space
*info
)
1664 struct btrfs_block_group_cache
*block_group
= ctl
->private;
1667 * If we are below the extents threshold then we can add this as an
1668 * extent, and don't have to deal with the bitmap
1670 if (ctl
->free_extents
< ctl
->extents_thresh
) {
1672 * If this block group has some small extents we don't want to
1673 * use up all of our free slots in the cache with them, we want
1674 * to reserve them to larger extents, however if we have plent
1675 * of cache left then go ahead an dadd them, no sense in adding
1676 * the overhead of a bitmap if we don't have to.
1678 if (info
->bytes
<= block_group
->sectorsize
* 4) {
1679 if (ctl
->free_extents
* 2 <= ctl
->extents_thresh
)
1687 * The original block groups from mkfs can be really small, like 8
1688 * megabytes, so don't bother with a bitmap for those entries. However
1689 * some block groups can be smaller than what a bitmap would cover but
1690 * are still large enough that they could overflow the 32k memory limit,
1691 * so allow those block groups to still be allowed to have a bitmap
1694 if (((BITS_PER_BITMAP
* ctl
->unit
) >> 1) > block_group
->key
.offset
)
1700 static struct btrfs_free_space_op free_space_op
= {
1701 .recalc_thresholds
= recalculate_thresholds
,
1702 .use_bitmap
= use_bitmap
,
1705 static int insert_into_bitmap(struct btrfs_free_space_ctl
*ctl
,
1706 struct btrfs_free_space
*info
)
1708 struct btrfs_free_space
*bitmap_info
;
1709 struct btrfs_block_group_cache
*block_group
= NULL
;
1711 u64 bytes
, offset
, bytes_added
;
1714 bytes
= info
->bytes
;
1715 offset
= info
->offset
;
1717 if (!ctl
->op
->use_bitmap(ctl
, info
))
1720 if (ctl
->op
== &free_space_op
)
1721 block_group
= ctl
->private;
1724 * Since we link bitmaps right into the cluster we need to see if we
1725 * have a cluster here, and if so and it has our bitmap we need to add
1726 * the free space to that bitmap.
1728 if (block_group
&& !list_empty(&block_group
->cluster_list
)) {
1729 struct btrfs_free_cluster
*cluster
;
1730 struct rb_node
*node
;
1731 struct btrfs_free_space
*entry
;
1733 cluster
= list_entry(block_group
->cluster_list
.next
,
1734 struct btrfs_free_cluster
,
1736 spin_lock(&cluster
->lock
);
1737 node
= rb_first(&cluster
->root
);
1739 spin_unlock(&cluster
->lock
);
1740 goto no_cluster_bitmap
;
1743 entry
= rb_entry(node
, struct btrfs_free_space
, offset_index
);
1744 if (!entry
->bitmap
) {
1745 spin_unlock(&cluster
->lock
);
1746 goto no_cluster_bitmap
;
1749 if (entry
->offset
== offset_to_bitmap(ctl
, offset
)) {
1750 bytes_added
= add_bytes_to_bitmap(ctl
, entry
,
1752 bytes
-= bytes_added
;
1753 offset
+= bytes_added
;
1755 spin_unlock(&cluster
->lock
);
1763 bitmap_info
= tree_search_offset(ctl
, offset_to_bitmap(ctl
, offset
),
1770 bytes_added
= add_bytes_to_bitmap(ctl
, bitmap_info
, offset
, bytes
);
1771 bytes
-= bytes_added
;
1772 offset
+= bytes_added
;
1782 if (info
&& info
->bitmap
) {
1783 add_new_bitmap(ctl
, info
, offset
);
1788 spin_unlock(&ctl
->tree_lock
);
1790 /* no pre-allocated info, allocate a new one */
1792 info
= kmem_cache_zalloc(btrfs_free_space_cachep
,
1795 spin_lock(&ctl
->tree_lock
);
1801 /* allocate the bitmap */
1802 info
->bitmap
= kzalloc(PAGE_CACHE_SIZE
, GFP_NOFS
);
1803 spin_lock(&ctl
->tree_lock
);
1804 if (!info
->bitmap
) {
1814 kfree(info
->bitmap
);
1815 kmem_cache_free(btrfs_free_space_cachep
, info
);
1821 static bool try_merge_free_space(struct btrfs_free_space_ctl
*ctl
,
1822 struct btrfs_free_space
*info
, bool update_stat
)
1824 struct btrfs_free_space
*left_info
;
1825 struct btrfs_free_space
*right_info
;
1826 bool merged
= false;
1827 u64 offset
= info
->offset
;
1828 u64 bytes
= info
->bytes
;
1831 * first we want to see if there is free space adjacent to the range we
1832 * are adding, if there is remove that struct and add a new one to
1833 * cover the entire range
1835 right_info
= tree_search_offset(ctl
, offset
+ bytes
, 0, 0);
1836 if (right_info
&& rb_prev(&right_info
->offset_index
))
1837 left_info
= rb_entry(rb_prev(&right_info
->offset_index
),
1838 struct btrfs_free_space
, offset_index
);
1840 left_info
= tree_search_offset(ctl
, offset
- 1, 0, 0);
1842 if (right_info
&& !right_info
