Staging: netwave: delete the driver
[linux/fpc-iii.git] / drivers / dma / ioat / dma_v3.c
blob6740e319c9cf5422ff4b918c648d4b57e46c97a7
1 /*
2 * This file is provided under a dual BSD/GPLv2 license. When using or
3 * redistributing this file, you may do so under either license.
5 * GPL LICENSE SUMMARY
7 * Copyright(c) 2004 - 2009 Intel Corporation. All rights reserved.
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms and conditions of the GNU General Public License,
11 * version 2, as published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful, but WITHOUT
14 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
16 * more details.
18 * You should have received a copy of the GNU General Public License along with
19 * this program; if not, write to the Free Software Foundation, Inc.,
20 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
22 * The full GNU General Public License is included in this distribution in
23 * the file called "COPYING".
25 * BSD LICENSE
27 * Copyright(c) 2004-2009 Intel Corporation. All rights reserved.
29 * Redistribution and use in source and binary forms, with or without
30 * modification, are permitted provided that the following conditions are met:
32 * * Redistributions of source code must retain the above copyright
33 * notice, this list of conditions and the following disclaimer.
34 * * Redistributions in binary form must reproduce the above copyright
35 * notice, this list of conditions and the following disclaimer in
36 * the documentation and/or other materials provided with the
37 * distribution.
38 * * Neither the name of Intel Corporation nor the names of its
39 * contributors may be used to endorse or promote products derived
40 * from this software without specific prior written permission.
42 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
43 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
44 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
45 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
46 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
47 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
48 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
49 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
50 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
51 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
52 * POSSIBILITY OF SUCH DAMAGE.
56 * Support routines for v3+ hardware
59 #include <linux/pci.h>
60 #include <linux/gfp.h>
61 #include <linux/dmaengine.h>
62 #include <linux/dma-mapping.h>
63 #include "registers.h"
64 #include "hw.h"
65 #include "dma.h"
66 #include "dma_v2.h"
68 /* ioat hardware assumes at least two sources for raid operations */
69 #define src_cnt_to_sw(x) ((x) + 2)
70 #define src_cnt_to_hw(x) ((x) - 2)
72 /* provide a lookup table for setting the source address in the base or
73 * extended descriptor of an xor or pq descriptor
75 static const u8 xor_idx_to_desc __read_mostly = 0xd0;
76 static const u8 xor_idx_to_field[] __read_mostly = { 1, 4, 5, 6, 7, 0, 1, 2 };
77 static const u8 pq_idx_to_desc __read_mostly = 0xf8;
78 static const u8 pq_idx_to_field[] __read_mostly = { 1, 4, 5, 0, 1, 2, 4, 5 };
80 static dma_addr_t xor_get_src(struct ioat_raw_descriptor *descs[2], int idx)
82 struct ioat_raw_descriptor *raw = descs[xor_idx_to_desc >> idx & 1];
84 return raw->field[xor_idx_to_field[idx]];
87 static void xor_set_src(struct ioat_raw_descriptor *descs[2],
88 dma_addr_t addr, u32 offset, int idx)
90 struct ioat_raw_descriptor *raw = descs[xor_idx_to_desc >> idx & 1];
92 raw->field[xor_idx_to_field[idx]] = addr + offset;
95 static dma_addr_t pq_get_src(struct ioat_raw_descriptor *descs[2], int idx)
97 struct ioat_raw_descriptor *raw = descs[pq_idx_to_desc >> idx & 1];
99 return raw->field[pq_idx_to_field[idx]];
102 static void pq_set_src(struct ioat_raw_descriptor *descs[2],
103 dma_addr_t addr, u32 offset, u8 coef, int idx)
105 struct ioat_pq_descriptor *pq = (struct ioat_pq_descriptor *) descs[0];
106 struct ioat_raw_descriptor *raw = descs[pq_idx_to_desc >> idx & 1];
108 raw->field[pq_idx_to_field[idx]] = addr + offset;
109 pq->coef[idx] = coef;
112 static void ioat3_dma_unmap(struct ioat2_dma_chan *ioat,
113 struct ioat_ring_ent *desc, int idx)
115 struct ioat_chan_common *chan = &ioat->base;
116 struct pci_dev *pdev = chan->device->pdev;
117 size_t len = desc->len;
118 size_t offset = len - desc->hw->size;
119 struct dma_async_tx_descriptor *tx = &desc->txd;
120 enum dma_ctrl_flags flags = tx->flags;
122 switch (desc->hw->ctl_f.op) {
123 case IOAT_OP_COPY:
124 if (!desc->hw->ctl_f.null) /* skip 'interrupt' ops */
125 ioat_dma_unmap(chan, flags, len, desc->hw);
126 break;
127 case IOAT_OP_FILL: {
128 struct ioat_fill_descriptor *hw = desc->fill;
130 if (!(flags & DMA_COMPL_SKIP_DEST_UNMAP))
131 ioat_unmap(pdev, hw->dst_addr - offset, len,
132 PCI_DMA_FROMDEVICE, flags, 1);
133 break;
135 case IOAT_OP_XOR_VAL:
136 case IOAT_OP_XOR: {
137 struct ioat_xor_descriptor *xor = desc->xor;
138 struct ioat_ring_ent *ext;
139 struct ioat_xor_ext_descriptor *xor_ex = NULL;
140 int src_cnt = src_cnt_to_sw(xor->ctl_f.src_cnt);
141 struct ioat_raw_descriptor *descs[2];
142 int i;
144 if (src_cnt > 5) {
145 ext = ioat2_get_ring_ent(ioat, idx + 1);
146 xor_ex = ext->xor_ex;
149 if (!(flags & DMA_COMPL_SKIP_SRC_UNMAP)) {
150 descs[0] = (struct ioat_raw_descriptor *) xor;
