Merge branch 'for-3.18-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/tj...
[linux/fpc-iii.git] / arch / s390 / kernel / time.c
blob005d665fe4a5290eedca6e7d2177bed687332920
1 /*
2 * Time of day based timer functions.
4 * S390 version
5 * Copyright IBM Corp. 1999, 2008
6 * Author(s): Hartmut Penner (hp@de.ibm.com),
7 * Martin Schwidefsky (schwidefsky@de.ibm.com),
8 * Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com)
10 * Derived from "arch/i386/kernel/time.c"
11 * Copyright (C) 1991, 1992, 1995 Linus Torvalds
14 #define KMSG_COMPONENT "time"
15 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
17 #include <linux/kernel_stat.h>
18 #include <linux/errno.h>
19 #include <linux/module.h>
20 #include <linux/sched.h>
21 #include <linux/kernel.h>
22 #include <linux/param.h>
23 #include <linux/string.h>
24 #include <linux/mm.h>
25 #include <linux/interrupt.h>
26 #include <linux/cpu.h>
27 #include <linux/stop_machine.h>
28 #include <linux/time.h>
29 #include <linux/device.h>
30 #include <linux/delay.h>
31 #include <linux/init.h>
32 #include <linux/smp.h>
33 #include <linux/types.h>
34 #include <linux/profile.h>
35 #include <linux/timex.h>
36 #include <linux/notifier.h>
37 #include <linux/timekeeper_internal.h>
38 #include <linux/clockchips.h>
39 #include <linux/gfp.h>
40 #include <linux/kprobes.h>
41 #include <asm/uaccess.h>
42 #include <asm/delay.h>
43 #include <asm/div64.h>
44 #include <asm/vdso.h>
45 #include <asm/irq.h>
46 #include <asm/irq_regs.h>
47 #include <asm/vtimer.h>
48 #include <asm/etr.h>
49 #include <asm/cio.h>
50 #include "entry.h"
52 /* change this if you have some constant time drift */
53 #define USECS_PER_JIFFY ((unsigned long) 1000000/HZ)
54 #define CLK_TICKS_PER_JIFFY ((unsigned long) USECS_PER_JIFFY << 12)
56 u64 sched_clock_base_cc = -1; /* Force to data section. */
57 EXPORT_SYMBOL_GPL(sched_clock_base_cc);
59 static DEFINE_PER_CPU(struct clock_event_device, comparators);
62 * Scheduler clock - returns current time in nanosec units.
64 unsigned long long notrace __kprobes sched_clock(void)
66 return tod_to_ns(get_tod_clock_monotonic());
70 * Monotonic_clock - returns # of nanoseconds passed since time_init()
72 unsigned long long monotonic_clock(void)
74 return sched_clock();
76 EXPORT_SYMBOL(monotonic_clock);
78 void tod_to_timeval(__u64 todval, struct timespec *xt)
80 unsigned long long sec;
82 sec = todval >> 12;
83 do_div(sec, 1000000);
84 xt->tv_sec = sec;
85 todval -= (sec * 1000000) << 12;
86 xt->tv_nsec = ((todval * 1000) >> 12);
88 EXPORT_SYMBOL(tod_to_timeval);
90 void clock_comparator_work(void)
92 struct clock_event_device *cd;
94 S390_lowcore.clock_comparator = -1ULL;
95 cd = this_cpu_ptr(&comparators);
96 cd->event_handler(cd);
100 * Fixup the clock comparator.
102 static void fixup_clock_comparator(unsigned long long delta)
104 /* If nobody is waiting there's nothing to fix. */
105 if (S390_lowcore.clock_comparator == -1ULL)
106 return;
107 S390_lowcore.clock_comparator += delta;
108 set_clock_comparator(S390_lowcore.clock_comparator);
111 static int s390_next_event(unsigned long delta,
112 struct clock_event_device *evt)
114 S390_lowcore.clock_comparator = get_tod_clock() + delta;
115 set_clock_comparator(S390_lowcore.clock_comparator);
116 return 0;
119 static void s390_set_mode(enum clock_event_mode mode,
120 struct clock_event_device *evt)
125 * Set up lowcore and control register of the current cpu to
126 * enable TOD clock and clock comparator interrupts.
128 void init_cpu_timer(void)
130 struct clock_event_device *cd;
131 int cpu;
133 S390_lowcore.clock_comparator = -1ULL;
134 set_clock_comparator(S390_lowcore.clock_comparator);
136 cpu = smp_processor_id();
137 cd = &per_cpu(comparators, cpu);
138 cd->name = "comparator";
139 cd->features = CLOCK_EVT_FEAT_ONESHOT;
140 cd->mult = 16777;
141 cd->shift = 12;
142 cd->min_delta_ns = 1;
143 cd->max_delta_ns = LONG_MAX;
144 cd->rating = 400;
145 cd->cpumask = cpumask_of(cpu);
146 cd->set_next_event = s390_next_event;
147 cd->set_mode = s390_set_mode;
149 clockevents_register_device(cd);
151 /* Enable clock comparator timer interrupt. */
152 __ctl_set_bit(0,11);
154 /* Always allow the timing alert external interrupt. */
155 __ctl_set_bit(0, 4);
158 static void clock_comparator_interrupt(struct ext_code ext_code,
159 unsigned int param32,
160 unsigned long param64)
162 inc_irq_stat(IRQEXT_CLK);
163 if (S390_lowcore.clock_comparator == -1ULL)
164 set_clock_comparator(S390_lowcore.clock_comparator);
167 static void etr_timing_alert(struct etr_irq_parm *);
168 static void stp_timing_alert(struct stp_irq_parm *);
170 static void timing_alert_interrupt(struct ext_code ext_code,
171 unsigned int param32, unsigned long param64)
173 inc_irq_stat(IRQEXT_TLA);
174 if (param32 & 0x00c40000)
175 etr_timing_alert((struct etr_irq_parm *) &param32);
176 if (param32 & 0x00038000)
177 stp_timing_alert((struct stp_irq_parm *) &param32);
180 static void etr_reset(void);
181 static void stp_reset(void);
183 void read_persistent_clock(struct timespec *ts)
185 tod_to_timeval(get_tod_clock() - TOD_UNIX_EPOCH, ts);
188 void read_boot_clock(struct timespec *ts)
190 tod_to_timeval(sched_clock_base_cc - TOD_UNIX_EPOCH, ts);
193 static cycle_t read_tod_clock(struct clocksource *cs)
195 return get_tod_clock();
198 static struct clocksource clocksource_tod = {
199 .name = "tod",
200 .rating = 400,
201 .read = read_tod_clock,
202 .mask = -1ULL,
203 .mult = 1000,
204 .shift = 12,
205 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
208 struct clocksource * __init clocksource_default_clock(void)
210 return &clocksource_tod;
213 void update_vsyscall(struct timekeeper *tk)
215 u64 nsecps;
217 if (tk->tkr.clock != &clocksource_tod)
218 return;
220 /* Make userspace gettimeofday spin until we're done. */
221 ++vdso_data->tb_update_count;
222 smp_wmb();
223 vdso_data->xtime_tod_stamp = tk->tkr.cycle_last;
224 vdso_data->xtime_clock_sec = tk->xtime_sec;
225 vdso_data->xtime_clock_nsec = tk->tkr.xtime_nsec;
226 vdso_data->wtom_clock_sec =
227 tk->xtime_sec + tk->wall_to_monotonic.tv_sec;
228 vdso_data->wtom_clock_nsec = tk->tkr.xtime_nsec +
229 + ((u64) tk->wall_to_monotonic.tv_nsec << tk->tkr.shift);
230 nsecps = (u64) NSEC_PER_SEC << tk->tkr.shift;
231 while (vdso_data->wtom_clock_nsec >= nsecps) {
232 vdso_data->wtom_clock_nsec -= nsecps;
233 vdso_data->wtom_clock_sec++;
236 vdso_data->xtime_coarse_sec = tk->xtime_sec;
237 vdso_data->xtime_coarse_nsec =
238 (long)(tk->tkr.xtime_nsec >> tk->tkr.shift);
239 vdso_data->wtom_coarse_sec =
240 vdso_data->xtime_coarse_sec + tk->wall_to_monotonic.tv_sec;
241 vdso_data->wtom_coarse_nsec =
242 vdso_data->xtime_coarse_nsec + tk->wall_to_monotonic.tv_nsec;
243 while (vdso_data->wtom_coarse_nsec >= NSEC_PER_SEC) {
244 vdso_data->wtom_coarse_nsec -= NSEC_PER_SEC;
245 vdso_data->wtom_coarse_sec++;
248 vdso_data->tk_mult = tk->tkr.mult;
249 vdso_data->tk_shift = tk->tkr.shift;
250 smp_wmb();
251 ++vdso_data->tb_update_count;
254 extern struct timezone sys_tz;
256 void update_vsyscall_tz(void)
258 /* Make userspace gettimeofday spin until we're done. */
259 ++vdso_data->tb_update_count;
260 smp_wmb();
261 vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
262 vdso_data->tz_dsttime = sys_tz.tz_dsttime;
263 smp_wmb();
264 ++vdso_data->tb_update_count;
268 * Initialize the TOD clock and the CPU timer of
269 * the boot cpu.
