Staging: netwave: delete the driver
[linux/fpc-iii.git] / drivers / net / bcm63xx_enet.c
blob17460aba3baee4614e41b4222f131336580df8a5
1 /*
2 * Driver for BCM963xx builtin Ethernet mac
4 * Copyright (C) 2008 Maxime Bizon <mbizon@freebox.fr>
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
20 #include <linux/init.h>
21 #include <linux/module.h>
22 #include <linux/clk.h>
23 #include <linux/etherdevice.h>
24 #include <linux/slab.h>
25 #include <linux/delay.h>
26 #include <linux/ethtool.h>
27 #include <linux/crc32.h>
28 #include <linux/err.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/platform_device.h>
31 #include <linux/if_vlan.h>
33 #include <bcm63xx_dev_enet.h>
34 #include "bcm63xx_enet.h"
36 static char bcm_enet_driver_name[] = "bcm63xx_enet";
37 static char bcm_enet_driver_version[] = "1.0";
39 static int copybreak __read_mostly = 128;
40 module_param(copybreak, int, 0);
41 MODULE_PARM_DESC(copybreak, "Receive copy threshold");
43 /* io memory shared between all devices */
44 static void __iomem *bcm_enet_shared_base;
47 * io helpers to access mac registers
49 static inline u32 enet_readl(struct bcm_enet_priv *priv, u32 off)
51 return bcm_readl(priv->base + off);
54 static inline void enet_writel(struct bcm_enet_priv *priv,
55 u32 val, u32 off)
57 bcm_writel(val, priv->base + off);
61 * io helpers to access shared registers
63 static inline u32 enet_dma_readl(struct bcm_enet_priv *priv, u32 off)
65 return bcm_readl(bcm_enet_shared_base + off);
68 static inline void enet_dma_writel(struct bcm_enet_priv *priv,
69 u32 val, u32 off)
71 bcm_writel(val, bcm_enet_shared_base + off);
75 * write given data into mii register and wait for transfer to end
76 * with timeout (average measured transfer time is 25us)
78 static int do_mdio_op(struct bcm_enet_priv *priv, unsigned int data)
80 int limit;
82 /* make sure mii interrupt status is cleared */
83 enet_writel(priv, ENET_IR_MII, ENET_IR_REG);
85 enet_writel(priv, data, ENET_MIIDATA_REG);
86 wmb();
88 /* busy wait on mii interrupt bit, with timeout */
89 limit = 1000;
90 do {
91 if (enet_readl(priv, ENET_IR_REG) & ENET_IR_MII)
92 break;
93 udelay(1);
94 } while (limit-- > 0);
96 return (limit < 0) ? 1 : 0;
100 * MII internal read callback
102 static int bcm_enet_mdio_read(struct bcm_enet_priv *priv, int mii_id,
103 int regnum)
105 u32 tmp, val;
107 tmp = regnum << ENET_MIIDATA_REG_SHIFT;
108 tmp |= 0x2 << ENET_MIIDATA_TA_SHIFT;
109 tmp |= mii_id << ENET_MIIDATA_PHYID_SHIFT;
110 tmp |= ENET_MIIDATA_OP_READ_MASK;
112 if (do_mdio_op(priv, tmp))
113 return -1;
115 val = enet_readl(priv, ENET_MIIDATA_REG);
116 val &= 0xffff;
117 return val;
121 * MII internal write callback
123 static int bcm_enet_mdio_write(struct bcm_enet_priv *priv, int mii_id,
124 int regnum, u16 value)
126 u32 tmp;
128 tmp = (value & 0xffff) << ENET_MIIDATA_DATA_SHIFT;
129 tmp |= 0x2 << ENET_MIIDATA_TA_SHIFT;
130 tmp |= regnum << ENET_MIIDATA_REG_SHIFT;
131 tmp |= mii_id << ENET_MIIDATA_PHYID_SHIFT;
132 tmp |= ENET_MIIDATA_OP_WRITE_MASK;
134 (void)do_mdio_op(priv, tmp);
135 return 0;
139 * MII read callback from phylib
141 static int bcm_enet_mdio_read_phylib(struct mii_bus *bus, int mii_id,
142 int regnum)
144 return bcm_enet_mdio_read(bus->priv, mii_id, regnum);
148 * MII write callback from phylib
150 static int bcm_enet_mdio_write_phylib(struct mii_bus *bus, int mii_id,
151 int regnum, u16 value)