->bitmap
) {
1844 unlink_free_space(ctl
, right_info
);
1846 __unlink_free_space(ctl
, right_info
);
1847 info
->bytes
+= right_info
->bytes
;
1848 kmem_cache_free(btrfs_free_space_cachep
, right_info
);
1852 if (left_info
&& !left_info
->bitmap
&&
1853 left_info
->offset
+ left_info
->bytes
== offset
) {
1855 unlink_free_space(ctl
, left_info
);
1857 __unlink_free_space(ctl
, left_info
);
1858 info
->offset
= left_info
->offset
;
1859 info
->bytes
+= left_info
->bytes
;
1860 kmem_cache_free(btrfs_free_space_cachep
, left_info
);
1867 int __btrfs_add_free_space(struct btrfs_free_space_ctl
*ctl
,
1868 u64 offset
, u64 bytes
)
1870 struct btrfs_free_space
*info
;
1873 info
= kmem_cache_zalloc(btrfs_free_space_cachep
, GFP_NOFS
);
1877 info
->offset
= offset
;
1878 info
->bytes
= bytes
;
1880 spin_lock(&ctl
->tree_lock
);
1882 if (try_merge_free_space(ctl
, info
, true))
1886 * There was no extent directly to the left or right of this new
1887 * extent then we know we're going to have to allocate a new extent, so
1888 * before we do that see if we need to drop this into a bitmap
1890 ret
= insert_into_bitmap(ctl
, info
);
1898 ret
= link_free_space(ctl
, info
);
1900 kmem_cache_free(btrfs_free_space_cachep
, info
);
1902 spin_unlock(&ctl
->tree_lock
);
1905 printk(KERN_CRIT
"BTRFS: unable to add free space :%d\n", ret
);
1906 ASSERT(ret
!= -EEXIST
);
1912 int btrfs_remove_free_space(struct btrfs_block_group_cache
*block_group
,
1913 u64 offset
, u64 bytes
)
1915 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
1916 struct btrfs_free_space
*info
;
1918 bool re_search
= false;
1920 spin_lock(&ctl
->tree_lock
);
1927 info
= tree_search_offset(ctl
, offset
, 0, 0);
1930 * oops didn't find an extent that matched the space we wanted
1931 * to remove, look for a bitmap instead
1933 info
= tree_search_offset(ctl
, offset_to_bitmap(ctl
, offset
),
1937 * If we found a partial bit of our free space in a
1938 * bitmap but then couldn't find the other part this may
1939 * be a problem, so WARN about it.
1947 if (!info
->bitmap
) {
1948 unlink_free_space(ctl
, info
);
1949 if (offset
== info
->offset
) {
1950 u64 to_free
= min(bytes
, info
->bytes
);
1952 info
->bytes
-= to_free
;
1953 info
->offset
+= to_free
;
1955 ret
= link_free_space(ctl
, info
);
1958 kmem_cache_free(btrfs_free_space_cachep
, info
);
1965 u64 old_end
= info
->bytes
+ info
->offset
;
1967 info
->bytes
= offset
- info
->offset
;
1968 ret
= link_free_space(ctl
, info
);
1973 /* Not enough bytes in this entry to satisfy us */
1974 if (old_end
< offset
+ bytes
) {
1975 bytes
-= old_end
- offset
;
1978 } else if (old_end
== offset
+ bytes
) {
1982 spin_unlock(&ctl
->tree_lock
);
1984 ret
= btrfs_add_free_space(block_group
, offset
+ bytes
,
1985 old_end
- (offset
+ bytes
));
1991 ret
= remove_from_bitmap(ctl
, info
, &offset
, &bytes
);
1992 if (ret
== -EAGAIN
) {
1997 spin_unlock(&ctl
->tree_lock
);
2002 void btrfs_dump_free_space(struct btrfs_block_group_cache
*block_group
,
2005 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
2006 struct btrfs_free_space
*info
;
2010 for (n
= rb_first(&ctl
->free_space_offset
); n
; n
= rb_next(n
)) {
2011 info
= rb_entry(n
, struct btrfs_free_space
, offset_index
);
2012 if (info
->bytes
>= bytes
&& !block_group
->ro
)
2014 btrfs_crit(block_group
->fs_info
,
2015 "entry offset %llu, bytes %llu, bitmap %s",
2016 info
->offset
, info
->bytes
,
2017 (info
->bitmap
) ? "yes" : "no");
2019 btrfs_info(block_group
->fs_info
, "block group has cluster?: %s",
2020 list_empty(&block_group
->cluster_list
) ? "no" : "yes");
2021 btrfs_info(block_group
->fs_info
,
2022 "%d blocks of free space at or bigger than bytes is", count
);
2025 void btrfs_init_free_space_ctl(struct btrfs_block_group_cache
*block_group
)
2027 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
2029 spin_lock_init(&ctl
->tree_lock
);
2030 ctl
->unit
= block_group
->sectorsize
;
2031 ctl
->start
= block_group
->key
.objectid
;
2032 ctl
->private = block_group
;
2033 ctl
->op
= &free_space_op
;
2036 * we only want to have 32k of ram per block group for keeping
2037 * track of free space, and if we pass 1/2 of that we want to
2038 * start converting things over to using bitmaps
