Staging: netwave: delete the driver
[linux/fpc-iii.git] / drivers / gpu / drm / ttm / ttm_tt.c
blobd5fd5b8faeb3559ed46c2ef53a78800ecc4fc129
1 /**************************************************************************
3 * Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA
4 * All Rights Reserved.
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
21 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
22 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
23 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
24 * USE OR OTHER DEALINGS IN THE SOFTWARE.
26 **************************************************************************/
28 * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com>
31 #include <linux/sched.h>
32 #include <linux/highmem.h>
33 #include <linux/pagemap.h>
34 #include <linux/file.h>
35 #include <linux/swap.h>
36 #include <linux/slab.h>
37 #include "drm_cache.h"
38 #include "drm_mem_util.h"
39 #include "ttm/ttm_module.h"
40 #include "ttm/ttm_bo_driver.h"
41 #include "ttm/ttm_placement.h"
43 static int ttm_tt_swapin(struct ttm_tt *ttm);
45 /**
46 * Allocates storage for pointers to the pages that back the ttm.
48 static void ttm_tt_alloc_page_directory(struct ttm_tt *ttm)
50 ttm->pages = drm_calloc_large(ttm->num_pages, sizeof(*ttm->pages));
53 static void ttm_tt_free_page_directory(struct ttm_tt *ttm)
55 drm_free_large(ttm->pages);
56 ttm->pages = NULL;
59 static struct page *ttm_tt_alloc_page(unsigned page_flags)
61 gfp_t gfp_flags = GFP_USER;
63 if (page_flags & TTM_PAGE_FLAG_ZERO_ALLOC)
64 gfp_flags |= __GFP_ZERO;
66 if (page_flags & TTM_PAGE_FLAG_DMA32)
67 gfp_flags |= __GFP_DMA32;
68 else
69 gfp_flags |= __GFP_HIGHMEM;
71 return alloc_page(gfp_flags);
74 static void ttm_tt_free_user_pages(struct ttm_tt *ttm)
76 int write;
77 int dirty;
78 struct page *page;
79 int i;
80 struct ttm_backend *be = ttm->be;
82 BUG_ON(!(ttm->page_flags & TTM_PAGE_FLAG_USER));
83 write = ((ttm->page_flags & TTM_PAGE_FLAG_WRITE) != 0);
84 dirty = ((ttm->page_flags & TTM_PAGE_FLAG_USER_DIRTY) != 0);
86 if (be)
87 be->func->clear(be);
89 for (i = 0; i < ttm->num_pages; ++i) {
90 page = ttm->pages[i];
91 if (page == NULL)
92 continue;
94 if (page == ttm->dummy_read_page) {
95 BUG_ON(write);
96 continue;
99 if (write && dirty && !PageReserved(page))
100 set_page_dirty_lock(page);
102 ttm->pages[i] = NULL;
103 ttm_mem_global_free(ttm->glob->mem_glob, PAGE_SIZE);
104 put_page(page);
106 ttm->state = tt_unpopulated;
107 ttm->first_himem_page = ttm->num_pages;
108 ttm->last_lomem_page = -1;
111 static struct page *__ttm_tt_get_page(struct ttm_tt *ttm, int index)
113 struct page *p;
114 struct ttm_mem_global *mem_glob = ttm->glob->mem_glob;
115 int ret;
117 while (NULL == (p = ttm->pages[index])) {
118 p = ttm_tt_alloc_page(ttm->page_flags);
120 if (!p)
121 return NULL;
123 ret = ttm_mem_global_alloc_page(mem_glob, p, false, false);
124 if (unlikely(ret != 0))
125 goto out_err;
127 if (PageHighMem(p))
128 ttm->pages[--ttm->first_himem_page] = p;
129 else
130 ttm->pages[++ttm->last_lomem_page] = p;
132 return p;
133 out_err:
134 put_page(p);
135 return NULL;
138 struct page *ttm_tt_get_page(struct ttm_tt *ttm, int index)
140 int ret;
142 if (unlikely(ttm->page_flags & TTM_PAGE_FLAG_SWAPPED)) {
143 ret = ttm_tt_swapin(ttm);
144 if (unlikely(ret != 0))
145 return NULL;
147 return __ttm_tt_get_page(ttm, index);
150 int ttm_tt_populate(struct ttm_tt *ttm)
152 struct page *page;
153 unsigned long i;
154 struct ttm_backend *be;
155 int ret;
157 if (ttm->state != tt_unpopulated)
158 return 0;
160 if (unlikely(ttm->page_flags & TTM_PAGE_FLAG_SWAPPED)) {
161 ret = ttm_tt_swapin(ttm);
162 if (unlikely(ret != 0))
163 return ret;
166 be = ttm->be;
168 for (i = 0; i < ttm->num_pages; ++i) {
169 page = __ttm_tt_get_page(ttm, i);
170 if (!page)
171 return -ENOMEM;
174 be->func->populate(be, ttm->num_pages, ttm->pages,