151 descs[1] = (struct ioat_raw_descriptor *) xor_ex;
152 for (i = 0; i < src_cnt; i++) {
153 dma_addr_t src = xor_get_src(descs, i);
155 ioat_unmap(pdev, src - offset, len,
156 PCI_DMA_TODEVICE, flags, 0);
159 /* dest is a source in xor validate operations */
160 if (xor->ctl_f.op == IOAT_OP_XOR_VAL) {
161 ioat_unmap(pdev, xor->dst_addr - offset, len,
162 PCI_DMA_TODEVICE, flags, 1);
163 break;
167 if (!(flags & DMA_COMPL_SKIP_DEST_UNMAP))
168 ioat_unmap(pdev, xor->dst_addr - offset, len,
169 PCI_DMA_FROMDEVICE, flags, 1);
170 break;
172 case IOAT_OP_PQ_VAL:
173 case IOAT_OP_PQ: {
174 struct ioat_pq_descriptor *pq = desc->pq;
175 struct ioat_ring_ent *ext;
176 struct ioat_pq_ext_descriptor *pq_ex = NULL;
177 int src_cnt = src_cnt_to_sw(pq->ctl_f.src_cnt);
178 struct ioat_raw_descriptor *descs[2];
179 int i;
181 if (src_cnt > 3) {
182 ext = ioat2_get_ring_ent(ioat, idx + 1);
183 pq_ex = ext->pq_ex;
186 /* in the 'continue' case don't unmap the dests as sources */
187 if (dmaf_p_disabled_continue(flags))
188 src_cnt--;
189 else if (dmaf_continue(flags))
190 src_cnt -= 3;
192 if (!(flags & DMA_COMPL_SKIP_SRC_UNMAP)) {
193 descs[0] = (struct ioat_raw_descriptor *) pq;
194 descs[1] = (struct ioat_raw_descriptor *) pq_ex;
195 for (i = 0; i < src_cnt; i++) {
196 dma_addr_t src = pq_get_src(descs, i);
198 ioat_unmap(pdev, src - offset, len,
199 PCI_DMA_TODEVICE, flags, 0);
202 /* the dests are sources in pq validate operations */
203 if (pq->ctl_f.op == IOAT_OP_XOR_VAL) {
204 if (!(flags & DMA_PREP_PQ_DISABLE_P))
205 ioat_unmap(pdev, pq->p_addr - offset,
206 len, PCI_DMA_TODEVICE, flags, 0);
207 if (!(flags & DMA_PREP_PQ_DISABLE_Q))
208 ioat_unmap(pdev, pq->q_addr - offset,
209 len, PCI_DMA_TODEVICE, flags, 0);
210 break;
214 if (!(flags & DMA_COMPL_SKIP_DEST_UNMAP)) {
215 if (!(flags & DMA_PREP_PQ_DISABLE_P))
216 ioat_unmap(pdev, pq->p_addr - offset, len,
217 PCI_DMA_BIDIRECTIONAL, flags, 1);
218 if (!(flags & DMA_PREP_PQ_DISABLE_Q))
219 ioat_unmap(pdev, pq->q_addr - offset, len,
220 PCI_DMA_BIDIRECTIONAL, flags, 1);
222 break;
224 default:
225 dev_err(&pdev->dev, "%s: unknown op type: %#x\n",
226 __func__, desc->hw->ctl_f.op);
230 static bool desc_has_ext(struct ioat_ring_ent *desc)
232 struct ioat_dma_descriptor *hw = desc->hw;
234 if (hw->ctl_f.op == IOAT_OP_XOR ||
235 hw->ctl_f.op == IOAT_OP_XOR_VAL) {
236 struct ioat_xor_descriptor *xor = desc->xor;
238 if (src_cnt_to_sw(xor->ctl_f.src_cnt) > 5)
239 return true;
240 } else if (hw->ctl_f.op == IOAT_OP_PQ ||
241 hw->ctl_f.op == IOAT_OP_PQ_VAL) {
242 struct ioat_pq_descriptor *pq = desc->pq;
244 if (src_cnt_to_sw(pq->ctl_f.src_cnt) > 3)
245 return true;
248 return false;
252 * __cleanup - reclaim used descriptors
253 * @ioat: channel (ring) to clean
255 * The difference from the dma_v2.c __cleanup() is that this routine
256 * handles extended descriptors and dma-unmapping raid operations.
258 static void __cleanup(struct ioat2_dma_chan *ioat, unsigned long phys_complete)
260 struct ioat_chan_common *chan = &ioat->base;
261 struct ioat_ring_ent *desc;
262 bool seen_current = false;
263 u16 active;
264 int i;
266 dev_dbg(to_dev(chan), "%s: head: %#x tail: %#x issued: %#x\n",
267 __func__, ioat->head, ioat->tail, ioat->issued);
269 active = ioat2_ring_active(ioat);
270 for (i = 0; i < active && !seen_current; i++) {
271 struct dma_async_tx_descriptor *tx;
273 prefetch(ioat2_get_ring_ent(ioat, ioat->tail + i + 1));
274 desc = ioat2_get_ring_ent(ioat, ioat->tail + i);
275 dump_desc_dbg(ioat, desc);
276 tx = &desc->txd;
277 if (tx->cookie) {
278 chan->completed_cookie = tx->cookie;
279 ioat3_dma_unmap(ioat, desc, ioat->tail + i);
280 tx->cookie = 0;
281 if (tx->callback) {
282 tx->callback(tx->callback_param);
283 tx->callback = NULL;
287 if (tx->phys == phys_complete)
288 seen_current = true;
290 /* skip extended descriptors */
291 if (desc_has_ext(desc)) {
292 BUG_ON(i + 1 >= active);
293 i++;
296 ioat->tail += i;
297 BUG_ON(active && !seen_current); /* no active descs have written a completion? */
298 chan->last_completion = phys_complete;
300 active = ioat2_ring_active(ioat);
301 if (active == 0) {
302 dev_dbg(to_dev(chan), "%s: cancel completion timeout\n",
303 __func__);
304 clear_bit(IOAT_COMPLETION_PENDING, &chan->state);
305 mod_timer(&chan->timer, jiffies + IDLE_TIMEOUT);
307 /* 5 microsecond delay per pending descriptor */
308 writew(min((5 * active), IOAT_INTRDELAY_MASK),
309 chan->device->reg_base + IOAT_INTRDELAY_OFFSET);
312 /* try to cleanup, but yield (via spin_trylock) to incoming submissions
313 * with the expectation that we will immediately poll again shortly
315 static void ioat3_cleanup_poll(struct ioat2_dma_chan *ioat)
317 struct ioat_chan_common *chan = &ioat->base;
318 unsigned long phys_complete;
320 prefetch(chan->completion);
322 if (!spin_trylock_bh(&chan->cleanup_lock))
323 return;
325 if (!ioat_cleanup_preamble(chan, &phys_complete)) {
326 spin_unlock_bh(&chan->cleanup_lock);
327 return;
330 if (!spin_trylock_bh(&ioat->ring_lock)) {
331 spin_unlock_bh(&chan->cleanup_lock);
332 return;
335 __cleanup(ioat, phys_complete);
337 spin_unlock_bh(&ioat->ring_lock);
338 spin_unlock_bh(&chan->cleanup_lock);
341 /* run cleanup now because we already delayed the interrupt via INTRDELAY */
342 static void ioat3_cleanup_sync(struct ioat2_dma_chan *ioat)
344 struct ioat_chan_common *chan = &ioat->base;
345 unsigned long phys_complete;