2040 ctl
->extents_thresh
= ((1024 * 32) / 2) /
2041 sizeof(struct btrfs_free_space
);
2045 * for a given cluster, put all of its extents back into the free
2046 * space cache. If the block group passed doesn't match the block group
2047 * pointed to by the cluster, someone else raced in and freed the
2048 * cluster already. In that case, we just return without changing anything
2051 __btrfs_return_cluster_to_free_space(
2052 struct btrfs_block_group_cache
*block_group
,
2053 struct btrfs_free_cluster
*cluster
)
2055 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
2056 struct btrfs_free_space
*entry
;
2057 struct rb_node
*node
;
2059 spin_lock(&cluster
->lock
);
2060 if (cluster
->block_group
!= block_group
)
2063 cluster
->block_group
= NULL
;
2064 cluster
->window_start
= 0;
2065 list_del_init(&cluster
->block_group_list
);
2067 node
= rb_first(&cluster
->root
);
2071 entry
= rb_entry(node
, struct btrfs_free_space
, offset_index
);
2072 node
= rb_next(&entry
->offset_index
);
2073 rb_erase(&entry
->offset_index
, &cluster
->root
);
2075 bitmap
= (entry
->bitmap
!= NULL
);
2077 try_merge_free_space(ctl
, entry
, false);
2078 tree_insert_offset(&ctl
->free_space_offset
,
2079 entry
->offset
, &entry
->offset_index
, bitmap
);
2081 cluster
->root
= RB_ROOT
;
2084 spin_unlock(&cluster
->lock
);
2085 btrfs_put_block_group(block_group
);
2089 static void __btrfs_remove_free_space_cache_locked(
2090 struct btrfs_free_space_ctl
*ctl
)
2092 struct btrfs_free_space
*info
;
2093 struct rb_node
*node
;
2095 while ((node
= rb_last(&ctl
->free_space_offset
)) != NULL
) {
2096 info
= rb_entry(node
, struct btrfs_free_space
, offset_index
);
2097 if (!info
->bitmap
) {
2098 unlink_free_space(ctl
, info
);
2099 kmem_cache_free(btrfs_free_space_cachep
, info
);
2101 free_bitmap(ctl
, info
);
2103 if (need_resched()) {
2104 spin_unlock(&ctl
->tree_lock
);
2106 spin_lock(&ctl
->tree_lock
);
2111 void __btrfs_remove_free_space_cache(struct btrfs_free_space_ctl
*ctl
)
2113 spin_lock(&ctl
->tree_lock
);
2114 __btrfs_remove_free_space_cache_locked(ctl
);
2115 spin_unlock(&ctl
->tree_lock
);
2118 void btrfs_remove_free_space_cache(struct btrfs_block_group_cache
*block_group
)
2120 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
2121 struct btrfs_free_cluster
*cluster
;
2122 struct list_head
*head
;
2124 spin_lock(&ctl
->tree_lock
);
2125 while ((head
= block_group
->cluster_list
.next
) !=
2126 &block_group
->cluster_list
) {
2127 cluster
= list_entry(head
, struct btrfs_free_cluster
,
2130 WARN_ON(cluster
->block_group
!= block_group
);
2131 __btrfs_return_cluster_to_free_space(block_group
, cluster
);
2132 if (need_resched()) {
2133 spin_unlock(&ctl
->tree_lock
);
2135 spin_lock(&ctl
->tree_lock
);
2138 __btrfs_remove_free_space_cache_locked(ctl
);
2139 spin_unlock(&ctl
->tree_lock
);
2143 u64
btrfs_find_space_for_alloc(struct btrfs_block_group_cache
*block_group
,
2144 u64 offset
, u64 bytes
, u64 empty_size
,
2145 u64
*max_extent_size
)
2147 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
2148 struct btrfs_free_space
*entry
= NULL
;
2149 u64 bytes_search
= bytes
+ empty_size
;
2152 u64 align_gap_len
= 0;
2154 spin_lock(&ctl
->tree_lock
);
2155 entry
= find_free_space(ctl
, &offset
, &bytes_search
,
2156 block_group
->full_stripe_len
, max_extent_size
);
2161 if (entry
->bitmap
) {
2162 bitmap_clear_bits(ctl
, entry
, offset
, bytes
);
2164 free_bitmap(ctl
, entry
);
2166 unlink_free_space(ctl
, entry
);
2167 align_gap_len
= offset
- entry
->offset
;
2168 align_gap
= entry
->offset
;
2170 entry
->offset
= offset
+ bytes
;
2171 WARN_ON(entry
->bytes
< bytes
+ align_gap_len
);
2173 entry
->bytes
-= bytes
+ align_gap_len
;
2175 kmem_cache_free(btrfs_free_space_cachep
, entry
);
2177 link_free_space(ctl
, entry
);
2180 spin_unlock(&ctl
->tree_lock
);
2183 __btrfs_add_free_space(ctl
, align_gap
, align_gap_len
);
2188 * given a cluster, put all of its extents back into the free space
2189 * cache. If a block group is passed, this function will only free
2190 * a cluster that belongs to the passed block group.
2192 * Otherwise, it'll get a reference on the block group pointed to by the
2193 * cluster and remove the cluster from it.