175 ttm->dummy_read_page);
176 ttm->state = tt_unbound;
177 return 0;
179 EXPORT_SYMBOL(ttm_tt_populate);
181 #ifdef CONFIG_X86
182 static inline int ttm_tt_set_page_caching(struct page *p,
183 enum ttm_caching_state c_old,
184 enum ttm_caching_state c_new)
186 int ret = 0;
188 if (PageHighMem(p))
189 return 0;
191 if (c_old != tt_cached) {
192 /* p isn't in the default caching state, set it to
193 * writeback first to free its current memtype. */
195 ret = set_pages_wb(p, 1);
196 if (ret)
197 return ret;
200 if (c_new == tt_wc)
201 ret = set_memory_wc((unsigned long) page_address(p), 1);
202 else if (c_new == tt_uncached)
203 ret = set_pages_uc(p, 1);
205 return ret;
207 #else /* CONFIG_X86 */
208 static inline int ttm_tt_set_page_caching(struct page *p,
209 enum ttm_caching_state c_old,
210 enum ttm_caching_state c_new)
212 return 0;
214 #endif /* CONFIG_X86 */
217 * Change caching policy for the linear kernel map
218 * for range of pages in a ttm.
221 static int ttm_tt_set_caching(struct ttm_tt *ttm,
222 enum ttm_caching_state c_state)
224 int i, j;
225 struct page *cur_page;
226 int ret;
228 if (ttm->caching_state == c_state)
229 return 0;
231 if (c_state != tt_cached) {
232 ret = ttm_tt_populate(ttm);
233 if (unlikely(ret != 0))
234 return ret;
237 if (ttm->caching_state == tt_cached)
238 drm_clflush_pages(ttm->pages, ttm->num_pages);
240 for (i = 0; i < ttm->num_pages; ++i) {
241 cur_page = ttm->pages[i];
242 if (likely(cur_page != NULL)) {
243 ret = ttm_tt_set_page_caching(cur_page,
244 ttm->caching_state,
245 c_state);
246 if (unlikely(ret != 0))
247 goto out_err;
251 ttm->caching_state = c_state;
253 return 0;
255 out_err:
256 for (j = 0; j < i; ++j) {
257 cur_page = ttm->pages[j];
258 if (likely(cur_page != NULL)) {
259 (void)ttm_tt_set_page_caching(cur_page, c_state,
260 ttm->caching_state);
264 return ret;
267 int ttm_tt_set_placement_caching(struct ttm_tt *ttm, uint32_t placement)
269 enum ttm_caching_state state;
271 if (placement & TTM_PL_FLAG_WC)
272 state = tt_wc;
273 else if (placement & TTM_PL_FLAG_UNCACHED)
274 state = tt_uncached;
275 else
276 state = tt_cached;
278 return ttm_tt_set_caching(ttm, state);
280 EXPORT_SYMBOL(ttm_tt_set_placement_caching);
282 static void ttm_tt_free_alloced_pages(struct ttm_tt *ttm)
284 int i;
285 struct page *cur_page;
286 struct ttm_backend *be = ttm->be;
288 if (be)
289 be->func->clear(be);
290 (void)ttm_tt_set_caching(ttm, tt_cached);
291 for (i = 0; i < ttm->num_pages; ++i) {
292 cur_page = ttm->pages[i];
293 ttm->pages[i] = NULL;
294 if (cur_page) {
295 if (page_count(cur_page) != 1)
296 printk(KERN_ERR TTM_PFX
297 "Erroneous page count. "
298 "Leaking pages.\n");
299 ttm_mem_global_free_page(ttm->glob->mem_glob,
300 cur_page);
301 __free_page(cur_page);
304 ttm->state = tt_unpopulated;
305 ttm->first_himem_page = ttm->num_pages;
306 ttm->last_lomem_page = -1;
309 void ttm_tt_destroy(struct ttm_tt *ttm)
311 struct ttm_backend *be;
313 if (unlikely(ttm == NULL))
314 return;
316 be = ttm->be;
317 if (likely(be != NULL)) {
318 be->func->destroy(be);
319 ttm->be = NULL;
322 if (likely(ttm->pages != NULL)) {
323 if (ttm->page_flags & TTM_PAGE_FLAG_USER)
324 ttm_tt_free_user_pages(ttm);
325 else
326 ttm_tt_free_alloced_pages(ttm);
328 ttm_tt_free_page_directory(ttm);
331 if (!(ttm->page_flags & TTM_PAGE_FLAG_PERSISTANT_SWAP) &&
332 ttm->swap_storage)
333 fput(ttm->swap_storage);
335 kfree(ttm);
338 int ttm_tt_set_user(struct ttm_tt *ttm,
339 struct task_struct *tsk,
340 unsigned long start, unsigned long num_pages)
342 struct mm_struct *mm = tsk->mm;
343 int ret;
344 int write = (ttm->page_flags & TTM_PAGE_FLAG_WRITE) != 0;
345 struct ttm_mem_global *mem_glob = ttm->glob->mem_glob;
347 BUG_ON(num_pages != ttm->num_pages);
348 BUG_ON((ttm->page_flags & TTM_PAGE_FLAG_USER) == 0);
351 * Account user pages as lowmem pages for now.