347 prefetch(chan->completion);
349 spin_lock_bh(&chan->cleanup_lock);
350 if (!ioat_cleanup_preamble(chan, &phys_complete)) {
351 spin_unlock_bh(&chan->cleanup_lock);
352 return;
354 spin_lock_bh(&ioat->ring_lock);
356 __cleanup(ioat, phys_complete);
358 spin_unlock_bh(&ioat->ring_lock);
359 spin_unlock_bh(&chan->cleanup_lock);
362 static void ioat3_cleanup_event(unsigned long data)
364 struct ioat2_dma_chan *ioat = to_ioat2_chan((void *) data);
366 ioat3_cleanup_sync(ioat);
367 writew(IOAT_CHANCTRL_RUN, ioat->base.reg_base + IOAT_CHANCTRL_OFFSET);
370 static void ioat3_restart_channel(struct ioat2_dma_chan *ioat)
372 struct ioat_chan_common *chan = &ioat->base;
373 unsigned long phys_complete;
375 ioat2_quiesce(chan, 0);
376 if (ioat_cleanup_preamble(chan, &phys_complete))
377 __cleanup(ioat, phys_complete);
379 __ioat2_restart_chan(ioat);
382 static void ioat3_timer_event(unsigned long data)
384 struct ioat2_dma_chan *ioat = to_ioat2_chan((void *) data);
385 struct ioat_chan_common *chan = &ioat->base;
387 spin_lock_bh(&chan->cleanup_lock);
388 if (test_bit(IOAT_COMPLETION_PENDING, &chan->state)) {
389 unsigned long phys_complete;
390 u64 status;
392 spin_lock_bh(&ioat->ring_lock);
393 status = ioat_chansts(chan);
395 /* when halted due to errors check for channel
396 * programming errors before advancing the completion state
398 if (is_ioat_halted(status)) {
399 u32 chanerr;
401 chanerr = readl(chan->reg_base + IOAT_CHANERR_OFFSET);
402 dev_err(to_dev(chan), "%s: Channel halted (%x)\n",
403 __func__, chanerr);
404 BUG_ON(is_ioat_bug(chanerr));
407 /* if we haven't made progress and we have already
408 * acknowledged a pending completion once, then be more
409 * forceful with a restart
411 if (ioat_cleanup_preamble(chan, &phys_complete))
412 __cleanup(ioat, phys_complete);
413 else if (test_bit(IOAT_COMPLETION_ACK, &chan->state))
414 ioat3_restart_channel(ioat);
415 else {
416 set_bit(IOAT_COMPLETION_ACK, &chan->state);
417 mod_timer(&chan->timer, jiffies + COMPLETION_TIMEOUT);
419 spin_unlock_bh(&ioat->ring_lock);
420 } else {
421 u16 active;
423 /* if the ring is idle, empty, and oversized try to step
424 * down the size
426 spin_lock_bh(&ioat->ring_lock);
427 active = ioat2_ring_active(ioat);
428 if (active == 0 && ioat->alloc_order > ioat_get_alloc_order())
429 reshape_ring(ioat, ioat->alloc_order-1);
430 spin_unlock_bh(&ioat->ring_lock);
432 /* keep shrinking until we get back to our minimum
433 * default size
435 if (ioat->alloc_order > ioat_get_alloc_order())
436 mod_timer(&chan->timer, jiffies + IDLE_TIMEOUT);
438 spin_unlock_bh(&chan->cleanup_lock);
441 static enum dma_status
442 ioat3_is_complete(struct dma_chan *c, dma_cookie_t cookie,
443 dma_cookie_t *done, dma_cookie_t *used)
445 struct ioat2_dma_chan *ioat = to_ioat2_chan(c);
447 if (ioat_is_complete(c, cookie, done, used) == DMA_SUCCESS)
448 return DMA_SUCCESS;
450 ioat3_cleanup_poll(ioat);
452 return ioat_is_complete(c, cookie, done, used);
455 static struct dma_async_tx_descriptor *
456 ioat3_prep_memset_lock(struct dma_chan *c, dma_addr_t dest, int value,
457 size_t len, unsigned long flags)
459 struct ioat2_dma_chan *ioat = to_ioat2_chan(c);
460 struct ioat_ring_ent *desc;
461 size_t total_len = len;
462 struct ioat_fill_descriptor *fill;
463 int num_descs;
464 u64 src_data = (0x0101010101010101ULL) * (value & 0xff);
465 u16 idx;
466 int i;
468 num_descs = ioat2_xferlen_to_descs(ioat, len);
469 if (likely(num_descs) &&
470 ioat2_alloc_and_lock(&idx, ioat, num_descs) == 0)
471 /* pass */;
472 else
473 return NULL;
474 i = 0;
475 do {
476 size_t xfer_size = min_t(size_t, len, 1 << ioat->xfercap_log);
478 desc = ioat2_get_ring_ent(ioat, idx + i);
479 fill = desc->fill;
481 fill->size = xfer_size;
482 fill->src_data = src_data;
483 fill->dst_addr = dest;
484 fill->ctl = 0;
485 fill->ctl_f.op = IOAT_OP_FILL;
487 len -= xfer_size;
488 dest += xfer_size;
489 dump_desc_dbg(ioat, desc);
490 } while (++i < num_descs);
492 desc->txd.flags = flags;
493 desc->len = total_len;
494 fill->ctl_f.int_en = !!(flags & DMA_PREP_INTERRUPT);
495 fill->ctl_f.fence = !!(flags & DMA_PREP_FENCE);
496 fill->ctl_f.compl_write = 1;
497 dump_desc_dbg(ioat, desc);
499 /* we leave the channel locked to ensure in order submission */
500 return &desc->txd;
503 static struct dma_async_tx_descriptor *
504 __ioat3_prep_xor_lock(struct dma_chan *c, enum sum_check_flags *result,
505 dma_addr_t dest, dma_addr_t *src, unsigned int src_cnt,
506 size_t len, unsigned long flags)
508 struct ioat2_dma_chan *ioat = to_ioat2_chan(c);
509 struct ioat_ring_ent *compl_desc;
510 struct ioat_ring_ent *desc;
511 struct ioat_ring_ent *ext;
512 size_t total_len = len;
513 struct ioat_xor_descriptor *xor;
514 struct ioat_xor_ext_descriptor *xor_ex = NULL;
515 struct ioat_dma_descriptor *hw;
516 u32 offset = 0;
517 int num_descs;
518 int with_ext;
519 int i;
520 u16 idx;
521 u8 op = result ? IOAT_OP_XOR_VAL : IOAT_OP_XOR;
523 BUG_ON(src_cnt < 2);
525 num_descs = ioat2_xferlen_to_descs(ioat, len);
526 /* we need 2x the number of descriptors to cover greater than 5
527 * sources
529 if (src_cnt > 5) {
530 with_ext = 1;
531 num_descs *= 2;
532 } else
533 with_ext = 0;
535 /* completion writes from the raid engine may pass completion
536 * writes from the legacy engine, so we need one extra null
537 * (legacy) descriptor to ensure all completion writes arrive in
538 * order.