153 return bcm_enet_mdio_write(bus->priv, mii_id, regnum, value);
157 * MII read callback from mii core
159 static int bcm_enet_mdio_read_mii(struct net_device *dev, int mii_id,
160 int regnum)
162 return bcm_enet_mdio_read(netdev_priv(dev), mii_id, regnum);
166 * MII write callback from mii core
168 static void bcm_enet_mdio_write_mii(struct net_device *dev, int mii_id,
169 int regnum, int value)
171 bcm_enet_mdio_write(netdev_priv(dev), mii_id, regnum, value);
175 * refill rx queue
177 static int bcm_enet_refill_rx(struct net_device *dev)
179 struct bcm_enet_priv *priv;
181 priv = netdev_priv(dev);
183 while (priv->rx_desc_count < priv->rx_ring_size) {
184 struct bcm_enet_desc *desc;
185 struct sk_buff *skb;
186 dma_addr_t p;
187 int desc_idx;
188 u32 len_stat;
190 desc_idx = priv->rx_dirty_desc;
191 desc = &priv->rx_desc_cpu[desc_idx];
193 if (!priv->rx_skb[desc_idx]) {
194 skb = netdev_alloc_skb(dev, priv->rx_skb_size);
195 if (!skb)
196 break;
197 priv->rx_skb[desc_idx] = skb;
199 p = dma_map_single(&priv->pdev->dev, skb->data,
200 priv->rx_skb_size,
201 DMA_FROM_DEVICE);
202 desc->address = p;
205 len_stat = priv->rx_skb_size << DMADESC_LENGTH_SHIFT;
206 len_stat |= DMADESC_OWNER_MASK;
207 if (priv->rx_dirty_desc == priv->rx_ring_size - 1) {
208 len_stat |= DMADESC_WRAP_MASK;
209 priv->rx_dirty_desc = 0;
210 } else {
211 priv->rx_dirty_desc++;
213 wmb();
214 desc->len_stat = len_stat;
216 priv->rx_desc_count++;
218 /* tell dma engine we allocated one buffer */
219 enet_dma_writel(priv, 1, ENETDMA_BUFALLOC_REG(priv->rx_chan));
222 /* If rx ring is still empty, set a timer to try allocating
223 * again at a later time. */
224 if (priv->rx_desc_count == 0 && netif_running(dev)) {
225 dev_warn(&priv->pdev->dev, "unable to refill rx ring\n");
226 priv->rx_timeout.expires = jiffies + HZ;
227 add_timer(&priv->rx_timeout);
230 return 0;
234 * timer callback to defer refill rx queue in case we're OOM
236 static void bcm_enet_refill_rx_timer(unsigned long data)
238 struct net_device *dev;
239 struct bcm_enet_priv *priv;
241 dev = (struct net_device *)data;
242 priv = netdev_priv(dev);
244 spin_lock(&priv->rx_lock);
245 bcm_enet_refill_rx((struct net_device *)data);
246 spin_unlock(&priv->rx_lock);
250 * extract packet from rx queue
252 static int bcm_enet_receive_queue(struct net_device *dev, int budget)
254 struct bcm_enet_priv *priv;
255 struct device *kdev;
256 int processed;
258 priv = netdev_priv(dev);
259 kdev = &priv->pdev->dev;
260 processed = 0;
262 /* don't scan ring further than number of refilled
263 * descriptor */
264 if (budget > priv->rx_desc_count)
265 budget = priv->rx_desc_count;
267 do {
268 struct bcm_enet_desc *desc;
269 struct sk_buff *skb;
270 int desc_idx;
271 u32 len_stat;
272 unsigned int len;
274 desc_idx = priv->rx_curr_desc;
275 desc = &priv->rx_desc_cpu[desc_idx];
277 /* make sure we actually read the descriptor status at
278 * each loop */
279 rmb();
281 len_stat = desc->len_stat;
283 /* break if dma ownership belongs to hw */
284 if (len_stat & DMADESC_OWNER_MASK)
285 break;
287 processed++;
288 priv->rx_curr_desc++;
289 if (priv->rx_curr_desc == priv->rx_ring_size)
290 priv->rx_curr_desc = 0;
291 priv->rx_desc_count--;
293 /* if the packet does not have start of packet _and_
294 * end of packet flag set, then just recycle it */
295 if ((len_stat & DMADESC_ESOP_MASK) != DMADESC_ESOP_MASK) {
296 priv->stats.rx_dropped++;