354 ret = ttm_mem_global_alloc(mem_glob, num_pages * PAGE_SIZE,
355 false, false);
356 if (unlikely(ret != 0))
357 return ret;
359 down_read(&mm->mmap_sem);
360 ret = get_user_pages(tsk, mm, start, num_pages,
361 write, 0, ttm->pages, NULL);
362 up_read(&mm->mmap_sem);
364 if (ret != num_pages && write) {
365 ttm_tt_free_user_pages(ttm);
366 ttm_mem_global_free(mem_glob, num_pages * PAGE_SIZE);
367 return -ENOMEM;
370 ttm->tsk = tsk;
371 ttm->start = start;
372 ttm->state = tt_unbound;
374 return 0;
377 struct ttm_tt *ttm_tt_create(struct ttm_bo_device *bdev, unsigned long size,
378 uint32_t page_flags, struct page *dummy_read_page)
380 struct ttm_bo_driver *bo_driver = bdev->driver;
381 struct ttm_tt *ttm;
383 if (!bo_driver)
384 return NULL;
386 ttm = kzalloc(sizeof(*ttm), GFP_KERNEL);
387 if (!ttm)
388 return NULL;
390 ttm->glob = bdev->glob;
391 ttm->num_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
392 ttm->first_himem_page = ttm->num_pages;
393 ttm->last_lomem_page = -1;
394 ttm->caching_state = tt_cached;
395 ttm->page_flags = page_flags;
397 ttm->dummy_read_page = dummy_read_page;
399 ttm_tt_alloc_page_directory(ttm);
400 if (!ttm->pages) {
401 ttm_tt_destroy(ttm);
402 printk(KERN_ERR TTM_PFX "Failed allocating page table\n");
403 return NULL;
405 ttm->be = bo_driver->create_ttm_backend_entry(bdev);
406 if (!ttm->be) {
407 ttm_tt_destroy(ttm);
408 printk(KERN_ERR TTM_PFX "Failed creating ttm backend entry\n");
409 return NULL;
411 ttm->state = tt_unpopulated;
412 return ttm;
415 void ttm_tt_unbind(struct ttm_tt *ttm)
417 int ret;
418 struct ttm_backend *be = ttm->be;
420 if (ttm->state == tt_bound) {
421 ret = be->func->unbind(be);
422 BUG_ON(ret);
423 ttm->state = tt_unbound;
427 int ttm_tt_bind(struct ttm_tt *ttm, struct ttm_mem_reg *bo_mem)
429 int ret = 0;
430 struct ttm_backend *be;
432 if (!ttm)
433 return -EINVAL;
435 if (ttm->state == tt_bound)
436 return 0;
438 be = ttm->be;
440 ret = ttm_tt_populate(ttm);
441 if (ret)
442 return ret;
444 ret = be->func->bind(be, bo_mem);
445 if (ret) {
446 printk(KERN_ERR TTM_PFX "Couldn't bind backend.\n");
447 return ret;
450 ttm->state = tt_bound;
452 if (ttm->page_flags & TTM_PAGE_FLAG_USER)
453 ttm->page_flags |= TTM_PAGE_FLAG_USER_DIRTY;
454 return 0;
456 EXPORT_SYMBOL(ttm_tt_bind);
458 static int ttm_tt_swapin(struct ttm_tt *ttm)
460 struct address_space *swap_space;
461 struct file *swap_storage;
462 struct page *from_page;
463 struct page *to_page;
464 void *from_virtual;
465 void *to_virtual;
466 int i;
467 int ret = -ENOMEM;
469 if (ttm->page_flags & TTM_PAGE_FLAG_USER) {
470 ret = ttm_tt_set_user(ttm, ttm->tsk, ttm->start,
471 ttm->num_pages);
472 if (unlikely(ret != 0))
473 return ret;
475 ttm->page_flags &= ~TTM_PAGE_FLAG_SWAPPED;
476 return 0;
479 swap_storage = ttm->swap_storage;
480 BUG_ON(swap_storage == NULL);