271 void __init time_init(void)
273 /* Reset time synchronization interfaces. */
274 etr_reset();
275 stp_reset();
277 /* request the clock comparator external interrupt */
278 if (register_external_irq(EXT_IRQ_CLK_COMP, clock_comparator_interrupt))
279 panic("Couldn't request external interrupt 0x1004");
281 /* request the timing alert external interrupt */
282 if (register_external_irq(EXT_IRQ_TIMING_ALERT, timing_alert_interrupt))
283 panic("Couldn't request external interrupt 0x1406");
285 if (clocksource_register(&clocksource_tod) != 0)
286 panic("Could not register TOD clock source");
288 /* Enable TOD clock interrupts on the boot cpu. */
289 init_cpu_timer();
291 /* Enable cpu timer interrupts on the boot cpu. */
292 vtime_init();
296 * The time is "clock". old is what we think the time is.
297 * Adjust the value by a multiple of jiffies and add the delta to ntp.
298 * "delay" is an approximation how long the synchronization took. If
299 * the time correction is positive, then "delay" is subtracted from
300 * the time difference and only the remaining part is passed to ntp.
302 static unsigned long long adjust_time(unsigned long long old,
303 unsigned long long clock,
304 unsigned long long delay)
306 unsigned long long delta, ticks;
307 struct timex adjust;
309 if (clock > old) {
310 /* It is later than we thought. */
311 delta = ticks = clock - old;
312 delta = ticks = (delta < delay) ? 0 : delta - delay;
313 delta -= do_div(ticks, CLK_TICKS_PER_JIFFY);
314 adjust.offset = ticks * (1000000 / HZ);
315 } else {
316 /* It is earlier than we thought. */
317 delta = ticks = old - clock;
318 delta -= do_div(ticks, CLK_TICKS_PER_JIFFY);
319 delta = -delta;
320 adjust.offset = -ticks * (1000000 / HZ);
322 sched_clock_base_cc += delta;
323 if (adjust.offset != 0) {
324 pr_notice("The ETR interface has adjusted the clock "
325 "by %li microseconds\n", adjust.offset);
326 adjust.modes = ADJ_OFFSET_SINGLESHOT;
327 do_adjtimex(&adjust);
329 return delta;
332 static DEFINE_PER_CPU(atomic_t, clock_sync_word);
333 static DEFINE_MUTEX(clock_sync_mutex);
334 static unsigned long clock_sync_flags;
336 #define CLOCK_SYNC_HAS_ETR 0
337 #define CLOCK_SYNC_HAS_STP 1
338 #define CLOCK_SYNC_ETR 2
339 #define CLOCK_SYNC_STP 3
342 * The synchronous get_clock function. It will write the current clock
343 * value to the clock pointer and return 0 if the clock is in sync with
344 * the external time source. If the clock mode is local it will return
345 * -EOPNOTSUPP and -EAGAIN if the clock is not in sync with the external
346 * reference.
348 int get_sync_clock(unsigned long long *clock)
350 atomic_t *sw_ptr;
351 unsigned int sw0, sw1;
353 sw_ptr = &get_cpu_var(clock_sync_word);
354 sw0 = atomic_read(sw_ptr);
355 *clock = get_tod_clock();
356 sw1 = atomic_read(sw_ptr);
357 put_cpu_var(clock_sync_word);
358 if (sw0 == sw1 && (sw0 & 0x80000000U))
359 /* Success: time is in sync. */
360 return 0;
361 if (!test_bit(CLOCK_SYNC_HAS_ETR, &clock_sync_flags) &&
362 !test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
363 return -EOPNOTSUPP;
364 if (!test_bit(CLOCK_SYNC_ETR, &clock_sync_flags) &&
365 !test_bit(CLOCK_SYNC_STP, &clock_sync_flags))
366 return -EACCES;
367 return -EAGAIN;
369 EXPORT_SYMBOL(get_sync_clock);
372 * Make get_sync_clock return -EAGAIN.
374 static void disable_sync_clock(void *dummy)
376 atomic_t *sw_ptr = this_cpu_ptr(&clock_sync_word);
378 * Clear the in-sync bit 2^31. All get_sync_clock calls will
379 * fail until the sync bit is turned back on. In addition
380 * increase the "sequence" counter to avoid the race of an
381 * etr event and the complete recovery against get_sync_clock.
383 atomic_clear_mask(0x80000000, sw_ptr);
384 atomic_inc(sw_ptr);
388 * Make get_sync_clock return 0 again.
389 * Needs to be called from a context disabled for preemption.
391 static void enable_sync_clock(void)
393 atomic_t *sw_ptr = this_cpu_ptr(&clock_sync_word);
394 atomic_set_mask(0x80000000, sw_ptr);
398 * Function to check if the clock is in sync.
400 static inline int check_sync_clock(void)
402 atomic_t *sw_ptr;
403 int rc;
405 sw_ptr = &get_cpu_var(clock_sync_word);
406 rc = (atomic_read(sw_ptr) & 0x80000000U) != 0;
407 put_cpu_var(clock_sync_word);
408 return rc;
411 /* Single threaded workqueue used for etr and stp sync events */
412 static struct workqueue_struct *time_sync_wq;
414 static void __init time_init_wq(void)
416 if (time_sync_wq)
417 return;
418 time_sync_wq = create_singlethread_workqueue("timesync");
422 * External Time Reference (ETR) code.