2195 int btrfs_return_cluster_to_free_space(
2196 struct btrfs_block_group_cache
*block_group
,
2197 struct btrfs_free_cluster
*cluster
)
2199 struct btrfs_free_space_ctl
*ctl
;
2202 /* first, get a safe pointer to the block group */
2203 spin_lock(&cluster
->lock
);
2205 block_group
= cluster
->block_group
;
2207 spin_unlock(&cluster
->lock
);
2210 } else if (cluster
->block_group
!= block_group
) {
2211 /* someone else has already freed it don't redo their work */
2212 spin_unlock(&cluster
->lock
);
2215 atomic_inc(&block_group
->count
);
2216 spin_unlock(&cluster
->lock
);
2218 ctl
= block_group
->free_space_ctl
;
2220 /* now return any extents the cluster had on it */
2221 spin_lock(&ctl
->tree_lock
);
2222 ret
= __btrfs_return_cluster_to_free_space(block_group
, cluster
);
2223 spin_unlock(&ctl
->tree_lock
);
2225 /* finally drop our ref */
2226 btrfs_put_block_group(block_group
);
2230 static u64
btrfs_alloc_from_bitmap(struct btrfs_block_group_cache
*block_group
,
2231 struct btrfs_free_cluster
*cluster
,
2232 struct btrfs_free_space
*entry
,
2233 u64 bytes
, u64 min_start
,
2234 u64
*max_extent_size
)
2236 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
2238 u64 search_start
= cluster
->window_start
;
2239 u64 search_bytes
= bytes
;
2242 search_start
= min_start
;
2243 search_bytes
= bytes
;
2245 err
= search_bitmap(ctl
, entry
, &search_start
, &search_bytes
);
2247 if (search_bytes
> *max_extent_size
)
2248 *max_extent_size
= search_bytes
;
2253 __bitmap_clear_bits(ctl
, entry
, ret
, bytes
);
2259 * given a cluster, try to allocate 'bytes' from it, returns 0
2260 * if it couldn't find anything suitably large, or a logical disk offset
2261 * if things worked out
2263 u64
btrfs_alloc_from_cluster(struct btrfs_block_group_cache
*block_group
,
2264 struct btrfs_free_cluster
*cluster
, u64 bytes
,
2265 u64 min_start
, u64
*max_extent_size
)
2267 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
2268 struct btrfs_free_space
*entry
= NULL
;
2269 struct rb_node
*node
;
2272 spin_lock(&cluster
->lock
);
2273 if (bytes
> cluster
->max_size
)
2276 if (cluster
->block_group
!= block_group
)
2279 node
= rb_first(&cluster
->root
);
2283 entry
= rb_entry(node
, struct btrfs_free_space
, offset_index
);
2285 if (entry
->bytes
< bytes
&& entry
->bytes
> *max_extent_size
)
2286 *max_extent_size
= entry
->bytes
;
2288 if (entry
->bytes
< bytes
||
2289 (!entry
->bitmap
&& entry
->offset
< min_start
)) {
2290 node
= rb_next(&entry
->offset_index
);
2293 entry
= rb_entry(node
, struct btrfs_free_space
,
2298 if (entry
->bitmap
) {
2299 ret
= btrfs_alloc_from_bitmap(block_group
,
2300 cluster
, entry
, bytes
,
2301 cluster
->window_start
,
2304 node
= rb_next(&entry
->offset_index
);
2307 entry
= rb_entry(node
, struct btrfs_free_space
,
2311 cluster
->window_start
+= bytes
;
2313 ret
= entry
->offset
;
2315 entry
->offset
+= bytes
;
2316 entry
->bytes
-= bytes
;
2319 if (entry
->bytes
== 0)
2320 rb_erase(&entry
->offset_index
, &cluster
->root
);
2324 spin_unlock(&cluster
->lock
);
2329 spin_lock(&ctl
->tree_lock
);
2331 ctl
->free_space
-= bytes
;
2332 if (entry
->bytes
== 0) {
2333 ctl
->free_extents
--;
2334 if (entry
->bitmap
) {
2335 kfree(entry
->bitmap
);
2336 ctl
->total_bitmaps
--;
2337 ctl
->op
->recalc_thresholds(ctl
);
2339 kmem_cache_free(btrfs_free_space_cachep
, entry
);
2342 spin_unlock(&ctl
->tree_lock
);
2347 static int btrfs_bitmap_cluster(struct btrfs_block_group_cache
*block_group
,
2348 struct btrfs_free_space
*entry
,
2349 struct btrfs_free_cluster
*cluster
,
2350 u64 offset
, u64 bytes
,
2351 u64 cont1_bytes
, u64 min_bytes
)
2353 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
2354 unsigned long next_zero
;
2356 unsigned long want_bits
;
2357 unsigned long min_bits
;
2358 unsigned long found_bits
;
2359 unsigned long start
= 0;
2360 unsigned long total_found
= 0;
2363 i
= offset_to_bit(entry
->offset
, ctl
->unit
,
2364 max_t(u64
, offset
, entry
->offset
));
2365 want_bits
= bytes_to_bits(bytes
, ctl
->unit
);
2366 min_bits
= bytes_to_bits(min_bytes
, ctl
->unit
);
2370 for_each_set_bit_from(i
, entry
->bitmap
, BITS_PER_BITMAP
) {
2371 next_zero
= find_next_zero_bit(entry
->bitmap
,
2372 BITS_PER_BITMAP
, i
);
2373 if (next_zero
- i
>= min_bits
) {
2374 found_bits
= next_zero
- i
;
2385 cluster
->max_size
= 0;
2388 total_found
+= found_bits
;
2390 if (cluster
->max_size
< found_bits
* ctl
->unit
)
2391 cluster
->max_size
= found_bits
* ctl
->unit
;
2393 if (total_found
< want_bits
|| cluster
->max_size
< cont1_bytes
) {
2398 cluster
->window_start
= start
* ctl
->unit
+ entry
->offset
;
2399 rb_erase(&entry
->offset_index
, &ctl
->free_space_offset
);
2400 ret
= tree_insert_offset(&cluster
->root
, entry
->offset
,
2401 &entry
->offset_index
, 1);
2402 ASSERT(!ret
); /* -EEXIST; Logic error */
2404 trace_btrfs_setup_cluster(block_group
, cluster
,
2405 total_found
* ctl
->unit
, 1);
2410 * This searches the block group for just extents to fill the cluster with.