297 continue;
300 /* recycle packet if it's marked as bad */
301 if (unlikely(len_stat & DMADESC_ERR_MASK)) {
302 priv->stats.rx_errors++;
304 if (len_stat & DMADESC_OVSIZE_MASK)
305 priv->stats.rx_length_errors++;
306 if (len_stat & DMADESC_CRC_MASK)
307 priv->stats.rx_crc_errors++;
308 if (len_stat & DMADESC_UNDER_MASK)
309 priv->stats.rx_frame_errors++;
310 if (len_stat & DMADESC_OV_MASK)
311 priv->stats.rx_fifo_errors++;
312 continue;
315 /* valid packet */
316 skb = priv->rx_skb[desc_idx];
317 len = (len_stat & DMADESC_LENGTH_MASK) >> DMADESC_LENGTH_SHIFT;
318 /* don't include FCS */
319 len -= 4;
321 if (len < copybreak) {
322 struct sk_buff *nskb;
324 nskb = netdev_alloc_skb_ip_align(dev, len);
325 if (!nskb) {
326 /* forget packet, just rearm desc */
327 priv->stats.rx_dropped++;
328 continue;
331 dma_sync_single_for_cpu(kdev, desc->address,
332 len, DMA_FROM_DEVICE);
333 memcpy(nskb->data, skb->data, len);
334 dma_sync_single_for_device(kdev, desc->address,
335 len, DMA_FROM_DEVICE);
336 skb = nskb;
337 } else {
338 dma_unmap_single(&priv->pdev->dev, desc->address,
339 priv->rx_skb_size, DMA_FROM_DEVICE);
340 priv->rx_skb[desc_idx] = NULL;
343 skb_put(skb, len);
344 skb->dev = dev;
345 skb->protocol = eth_type_trans(skb, dev);
346 priv->stats.rx_packets++;
347 priv->stats.rx_bytes += len;
348 dev->last_rx = jiffies;
349 netif_receive_skb(skb);
351 } while (--budget > 0);
353 if (processed || !priv->rx_desc_count) {
354 bcm_enet_refill_rx(dev);
356 /* kick rx dma */
357 enet_dma_writel(priv, ENETDMA_CHANCFG_EN_MASK,
358 ENETDMA_CHANCFG_REG(priv->rx_chan));
361 return processed;
366 * try to or force reclaim of transmitted buffers
368 static int bcm_enet_tx_reclaim(struct net_device *dev, int force)
370 struct bcm_enet_priv *priv;
371 int released;
373 priv = netdev_priv(dev);
374 released = 0;
376 while (priv->tx_desc_count < priv->tx_ring_size) {
377 struct bcm_enet_desc *desc;
378 struct sk_buff *skb;
380 /* We run in a bh and fight against start_xmit, which
381 * is called with bh disabled */
382 spin_lock(&priv->tx_lock);
384 desc = &priv->tx_desc_cpu[priv->tx_dirty_desc];
386 if (!force && (desc->len_stat & DMADESC_OWNER_MASK)) {
387 spin_unlock(&priv->tx_lock);
388 break;
391 /* ensure other field of the descriptor were not read
392 * before we checked ownership */
393 rmb();
395 skb = priv->tx_skb[priv->tx_dirty_desc];
396 priv->tx_skb[priv->tx_dirty_desc] = NULL;
397 dma_unmap_single(&priv->pdev->dev, desc->address, skb->len,
398 DMA_TO_DEVICE);
400 priv->tx_dirty_desc++;
401 if (priv->tx_dirty_desc == priv->tx_ring_size)
402 priv->tx_dirty_desc = 0;
403 priv->tx_desc_count++;
405 spin_unlock(&priv->tx_lock);
407 if (desc->len_stat & DMADESC_UNDER_MASK)
408 priv->stats.tx_errors++;
410 dev_kfree_skb(skb);
411 released++;
414 if (netif_queue_stopped(dev) && released)
415 netif_wake_queue(dev);
417 return released;
421 * poll func, called by network core
423 static int bcm_enet_poll(struct napi_struct *napi, int budget)
425 struct bcm_enet_priv *priv;
426 struct net_device *dev;
427 int tx_work_done, rx_work_done;
429 priv = container_of(napi, struct bcm_enet_priv, napi);
430 dev = priv->net_dev;
432 /* ack interrupts */
433 enet_dma_writel(priv, ENETDMA_IR_PKTDONE_MASK,
434 ENETDMA_IR_REG(priv->rx_chan));
435 enet_dma_writel(priv, ENETDMA_IR_PKTDONE_MASK,
436 ENETDMA_IR_REG(priv->tx_chan));
438 /* reclaim sent skb */