482 swap_space = swap_storage->f_path.dentry->d_inode->i_mapping;
484 for (i = 0; i < ttm->num_pages; ++i) {
485 from_page = read_mapping_page(swap_space, i, NULL);
486 if (IS_ERR(from_page)) {
487 ret = PTR_ERR(from_page);
488 goto out_err;
490 to_page = __ttm_tt_get_page(ttm, i);
491 if (unlikely(to_page == NULL))
492 goto out_err;
494 preempt_disable();
495 from_virtual = kmap_atomic(from_page, KM_USER0);
496 to_virtual = kmap_atomic(to_page, KM_USER1);
497 memcpy(to_virtual, from_virtual, PAGE_SIZE);
498 kunmap_atomic(to_virtual, KM_USER1);
499 kunmap_atomic(from_virtual, KM_USER0);
500 preempt_enable();
501 page_cache_release(from_page);
504 if (!(ttm->page_flags & TTM_PAGE_FLAG_PERSISTANT_SWAP))
505 fput(swap_storage);
506 ttm->swap_storage = NULL;
507 ttm->page_flags &= ~TTM_PAGE_FLAG_SWAPPED;
509 return 0;
510 out_err:
511 ttm_tt_free_alloced_pages(ttm);
512 return ret;
515 int ttm_tt_swapout(struct ttm_tt *ttm, struct file *persistant_swap_storage)
517 struct address_space *swap_space;
518 struct file *swap_storage;
519 struct page *from_page;
520 struct page *to_page;
521 void *from_virtual;
522 void *to_virtual;
523 int i;
524 int ret = -ENOMEM;
526 BUG_ON(ttm->state != tt_unbound && ttm->state != tt_unpopulated);
527 BUG_ON(ttm->caching_state != tt_cached);
530 * For user buffers, just unpin the pages, as there should be
531 * vma references.
534 if (ttm->page_flags & TTM_PAGE_FLAG_USER) {
535 ttm_tt_free_user_pages(ttm);
536 ttm->page_flags |= TTM_PAGE_FLAG_SWAPPED;
537 ttm->swap_storage = NULL;
538 return 0;
541 if (!persistant_swap_storage) {
542 swap_storage = shmem_file_setup("ttm swap",
543 ttm->num_pages << PAGE_SHIFT,
545 if (unlikely(IS_ERR(swap_storage))) {
546 printk(KERN_ERR "Failed allocating swap storage.\n");
547 return PTR_ERR(swap_storage);
549 } else
550 swap_storage = persistant_swap_storage;
552 swap_space = swap_storage->f_path.dentry->d_inode->i_mapping;
554 for (i = 0; i < ttm->num_pages; ++i) {
555 from_page = ttm->pages[i];
556 if (unlikely(from_page == NULL))
557 continue;
558 to_page = read_mapping_page(swap_space, i, NULL);
559 if (unlikely(IS_ERR(to_page))) {
560 ret = PTR_ERR(to_page);
561 goto out_err;
563 preempt_disable();
564 from_virtual = kmap_atomic(from_page, KM_USER0);
565 to_virtual = kmap_atomic(to_page, KM_USER1);
566 memcpy(to_virtual, from_virtual, PAGE_SIZE);
567 kunmap_atomic(to_virtual, KM_USER1);
568 kunmap_atomic(from_virtual, KM_USER0);
569 preempt_enable();
570 set_page_dirty(to_page);
571 mark_page_accessed(to_page);
572 page_cache_release(to_page);
575 ttm_tt_free_alloced_pages(ttm);
576 ttm->swap_storage = swap_storage;
577 ttm->page_flags |= TTM_PAGE_FLAG_SWAPPED;
578 if (persistant_swap_storage)
579 ttm->page_flags |= TTM_PAGE_FLAG_PERSISTANT_SWAP;
581 return 0;
582 out_err:
583 if (!persistant_swap_storage)
584 fput(swap_storage);
586 return ret;