2 * Kernel Probes (KProbes)
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 * Copyright IBM Corp. 2002, 2006
20 * s390 port, used ppc64 as template. Mike Grundy <grundym@us.ibm.com>
23 #include <linux/kprobes.h>
24 #include <linux/ptrace.h>
25 #include <linux/preempt.h>
26 #include <linux/stop_machine.h>
27 #include <linux/kdebug.h>
28 #include <linux/uaccess.h>
29 #include <linux/module.h>
30 #include <linux/slab.h>
31 #include <linux/hardirq.h>
32 #include <asm/cacheflush.h>
33 #include <asm/sections.h>
36 DEFINE_PER_CPU(struct kprobe
*, current_kprobe
);
37 DEFINE_PER_CPU(struct kprobe_ctlblk
, kprobe_ctlblk
);
39 struct kretprobe_blackpoint kretprobe_blacklist
[] = { };
41 DEFINE_INSN_CACHE_OPS(dmainsn
);
43 static void *alloc_dmainsn_page(void)
45 return (void *)__get_free_page(GFP_KERNEL
| GFP_DMA
);
48 static void free_dmainsn_page(void *page
)
50 free_page((unsigned long)page
);
53 struct kprobe_insn_cache kprobe_dmainsn_slots
= {
54 .mutex
= __MUTEX_INITIALIZER(kprobe_dmainsn_slots
.mutex
),
55 .alloc
= alloc_dmainsn_page
,
56 .free
= free_dmainsn_page
,
57 .pages
= LIST_HEAD_INIT(kprobe_dmainsn_slots
.pages
),
58 .insn_size
= MAX_INSN_SIZE
,
61 static void __kprobes
copy_instruction(struct kprobe
*p
)
66 memcpy(p
->ainsn
.insn
, p
->addr
, insn_length(p
->opcode
>> 8));
67 if (!probe_is_insn_relative_long(p
->ainsn
.insn
))
70 * For pc-relative instructions in RIL-b or RIL-c format patch the
71 * RI2 displacement field. We have already made sure that the insn
72 * slot for the patched instruction is within the same 2GB area
73 * as the original instruction (either kernel image or module area).
74 * Therefore the new displacement will always fit.
76 disp
= *(s32
*)&p
->ainsn
.insn
[1];
77 addr
= (u64
)(unsigned long)p
->addr
;
78 new_addr
= (u64
)(unsigned long)p
->ainsn
.insn
;
79 new_disp
= ((addr
+ (disp
* 2)) - new_addr
) / 2;
80 *(s32
*)&p
->ainsn
.insn
[1] = new_disp
;
83 static inline int is_kernel_addr(void *addr
)
85 return addr
< (void *)_end
;
88 static inline int is_module_addr(void *addr
)
91 BUILD_BUG_ON(MODULES_LEN
> (1UL << 31));
92 if (addr
< (void *)MODULES_VADDR
)
94 if (addr
> (void *)MODULES_END
)
100 static int __kprobes
s390_get_insn_slot(struct kprobe
*p
)
103 * Get an insn slot that is within the same 2GB area like the original
104 * instruction. That way instructions with a 32bit signed displacement
105 * field can be patched and executed within the insn slot.