424 static int etr_port0_online;
425 static int etr_port1_online;
426 static int etr_steai_available;
428 static int __init early_parse_etr(char *p)
430 if (strncmp(p, "off", 3) == 0)
431 etr_port0_online = etr_port1_online = 0;
432 else if (strncmp(p, "port0", 5) == 0)
433 etr_port0_online = 1;
434 else if (strncmp(p, "port1", 5) == 0)
435 etr_port1_online = 1;
436 else if (strncmp(p, "on", 2) == 0)
437 etr_port0_online = etr_port1_online = 1;
438 return 0;
440 early_param("etr", early_parse_etr);
442 enum etr_event {
443 ETR_EVENT_PORT0_CHANGE,
444 ETR_EVENT_PORT1_CHANGE,
445 ETR_EVENT_PORT_ALERT,
446 ETR_EVENT_SYNC_CHECK,
447 ETR_EVENT_SWITCH_LOCAL,
448 ETR_EVENT_UPDATE,
452 * Valid bit combinations of the eacr register are (x = don't care):
453 * e0 e1 dp p0 p1 ea es sl
454 * 0 0 x 0 0 0 0 0 initial, disabled state
455 * 0 0 x 0 1 1 0 0 port 1 online
456 * 0 0 x 1 0 1 0 0 port 0 online
457 * 0 0 x 1 1 1 0 0 both ports online
458 * 0 1 x 0 1 1 0 0 port 1 online and usable, ETR or PPS mode
459 * 0 1 x 0 1 1 0 1 port 1 online, usable and ETR mode
460 * 0 1 x 0 1 1 1 0 port 1 online, usable, PPS mode, in-sync
461 * 0 1 x 0 1 1 1 1 port 1 online, usable, ETR mode, in-sync
462 * 0 1 x 1 1 1 0 0 both ports online, port 1 usable
463 * 0 1 x 1 1 1 1 0 both ports online, port 1 usable, PPS mode, in-sync
464 * 0 1 x 1 1 1 1 1 both ports online, port 1 usable, ETR mode, in-sync
465 * 1 0 x 1 0 1 0 0 port 0 online and usable, ETR or PPS mode
466 * 1 0 x 1 0 1 0 1 port 0 online, usable and ETR mode
467 * 1 0 x 1 0 1 1 0 port 0 online, usable, PPS mode, in-sync
468 * 1 0 x 1 0 1 1 1 port 0 online, usable, ETR mode, in-sync
469 * 1 0 x 1 1 1 0 0 both ports online, port 0 usable
470 * 1 0 x 1 1 1 1 0 both ports online, port 0 usable, PPS mode, in-sync
471 * 1 0 x 1 1 1 1 1 both ports online, port 0 usable, ETR mode, in-sync
472 * 1 1 x 1 1 1 1 0 both ports online & usable, ETR, in-sync
473 * 1 1 x 1 1 1 1 1 both ports online & usable, ETR, in-sync
475 static struct etr_eacr etr_eacr;
476 static u64 etr_tolec; /* time of last eacr update */
477 static struct etr_aib etr_port0;
478 static int etr_port0_uptodate;
479 static struct etr_aib etr_port1;
480 static int etr_port1_uptodate;
481 static unsigned long etr_events;
482 static struct timer_list etr_timer;
484 static void etr_timeout(unsigned long dummy);
485 static void etr_work_fn(struct work_struct *work);
486 static DEFINE_MUTEX(etr_work_mutex);
487 static DECLARE_WORK(etr_work, etr_work_fn);
490 * Reset ETR attachment.
492 static void etr_reset(void)
494 etr_eacr = (struct etr_eacr) {
495 .e0 = 0, .e1 = 0, ._pad0 = 4, .dp = 0,
496 .p0 = 0, .p1 = 0, ._pad1 = 0, .ea = 0,
497 .es = 0, .sl = 0 };
498 if (etr_setr(&etr_eacr) == 0) {
499 etr_tolec = get_tod_clock();
500 set_bit(CLOCK_SYNC_HAS_ETR, &clock_sync_flags);
501 if (etr_port0_online && etr_port1_online)
502 set_bit(CLOCK_SYNC_ETR, &clock_sync_flags);
503 } else if (etr_port0_online || etr_port1_online) {
504 pr_warning("The real or virtual hardware system does "
505 "not provide an ETR interface\n");
506 etr_port0_online = etr_port1_online = 0;
510 static int __init etr_init(void)
512 struct etr_aib aib;
514 if (!test_bit(CLOCK_SYNC_HAS_ETR, &clock_sync_flags))
515 return 0;
516 time_init_wq();
517 /* Check if this machine has the steai instruction. */
518 if (etr_steai(&aib, ETR_STEAI_STEPPING_PORT) == 0)
519 etr_steai_available = 1;
520 setup_timer(&etr_timer, etr_timeout, 0UL);
521 if (etr_port0_online) {
522 set_bit(ETR_EVENT_PORT0_CHANGE, &etr_events);
523 queue_work(time_sync_wq, &etr_work);
525 if (etr_port1_online) {
526 set_bit(ETR_EVENT_PORT1_CHANGE, &etr_events);
527 queue_work(time_sync_wq, &etr_work);
529 return 0;
532 arch_initcall(etr_init);
535 * Two sorts of ETR machine checks. The architecture reads:
536 * "When a machine-check niterruption occurs and if a switch-to-local or
537 * ETR-sync-check interrupt request is pending but disabled, this pending
538 * disabled interruption request is indicated and is cleared".
539 * Which means that we can get etr_switch_to_local events from the machine
540 * check handler although the interruption condition is disabled. Lovely..
544 * Switch to local machine check. This is called when the last usable
545 * ETR port goes inactive. After switch to local the clock is not in sync.
547 void etr_switch_to_local(void)
549 if (!etr_eacr.sl)
550 return;
551 disable_sync_clock(NULL);
552 if (!test_and_set_bit(ETR_EVENT_SWITCH_LOCAL, &etr_events)) {
553 etr_eacr.es = etr_eacr.sl = 0;
554 etr_setr(&etr_eacr);
555 queue_work(time_sync_wq, &etr_work);
560 * ETR sync check machine check. This is called when the ETR OTE and the
561 * local clock OTE are farther apart than the ETR sync check tolerance.
562 * After a ETR sync check the clock is not in sync. The machine check
563 * is broadcasted to all cpus at the same time.
565 void etr_sync_check(void)
567 if (!etr_eacr.es)
568 return;
569 disable_sync_clock(NULL);
570 if (!test_and_set_bit(ETR_EVENT_SYNC_CHECK, &etr_events)) {
571 etr_eacr.es = 0;
572 etr_setr(&etr_eacr);
573 queue_work(time_sync_wq, &etr_work);
578 * ETR timing alert. There are two causes:
579 * 1) port state change, check the usability of the port
580 * 2) port alert, one of the ETR-data-validity bits (v1-v2 bits of the
581 * sldr-status word) or ETR-data word 1 (edf1) or ETR-data word 3 (edf3)
582 * or ETR-data word 4 (edf4) has changed.
584 static void etr_timing_alert(struct etr_irq_parm *intparm)
586 if (intparm->pc0)
587 /* ETR port 0 state change. */
588 set_bit(ETR_EVENT_PORT0_CHANGE, &etr_events);
589 if (intparm->pc1)
590 /* ETR port 1 state change. */
591 set_bit(ETR_EVENT_PORT1_CHANGE, &etr_events);
592 if (intparm->eai)
594 * ETR port alert on either port 0, 1 or both.
595 * Both ports are not up-to-date now.
597 set_bit(ETR_EVENT_PORT_ALERT, &etr_events);
598 queue_work(time_sync_wq, &etr_work);
601 static void etr_timeout(unsigned long dummy)
603 set_bit(ETR_EVENT_UPDATE, &etr_events);
604 queue_work(time_sync_wq, &etr_work);
608 * Check if the etr mode is pss.
610 static inline int etr_mode_is_pps(struct etr_eacr eacr)
612 return eacr.es && !eacr.sl;
616 * Check if the etr mode is etr.
618 static inline int etr_mode_is_etr(struct etr_eacr eacr)
620 return eacr.es && eacr.sl;
624 * Check if the port can be used for TOD synchronization.
625 * For PPS mode the port has to receive OTEs. For ETR mode
626 * the port has to receive OTEs, the ETR stepping bit has to
627 * be zero and the validity bits for data frame 1, 2, and 3
628 * have to be 1.
630 static int etr_port_valid(struct etr_aib *aib, int port)
632 unsigned int psc;
634 /* Check that this port is receiving OTEs. */
635 if (aib->tsp == 0)
636 return 0;
638 psc = port ? aib->esw.psc1 : aib->esw.psc0;
639 if (psc == etr_lpsc_pps_mode)
640 return 1;
641 if (psc == etr_lpsc_operational_step)
642 return !aib->esw.y && aib->slsw.v1 &&
643 aib->slsw.v2 && aib->slsw.v3;
644 return 0;
648 * Check if two ports are on the same network.