2411 * Try to find a cluster with at least bytes total bytes, at least one
2412 * extent of cont1_bytes, and other clusters of at least min_bytes.
2415 setup_cluster_no_bitmap(struct btrfs_block_group_cache
*block_group
,
2416 struct btrfs_free_cluster
*cluster
,
2417 struct list_head
*bitmaps
, u64 offset
, u64 bytes
,
2418 u64 cont1_bytes
, u64 min_bytes
)
2420 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
2421 struct btrfs_free_space
*first
= NULL
;
2422 struct btrfs_free_space
*entry
= NULL
;
2423 struct btrfs_free_space
*last
;
2424 struct rb_node
*node
;
2429 entry
= tree_search_offset(ctl
, offset
, 0, 1);
2434 * We don't want bitmaps, so just move along until we find a normal
2437 while (entry
->bitmap
|| entry
->bytes
< min_bytes
) {
2438 if (entry
->bitmap
&& list_empty(&entry
->list
))
2439 list_add_tail(&entry
->list
, bitmaps
);
2440 node
= rb_next(&entry
->offset_index
);
2443 entry
= rb_entry(node
, struct btrfs_free_space
, offset_index
);
2446 window_free
= entry
->bytes
;
2447 max_extent
= entry
->bytes
;
2451 for (node
= rb_next(&entry
->offset_index
); node
;
2452 node
= rb_next(&entry
->offset_index
)) {
2453 entry
= rb_entry(node
, struct btrfs_free_space
, offset_index
);
2455 if (entry
->bitmap
) {
2456 if (list_empty(&entry
->list
))
2457 list_add_tail(&entry
->list
, bitmaps
);
2461 if (entry
->bytes
< min_bytes
)
2465 window_free
+= entry
->bytes
;
2466 if (entry
->bytes
> max_extent
)
2467 max_extent
= entry
->bytes
;
2470 if (window_free
< bytes
|| max_extent
< cont1_bytes
)
2473 cluster
->window_start
= first
->offset
;
2475 node
= &first
->offset_index
;
2478 * now we've found our entries, pull them out of the free space
2479 * cache and put them into the cluster rbtree
2484 entry
= rb_entry(node
, struct btrfs_free_space
, offset_index
);
2485 node
= rb_next(&entry
->offset_index
);
2486 if (entry
->bitmap
|| entry
->bytes
< min_bytes
)
2489 rb_erase(&entry
->offset_index
, &ctl
->free_space_offset
);
2490 ret
= tree_insert_offset(&cluster
->root
, entry
->offset
,
2491 &entry
->offset_index
, 0);
2492 total_size
+= entry
->bytes
;
2493 ASSERT(!ret
); /* -EEXIST; Logic error */
2494 } while (node
&& entry
!= last
);
2496 cluster
->max_size
= max_extent
;
2497 trace_btrfs_setup_cluster(block_group
, cluster
, total_size
, 0);
2502 * This specifically looks for bitmaps that may work in the cluster, we assume
2503 * that we have already failed to find extents that will work.
2506 setup_cluster_bitmap(struct btrfs_block_group_cache
*block_group
,
2507 struct btrfs_free_cluster
*cluster
,
2508 struct list_head
*bitmaps
, u64 offset
, u64 bytes
,
2509 u64 cont1_bytes
, u64 min_bytes
)
2511 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
2512 struct btrfs_free_space
*entry
;
2514 u64 bitmap_offset
= offset_to_bitmap(ctl
, offset
);
2516 if (ctl
->total_bitmaps
== 0)
2520 * The bitmap that covers offset won't be in the list unless offset
2521 * is just its start offset.
2523 entry
= list_first_entry(bitmaps
, struct btrfs_free_space
, list
);
2524 if (entry
->offset
!= bitmap_offset
) {
2525 entry
= tree_search_offset(ctl
, bitmap_offset
, 1, 0);
2526 if (entry
&& list_empty(&entry
->list
))
2527 list_add(&entry
->list
, bitmaps
);
2530 list_for_each_entry(entry
, bitmaps
, list
) {
2531 if (entry
->bytes
< bytes
)
2533 ret
= btrfs_bitmap_cluster(block_group
, entry
, cluster
, offset
,
2534 bytes
, cont1_bytes
, min_bytes
);
2540 * The bitmaps list has all the bitmaps that record free space
2541 * starting after offset, so no more search is required.
2547 * here we try to find a cluster of blocks in a block group. The goal
2548 * is to find at least bytes+empty_size.
2549 * We might not find them all in one contiguous area.