540 if (likely(num_descs) &&
541 ioat2_alloc_and_lock(&idx, ioat, num_descs+1) == 0)
542 /* pass */;
543 else
544 return NULL;
545 i = 0;
546 do {
547 struct ioat_raw_descriptor *descs[2];
548 size_t xfer_size = min_t(size_t, len, 1 << ioat->xfercap_log);
549 int s;
551 desc = ioat2_get_ring_ent(ioat, idx + i);
552 xor = desc->xor;
554 /* save a branch by unconditionally retrieving the
555 * extended descriptor xor_set_src() knows to not write
556 * to it in the single descriptor case
558 ext = ioat2_get_ring_ent(ioat, idx + i + 1);
559 xor_ex = ext->xor_ex;
561 descs[0] = (struct ioat_raw_descriptor *) xor;
562 descs[1] = (struct ioat_raw_descriptor *) xor_ex;
563 for (s = 0; s < src_cnt; s++)
564 xor_set_src(descs, src[s], offset, s);
565 xor->size = xfer_size;
566 xor->dst_addr = dest + offset;
567 xor->ctl = 0;
568 xor->ctl_f.op = op;
569 xor->ctl_f.src_cnt = src_cnt_to_hw(src_cnt);
571 len -= xfer_size;
572 offset += xfer_size;
573 dump_desc_dbg(ioat, desc);
574 } while ((i += 1 + with_ext) < num_descs);
576 /* last xor descriptor carries the unmap parameters and fence bit */
577 desc->txd.flags = flags;
578 desc->len = total_len;
579 if (result)
580 desc->result = result;
581 xor->ctl_f.fence = !!(flags & DMA_PREP_FENCE);
583 /* completion descriptor carries interrupt bit */
584 compl_desc = ioat2_get_ring_ent(ioat, idx + i);
585 compl_desc->txd.flags = flags & DMA_PREP_INTERRUPT;
586 hw = compl_desc->hw;
587 hw->ctl = 0;
588 hw->ctl_f.null = 1;
589 hw->ctl_f.int_en = !!(flags & DMA_PREP_INTERRUPT);
590 hw->ctl_f.compl_write = 1;
591 hw->size = NULL_DESC_BUFFER_SIZE;
592 dump_desc_dbg(ioat, compl_desc);
594 /* we leave the channel locked to ensure in order submission */
595 return &compl_desc->txd;
598 static struct dma_async_tx_descriptor *
599 ioat3_prep_xor(struct dma_chan *chan, dma_addr_t dest, dma_addr_t *src,
600 unsigned int src_cnt, size_t len, unsigned long flags)
602 return __ioat3_prep_xor_lock(chan, NULL, dest, src, src_cnt, len, flags);
605 struct dma_async_tx_descriptor *
606 ioat3_prep_xor_val(struct dma_chan *chan, dma_addr_t *src,
607 unsigned int src_cnt, size_t len,
608 enum sum_check_flags *result, unsigned long flags)
610 /* the cleanup routine only sets bits on validate failure, it
611 * does not clear bits on validate success... so clear it here
613 *result = 0;
615 return __ioat3_prep_xor_lock(chan, result, src[0], &src[1],
616 src_cnt - 1, len, flags);
619 static void
620 dump_pq_desc_dbg(struct ioat2_dma_chan *ioat, struct ioat_ring_ent *desc, struct ioat_ring_ent *ext)
622 struct device *dev = to_dev(&ioat->base);
623 struct ioat_pq_descriptor *pq = desc->pq;
624 struct ioat_pq_ext_descriptor *pq_ex = ext ? ext->pq_ex : NULL;
625 struct ioat_raw_descriptor *descs[] = { (void *) pq, (void *) pq_ex };
626 int src_cnt = src_cnt_to_sw(pq->ctl_f.src_cnt);
627 int i;
629 dev_dbg(dev, "desc[%d]: (%#llx->%#llx) flags: %#x"
630 " sz: %#x ctl: %#x (op: %d int: %d compl: %d pq: '%s%s' src_cnt: %d)\n",
631 desc_id(desc), (unsigned long long) desc->txd.phys,
632 (unsigned long long) (pq_ex ? pq_ex->next : pq->next),
633 desc->txd.flags, pq->size, pq->ctl, pq->ctl_f.op, pq->ctl_f.int_en,
634 pq->ctl_f.compl_write,
635 pq->ctl_f.p_disable ? "" : "p", pq->ctl_f.q_disable ? "" : "q",
636 pq->ctl_f.src_cnt);
637 for (i = 0; i < src_cnt; i++)
638 dev_dbg(dev, "\tsrc[%d]: %#llx coef: %#x\n", i,
639 (unsigned long long) pq_get_src(descs, i), pq->coef[i]);
640 dev_dbg(dev, "\tP: %#llx\n", pq->p_addr);
641 dev_dbg(dev, "\tQ: %#llx\n", pq->q_addr);
644 static struct dma_async_tx_descriptor *
645 __ioat3_prep_pq_lock(struct dma_chan *c, enum sum_check_flags *result,
646 const dma_addr_t *dst, const dma_addr_t *src,
647 unsigned int src_cnt, const unsigned char *scf,
648 size_t len, unsigned long flags)
650 struct ioat2_dma_chan *ioat = to_ioat2_chan(c);
651 struct ioat_chan_common *chan = &ioat->base;
652 struct ioat_ring_ent *compl_desc;
653 struct ioat_ring_ent *desc;
654 struct ioat_ring_ent *ext;
655 size_t total_len = len;
656 struct ioat_pq_descriptor *pq;
657 struct ioat_pq_ext_descriptor *pq_ex = NULL;
658 struct ioat_dma_descriptor *hw;
659 u32 offset = 0;
660 int num_descs;
661 int with_ext;
662 int i, s;
663 u16 idx;
664 u8 op = result ? IOAT_OP_PQ_VAL : IOAT_OP_PQ;
666 dev_dbg(to_dev(chan), "%s\n", __func__);
667 /* the engine requires at least two sources (we provide
668 * at least 1 implied source in the DMA_PREP_CONTINUE case)
670 BUG_ON(src_cnt + dmaf_continue(flags) < 2);
672 num_descs = ioat2_xferlen_to_descs(ioat, len);
673 /* we need 2x the number of descriptors to cover greater than 3
674 * sources (we need 1 extra source in the q-only continuation
675 * case and 3 extra sources in the p+q continuation case.