107 p
->ainsn
.insn
= NULL
;
108 if (is_kernel_addr(p
->addr
))
109 p
->ainsn
.insn
= get_dmainsn_slot();
110 else if (is_module_addr(p
->addr
))
111 p
->ainsn
.insn
= get_insn_slot();
112 return p
->ainsn
.insn
? 0 : -ENOMEM
;
115 static void __kprobes
s390_free_insn_slot(struct kprobe
*p
)
119 if (is_kernel_addr(p
->addr
))
120 free_dmainsn_slot(p
->ainsn
.insn
, 0);
122 free_insn_slot(p
->ainsn
.insn
, 0);
123 p
->ainsn
.insn
= NULL
;
126 int __kprobes
arch_prepare_kprobe(struct kprobe
*p
)
128 if ((unsigned long) p
->addr
& 0x01)
130 /* Make sure the probe isn't going on a difficult instruction */
131 if (probe_is_prohibited_opcode(p
->addr
))
133 if (s390_get_insn_slot(p
))
135 p
->opcode
= *p
->addr
;
140 struct ins_replace_args
{
141 kprobe_opcode_t
*ptr
;
142 kprobe_opcode_t opcode
;
145 static int __kprobes
swap_instruction(void *aref
)
147 struct kprobe_ctlblk
*kcb
= get_kprobe_ctlblk();
148 unsigned long status
= kcb
->kprobe_status
;
149 struct ins_replace_args
*args
= aref
;
151 kcb
->kprobe_status
= KPROBE_SWAP_INST
;
152 probe_kernel_write(args
->ptr
, &args
->opcode
, sizeof(args
->opcode
));
153 kcb
->kprobe_status
= status
;
157 void __kprobes
arch_arm_kprobe(struct kprobe
*p
)
159 struct ins_replace_args args
;
162 args
.opcode
= BREAKPOINT_INSTRUCTION
;
163 stop_machine(swap_instruction
, &args
, NULL
);
166 void __kprobes
arch_disarm_kprobe(struct kprobe
*p
)
168 struct ins_replace_args args
;
171 args
.opcode
= p
->opcode
;
172 stop_machine(swap_instruction
, &args
, NULL
);
175 void __kprobes
arch_remove_kprobe(struct kprobe
*p
)
177 s390_free_insn_slot(p
);
180 static void __kprobes
enable_singlestep(struct kprobe_ctlblk
*kcb
,
181 struct pt_regs
*regs
,
184 struct per_regs per_kprobe
;
186 /* Set up the PER control registers %cr9-%cr11 */
187 per_kprobe
.control
= PER_EVENT_IFETCH
;
188 per_kprobe
.start
= ip
;
191 /* Save control regs and psw mask */
192 __ctl_store(kcb
->kprobe_saved_ctl
, 9, 11);
193 kcb
->kprobe_saved_imask
= regs
->psw
.mask
&
194 (PSW_MASK_PER
| PSW_MASK_IO
| PSW_MASK_EXT
);
196 /* Set PER control regs, turns on single step for the given address */
197 __ctl_load(per_kprobe
, 9, 11);
198 regs
->psw
.mask
|= PSW_MASK_PER
;
199 regs
->psw
.mask
&= ~(PSW_MASK_IO
| PSW_MASK_EXT
);
200 regs
->psw
.addr
= ip
| PSW_ADDR_AMODE
;
203 static void __kprobes
disable_singlestep(struct kprobe_ctlblk
*kcb
,
204 struct pt_regs
*regs
,
207 /* Restore control regs and psw mask, set new psw address */
208 __ctl_load(kcb
->kprobe_saved_ctl
, 9, 11);
209 regs
->psw
.mask
&= ~PSW_MASK_PER
;
210 regs
->psw
.mask
|= kcb
->kprobe_saved_imask
;
211 regs
->psw
.addr
= ip
| PSW_ADDR_AMODE
;
215 * Activate a kprobe by storing its pointer to current_kprobe. The
216 * previous kprobe is stored in kcb->prev_kprobe. A stack of up to
217 * two kprobes can be active, see KPROBE_REENTER.
219 static void __kprobes
push_kprobe(struct kprobe_ctlblk
*kcb
, struct kprobe
*p
)
221 kcb
->prev_kprobe
.kp
= __this_cpu_read(current_kprobe
);
222 kcb
->prev_kprobe
.status
= kcb
->kprobe_status
;
223 __this_cpu_write(current_kprobe
, p
);
227 * Deactivate a kprobe by backing up to the previous state. If the
228 * current state is KPROBE_REENTER prev_kprobe.kp will be non-NULL,
229 * for any other state prev_kprobe.kp will be NULL.
231 static void __kprobes
pop_kprobe(struct kprobe_ctlblk
*kcb
)
233 __this_cpu_write(current_kprobe
, kcb
->prev_kprobe
.kp
);
234 kcb
->kprobe_status
= kcb
->prev_kprobe
.status
;
237 void __kprobes
arch_prepare_kretprobe(struct kretprobe_instance
*ri
,
238 struct pt_regs
*regs
)
240 ri
->ret_addr
= (kprobe_opcode_t
*) regs
->gprs
[14];
242 /* Replace the return addr with trampoline addr */
243 regs
->gprs
[14] = (unsigned long) &kretprobe_trampoline
;
246 static void __kprobes
kprobe_reenter_check(struct kprobe_ctlblk
*kcb
,
249 switch (kcb
->kprobe_status
) {
250 case KPROBE_HIT_SSDONE
:
251 case KPROBE_HIT_ACTIVE
:
252 kprobes_inc_nmissed_count(p
);
258 * A kprobe on the code path to single step an instruction
259 * is a BUG. The code path resides in the .kprobes.text
260 * section and is executed with interrupts disabled.