650 static int etr_compare_network(struct etr_aib *aib1, struct etr_aib *aib2)
652 // FIXME: any other fields we have to compare?
653 return aib1->edf1.net_id == aib2->edf1.net_id;
657 * Wrapper for etr_stei that converts physical port states
658 * to logical port states to be consistent with the output
659 * of stetr (see etr_psc vs. etr_lpsc).
661 static void etr_steai_cv(struct etr_aib *aib, unsigned int func)
663 BUG_ON(etr_steai(aib, func) != 0);
664 /* Convert port state to logical port state. */
665 if (aib->esw.psc0 == 1)
666 aib->esw.psc0 = 2;
667 else if (aib->esw.psc0 == 0 && aib->esw.p == 0)
668 aib->esw.psc0 = 1;
669 if (aib->esw.psc1 == 1)
670 aib->esw.psc1 = 2;
671 else if (aib->esw.psc1 == 0 && aib->esw.p == 1)
672 aib->esw.psc1 = 1;
676 * Check if the aib a2 is still connected to the same attachment as
677 * aib a1, the etv values differ by one and a2 is valid.
679 static int etr_aib_follows(struct etr_aib *a1, struct etr_aib *a2, int p)
681 int state_a1, state_a2;
683 /* Paranoia check: e0/e1 should better be the same. */
684 if (a1->esw.eacr.e0 != a2->esw.eacr.e0 ||
685 a1->esw.eacr.e1 != a2->esw.eacr.e1)
686 return 0;
688 /* Still connected to the same etr ? */
689 state_a1 = p ? a1->esw.psc1 : a1->esw.psc0;
690 state_a2 = p ? a2->esw.psc1 : a2->esw.psc0;
691 if (state_a1 == etr_lpsc_operational_step) {
692 if (state_a2 != etr_lpsc_operational_step ||
693 a1->edf1.net_id != a2->edf1.net_id ||
694 a1->edf1.etr_id != a2->edf1.etr_id ||
695 a1->edf1.etr_pn != a2->edf1.etr_pn)
696 return 0;
697 } else if (state_a2 != etr_lpsc_pps_mode)
698 return 0;
700 /* The ETV value of a2 needs to be ETV of a1 + 1. */
701 if (a1->edf2.etv + 1 != a2->edf2.etv)
702 return 0;
704 if (!etr_port_valid(a2, p))
705 return 0;
707 return 1;
710 struct clock_sync_data {
711 atomic_t cpus;
712 int in_sync;
713 unsigned long long fixup_cc;
714 int etr_port;
715 struct etr_aib *etr_aib;
718 static void clock_sync_cpu(struct clock_sync_data *sync)
720 atomic_dec(&sync->cpus);
721 enable_sync_clock();
723 * This looks like a busy wait loop but it isn't. etr_sync_cpus
724 * is called on all other cpus while the TOD clocks is stopped.
725 * __udelay will stop the cpu on an enabled wait psw until the
726 * TOD is running again.
728 while (sync->in_sync == 0) {
729 __udelay(1);
731 * A different cpu changes *in_sync. Therefore use
732 * barrier() to force memory access.
734 barrier();
736 if (sync->in_sync != 1)
737 /* Didn't work. Clear per-cpu in sync bit again. */
738 disable_sync_clock(NULL);
740 * This round of TOD syncing is done. Set the clock comparator
741 * to the next tick and let the processor continue.
743 fixup_clock_comparator(sync->fixup_cc);
747 * Sync the TOD clock using the port referred to by aibp. This port
748 * has to be enabled and the other port has to be disabled. The
749 * last eacr update has to be more than 1.6 seconds in the past.
751 static int etr_sync_clock(void *data)
753 static int first;
754 unsigned long long clock, old_clock, delay, delta;
755 struct clock_sync_data *etr_sync;
756 struct etr_aib *sync_port, *aib;
757 int port;
758 int rc;
760 etr_sync = data;
762 if (xchg(&first, 1) == 1) {
763 /* Slave */
764 clock_sync_cpu(etr_sync);
765 return 0;
768 /* Wait until all other cpus entered the sync function. */
769 while (atomic_read(&etr_sync->cpus) != 0)
770 cpu_relax();
772 port = etr_sync->etr_port;
773 aib = etr_sync->etr_aib;
774 sync_port = (port == 0) ? &etr_port0 : &etr_port1;
775 enable_sync_clock();
777 /* Set clock to next OTE. */
778 __ctl_set_bit(14, 21);
779 __ctl_set_bit(0, 29);
780 clock = ((unsigned long long) (aib->edf2.etv + 1)) << 32;
781 old_clock = get_tod_clock();
782 if (set_tod_clock(clock) == 0) {
783 __udelay(1); /* Wait for the clock to start. */
784 __ctl_clear_bit(0, 29);
785 __ctl_clear_bit(14, 21);
786 etr_stetr(aib);
787 /* Adjust Linux timing variables. */
788 delay = (unsigned long long)
789 (aib->edf2.etv - sync_port->edf2.etv) << 32;
790 delta = adjust_time(old_clock, clock, delay);
791 etr_sync->fixup_cc = delta;
792 fixup_clock_comparator(delta);
793 /* Verify that the clock is properly set. */
794 if (!etr_aib_follows(sync_port, aib, port)) {
795 /* Didn't work. */
796 disable_sync_clock(NULL);
797 etr_sync->in_sync = -EAGAIN;
798 rc = -EAGAIN;
799 } else {
800 etr_sync->in_sync = 1;
801 rc = 0;
803 } else {
804 /* Could not set the clock ?!? */
805 __ctl_clear_bit(0, 29);
806 __ctl_clear_bit(14, 21);
807 disable_sync_clock(NULL);
808 etr_sync->in_sync = -EAGAIN;
809 rc = -EAGAIN;
811 xchg(&first, 0);
812 return rc;
815 static int etr_sync_clock_stop(struct etr_aib *aib, int port)
817 struct clock_sync_data etr_sync;
818 struct etr_aib *sync_port;
819 int follows;
820 int rc;
822 /* Check if the current aib is adjacent to the sync port aib. */
823 sync_port = (port == 0) ? &etr_port0 : &etr_port1;
824 follows = etr_aib_follows(sync_port, aib, port);
825 memcpy(sync_port, aib, sizeof(*aib));
826 if (!follows)
827 return -EAGAIN;
828 memset(&etr_sync, 0, sizeof(etr_sync));
829 etr_sync.etr_aib = aib;
830 etr_sync.etr_port = port;
831 get_online_cpus();
832 atomic_set(&etr_sync.cpus, num_online_cpus() - 1);
833 rc = stop_machine(etr_sync_clock, &etr_sync, cpu_online_mask);
834 put_online_cpus();
835 return rc;
839 * Handle the immediate effects of the different events.
840 * The port change event is used for online/offline changes.
842 static struct etr_eacr etr_handle_events(struct etr_eacr eacr)
844 if (test_and_clear_bit(ETR_EVENT_SYNC_CHECK, &etr_events))
845 eacr.es = 0;
846 if (test_and_clear_bit(ETR_EVENT_SWITCH_LOCAL, &etr_events))
847 eacr.es = eacr.sl = 0;
848 if (test_and_clear_bit(ETR_EVENT_PORT_ALERT, &etr_events))
849 etr_port0_uptodate = etr_port1_uptodate = 0;
851 if (test_and_clear_bit(ETR_EVENT_PORT0_CHANGE, &etr_events)) {
852 if (eacr.e0)
854 * Port change of an enabled port. We have to
855 * assume that this can have caused an stepping
856 * port switch.
858 etr_tolec = get_tod_clock();
859 eacr.p0 = etr_port0_online;
860 if (!eacr.p0)
861 eacr.e0 = 0;
862 etr_port0_uptodate = 0;
864 if (test_and_clear_bit(ETR_EVENT_PORT1_CHANGE, &etr_events)) {
865 if (eacr.e1)
867 * Port change of an enabled port. We have to
868 * assume that this can have caused an stepping
869 * port switch.