677 if (src_cnt + dmaf_p_disabled_continue(flags) > 3 ||
678 (dmaf_continue(flags) && !dmaf_p_disabled_continue(flags))) {
679 with_ext = 1;
680 num_descs *= 2;
681 } else
682 with_ext = 0;
684 /* completion writes from the raid engine may pass completion
685 * writes from the legacy engine, so we need one extra null
686 * (legacy) descriptor to ensure all completion writes arrive in
687 * order.
689 if (likely(num_descs) &&
690 ioat2_alloc_and_lock(&idx, ioat, num_descs+1) == 0)
691 /* pass */;
692 else
693 return NULL;
694 i = 0;
695 do {
696 struct ioat_raw_descriptor *descs[2];
697 size_t xfer_size = min_t(size_t, len, 1 << ioat->xfercap_log);
699 desc = ioat2_get_ring_ent(ioat, idx + i);
700 pq = desc->pq;
702 /* save a branch by unconditionally retrieving the
703 * extended descriptor pq_set_src() knows to not write
704 * to it in the single descriptor case
706 ext = ioat2_get_ring_ent(ioat, idx + i + with_ext);
707 pq_ex = ext->pq_ex;
709 descs[0] = (struct ioat_raw_descriptor *) pq;
710 descs[1] = (struct ioat_raw_descriptor *) pq_ex;
712 for (s = 0; s < src_cnt; s++)
713 pq_set_src(descs, src[s], offset, scf[s], s);
715 /* see the comment for dma_maxpq in include/linux/dmaengine.h */
716 if (dmaf_p_disabled_continue(flags))
717 pq_set_src(descs, dst[1], offset, 1, s++);
718 else if (dmaf_continue(flags)) {
719 pq_set_src(descs, dst[0], offset, 0, s++);
720 pq_set_src(descs, dst[1], offset, 1, s++);
721 pq_set_src(descs, dst[1], offset, 0, s++);
723 pq->size = xfer_size;
724 pq->p_addr = dst[0] + offset;
725 pq->q_addr = dst[1] + offset;
726 pq->ctl = 0;
727 pq->ctl_f.op = op;
728 pq->ctl_f.src_cnt = src_cnt_to_hw(s);
729 pq->ctl_f.p_disable = !!(flags & DMA_PREP_PQ_DISABLE_P);
730 pq->ctl_f.q_disable = !!(flags & DMA_PREP_PQ_DISABLE_Q);
732 len -= xfer_size;
733 offset += xfer_size;
734 } while ((i += 1 + with_ext) < num_descs);
736 /* last pq descriptor carries the unmap parameters and fence bit */
737 desc->txd.flags = flags;
738 desc->len = total_len;
739 if (result)
740 desc->result = result;
741 pq->ctl_f.fence = !!(flags & DMA_PREP_FENCE);
742 dump_pq_desc_dbg(ioat, desc, ext);
744 /* completion descriptor carries interrupt bit */
745 compl_desc = ioat2_get_ring_ent(ioat, idx + i);
746 compl_desc->txd.flags = flags & DMA_PREP_INTERRUPT;
747 hw = compl_desc->hw;
748 hw->ctl = 0;
749 hw->ctl_f.null = 1;
750 hw->ctl_f.int_en = !!(flags & DMA_PREP_INTERRUPT);
751 hw->ctl_f.compl_write = 1;
752 hw->size = NULL_DESC_BUFFER_SIZE;
753 dump_desc_dbg(ioat, compl_desc);
755 /* we leave the channel locked to ensure in order submission */
756 return &compl_desc->txd;
759 static struct dma_async_tx_descriptor *
760 ioat3_prep_pq(struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src,
761 unsigned int src_cnt, const unsigned char *scf, size_t len,
762 unsigned long flags)
764 /* specify valid address for disabled result */
765 if (flags & DMA_PREP_PQ_DISABLE_P)
766 dst[0] = dst[1];
767 if (flags & DMA_PREP_PQ_DISABLE_Q)
768 dst[1] = dst[0];
770 /* handle the single source multiply case from the raid6
771 * recovery path
773 if ((flags & DMA_PREP_PQ_DISABLE_P) && src_cnt == 1) {
774 dma_addr_t single_source[2];
775 unsigned char single_source_coef[2];
777 BUG_ON(flags & DMA_PREP_PQ_DISABLE_Q);
778 single_source[0] = src[0];
779 single_source[1] = src[0];
780 single_source_coef[0] = scf[0];
781 single_source_coef[1] = 0;
783 return __ioat3_prep_pq_lock(chan, NULL, dst, single_source, 2,
784 single_source_coef, len, flags);
785 } else
786 return __ioat3_prep_pq_lock(chan, NULL, dst, src, src_cnt, scf,
787 len, flags);
790 struct dma_async_tx_descriptor *
791 ioat3_prep_pq_val(struct dma_chan *chan, dma_addr_t *pq, dma_addr_t *src,
792 unsigned int src_cnt, const unsigned char *scf, size_t len,
793 enum sum_check_flags *pqres, unsigned long flags)
795 /* specify valid address for disabled result */
796 if (flags & DMA_PREP_PQ_DISABLE_P)
797 pq[0] = pq[1];
798 if (flags & DMA_PREP_PQ_DISABLE_Q)
799 pq[1] = pq[0];
801 /* the cleanup routine only sets bits on validate failure, it
802 * does not clear bits on validate success... so clear it here
804 *pqres = 0;
806 return __ioat3_prep_pq_lock(chan, pqres, pq, src, src_cnt, scf, len,
807 flags);
810 static struct dma_async_tx_descriptor *
811 ioat3_prep_pqxor(struct dma_chan *chan, dma_addr_t dst, dma_addr_t *src,
812 unsigned int src_cnt, size_t len, unsigned long flags)
814 unsigned char scf[src_cnt];
815 dma_addr_t pq[2];
817 memset(scf, 0, src_cnt);
818 pq[0] = dst;
819 flags |= DMA_PREP_PQ_DISABLE_Q;