2551 * returns zero and sets up cluster if things worked out, otherwise
2552 * it returns -enospc
2554 int btrfs_find_space_cluster(struct btrfs_root
*root
,
2555 struct btrfs_block_group_cache
*block_group
,
2556 struct btrfs_free_cluster
*cluster
,
2557 u64 offset
, u64 bytes
, u64 empty_size
)
2559 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
2560 struct btrfs_free_space
*entry
, *tmp
;
2567 * Choose the minimum extent size we'll require for this
2568 * cluster. For SSD_SPREAD, don't allow any fragmentation.
2569 * For metadata, allow allocates with smaller extents. For
2570 * data, keep it dense.
2572 if (btrfs_test_opt(root
, SSD_SPREAD
)) {
2573 cont1_bytes
= min_bytes
= bytes
+ empty_size
;
2574 } else if (block_group
->flags
& BTRFS_BLOCK_GROUP_METADATA
) {
2575 cont1_bytes
= bytes
;
2576 min_bytes
= block_group
->sectorsize
;
2578 cont1_bytes
= max(bytes
, (bytes
+ empty_size
) >> 2);
2579 min_bytes
= block_group
->sectorsize
;
2582 spin_lock(&ctl
->tree_lock
);
2585 * If we know we don't have enough space to make a cluster don't even
2586 * bother doing all the work to try and find one.
2588 if (ctl
->free_space
< bytes
) {
2589 spin_unlock(&ctl
->tree_lock
);
2593 spin_lock(&cluster
->lock
);
2595 /* someone already found a cluster, hooray */
2596 if (cluster
->block_group
) {
2601 trace_btrfs_find_cluster(block_group
, offset
, bytes
, empty_size
,
2604 INIT_LIST_HEAD(&bitmaps
);
2605 ret
= setup_cluster_no_bitmap(block_group
, cluster
, &bitmaps
, offset
,
2607 cont1_bytes
, min_bytes
);
2609 ret
= setup_cluster_bitmap(block_group
, cluster
, &bitmaps
,
2610 offset
, bytes
+ empty_size
,
2611 cont1_bytes
, min_bytes
);
2613 /* Clear our temporary list */
2614 list_for_each_entry_safe(entry
, tmp
, &bitmaps
, list
)
2615 list_del_init(&entry
->list
);
2618 atomic_inc(&block_group
->count
);
2619 list_add_tail(&cluster
->block_group_list
,
2620 &block_group
->cluster_list
);
2621 cluster
->block_group
= block_group
;
2623 trace_btrfs_failed_cluster_setup(block_group
);
2626 spin_unlock(&cluster
->lock
);
2627 spin_unlock(&ctl
->tree_lock
);
2633 * simple code to zero out a cluster
2635 void btrfs_init_free_cluster(struct btrfs_free_cluster
*cluster
)
2637 spin_lock_init(&cluster
->lock
);
2638 spin_lock_init(&cluster
->refill_lock
);
2639 cluster
->root
= RB_ROOT
;
2640 cluster
->max_size
= 0;
2641 INIT_LIST_HEAD(&cluster
->block_group_list
);
2642 cluster
->block_group
= NULL
;
2645 static int do_trimming(struct btrfs_block_group_cache
*block_group
,
2646 u64
*total_trimmed
, u64 start
, u64 bytes
,
2647 u64 reserved_start
, u64 reserved_bytes
)
2649 struct btrfs_space_info
*space_info
= block_group
->space_info
;
2650 struct btrfs_fs_info
*fs_info
= block_group
->fs_info
;
2655 spin_lock(&space_info
->lock
);
2656 spin_lock(&block_group
->lock
);
2657 if (!block_group
->ro
) {
2658 block_group
->reserved
+= reserved_bytes
;
2659 space_info
->bytes_reserved
+= reserved_bytes
;
2662 spin_unlock(&block_group
->lock
);
2663 spin_unlock(&space_info
->lock
);
2665 ret
= btrfs_error_discard_extent(fs_info
->extent_root
,
2666 start
, bytes
, &trimmed
);
2668 *total_trimmed
+= trimmed
;
2670 btrfs_add_free_space(block_group
, reserved_start
, reserved_bytes
);
2673 spin_lock(&space_info
->lock
);
2674 spin_lock(&block_group
->lock
);
2675 if (block_group
->ro
)
2676 space_info
->bytes_readonly
+= reserved_bytes
;
2677 block_group
->reserved
-= reserved_bytes
;
2678 space_info
->bytes_reserved
-= reserved_bytes
;
2679 spin_unlock(&space_info
->lock
);
2680 spin_unlock(&block_group
->lock
);
2686 static int trim_no_bitmap(struct btrfs_block_group_cache
*block_group
,
2687 u64
*total_trimmed
, u64 start
, u64 end
, u64 minlen
)
2689 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
2690 struct btrfs_free_space
*entry
;
2691 struct rb_node
*node
;
2697 while (start
< end
) {
2698 spin_lock(&ctl
->tree_lock
);
2700 if (ctl
->free_space
< minlen
) {
2701 spin_unlock(&ctl
->tree_lock
);
2705 entry
= tree_search_offset(ctl
, start
, 0, 1);
2707 spin_unlock(&ctl
->tree_lock
);
2712 while (entry
->bitmap
) {
2713 node
= rb_next(&entry
->offset_index
);
2715 spin_unlock(&ctl
->tree_lock
);
2718 entry
= rb_entry(node
, struct btrfs_free_space
,
2722 if (entry
->offset
>= end
) {