871 etr_tolec = get_tod_clock();
872 eacr.p1 = etr_port1_online;
873 if (!eacr.p1)
874 eacr.e1 = 0;
875 etr_port1_uptodate = 0;
877 clear_bit(ETR_EVENT_UPDATE, &etr_events);
878 return eacr;
882 * Set up a timer that expires after the etr_tolec + 1.6 seconds if
883 * one of the ports needs an update.
885 static void etr_set_tolec_timeout(unsigned long long now)
887 unsigned long micros;
889 if ((!etr_eacr.p0 || etr_port0_uptodate) &&
890 (!etr_eacr.p1 || etr_port1_uptodate))
891 return;
892 micros = (now > etr_tolec) ? ((now - etr_tolec) >> 12) : 0;
893 micros = (micros > 1600000) ? 0 : 1600000 - micros;
894 mod_timer(&etr_timer, jiffies + (micros * HZ) / 1000000 + 1);
898 * Set up a time that expires after 1/2 second.
900 static void etr_set_sync_timeout(void)
902 mod_timer(&etr_timer, jiffies + HZ/2);
906 * Update the aib information for one or both ports.
908 static struct etr_eacr etr_handle_update(struct etr_aib *aib,
909 struct etr_eacr eacr)
911 /* With both ports disabled the aib information is useless. */
912 if (!eacr.e0 && !eacr.e1)
913 return eacr;
915 /* Update port0 or port1 with aib stored in etr_work_fn. */
916 if (aib->esw.q == 0) {
917 /* Information for port 0 stored. */
918 if (eacr.p0 && !etr_port0_uptodate) {
919 etr_port0 = *aib;
920 if (etr_port0_online)
921 etr_port0_uptodate = 1;
923 } else {
924 /* Information for port 1 stored. */
925 if (eacr.p1 && !etr_port1_uptodate) {
926 etr_port1 = *aib;
927 if (etr_port0_online)
928 etr_port1_uptodate = 1;
933 * Do not try to get the alternate port aib if the clock
934 * is not in sync yet.
936 if (!eacr.es || !check_sync_clock())
937 return eacr;
940 * If steai is available we can get the information about
941 * the other port immediately. If only stetr is available the
942 * data-port bit toggle has to be used.
944 if (etr_steai_available) {
945 if (eacr.p0 && !etr_port0_uptodate) {
946 etr_steai_cv(&etr_port0, ETR_STEAI_PORT_0);
947 etr_port0_uptodate = 1;
949 if (eacr.p1 && !etr_port1_uptodate) {
950 etr_steai_cv(&etr_port1, ETR_STEAI_PORT_1);
951 etr_port1_uptodate = 1;
953 } else {
955 * One port was updated above, if the other
956 * port is not uptodate toggle dp bit.
958 if ((eacr.p0 && !etr_port0_uptodate) ||
959 (eacr.p1 && !etr_port1_uptodate))
960 eacr.dp ^= 1;
961 else
962 eacr.dp = 0;
964 return eacr;
968 * Write new etr control register if it differs from the current one.
969 * Return 1 if etr_tolec has been updated as well.
971 static void etr_update_eacr(struct etr_eacr eacr)
973 int dp_changed;
975 if (memcmp(&etr_eacr, &eacr, sizeof(eacr)) == 0)
976 /* No change, return. */
977 return;
979 * The disable of an active port of the change of the data port
980 * bit can/will cause a change in the data port.
982 dp_changed = etr_eacr.e0 > eacr.e0 || etr_eacr.e1 > eacr.e1 ||
983 (etr_eacr.dp ^ eacr.dp) != 0;
984 etr_eacr = eacr;
985 etr_setr(&etr_eacr);
986 if (dp_changed)
987 etr_tolec = get_tod_clock();
991 * ETR work. In this function you'll find the main logic. In
992 * particular this is the only function that calls etr_update_eacr(),
993 * it "controls" the etr control register.
995 static void etr_work_fn(struct work_struct *work)
997 unsigned long long now;
998 struct etr_eacr eacr;
999 struct etr_aib aib;
1000 int sync_port;
1002 /* prevent multiple execution. */
1003 mutex_lock(&etr_work_mutex);
1005 /* Create working copy of etr_eacr. */
1006 eacr = etr_eacr;
1008 /* Check for the different events and their immediate effects. */
1009 eacr = etr_handle_events(eacr);
1011 /* Check if ETR is supposed to be active. */
1012 eacr.ea = eacr.p0 || eacr.p1;
1013 if (!eacr.ea) {
1014 /* Both ports offline. Reset everything. */
1015 eacr.dp = eacr.es = eacr.sl = 0;
1016 on_each_cpu(disable_sync_clock, NULL, 1);
1017 del_timer_sync(&etr_timer);
1018 etr_update_eacr(eacr);
1019 goto out_unlock;
1022 /* Store aib to get the current ETR status word. */
1023 BUG_ON(etr_stetr(&aib) != 0);
1024 etr_port0.esw = etr_port1.esw = aib.esw; /* Copy status word. */
1025 now = get_tod_clock();
1028 * Update the port information if the last stepping port change
1029 * or data port change is older than 1.6 seconds.
1031 if (now >= etr_tolec + (1600000 << 12))
1032 eacr = etr_handle_update(&aib, eacr);
1035 * Select ports to enable. The preferred synchronization mode is PPS.
1036 * If a port can be enabled depends on a number of things:
1037 * 1) The port needs to be online and uptodate. A port is not
1038 * disabled just because it is not uptodate, but it is only
1039 * enabled if it is uptodate.
1040 * 2) The port needs to have the same mode (pps / etr).
1041 * 3) The port needs to be usable -> etr_port_valid() == 1
1042 * 4) To enable the second port the clock needs to be in sync.
1043 * 5) If both ports are useable and are ETR ports, the network id
1044 * has to be the same.
1045 * The eacr.sl bit is used to indicate etr mode vs. pps mode.
1047 if (eacr.p0 && aib.esw.psc0 == etr_lpsc_pps_mode) {
1048 eacr.sl = 0;
1049 eacr.e0 = 1;
1050 if (!etr_mode_is_pps(etr_eacr))
1051 eacr.es = 0;
1052 if (!eacr.es || !eacr.p1 || aib.esw.psc1 != etr_lpsc_pps_mode)
1053 eacr.e1 = 0;
1054 // FIXME: uptodate checks ?
1055 else if (etr_port0_uptodate && etr_port1_uptodate)
1056 eacr.e1 = 1;
1057 sync_port = (etr_port0_uptodate &&
1058 etr_port_valid(&etr_port0, 0)) ? 0 : -1;
1059 } else if (eacr.p1 && aib.esw.psc1 == etr_lpsc_pps_mode) {
1060 eacr.sl = 0;
1061 eacr.e0 = 0;
1062 eacr.e1 = 1;
1063 if (!etr_mode_is_pps(etr_eacr))
1064 eacr.es = 0;
1065 sync_port = (etr_port1_uptodate &&
1066 etr_port_valid(&etr_port1, 1)) ? 1 : -1;
1067 } else if (eacr.p0 && aib.esw.psc0 == etr_lpsc_operational_step) {
1068 eacr.sl = 1;
1069 eacr.e0 = 1;
1070 if (!etr_mode_is_etr(etr_eacr))
1071 eacr.es = 0;
1072 if (!eacr.es || !eacr.p1 ||
1073 aib.esw.psc1 != etr_lpsc_operational_alt)
1074 eacr.e1 = 0;
1075 else if (etr_port0_uptodate && etr_port1_uptodate &&
1076 etr_compare_network(&etr_port0, &etr_port1))
1077 eacr.e1 = 1;
1078 sync_port = (etr_port0_uptodate &&
1079 etr_port_valid(&etr_port0, 0)) ? 0 : -1;
1080 } else if (eacr.p1 && aib.esw.psc1 == etr_lpsc_operational_step) {
1081 eacr.sl = 1;
1082 eacr.e0 = 0;
1083 eacr.e1 = 1;
1084 if (!etr_mode_is_etr(etr_eacr))
1085 eacr.es = 0;
1086 sync_port = (etr_port1_uptodate &&
1087 etr_port_valid(&etr_port1, 1)) ? 1 : -1;
1088 } else {
1089 /* Both ports not usable. */
1090 eacr.es = eacr.sl = 0;
1091 sync_port = -1;
1095 * If the clock is in sync just update the eacr and return.