820 pq[1] = dst; /* specify valid address for disabled result */
822 return __ioat3_prep_pq_lock(chan, NULL, pq, src, src_cnt, scf, len,
823 flags);
826 struct dma_async_tx_descriptor *
827 ioat3_prep_pqxor_val(struct dma_chan *chan, dma_addr_t *src,
828 unsigned int src_cnt, size_t len,
829 enum sum_check_flags *result, unsigned long flags)
831 unsigned char scf[src_cnt];
832 dma_addr_t pq[2];
834 /* the cleanup routine only sets bits on validate failure, it
835 * does not clear bits on validate success... so clear it here
837 *result = 0;
839 memset(scf, 0, src_cnt);
840 pq[0] = src[0];
841 flags |= DMA_PREP_PQ_DISABLE_Q;
842 pq[1] = pq[0]; /* specify valid address for disabled result */
844 return __ioat3_prep_pq_lock(chan, result, pq, &src[1], src_cnt - 1, scf,
845 len, flags);
848 static struct dma_async_tx_descriptor *
849 ioat3_prep_interrupt_lock(struct dma_chan *c, unsigned long flags)
851 struct ioat2_dma_chan *ioat = to_ioat2_chan(c);
852 struct ioat_ring_ent *desc;
853 struct ioat_dma_descriptor *hw;
854 u16 idx;
856 if (ioat2_alloc_and_lock(&idx, ioat, 1) == 0)
857 desc = ioat2_get_ring_ent(ioat, idx);
858 else
859 return NULL;
861 hw = desc->hw;
862 hw->ctl = 0;
863 hw->ctl_f.null = 1;
864 hw->ctl_f.int_en = 1;
865 hw->ctl_f.fence = !!(flags & DMA_PREP_FENCE);
866 hw->ctl_f.compl_write = 1;
867 hw->size = NULL_DESC_BUFFER_SIZE;
868 hw->src_addr = 0;
869 hw->dst_addr = 0;
871 desc->txd.flags = flags;
872 desc->len = 1;
874 dump_desc_dbg(ioat, desc);
876 /* we leave the channel locked to ensure in order submission */
877 return &desc->txd;
880 static void __devinit ioat3_dma_test_callback(void *dma_async_param)
882 struct completion *cmp = dma_async_param;
884 complete(cmp);
887 #define IOAT_NUM_SRC_TEST 6 /* must be <= 8 */
888 static int __devinit ioat_xor_val_self_test(struct ioatdma_device *device)
890 int i, src_idx;
891 struct page *dest;
892 struct page *xor_srcs[IOAT_NUM_SRC_TEST];
893 struct page *xor_val_srcs[IOAT_NUM_SRC_TEST + 1];
894 dma_addr_t dma_srcs[IOAT_NUM_SRC_TEST + 1];
895 dma_addr_t dma_addr, dest_dma;
896 struct dma_async_tx_descriptor *tx;
897 struct dma_chan *dma_chan;
898 dma_cookie_t cookie;
899 u8 cmp_byte = 0;
900 u32 cmp_word;
901 u32 xor_val_result;
902 int err = 0;
903 struct completion cmp;
904 unsigned long tmo;
905 struct device *dev = &device->pdev->dev;
906 struct dma_device *dma = &device->common;
908 dev_dbg(dev, "%s\n", __func__);
910 if (!dma_has_cap(DMA_XOR, dma->cap_mask))
911 return 0;
913 for (src_idx = 0; src_idx < IOAT_NUM_SRC_TEST; src_idx++) {
914 xor_srcs[src_idx] = alloc_page(GFP_KERNEL);
915 if (!xor_srcs[src_idx]) {
916 while (src_idx--)
917 __free_page(xor_srcs[src_idx]);
918 return -ENOMEM;
922 dest = alloc_page(GFP_KERNEL);
923 if (!dest) {
924 while (src_idx--)
925 __free_page(xor_srcs[src_idx]);
926 return -ENOMEM;
929 /* Fill in src buffers */
930 for (src_idx = 0; src_idx < IOAT_NUM_SRC_TEST; src_idx++) {
931 u8 *ptr = page_address(xor_srcs[src_idx]);
932 for (i = 0; i < PAGE_SIZE; i++)
933 ptr[i] = (1 << src_idx);
936 for (src_idx = 0; src_idx < IOAT_NUM_SRC_TEST; src_idx++)
937 cmp_byte ^= (u8) (1 << src_idx);
939 cmp_word = (cmp_byte << 24) | (cmp_byte << 16) |
940 (cmp_byte << 8) | cmp_byte;
942 memset(page_address(dest), 0, PAGE_SIZE);
944 dma_chan = container_of(dma->channels.next, struct dma_chan,
945 device_node);
946 if (dma->device_alloc_chan_resources(dma_chan) < 1) {
947 err = -ENODEV;
948 goto out;
951 /* test xor */
952 dest_dma = dma_map_page(dev, dest, 0, PAGE_SIZE, DMA_FROM_DEVICE);
953 for (i = 0; i < IOAT_NUM_SRC_TEST; i++)
954 dma_srcs[i] = dma_map_page(dev, xor_srcs[i], 0, PAGE_SIZE,
955 DMA_TO_DEVICE);
956 tx = dma->device_prep_dma_xor(dma_chan, dest_dma, dma_srcs,
957 IOAT_NUM_SRC_TEST, PAGE_SIZE,
958 DMA_PREP_INTERRUPT);
960 if (!tx) {
961 dev_err(dev, "Self-test xor prep failed\n");
962 err = -ENODEV;
963 goto free_resources;
966 async_tx_ack(tx);
967 init_completion(&cmp);
968 tx->callback = ioat3_dma_test_callback;
969 tx->callback_param = &cmp;
970 cookie = tx->tx_submit(tx);
971 if (cookie < 0) {
972 dev_err(dev, "Self-test xor setup failed\n");
973 err = -ENODEV;
974 goto free_resources;
976 dma->device_issue_pending(dma_chan);
978 tmo = wait_for_completion_timeout(&cmp, msecs_to_jiffies(3000));
980 if (dma->device_is_tx_complete(dma_chan, cookie, NULL, NULL) != DMA_SUCCESS) {
981 dev_err(dev, "Self-test xor timed out\n");
982 err = -ENODEV;
983 goto free_resources;
986 dma_sync_single_for_cpu(dev, dest_dma, PAGE_SIZE, DMA_FROM_DEVICE);
987 for (i = 0; i < (PAGE_SIZE / sizeof(u32)); i++) {