262 printk(KERN_EMERG
"Invalid kprobe detected at %p.\n", p
->addr
);
268 static int __kprobes
kprobe_handler(struct pt_regs
*regs
)
270 struct kprobe_ctlblk
*kcb
;
274 * We want to disable preemption for the entire duration of kprobe
275 * processing. That includes the calls to the pre/post handlers
276 * and single stepping the kprobe instruction.
279 kcb
= get_kprobe_ctlblk();
280 p
= get_kprobe((void *)((regs
->psw
.addr
& PSW_ADDR_INSN
) - 2));
283 if (kprobe_running()) {
285 * We have hit a kprobe while another is still
286 * active. This can happen in the pre and post
287 * handler. Single step the instruction of the
288 * new probe but do not call any handler function
289 * of this secondary kprobe.
290 * push_kprobe and pop_kprobe saves and restores
291 * the currently active kprobe.
293 kprobe_reenter_check(kcb
, p
);
295 kcb
->kprobe_status
= KPROBE_REENTER
;
298 * If we have no pre-handler or it returned 0, we
299 * continue with single stepping. If we have a
300 * pre-handler and it returned non-zero, it prepped
301 * for calling the break_handler below on re-entry
302 * for jprobe processing, so get out doing nothing
306 kcb
->kprobe_status
= KPROBE_HIT_ACTIVE
;
307 if (p
->pre_handler
&& p
->pre_handler(p
, regs
))
309 kcb
->kprobe_status
= KPROBE_HIT_SS
;
311 enable_singlestep(kcb
, regs
, (unsigned long) p
->ainsn
.insn
);
313 } else if (kprobe_running()) {
314 p
= __this_cpu_read(current_kprobe
);
315 if (p
->break_handler
&& p
->break_handler(p
, regs
)) {
317 * Continuation after the jprobe completed and
318 * caused the jprobe_return trap. The jprobe
319 * break_handler "returns" to the original
320 * function that still has the kprobe breakpoint
321 * installed. We continue with single stepping.
323 kcb
->kprobe_status
= KPROBE_HIT_SS
;
324 enable_singlestep(kcb
, regs
,
325 (unsigned long) p
->ainsn
.insn
);
328 * No kprobe at this address and the current kprobe
329 * has no break handler (no jprobe!). The kernel just
330 * exploded, let the standard trap handler pick up the
334 * No kprobe at this address and no active kprobe. The trap has
335 * not been caused by a kprobe breakpoint. The race of breakpoint
336 * vs. kprobe remove does not exist because on s390 as we use
337 * stop_machine to arm/disarm the breakpoints.
339 preempt_enable_no_resched();
344 * Function return probe trampoline:
345 * - init_kprobes() establishes a probepoint here
346 * - When the probed function returns, this probe
347 * causes the handlers to fire
349 static void __used
kretprobe_trampoline_holder(void)
351 asm volatile(".global kretprobe_trampoline\n"
352 "kretprobe_trampoline: bcr 0,0\n");
356 * Called when the probe at kretprobe trampoline is hit
358 static int __kprobes
trampoline_probe_handler(struct kprobe
*p
,
359 struct pt_regs
*regs
)
361 struct kretprobe_instance
*ri
;
362 struct hlist_head
*head
, empty_rp
;
363 struct hlist_node
*tmp
;
364 unsigned long flags
, orig_ret_address
;
365 unsigned long trampoline_address
;
366 kprobe_opcode_t
*correct_ret_addr
;
368 INIT_HLIST_HEAD(&empty_rp
);
369 kretprobe_hash_lock(current
, &head
, &flags
);
372 * It is possible to have multiple instances associated with a given
373 * task either because an multiple functions in the call path
374 * have a return probe installed on them, and/or more than one return
375 * return probe was registered for a target function.