1096 * If there is no valid sync port wait for a port update.
1098 if ((eacr.es && check_sync_clock()) || sync_port < 0) {
1099 etr_update_eacr(eacr);
1100 etr_set_tolec_timeout(now);
1101 goto out_unlock;
1105 * Prepare control register for clock syncing
1106 * (reset data port bit, set sync check control.
1108 eacr.dp = 0;
1109 eacr.es = 1;
1112 * Update eacr and try to synchronize the clock. If the update
1113 * of eacr caused a stepping port switch (or if we have to
1114 * assume that a stepping port switch has occurred) or the
1115 * clock syncing failed, reset the sync check control bit
1116 * and set up a timer to try again after 0.5 seconds
1118 etr_update_eacr(eacr);
1119 if (now < etr_tolec + (1600000 << 12) ||
1120 etr_sync_clock_stop(&aib, sync_port) != 0) {
1121 /* Sync failed. Try again in 1/2 second. */
1122 eacr.es = 0;
1123 etr_update_eacr(eacr);
1124 etr_set_sync_timeout();
1125 } else
1126 etr_set_tolec_timeout(now);
1127 out_unlock:
1128 mutex_unlock(&etr_work_mutex);
1132 * Sysfs interface functions
1134 static struct bus_type etr_subsys = {
1135 .name = "etr",
1136 .dev_name = "etr",
1139 static struct device etr_port0_dev = {
1140 .id = 0,
1141 .bus = &etr_subsys,
1144 static struct device etr_port1_dev = {
1145 .id = 1,
1146 .bus = &etr_subsys,
1150 * ETR subsys attributes
1152 static ssize_t etr_stepping_port_show(struct device *dev,
1153 struct device_attribute *attr,
1154 char *buf)
1156 return sprintf(buf, "%i\n", etr_port0.esw.p);
1159 static DEVICE_ATTR(stepping_port, 0400, etr_stepping_port_show, NULL);
1161 static ssize_t etr_stepping_mode_show(struct device *dev,
1162 struct device_attribute *attr,
1163 char *buf)
1165 char *mode_str;
1167 if (etr_mode_is_pps(etr_eacr))
1168 mode_str = "pps";
1169 else if (etr_mode_is_etr(etr_eacr))
1170 mode_str = "etr";
1171 else
1172 mode_str = "local";
1173 return sprintf(buf, "%s\n", mode_str);
1176 static DEVICE_ATTR(stepping_mode, 0400, etr_stepping_mode_show, NULL);
1179 * ETR port attributes
1181 static inline struct etr_aib *etr_aib_from_dev(struct device *dev)
1183 if (dev == &etr_port0_dev)
1184 return etr_port0_online ? &etr_port0 : NULL;
1185 else
1186 return etr_port1_online ? &etr_port1 : NULL;
1189 static ssize_t etr_online_show(struct device *dev,
1190 struct device_attribute *attr,
1191 char *buf)
1193 unsigned int online;
1195 online = (dev == &etr_port0_dev) ? etr_port0_online : etr_port1_online;
1196 return sprintf(buf, "%i\n", online);
1199 static ssize_t etr_online_store(struct device *dev,
1200 struct device_attribute *attr,
1201 const char *buf, size_t count)
1203 unsigned int value;
1205 value = simple_strtoul(buf, NULL, 0);
1206 if (value != 0 && value != 1)
1207 return -EINVAL;
1208 if (!test_bit(CLOCK_SYNC_HAS_ETR, &clock_sync_flags))
1209 return -EOPNOTSUPP;
1210 mutex_lock(&clock_sync_mutex);
1211 if (dev == &etr_port0_dev) {
1212 if (etr_port0_online == value)
1213 goto out; /* Nothing to do. */
1214 etr_port0_online = value;
1215 if (etr_port0_online && etr_port1_online)
1216 set_bit(CLOCK_SYNC_ETR, &clock_sync_flags);
1217 else
1218 clear_bit(CLOCK_SYNC_ETR, &clock_sync_flags);
1219 set_bit(ETR_EVENT_PORT0_CHANGE, &etr_events);
1220 queue_work(time_sync_wq, &etr_work);
1221 } else {
1222 if (etr_port1_online == value)
1223 goto out; /* Nothing to do. */
1224 etr_port1_online = value;
1225 if (etr_port0_online && etr_port1_online)
1226 set_bit(CLOCK_SYNC_ETR, &clock_sync_flags);
1227 else
1228 clear_bit(CLOCK_SYNC_ETR, &clock_sync_flags);
1229 set_bit(ETR_EVENT_PORT1_CHANGE, &etr_events);
1230 queue_work(time_sync_wq, &etr_work);
1232 out:
1233 mutex_unlock(&clock_sync_mutex);
1234 return count;
1237 static DEVICE_ATTR(online, 0600, etr_online_show, etr_online_store);
1239 static ssize_t etr_stepping_control_show(struct device *dev,
1240 struct device_attribute *attr,
1241 char *buf)
1243 return sprintf(buf, "%i\n", (dev == &etr_port0_dev) ?
1244 etr_eacr.e0 : etr_eacr.e1);
1247 static DEVICE_ATTR(stepping_control, 0400, etr_stepping_control_show, NULL);
1249 static ssize_t etr_mode_code_show(struct device *dev,
1250 struct device_attribute *attr, char *buf)
1252 if (!etr_port0_online && !etr_port1_online)
1253 /* Status word is not uptodate if both ports are offline. */
1254 return -ENODATA;
1255 return sprintf(buf, "%i\n", (dev == &etr_port0_dev) ?