988 u32 *ptr = page_address(dest);
989 if (ptr[i] != cmp_word) {
990 dev_err(dev, "Self-test xor failed compare\n");
991 err = -ENODEV;
992 goto free_resources;
995 dma_sync_single_for_device(dev, dest_dma, PAGE_SIZE, DMA_TO_DEVICE);
997 /* skip validate if the capability is not present */
998 if (!dma_has_cap(DMA_XOR_VAL, dma_chan->device->cap_mask))
999 goto free_resources;
1001 /* validate the sources with the destintation page */
1002 for (i = 0; i < IOAT_NUM_SRC_TEST; i++)
1003 xor_val_srcs[i] = xor_srcs[i];
1004 xor_val_srcs[i] = dest;
1006 xor_val_result = 1;
1008 for (i = 0; i < IOAT_NUM_SRC_TEST + 1; i++)
1009 dma_srcs[i] = dma_map_page(dev, xor_val_srcs[i], 0, PAGE_SIZE,
1010 DMA_TO_DEVICE);
1011 tx = dma->device_prep_dma_xor_val(dma_chan, dma_srcs,
1012 IOAT_NUM_SRC_TEST + 1, PAGE_SIZE,
1013 &xor_val_result, DMA_PREP_INTERRUPT);
1014 if (!tx) {
1015 dev_err(dev, "Self-test zero prep failed\n");
1016 err = -ENODEV;
1017 goto free_resources;
1020 async_tx_ack(tx);
1021 init_completion(&cmp);
1022 tx->callback = ioat3_dma_test_callback;
1023 tx->callback_param = &cmp;
1024 cookie = tx->tx_submit(tx);
1025 if (cookie < 0) {
1026 dev_err(dev, "Self-test zero setup failed\n");
1027 err = -ENODEV;
1028 goto free_resources;
1030 dma->device_issue_pending(dma_chan);
1032 tmo = wait_for_completion_timeout(&cmp, msecs_to_jiffies(3000));
1034 if (dma->device_is_tx_complete(dma_chan, cookie, NULL, NULL) != DMA_SUCCESS) {
1035 dev_err(dev, "Self-test validate timed out\n");
1036 err = -ENODEV;
1037 goto free_resources;
1040 if (xor_val_result != 0) {
1041 dev_err(dev, "Self-test validate failed compare\n");
1042 err = -ENODEV;
1043 goto free_resources;
1046 /* skip memset if the capability is not present */
1047 if (!dma_has_cap(DMA_MEMSET, dma_chan->device->cap_mask))
1048 goto free_resources;
1050 /* test memset */
1051 dma_addr = dma_map_page(dev, dest, 0,
1052 PAGE_SIZE, DMA_FROM_DEVICE);
1053 tx = dma->device_prep_dma_memset(dma_chan, dma_addr, 0, PAGE_SIZE,
1054 DMA_PREP_INTERRUPT);
1055 if (!tx) {
1056 dev_err(dev, "Self-test memset prep failed\n");
1057 err = -ENODEV;
1058 goto free_resources;
1061 async_tx_ack(tx);
1062 init_completion(&cmp);
1063 tx->callback = ioat3_dma_test_callback;
1064 tx->callback_param = &cmp;
1065 cookie = tx->tx_submit(tx);
1066 if (cookie < 0) {
1067 dev_err(dev, "Self-test memset setup failed\n");
1068 err = -ENODEV;
1069 goto free_resources;
1071 dma->device_issue_pending(dma_chan);
1073 tmo = wait_for_completion_timeout(&cmp, msecs_to_jiffies(3000));
1075 if (dma->device_is_tx_complete(dma_chan, cookie, NULL, NULL) != DMA_SUCCESS) {
1076 dev_err(dev, "Self-test memset timed out\n");
1077 err = -ENODEV;
1078 goto free_resources;
1081 for (i = 0; i < PAGE_SIZE/sizeof(u32); i++) {
1082 u32 *ptr = page_address(dest);
1083 if (ptr[i]) {
1084 dev_err(dev, "Self-test memset failed compare\n");
1085 err = -ENODEV;
1086 goto free_resources;
1090 /* test for non-zero parity sum */
1091 xor_val_result = 0;
1092 for (i = 0; i < IOAT_NUM_SRC_TEST + 1; i++)
1093 dma_srcs[i] = dma_map_page(dev, xor_val_srcs[i], 0, PAGE_SIZE,
1094 DMA_TO_DEVICE);
1095 tx = dma->device_prep_dma_xor_val(dma_chan, dma_srcs,
1096 IOAT_NUM_SRC_TEST + 1, PAGE_SIZE,
1097 &xor_val_result, DMA_PREP_INTERRUPT);
1098 if (!tx) {
1099 dev_err(dev, "Self-test 2nd zero prep failed\n");
1100 err = -ENODEV;
1101 goto free_resources;
1104 async_tx_ack(tx);
1105 init_completion(&cmp);
1106 tx->callback = ioat3_dma_test_callback;
1107 tx->callback_param = &cmp;
1108 cookie = tx->tx_submit(tx);
1109 if (cookie < 0) {
1110 dev_err(dev, "Self-test 2nd zero setup failed\n");
1111 err = -ENODEV;
1112 goto free_resources;
1114 dma->device_issue_pending(dma_chan);
1116 tmo = wait_for_completion_timeout(&cmp, msecs_to_jiffies(3000));
1118 if (dma->device_is_tx_complete(dma_chan, cookie, NULL, NULL) != DMA_SUCCESS) {
1119 dev_err(dev, "Self-test 2nd validate timed out\n");
1120 err = -ENODEV;
1121 goto free_resources;
1124 if (xor_val_result != SUM_CHECK_P_RESULT) {
1125 dev_err(dev, "Self-test validate failed compare\n");
1126 err = -ENODEV;
1127 goto free_resources;
1130 free_resources:
1131 dma->device_free_chan_resources(dma_chan);
1132 out:
1133 src_idx = IOAT_NUM_SRC_TEST;
1134 while (src_idx--)
1135 __free_page(xor_srcs[src_idx]);
1136 __free_page(dest);
1137 return err;
1140 static int __devinit ioat3_dma_self_test(struct ioatdma_device *device)
1142 int rc = ioat_dma_self_test(device);
1144 if (rc)
1145 return rc;
1147 rc = ioat_xor_val_self_test(device);
1148 if (rc)
1149 return rc;
1151 return 0;