377 * We can handle this because:
378 * - instances are always inserted at the head of the list
379 * - when multiple return probes are registered for the same
380 * function, the first instance's ret_addr will point to the
381 * real return address, and all the rest will point to
382 * kretprobe_trampoline
385 orig_ret_address
= 0;
386 correct_ret_addr
= NULL
;
387 trampoline_address
= (unsigned long) &kretprobe_trampoline
;
388 hlist_for_each_entry_safe(ri
, tmp
, head
, hlist
) {
389 if (ri
->task
!= current
)
390 /* another task is sharing our hash bucket */
393 orig_ret_address
= (unsigned long) ri
->ret_addr
;
395 if (orig_ret_address
!= trampoline_address
)
397 * This is the real return address. Any other
398 * instances associated with this task are for
399 * other calls deeper on the call stack
404 kretprobe_assert(ri
, orig_ret_address
, trampoline_address
);
406 correct_ret_addr
= ri
->ret_addr
;
407 hlist_for_each_entry_safe(ri
, tmp
, head
, hlist
) {
408 if (ri
->task
!= current
)
409 /* another task is sharing our hash bucket */
412 orig_ret_address
= (unsigned long) ri
->ret_addr
;
414 if (ri
->rp
&& ri
->rp
->handler
) {
415 ri
->ret_addr
= correct_ret_addr
;
416 ri
->rp
->handler(ri
, regs
);
419 recycle_rp_inst(ri
, &empty_rp
);
421 if (orig_ret_address
!= trampoline_address
)
423 * This is the real return address. Any other
424 * instances associated with this task are for
425 * other calls deeper on the call stack
430 regs
->psw
.addr
= orig_ret_address
| PSW_ADDR_AMODE
;
432 pop_kprobe(get_kprobe_ctlblk());
433 kretprobe_hash_unlock(current
, &flags
);
434 preempt_enable_no_resched();
436 hlist_for_each_entry_safe(ri
, tmp
, &empty_rp
, hlist
) {
437 hlist_del(&ri
->hlist
);
441 * By returning a non-zero value, we are telling
442 * kprobe_handler() that we don't want the post_handler
443 * to run (and have re-enabled preemption)
449 * Called after single-stepping. p->addr is the address of the
450 * instruction whose first byte has been replaced by the "breakpoint"
451 * instruction. To avoid the SMP problems that can occur when we
452 * temporarily put back the original opcode to single-step, we
453 * single-stepped a copy of the instruction. The address of this
454 * copy is p->ainsn.insn.
456 static void __kprobes
resume_execution(struct kprobe
*p
, struct pt_regs
*regs
)
458 struct kprobe_ctlblk
*kcb
= get_kprobe_ctlblk();
459 unsigned long ip
= regs
->psw
.addr
& PSW_ADDR_INSN
;
460 int fixup
= probe_get_fixup_type(p
->ainsn
.insn
);
462 if (fixup
& FIXUP_PSW_NORMAL
)
463 ip
+= (unsigned long) p
->addr
- (unsigned long) p
->ainsn
.insn
;
465 if (fixup
& FIXUP_BRANCH_NOT_TAKEN
) {
466 int ilen
= insn_length(p
->ainsn
.insn
[0] >> 8);
467 if (ip
- (unsigned long) p
->ainsn
.insn
== ilen
)
468 ip
= (unsigned long) p
->addr
+ ilen
;
471 if (fixup
& FIXUP_RETURN_REGISTER
) {
472 int reg
= (p
->ainsn
.insn
[0] & 0xf0) >> 4;
473 regs
->gprs
[reg
] += (unsigned long) p
->addr
-
474 (unsigned long) p
->ainsn
.insn
;
477 disable_singlestep(kcb
, regs
, ip
);
480 static int __kprobes
post_kprobe_handler(struct pt_regs
*regs
)
482 struct kprobe_ctlblk
*kcb
= get_kprobe_ctlblk();
483 struct kprobe
*p
= kprobe_running();
488 if (kcb
->kprobe_status
!= KPROBE_REENTER
&& p
->post_handler
) {
489 kcb
->kprobe_status
= KPROBE_HIT_SSDONE
;
490 p
->post_handler(p
, regs
, 0);
493 resume_execution(p
, regs
);
495 preempt_enable_no_resched();
498 * if somebody else is singlestepping across a probe point, psw mask
499 * will have PER set, in which case, continue the remaining processing
500 * of do_single_step, as if this is not a probe hit.
502 if (regs
->psw
.mask
& PSW_MASK_PER
)
508 static int __kprobes
kprobe_trap_handler(struct pt_regs
*regs
, int trapnr
)
510 struct kprobe_ctlblk
*kcb
= get_kprobe_ctlblk();
511 struct kprobe
*p
= kprobe_running();
512 const struct exception_table_entry
*entry
;
514 switch(kcb
->kprobe_status
) {
515 case KPROBE_SWAP_INST
:
516 /* We are here because the instruction replacement failed */
521 * We are here because the instruction being single
522 * stepped caused a page fault. We reset the current
523 * kprobe and the nip points back to the probe address
524 * and allow the page fault handler to continue as a
527 disable_singlestep(kcb
, regs
, (unsigned long) p
->addr
);
529 preempt_enable_no_resched();
531 case KPROBE_HIT_ACTIVE
:
532 case KPROBE_HIT_SSDONE
:
534 * We increment the nmissed count for accounting,
535 * we can also use npre/npostfault count for accounting
536 * these specific fault cases.