439 tx_work_done = bcm_enet_tx_reclaim(dev, 0);
441 spin_lock(&priv->rx_lock);
442 rx_work_done = bcm_enet_receive_queue(dev, budget);
443 spin_unlock(&priv->rx_lock);
445 if (rx_work_done >= budget || tx_work_done > 0) {
446 /* rx/tx queue is not yet empty/clean */
447 return rx_work_done;
450 /* no more packet in rx/tx queue, remove device from poll
451 * queue */
452 napi_complete(napi);
454 /* restore rx/tx interrupt */
455 enet_dma_writel(priv, ENETDMA_IR_PKTDONE_MASK,
456 ENETDMA_IRMASK_REG(priv->rx_chan));
457 enet_dma_writel(priv, ENETDMA_IR_PKTDONE_MASK,
458 ENETDMA_IRMASK_REG(priv->tx_chan));
460 return rx_work_done;
464 * mac interrupt handler
466 static irqreturn_t bcm_enet_isr_mac(int irq, void *dev_id)
468 struct net_device *dev;
469 struct bcm_enet_priv *priv;
470 u32 stat;
472 dev = dev_id;
473 priv = netdev_priv(dev);
475 stat = enet_readl(priv, ENET_IR_REG);
476 if (!(stat & ENET_IR_MIB))
477 return IRQ_NONE;
479 /* clear & mask interrupt */
480 enet_writel(priv, ENET_IR_MIB, ENET_IR_REG);
481 enet_writel(priv, 0, ENET_IRMASK_REG);
483 /* read mib registers in workqueue */
484 schedule_work(&priv->mib_update_task);
486 return IRQ_HANDLED;
490 * rx/tx dma interrupt handler
492 static irqreturn_t bcm_enet_isr_dma(int irq, void *dev_id)
494 struct net_device *dev;
495 struct bcm_enet_priv *priv;
497 dev = dev_id;
498 priv = netdev_priv(dev);
500 /* mask rx/tx interrupts */
501 enet_dma_writel(priv, 0, ENETDMA_IRMASK_REG(priv->rx_chan));
502 enet_dma_writel(priv, 0, ENETDMA_IRMASK_REG(priv->tx_chan));
504 napi_schedule(&priv->napi);
506 return IRQ_HANDLED;
510 * tx request callback
512 static int bcm_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
514 struct bcm_enet_priv *priv;
515 struct bcm_enet_desc *desc;
516 u32 len_stat;
517 int ret;
519 priv = netdev_priv(dev);
521 /* lock against tx reclaim */
522 spin_lock(&priv->tx_lock);
524 /* make sure the tx hw queue is not full, should not happen
525 * since we stop queue before it's the case */
526 if (unlikely(!priv->tx_desc_count)) {
527 netif_stop_queue(dev);
528 dev_err(&priv->pdev->dev, "xmit called with no tx desc "
529 "available?\n");
530 ret = NETDEV_TX_BUSY;
531 goto out_unlock;
534 /* point to the next available desc */
535 desc = &priv->tx_desc_cpu[priv->tx_curr_desc];
536 priv->tx_skb[priv->tx_curr_desc] = skb;
538 /* fill descriptor */
539 desc->address = dma_map_single(&priv->pdev->dev, skb->data, skb->len,
540 DMA_TO_DEVICE);
542 len_stat = (skb->len << DMADESC_LENGTH_SHIFT) & DMADESC_LENGTH_MASK;
543 len_stat |= DMADESC_ESOP_MASK |
544 DMADESC_APPEND_CRC |
545 DMADESC_OWNER_MASK;
547 priv->tx_curr_desc++;
548 if (priv->tx_curr_desc == priv->tx_ring_size) {
549 priv->tx_curr_desc = 0;
550 len_stat |= DMADESC_WRAP_MASK;
552 priv->tx_desc_count--;
554 /* dma might be already polling, make sure we update desc
555 * fields in correct order */
556 wmb();
557 desc->len_stat = len_stat;
558 wmb();
560 /* kick tx dma */
561 enet_dma_writel(priv, ENETDMA_CHANCFG_EN_MASK,
562 ENETDMA_CHANCFG_REG(priv->tx_chan));
564 /* stop queue if no more desc available */
565 if (!priv->tx_desc_count)
566 netif_stop_queue(dev);
568 priv->stats.tx_bytes += skb->len;
569 priv->stats.tx_packets++;
570 dev->trans_start = jiffies;
571 ret = NETDEV_TX_OK;
573 out_unlock:
574 spin_unlock(&priv->tx_lock);
575 return ret;
579 * Change the interface's mac address.