1154 static int ioat3_reset_hw(struct ioat_chan_common *chan)
1156 /* throw away whatever the channel was doing and get it
1157 * initialized, with ioat3 specific workarounds
1159 struct ioatdma_device *device = chan->device;
1160 struct pci_dev *pdev = device->pdev;
1161 u32 chanerr;
1162 u16 dev_id;
1163 int err;
1165 ioat2_quiesce(chan, msecs_to_jiffies(100));
1167 chanerr = readl(chan->reg_base + IOAT_CHANERR_OFFSET);
1168 writel(chanerr, chan->reg_base + IOAT_CHANERR_OFFSET);
1170 /* -= IOAT ver.3 workarounds =- */
1171 /* Write CHANERRMSK_INT with 3E07h to mask out the errors
1172 * that can cause stability issues for IOAT ver.3, and clear any
1173 * pending errors
1175 pci_write_config_dword(pdev, IOAT_PCI_CHANERRMASK_INT_OFFSET, 0x3e07);
1176 err = pci_read_config_dword(pdev, IOAT_PCI_CHANERR_INT_OFFSET, &chanerr);
1177 if (err) {
1178 dev_err(&pdev->dev, "channel error register unreachable\n");
1179 return err;
1181 pci_write_config_dword(pdev, IOAT_PCI_CHANERR_INT_OFFSET, chanerr);
1183 /* Clear DMAUNCERRSTS Cfg-Reg Parity Error status bit
1184 * (workaround for spurious config parity error after restart)
1186 pci_read_config_word(pdev, IOAT_PCI_DEVICE_ID_OFFSET, &dev_id);
1187 if (dev_id == PCI_DEVICE_ID_INTEL_IOAT_TBG0)
1188 pci_write_config_dword(pdev, IOAT_PCI_DMAUNCERRSTS_OFFSET, 0x10);
1190 return ioat2_reset_sync(chan, msecs_to_jiffies(200));
1193 int __devinit ioat3_dma_probe(struct ioatdma_device *device, int dca)
1195 struct pci_dev *pdev = device->pdev;
1196 int dca_en = system_has_dca_enabled(pdev);
1197 struct dma_device *dma;
1198 struct dma_chan *c;
1199 struct ioat_chan_common *chan;
1200 bool is_raid_device = false;
1201 int err;
1202 u32 cap;
1204 device->enumerate_channels = ioat2_enumerate_channels;
1205 device->reset_hw = ioat3_reset_hw;
1206 device->self_test = ioat3_dma_self_test;
1207 dma = &device->common;
1208 dma->device_prep_dma_memcpy = ioat2_dma_prep_memcpy_lock;
1209 dma->device_issue_pending = ioat2_issue_pending;
1210 dma->device_alloc_chan_resources = ioat2_alloc_chan_resources;
1211 dma->device_free_chan_resources = ioat2_free_chan_resources;
1213 dma_cap_set(DMA_INTERRUPT, dma->cap_mask);
1214 dma->device_prep_dma_interrupt = ioat3_prep_interrupt_lock;
1216 cap = readl(device->reg_base + IOAT_DMA_CAP_OFFSET);
1218 /* dca is incompatible with raid operations */
1219 if (dca_en && (cap & (IOAT_CAP_XOR|IOAT_CAP_PQ)))
1220 cap &= ~(IOAT_CAP_XOR|IOAT_CAP_PQ);
1222 if (cap & IOAT_CAP_XOR) {
1223 is_raid_device = true;
1224 dma->max_xor = 8;
1225 dma->xor_align = 2;
1227 dma_cap_set(DMA_XOR, dma->cap_mask);
1228 dma->device_prep_dma_xor = ioat3_prep_xor;
1230 dma_cap_set(DMA_XOR_VAL, dma->cap_mask);
1231 dma->device_prep_dma_xor_val = ioat3_prep_xor_val;
1233 if (cap & IOAT_CAP_PQ) {
1234 is_raid_device = true;
1235 dma_set_maxpq(dma, 8, 0);
1236 dma->pq_align = 2;
1238 dma_cap_set(DMA_PQ, dma->cap_mask);
1239 dma->device_prep_dma_pq = ioat3_prep_pq;
1241 dma_cap_set(DMA_PQ_VAL, dma->cap_mask);
1242 dma->device_prep_dma_pq_val = ioat3_prep_pq_val;
1244 if (!(cap & IOAT_CAP_XOR)) {
1245 dma->max_xor = 8;
1246 dma->xor_align = 2;
1248 dma_cap_set(DMA_XOR, dma->cap_mask);
1249 dma->device_prep_dma_xor = ioat3_prep_pqxor;
1251 dma_cap_set(DMA_XOR_VAL, dma->cap_mask);
1252 dma->device_prep_dma_xor_val = ioat3_prep_pqxor_val;
1255 if (is_raid_device && (cap & IOAT_CAP_FILL_BLOCK)) {
1256 dma_cap_set(DMA_MEMSET, dma->cap_mask);
1257 dma->device_prep_dma_memset = ioat3_prep_memset_lock;
1261 if (is_raid_device) {
1262 dma->device_is_tx_complete = ioat3_is_complete;
1263 device->cleanup_fn = ioat3_cleanup_event;
1264 device->timer_fn = ioat3_timer_event;
1265 } else {
1266 dma->device_is_tx_complete = ioat_is_dma_complete;
1267 device->cleanup_fn = ioat2_cleanup_event;
1268 device->timer_fn = ioat2_timer_event;
1271 #ifdef CONFIG_ASYNC_TX_DISABLE_PQ_VAL_DMA
1272 dma_cap_clear(DMA_PQ_VAL, dma->cap_mask);
1273 dma->device_prep_dma_pq_val = NULL;
1274 #endif
1276 #ifdef CONFIG_ASYNC_TX_DISABLE_XOR_VAL_DMA
1277 dma_cap_clear(DMA_XOR_VAL, dma->cap_mask);
1278 dma->device_prep_dma_xor_val = NULL;
1279 #endif
1281 err = ioat_probe(device);
1282 if (err)
1283 return err;
1284 ioat_set_tcp_copy_break(262144);
1286 list_for_each_entry(c, &dma->channels, device_node) {
1287 chan = to_chan_common(c);
1288 writel(IOAT_DMA_DCA_ANY_CPU,
1289 chan->reg_base + IOAT_DCACTRL_OFFSET);
1292 err = ioat_register(device);
1293 if (err)
1294 return err;
1296 ioat_kobject_add(device, &ioat2_ktype);
1298 if (dca)
1299 device->dca = ioat3_dca_init(pdev, device->reg_base);
1301 return 0;