538 kprobes_inc_nmissed_count(p
);
541 * We come here because instructions in the pre/post
542 * handler caused the page_fault, this could happen
543 * if handler tries to access user space by
544 * copy_from_user(), get_user() etc. Let the
545 * user-specified handler try to fix it first.
547 if (p
->fault_handler
&& p
->fault_handler(p
, regs
, trapnr
))
551 * In case the user-specified fault handler returned
552 * zero, try to fix up.
554 entry
= search_exception_tables(regs
->psw
.addr
& PSW_ADDR_INSN
);
556 regs
->psw
.addr
= extable_fixup(entry
) | PSW_ADDR_AMODE
;
561 * fixup_exception() could not handle it,
562 * Let do_page_fault() fix it.
571 int __kprobes
kprobe_fault_handler(struct pt_regs
*regs
, int trapnr
)
575 if (regs
->psw
.mask
& (PSW_MASK_IO
| PSW_MASK_EXT
))
577 ret
= kprobe_trap_handler(regs
, trapnr
);
578 if (regs
->psw
.mask
& (PSW_MASK_IO
| PSW_MASK_EXT
))
579 local_irq_restore(regs
->psw
.mask
& ~PSW_MASK_PER
);
584 * Wrapper routine to for handling exceptions.
586 int __kprobes
kprobe_exceptions_notify(struct notifier_block
*self
,
587 unsigned long val
, void *data
)
589 struct die_args
*args
= (struct die_args
*) data
;
590 struct pt_regs
*regs
= args
->regs
;
591 int ret
= NOTIFY_DONE
;
593 if (regs
->psw
.mask
& (PSW_MASK_IO
| PSW_MASK_EXT
))
598 if (kprobe_handler(regs
))
602 if (post_kprobe_handler(regs
))
606 if (!preemptible() && kprobe_running() &&
607 kprobe_trap_handler(regs
, args
->trapnr
))
614 if (regs
->psw
.mask
& (PSW_MASK_IO
| PSW_MASK_EXT
))
615 local_irq_restore(regs
->psw
.mask
& ~PSW_MASK_PER
);
620 int __kprobes
setjmp_pre_handler(struct kprobe
*p
, struct pt_regs
*regs
)
622 struct jprobe
*jp
= container_of(p
, struct jprobe
, kp
);
623 struct kprobe_ctlblk
*kcb
= get_kprobe_ctlblk();
626 memcpy(&kcb
->jprobe_saved_regs
, regs
, sizeof(struct pt_regs
));
628 /* setup return addr to the jprobe handler routine */
629 regs
->psw
.addr
= (unsigned long) jp
->entry
| PSW_ADDR_AMODE
;
630 regs
->psw
.mask
&= ~(PSW_MASK_IO
| PSW_MASK_EXT
);
632 /* r15 is the stack pointer */
633 stack
= (unsigned long) regs
->gprs
[15];
635 memcpy(kcb
->jprobes_stack
, (void *) stack
, MIN_STACK_SIZE(stack
));
639 void __kprobes
jprobe_return(void)
641 asm volatile(".word 0x0002");
644 int __kprobes
longjmp_break_handler(struct kprobe
*p
, struct pt_regs
*regs
)
646 struct kprobe_ctlblk
*kcb
= get_kprobe_ctlblk();
649 stack
= (unsigned long) kcb
->jprobe_saved_regs
.gprs
[15];
651 /* Put the regs back */
652 memcpy(regs
, &kcb
->jprobe_saved_regs
, sizeof(struct pt_regs
));
653 /* put the stack back */
654 memcpy((void *) stack
, kcb
->jprobes_stack
, MIN_STACK_SIZE(stack
));
655 preempt_enable_no_resched();
659 static struct kprobe trampoline
= {
660 .addr
= (kprobe_opcode_t
*) &kretprobe_trampoline
,
661 .pre_handler
= trampoline_probe_handler
664 int __init
arch_init_kprobes(void)
666 return register_kprobe(&trampoline
);
669 int __kprobes
arch_trampoline_kprobe(struct kprobe
*p
)
671 return p
->addr
== (kprobe_opcode_t
*) &kretprobe_trampoline
;