581 static int bcm_enet_set_mac_address(struct net_device *dev, void *p)
583 struct bcm_enet_priv *priv;
584 struct sockaddr *addr = p;
585 u32 val;
587 priv = netdev_priv(dev);
588 memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
590 /* use perfect match register 0 to store my mac address */
591 val = (dev->dev_addr[2] << 24) | (dev->dev_addr[3] << 16) |
592 (dev->dev_addr[4] << 8) | dev->dev_addr[5];
593 enet_writel(priv, val, ENET_PML_REG(0));
595 val = (dev->dev_addr[0] << 8 | dev->dev_addr[1]);
596 val |= ENET_PMH_DATAVALID_MASK;
597 enet_writel(priv, val, ENET_PMH_REG(0));
599 return 0;
603 * Change rx mode (promiscous/allmulti) and update multicast list
605 static void bcm_enet_set_multicast_list(struct net_device *dev)
607 struct bcm_enet_priv *priv;
608 struct dev_mc_list *mc_list;
609 u32 val;
610 int i;
612 priv = netdev_priv(dev);
614 val = enet_readl(priv, ENET_RXCFG_REG);
616 if (dev->flags & IFF_PROMISC)
617 val |= ENET_RXCFG_PROMISC_MASK;
618 else
619 val &= ~ENET_RXCFG_PROMISC_MASK;
621 /* only 3 perfect match registers left, first one is used for
622 * own mac address */
623 if ((dev->flags & IFF_ALLMULTI) || netdev_mc_count(dev) > 3)
624 val |= ENET_RXCFG_ALLMCAST_MASK;
625 else
626 val &= ~ENET_RXCFG_ALLMCAST_MASK;
628 /* no need to set perfect match registers if we catch all
629 * multicast */
630 if (val & ENET_RXCFG_ALLMCAST_MASK) {
631 enet_writel(priv, val, ENET_RXCFG_REG);
632 return;
635 i = 0;
636 netdev_for_each_mc_addr(mc_list, dev) {
637 u8 *dmi_addr;
638 u32 tmp;
640 if (i == 3)
641 break;
642 /* update perfect match registers */
643 dmi_addr = mc_list->dmi_addr;
644 tmp = (dmi_addr[2] << 24) | (dmi_addr[3] << 16) |
645 (dmi_addr[4] << 8) | dmi_addr[5];
646 enet_writel(priv, tmp, ENET_PML_REG(i + 1));
648 tmp = (dmi_addr[0] << 8 | dmi_addr[1]);
649 tmp |= ENET_PMH_DATAVALID_MASK;
650 enet_writel(priv, tmp, ENET_PMH_REG(i++ + 1));
653 for (; i < 3; i++) {
654 enet_writel(priv, 0, ENET_PML_REG(i + 1));
655 enet_writel(priv, 0, ENET_PMH_REG(i + 1));
658 enet_writel(priv, val, ENET_RXCFG_REG);
662 * set mac duplex parameters
664 static void bcm_enet_set_duplex(struct bcm_enet_priv *priv, int fullduplex)
666 u32 val;
668 val = enet_readl(priv, ENET_TXCTL_REG);
669 if (fullduplex)
670 val |= ENET_TXCTL_FD_MASK;
671 else
672 val &= ~ENET_TXCTL_FD_MASK;
673 enet_writel(priv, val, ENET_TXCTL_REG);
677 * set mac flow control parameters
679 static void bcm_enet_set_flow(struct bcm_enet_priv *priv, int rx_en, int tx_en)
681 u32 val;
683 /* rx flow control (pause frame handling) */
684 val = enet_readl(priv, ENET_RXCFG_REG);
685 if (rx_en)
686 val |= ENET_RXCFG_ENFLOW_MASK;
687 else
688 val &= ~ENET_RXCFG_ENFLOW_MASK;
689 enet_writel(priv, val, ENET_RXCFG_REG);
691 /* tx flow control (pause frame generation) */
692 val = enet_dma_readl(priv, ENETDMA_CFG_REG);
693 if (tx_en)
694 val |= ENETDMA_CFG_FLOWCH_MASK(priv->rx_chan);
695 else
696 val &= ~ENETDMA_CFG_FLOWCH_MASK(priv->rx_chan);
697 enet_dma_writel(priv, val, ENETDMA_CFG_REG);
701 * link changed callback (from phylib)
703 static void bcm_enet_adjust_phy_link(struct net_device *dev)