1256 etr_port0.esw.psc0 : etr_port0.esw.psc1);
1259 static DEVICE_ATTR(state_code, 0400, etr_mode_code_show, NULL);
1261 static ssize_t etr_untuned_show(struct device *dev,
1262 struct device_attribute *attr, char *buf)
1264 struct etr_aib *aib = etr_aib_from_dev(dev);
1266 if (!aib || !aib->slsw.v1)
1267 return -ENODATA;
1268 return sprintf(buf, "%i\n", aib->edf1.u);
1271 static DEVICE_ATTR(untuned, 0400, etr_untuned_show, NULL);
1273 static ssize_t etr_network_id_show(struct device *dev,
1274 struct device_attribute *attr, char *buf)
1276 struct etr_aib *aib = etr_aib_from_dev(dev);
1278 if (!aib || !aib->slsw.v1)
1279 return -ENODATA;
1280 return sprintf(buf, "%i\n", aib->edf1.net_id);
1283 static DEVICE_ATTR(network, 0400, etr_network_id_show, NULL);
1285 static ssize_t etr_id_show(struct device *dev,
1286 struct device_attribute *attr, char *buf)
1288 struct etr_aib *aib = etr_aib_from_dev(dev);
1290 if (!aib || !aib->slsw.v1)
1291 return -ENODATA;
1292 return sprintf(buf, "%i\n", aib->edf1.etr_id);
1295 static DEVICE_ATTR(id, 0400, etr_id_show, NULL);
1297 static ssize_t etr_port_number_show(struct device *dev,
1298 struct device_attribute *attr, char *buf)
1300 struct etr_aib *aib = etr_aib_from_dev(dev);
1302 if (!aib || !aib->slsw.v1)
1303 return -ENODATA;
1304 return sprintf(buf, "%i\n", aib->edf1.etr_pn);
1307 static DEVICE_ATTR(port, 0400, etr_port_number_show, NULL);
1309 static ssize_t etr_coupled_show(struct device *dev,
1310 struct device_attribute *attr, char *buf)
1312 struct etr_aib *aib = etr_aib_from_dev(dev);
1314 if (!aib || !aib->slsw.v3)
1315 return -ENODATA;
1316 return sprintf(buf, "%i\n", aib->edf3.c);
1319 static DEVICE_ATTR(coupled, 0400, etr_coupled_show, NULL);
1321 static ssize_t etr_local_time_show(struct device *dev,
1322 struct device_attribute *attr, char *buf)
1324 struct etr_aib *aib = etr_aib_from_dev(dev);
1326 if (!aib || !aib->slsw.v3)
1327 return -ENODATA;
1328 return sprintf(buf, "%i\n", aib->edf3.blto);
1331 static DEVICE_ATTR(local_time, 0400, etr_local_time_show, NULL);
1333 static ssize_t etr_utc_offset_show(struct device *dev,
1334 struct device_attribute *attr, char *buf)
1336 struct etr_aib *aib = etr_aib_from_dev(dev);
1338 if (!aib || !aib->slsw.v3)
1339 return -ENODATA;
1340 return sprintf(buf, "%i\n", aib->edf3.buo);
1343 static DEVICE_ATTR(utc_offset, 0400, etr_utc_offset_show, NULL);
1345 static struct device_attribute *etr_port_attributes[] = {
1346 &dev_attr_online,
1347 &dev_attr_stepping_control,
1348 &dev_attr_state_code,
1349 &dev_attr_untuned,
1350 &dev_attr_network,
1351 &dev_attr_id,
1352 &dev_attr_port,
1353 &dev_attr_coupled,
1354 &dev_attr_local_time,
1355 &dev_attr_utc_offset,
1356 NULL
1359 static int __init etr_register_port(struct device *dev)
1361 struct device_attribute **attr;
1362 int rc;
1364 rc = device_register(dev);
1365 if (rc)
1366 goto out;
1367 for (attr = etr_port_attributes; *attr; attr++) {
1368 rc = device_create_file(dev, *attr);
1369 if (rc)
1370 goto out_unreg;
1372 return 0;
1373 out_unreg:
1374 for (; attr >= etr_port_attributes; attr--)
1375 device_remove_file(dev, *attr);
1376 device_unregister(dev);
1377 out:
1378 return rc;
1381 static void __init etr_unregister_port(struct device *dev)
1383 struct device_attribute **attr;
1385 for (attr = etr_port_attributes; *attr; attr++)
1386 device_remove_file(dev, *attr);
1387 device_unregister(dev);
1390 static int __init etr_init_sysfs(void)
1392 int rc;
1394 rc = subsys_system_register(&etr_subsys, NULL);
1395 if (rc)
1396 goto out;
1397 rc = device_create_file(etr_subsys.dev_root, &dev_attr_stepping_port);
1398 if (rc)
1399 goto out_unreg_subsys;
1400 rc = device_create_file(etr_subsys.dev_root, &dev_attr_stepping_mode);
1401 if (rc)
1402 goto out_remove_stepping_port;
1403 rc = etr_register_port(&etr_port0_dev);
1404 if (rc)
1405 goto out_remove_stepping_mode;
1406 rc = etr_register_port(&etr_port1_dev);
1407 if (rc)
1408 goto out_remove_port0;
1409 return 0;
1411 out_remove_port0:
1412 etr_unregister_port(&etr_port0_dev);
1413 out_remove_stepping_mode:
1414 device_remove_file(etr_subsys.dev_root, &dev_attr_stepping_mode);
1415 out_remove_stepping_port:
1416 device_remove_file(etr_subsys.dev_root, &dev_attr_stepping_port);
1417 out_unreg_subsys:
1418 bus_unregister(&etr_subsys);
1419 out:
1420 return rc;
1423 device_initcall(etr_init_sysfs);
1426 * Server Time Protocol (STP) code.
1428 static int stp_online;
1429 static struct stp_sstpi stp_info;
1430 static void *stp_page;
1432 static void stp_work_fn(struct work_struct *work);
1433 static DEFINE_MUTEX(stp_work_mutex);
1434 static DECLARE_WORK(stp_work, stp_work_fn);
1435 static struct timer_list stp_timer;
1437 static int __init early_parse_stp(char *p)
1439 if (strncmp(p, "off", 3) == 0)
1440 stp_online = 0;
1441 else if (strncmp(p, "on", 2) == 0)
1442 stp_online = 1;
1443 return 0;
1445 early_param("stp", early_parse_stp);
1448 * Reset STP attachment.
1450 static void __init stp_reset(void)
1452 int rc;
1454 stp_page = (void *) get_zeroed_page(GFP_ATOMIC);
1455 rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000);
1456 if (rc == 0)
1457 set_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags);
1458 else if (stp_online) {
1459 pr_warning("The real or virtual hardware system does "
1460 "not provide an STP interface\n");
1461 free_page((unsigned long) stp_page);
1462 stp_page = NULL;
1463 stp_online = 0;
1467 static void stp_timeout(unsigned long dummy)
1469 queue_work(time_sync_wq, &stp_work);
1472 static int __init stp_init(void)
1474 if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
1475 return 0;
1476 setup_timer(&stp_timer, stp_timeout, 0UL);
1477 time_init_wq();
1478 if (!stp_online)
1479 return 0;
1480 queue_work(time_sync_wq, &stp_work);
1481 return 0;
1484 arch_initcall(stp_init);
1487 * STP timing alert. There are three causes:
1488 * 1) timing status change
1489 * 2) link availability change
1490 * 3) time control parameter change
1491 * In all three cases we are only interested in the clock source state.
1492 * If a STP clock source is now available use it.
1494 static void stp_timing_alert(struct stp_irq_parm *intparm)
1496 if (intparm->tsc || intparm->lac || intparm->tcpc)
1497 queue_work(time_sync_wq, &stp_work);
1501 * STP sync check machine check. This is called when the timing state
1502 * changes from the synchronized state to the unsynchronized state.
1503 * After a STP sync check the clock is not in sync. The machine check
1504 * is broadcasted to all cpus at the same time.
1506 void stp_sync_check(void)
1508 disable_sync_clock(NULL);
1509 queue_work(time_sync_wq, &stp_work);
1513 * STP island condition machine check. This is called when an attached
1514 * server attempts to communicate over an STP link and the servers
1515 * have matching CTN ids and have a valid stratum-1 configuration
1516 * but the configurations do not match.
1518 void stp_island_check(void)
1520 disable_sync_clock(NULL);
1521 queue_work(time_sync_wq, &stp_work);
1525 static int stp_sync_clock(void *data)
1527 static int first;
1528 unsigned long long old_clock, delta;
1529 struct clock_sync_data *stp_sync;
1530 int rc;
1532 stp_sync = data;
1534 if (xchg(&first, 1) == 1) {
1535 /* Slave */
1536 clock_sync_cpu(stp_sync);
1537 return 0;
1540 /* Wait until all other cpus entered the sync function. */
1541 while (atomic_read(&stp_sync->cpus) != 0)
1542 cpu_relax();
1544 enable_sync_clock();
1546 rc = 0;
1547 if (stp_info.todoff[0] || stp_info.todoff[1] ||
1548 stp_info.todoff[2] || stp_info.todoff[3] ||
1549 stp_info.tmd != 2) {
1550 old_clock = get_tod_clock();
1551 rc = chsc_sstpc(stp_page, STP_OP_SYNC, 0);
1552 if (rc == 0) {
1553 delta = adjust_time(old_clock, get_tod_clock(), 0);
1554 fixup_clock_comparator(delta);
1555 rc = chsc_sstpi(stp_page, &stp_info,
1556 sizeof(struct stp_sstpi));
1557 if (rc == 0 && stp_info.tmd != 2)
1558 rc = -EAGAIN;
1561 if (rc) {
1562 disable_sync_clock(NULL);
1563 stp_sync->in_sync = -EAGAIN;
1564 } else
1565 stp_sync->in_sync = 1;
1566 xchg(&first, 0);
1567 return 0;
1571 * STP work. Check for the STP state and take over the clock
1572 * synchronization if the STP clock source is usable.