2723 spin_unlock(&ctl
->tree_lock
);
2727 extent_start
= entry
->offset
;
2728 extent_bytes
= entry
->bytes
;
2729 start
= max(start
, extent_start
);
2730 bytes
= min(extent_start
+ extent_bytes
, end
) - start
;
2731 if (bytes
< minlen
) {
2732 spin_unlock(&ctl
->tree_lock
);
2736 unlink_free_space(ctl
, entry
);
2737 kmem_cache_free(btrfs_free_space_cachep
, entry
);
2739 spin_unlock(&ctl
->tree_lock
);
2741 ret
= do_trimming(block_group
, total_trimmed
, start
, bytes
,
2742 extent_start
, extent_bytes
);
2748 if (fatal_signal_pending(current
)) {
2759 static int trim_bitmaps(struct btrfs_block_group_cache
*block_group
,
2760 u64
*total_trimmed
, u64 start
, u64 end
, u64 minlen
)
2762 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
2763 struct btrfs_free_space
*entry
;
2767 u64 offset
= offset_to_bitmap(ctl
, start
);
2769 while (offset
< end
) {
2770 bool next_bitmap
= false;
2772 spin_lock(&ctl
->tree_lock
);
2774 if (ctl
->free_space
< minlen
) {
2775 spin_unlock(&ctl
->tree_lock
);
2779 entry
= tree_search_offset(ctl
, offset
, 1, 0);
2781 spin_unlock(&ctl
->tree_lock
);
2787 ret2
= search_bitmap(ctl
, entry
, &start
, &bytes
);
2788 if (ret2
|| start
>= end
) {
2789 spin_unlock(&ctl
->tree_lock
);
2794 bytes
= min(bytes
, end
- start
);
2795 if (bytes
< minlen
) {
2796 spin_unlock(&ctl
->tree_lock
);
2800 bitmap_clear_bits(ctl
, entry
, start
, bytes
);
2801 if (entry
->bytes
== 0)
2802 free_bitmap(ctl
, entry
);
2804 spin_unlock(&ctl
->tree_lock
);
2806 ret
= do_trimming(block_group
, total_trimmed
, start
, bytes
,
2812 offset
+= BITS_PER_BITMAP
* ctl
->unit
;
2815 if (start
>= offset
+ BITS_PER_BITMAP
* ctl
->unit
)
2816 offset
+= BITS_PER_BITMAP
* ctl
->unit
;
2819 if (fatal_signal_pending(current
)) {
2830 int btrfs_trim_block_group(struct btrfs_block_group_cache
*block_group
,
2831 u64
*trimmed
, u64 start
, u64 end
, u64 minlen
)
2837 ret
= trim_no_bitmap(block_group
, trimmed
, start
, end
, minlen
);
2841 ret
= trim_bitmaps(block_group
, trimmed
, start
, end
, minlen
);
2847 * Find the left-most item in the cache tree, and then return the
2848 * smallest inode number in the item.
2850 * Note: the returned inode number may not be the smallest one in
2851 * the tree, if the left-most item is a bitmap.
2853 u64
btrfs_find_ino_for_alloc(struct btrfs_root
*fs_root
)
2855 struct btrfs_free_space_ctl
*ctl
= fs_root
->free_ino_ctl
;
2856 struct btrfs_free_space
*entry
= NULL
;
2859 spin_lock(&ctl
->tree_lock
);
2861 if (RB_EMPTY_ROOT(&ctl
->free_space_offset
))
2864 entry
= rb_entry(rb_first(&ctl
->free_space_offset
),
2865 struct btrfs_free_space
, offset_index
);
2867 if (!entry
->bitmap
) {
2868 ino
= entry
->offset
;
2870 unlink_free_space(ctl
, entry
);
2874 kmem_cache_free(btrfs_free_space_cachep
, entry
);
2876 link_free_space(ctl
, entry
);
2882 ret
= search_bitmap(ctl
, entry
, &offset
, &count
);
2883 /* Logic error; Should be empty if it can't find anything */
2887 bitmap_clear_bits(ctl
, entry
, offset
, 1);
2888 if (entry
->bytes
== 0)
2889 free_bitmap(ctl
, entry
);
2892 spin_unlock(&ctl
->tree_lock
);
2897 struct inode
*lookup_free_ino_inode(struct btrfs_root
*root
,
2898 struct btrfs_path
*path
)
2900 struct inode
*inode
= NULL
;
2902 spin_lock(&root
->cache_lock
);
2903 if (root
->cache_inode
)
2904 inode
= igrab(root
->cache_inode
);
2905 spin_unlock(&root
->cache_lock
);
2909 inode
= __lookup_free_space_inode(root
, path
, 0);
2913 spin_lock(&root
->cache_lock
);
2914 if (!btrfs_fs_closing(root
->fs_info
))
2915 root
->cache_inode
= igrab(inode
);
2916 spin_unlock(&root
->cache_lock
);
2921 int create_free_ino_inode(struct btrfs_root
*root
,
2922 struct btrfs_trans_handle
*trans
,
2923 struct btrfs_path
*path
)
2925 return __create_free_space_inode(root
, trans
, path
,
2926 BTRFS_FREE_INO_OBJECTID
, 0);
2929 int load_free_ino_cache(struct btrfs_fs_info
*fs_info
, struct btrfs_root
*root
)
2931 struct btrfs_free_space_ctl
*ctl
= root
->free_ino_ctl
;
2932 struct btrfs_path
*path
;
2933 struct inode
*inode
;
2935 u64 root_gen
= btrfs_root_generation(&root
->root_item
);
2937 if (!btrfs_test_opt(root
, INODE_MAP_CACHE
))
2941 * If we're unmounting then just return, since this does a search on the
2942 * normal root and not the commit root and we could deadlock.