1574 static void stp_work_fn(struct work_struct *work)
1576 struct clock_sync_data stp_sync;
1577 int rc;
1579 /* prevent multiple execution. */
1580 mutex_lock(&stp_work_mutex);
1582 if (!stp_online) {
1583 chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000);
1584 del_timer_sync(&stp_timer);
1585 goto out_unlock;
1588 rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0xb0e0);
1589 if (rc)
1590 goto out_unlock;
1592 rc = chsc_sstpi(stp_page, &stp_info, sizeof(struct stp_sstpi));
1593 if (rc || stp_info.c == 0)
1594 goto out_unlock;
1596 /* Skip synchronization if the clock is already in sync. */
1597 if (check_sync_clock())
1598 goto out_unlock;
1600 memset(&stp_sync, 0, sizeof(stp_sync));
1601 get_online_cpus();
1602 atomic_set(&stp_sync.cpus, num_online_cpus() - 1);
1603 stop_machine(stp_sync_clock, &stp_sync, cpu_online_mask);
1604 put_online_cpus();
1606 if (!check_sync_clock())
1608 * There is a usable clock but the synchonization failed.
1609 * Retry after a second.
1611 mod_timer(&stp_timer, jiffies + HZ);
1613 out_unlock:
1614 mutex_unlock(&stp_work_mutex);
1618 * STP subsys sysfs interface functions
1620 static struct bus_type stp_subsys = {
1621 .name = "stp",
1622 .dev_name = "stp",
1625 static ssize_t stp_ctn_id_show(struct device *dev,
1626 struct device_attribute *attr,
1627 char *buf)
1629 if (!stp_online)
1630 return -ENODATA;
1631 return sprintf(buf, "%016llx\n",
1632 *(unsigned long long *) stp_info.ctnid);
1635 static DEVICE_ATTR(ctn_id, 0400, stp_ctn_id_show, NULL);
1637 static ssize_t stp_ctn_type_show(struct device *dev,
1638 struct device_attribute *attr,
1639 char *buf)
1641 if (!stp_online)
1642 return -ENODATA;
1643 return sprintf(buf, "%i\n", stp_info.ctn);
1646 static DEVICE_ATTR(ctn_type, 0400, stp_ctn_type_show, NULL);
1648 static ssize_t stp_dst_offset_show(struct device *dev,
1649 struct device_attribute *attr,
1650 char *buf)
1652 if (!stp_online || !(stp_info.vbits & 0x2000))
1653 return -ENODATA;
1654 return sprintf(buf, "%i\n", (int)(s16) stp_info.dsto);
1657 static DEVICE_ATTR(dst_offset, 0400, stp_dst_offset_show, NULL);
1659 static ssize_t stp_leap_seconds_show(struct device *dev,
1660 struct device_attribute *attr,
1661 char *buf)
1663 if (!stp_online || !(stp_info.vbits & 0x8000))
1664 return -ENODATA;
1665 return sprintf(buf, "%i\n", (int)(s16) stp_info.leaps);
1668 static DEVICE_ATTR(leap_seconds, 0400, stp_leap_seconds_show, NULL);
1670 static ssize_t stp_stratum_show(struct device *dev,
1671 struct device_attribute *attr,
1672 char *buf)
1674 if (!stp_online)
1675 return -ENODATA;
1676 return sprintf(buf, "%i\n", (int)(s16) stp_info.stratum);
1679 static DEVICE_ATTR(stratum, 0400, stp_stratum_show, NULL);
1681 static ssize_t stp_time_offset_show(struct device *dev,
1682 struct device_attribute *attr,
1683 char *buf)
1685 if (!stp_online || !(stp_info.vbits & 0x0800))
1686 return -ENODATA;
1687 return sprintf(buf, "%i\n", (int) stp_info.tto);
1690 static DEVICE_ATTR(time_offset, 0400, stp_time_offset_show, NULL);
1692 static ssize_t stp_time_zone_offset_show(struct device *dev,
1693 struct device_attribute *attr,
1694 char *buf)
1696 if (!stp_online || !(stp_info.vbits & 0x4000))
1697 return -ENODATA;
1698 return sprintf(buf, "%i\n", (int)(s16) stp_info.tzo);
1701 static DEVICE_ATTR(time_zone_offset, 0400,
1702 stp_time_zone_offset_show, NULL);
1704 static ssize_t stp_timing_mode_show(struct device *dev,
1705 struct device_attribute *attr,
1706 char *buf)
1708 if (!stp_online)
1709 return -ENODATA;
1710 return sprintf(buf, "%i\n", stp_info.tmd);
1713 static DEVICE_ATTR(timing_mode, 0400, stp_timing_mode_show, NULL);
1715 static ssize_t stp_timing_state_show(struct device *dev,
1716 struct device_attribute *attr,
1717 char *buf)
1719 if (!stp_online)
1720 return -ENODATA;
1721 return sprintf(buf, "%i\n", stp_info.tst);
1724 static DEVICE_ATTR(timing_state, 0400, stp_timing_state_show, NULL);
1726 static ssize_t stp_online_show(struct device *dev,
1727 struct device_attribute *attr,
1728 char *buf)
1730 return sprintf(buf, "%i\n", stp_online);
1733 static ssize_t stp_online_store(struct device *dev,
1734 struct device_attribute *attr,
1735 const char *buf, size_t count)
1737 unsigned int value;
1739 value = simple_strtoul(buf, NULL, 0);
1740 if (value != 0 && value != 1)
1741 return -EINVAL;
1742 if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
1743 return -EOPNOTSUPP;
1744 mutex_lock(&clock_sync_mutex);
1745 stp_online = value;
1746 if (stp_online)
1747 set_bit(CLOCK_SYNC_STP, &clock_sync_flags);
1748 else
1749 clear_bit(CLOCK_SYNC_STP, &clock_sync_flags);
1750 queue_work(time_sync_wq, &stp_work);
1751 mutex_unlock(&clock_sync_mutex);
1752 return count;
1756 * Can't use DEVICE_ATTR because the attribute should be named
1757 * stp/online but dev_attr_online already exists in this file ..
1759 static struct device_attribute dev_attr_stp_online = {
1760 .attr = { .name = "online", .mode = 0600 },
1761 .show = stp_online_show,
1762 .store = stp_online_store,
1765 static struct device_attribute *stp_attributes[] = {
1766 &dev_attr_ctn_id,
1767 &dev_attr_ctn_type,
1768 &dev_attr_dst_offset,
1769 &dev_attr_leap_seconds,
1770 &dev_attr_stp_online,
1771 &dev_attr_stratum,
1772 &dev_attr_time_offset,
1773 &dev_attr_time_zone_offset,
1774 &dev_attr_timing_mode,
1775 &dev_attr_timing_state,
1776 NULL
1779 static int __init stp_init_sysfs(void)
1781 struct device_attribute **attr;
1782 int rc;
1784 rc = subsys_system_register(&stp_subsys, NULL);
1785 if (rc)
1786 goto out;
1787 for (attr = stp_attributes; *attr; attr++) {
1788 rc = device_create_file(stp_subsys.dev_root, *attr);
1789 if (rc)
1790 goto out_unreg;
1792 return 0;
1793 out_unreg:
1794 for (; attr >= stp_attributes; attr--)
1795 device_remove_file(stp_subsys.dev_root, *attr);
1796 bus_unregister(&stp_subsys);
1797 out:
1798 return rc;
1801 device_initcall(stp_init_sysfs);