2944 if (btrfs_fs_closing(fs_info
))
2947 path
= btrfs_alloc_path();
2951 inode
= lookup_free_ino_inode(root
, path
);
2955 if (root_gen
!= BTRFS_I(inode
)->generation
)
2958 ret
= __load_free_space_cache(root
, inode
, ctl
, path
, 0);
2962 "failed to load free ino cache for root %llu",
2963 root
->root_key
.objectid
);
2967 btrfs_free_path(path
);
2971 int btrfs_write_out_ino_cache(struct btrfs_root
*root
,
2972 struct btrfs_trans_handle
*trans
,
2973 struct btrfs_path
*path
,
2974 struct inode
*inode
)
2976 struct btrfs_free_space_ctl
*ctl
= root
->free_ino_ctl
;
2979 if (!btrfs_test_opt(root
, INODE_MAP_CACHE
))
2982 ret
= __btrfs_write_out_cache(root
, inode
, ctl
, NULL
, trans
, path
, 0);
2984 btrfs_delalloc_release_metadata(inode
, inode
->i_size
);
2986 btrfs_err(root
->fs_info
,
2987 "failed to write free ino cache for root %llu",
2988 root
->root_key
.objectid
);
2995 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
2997 * Use this if you need to make a bitmap or extent entry specifically, it
2998 * doesn't do any of the merging that add_free_space does, this acts a lot like
2999 * how the free space cache loading stuff works, so you can get really weird
3002 int test_add_free_space_entry(struct btrfs_block_group_cache
*cache
,
3003 u64 offset
, u64 bytes
, bool bitmap
)
3005 struct btrfs_free_space_ctl
*ctl
= cache
->free_space_ctl
;
3006 struct btrfs_free_space
*info
= NULL
, *bitmap_info
;
3013 info
= kmem_cache_zalloc(btrfs_free_space_cachep
, GFP_NOFS
);
3019 spin_lock(&ctl
->tree_lock
);
3020 info
->offset
= offset
;
3021 info
->bytes
= bytes
;
3022 ret
= link_free_space(ctl
, info
);
3023 spin_unlock(&ctl
->tree_lock
);
3025 kmem_cache_free(btrfs_free_space_cachep
, info
);
3030 map
= kzalloc(PAGE_CACHE_SIZE
, GFP_NOFS
);
3032 kmem_cache_free(btrfs_free_space_cachep
, info
);
3037 spin_lock(&ctl
->tree_lock
);
3038 bitmap_info
= tree_search_offset(ctl
, offset_to_bitmap(ctl
, offset
),
3043 add_new_bitmap(ctl
, info
, offset
);
3047 bytes_added
= add_bytes_to_bitmap(ctl
, bitmap_info
, offset
, bytes
);
3048 bytes
-= bytes_added
;
3049 offset
+= bytes_added
;
3050 spin_unlock(&ctl
->tree_lock
);
3061 * Checks to see if the given range is in the free space cache. This is really
3062 * just used to check the absence of space, so if there is free space in the
3063 * range at all we will return 1.
3065 int test_check_exists(struct btrfs_block_group_cache
*cache
,
3066 u64 offset
, u64 bytes
)
3068 struct btrfs_free_space_ctl
*ctl
= cache
->free_space_ctl
;
3069 struct btrfs_free_space
*info
;
3072 spin_lock(&ctl
->tree_lock
);
3073 info
= tree_search_offset(ctl
, offset
, 0, 0);
3075 info
= tree_search_offset(ctl
, offset_to_bitmap(ctl
, offset
),
3083 u64 bit_off
, bit_bytes
;
3085 struct btrfs_free_space
*tmp
;
3088 bit_bytes
= ctl
->unit
;
3089 ret
= search_bitmap(ctl
, info
, &bit_off
, &bit_bytes
);
3091 if (bit_off
== offset
) {
3094 } else if (bit_off
> offset
&&
3095 offset
+ bytes
> bit_off
) {
3101 n
= rb_prev(&info
->offset_index
);
3103 tmp
= rb_entry(n
, struct btrfs_free_space
,
3105 if (tmp
->offset
+ tmp
->bytes
< offset
)
3107 if (offset
+ bytes
< tmp
->offset
) {
3108 n
= rb_prev(&info
->offset_index
);
3115 n
= rb_next(&info
->offset_index
);
3117 tmp
= rb_entry(n
, struct btrfs_free_space
,
3119 if (offset
+ bytes
< tmp
->offset
)
3121 if (tmp
->offset
+ tmp
->bytes
< offset
) {
3122 n
= rb_next(&info
->offset_index
);
3132 if (info
->offset
== offset
) {
3137 if (offset
> info
->offset
&& offset
< info
->offset
+ info
->bytes
)
3140 spin_unlock(&ctl
->tree_lock
);
3143 #endif /* CONFIG_BTRFS_FS_RUN_SANITY_TESTS */