705 struct bcm_enet_priv *priv;
706 struct phy_device *phydev;
707 int status_changed;
709 priv = netdev_priv(dev);
710 phydev = priv->phydev;
711 status_changed = 0;
713 if (priv->old_link != phydev->link) {
714 status_changed = 1;
715 priv->old_link = phydev->link;
718 /* reflect duplex change in mac configuration */
719 if (phydev->link && phydev->duplex != priv->old_duplex) {
720 bcm_enet_set_duplex(priv,
721 (phydev->duplex == DUPLEX_FULL) ? 1 : 0);
722 status_changed = 1;
723 priv->old_duplex = phydev->duplex;
726 /* enable flow control if remote advertise it (trust phylib to
727 * check that duplex is full */
728 if (phydev->link && phydev->pause != priv->old_pause) {
729 int rx_pause_en, tx_pause_en;
731 if (phydev->pause) {
732 /* pause was advertised by lpa and us */
733 rx_pause_en = 1;
734 tx_pause_en = 1;
735 } else if (!priv->pause_auto) {
736 /* pause setting overrided by user */
737 rx_pause_en = priv->pause_rx;
738 tx_pause_en = priv->pause_tx;
739 } else {
740 rx_pause_en = 0;
741 tx_pause_en = 0;
744 bcm_enet_set_flow(priv, rx_pause_en, tx_pause_en);
745 status_changed = 1;
746 priv->old_pause = phydev->pause;
749 if (status_changed) {
750 pr_info("%s: link %s", dev->name, phydev->link ?
751 "UP" : "DOWN");
752 if (phydev->link)
753 pr_cont(" - %d/%s - flow control %s", phydev->speed,
754 DUPLEX_FULL == phydev->duplex ? "full" : "half",
755 phydev->pause == 1 ? "rx&tx" : "off");
757 pr_cont("\n");
762 * link changed callback (if phylib is not used)
764 static void bcm_enet_adjust_link(struct net_device *dev)
766 struct bcm_enet_priv *priv;
768 priv = netdev_priv(dev);
769 bcm_enet_set_duplex(priv, priv->force_duplex_full);
770 bcm_enet_set_flow(priv, priv->pause_rx, priv->pause_tx);
771 netif_carrier_on(dev);
773 pr_info("%s: link forced UP - %d/%s - flow control %s/%s\n",
774 dev->name,
775 priv->force_speed_100 ? 100 : 10,
776 priv->force_duplex_full ? "full" : "half",
777 priv->pause_rx ? "rx" : "off",
778 priv->pause_tx ? "tx" : "off");
782 * open callback, allocate dma rings & buffers and start rx operation
784 static int bcm_enet_open(struct net_device *dev)
786 struct bcm_enet_priv *priv;
787 struct sockaddr addr;
788 struct device *kdev;
789 struct phy_device *phydev;
790 int i, ret;
791 unsigned int size;
792 char phy_id[MII_BUS_ID_SIZE + 3];
793 void *p;
794 u32 val;
796 priv = netdev_priv(dev);
797 kdev = &priv->pdev->dev;
799 if (priv->has_phy) {
800 /* connect to PHY */
801 snprintf(phy_id, sizeof(phy_id), PHY_ID_FMT,
802 priv->mac_id ? "1" : "0", priv->phy_id);
804 phydev = phy_connect(dev, phy_id, &bcm_enet_adjust_phy_link, 0,
805 PHY_INTERFACE_MODE_MII);
807 if (IS_ERR(phydev)) {
808 dev_err(kdev, "could not attach to PHY\n");
809 return PTR_ERR(phydev);
812 /* mask with MAC supported features */
813 phydev->supported &= (SUPPORTED_10baseT_Half |
814 SUPPORTED_10baseT_Full |
815 SUPPORTED_100baseT_Half |
816 SUPPORTED_100baseT_Full |
817 SUPPORTED_Autoneg |
818 SUPPORTED_Pause |
819 SUPPORTED_MII);
820 phydev->advertising = phydev->supported;
822 if (priv->pause_auto && priv->pause_rx && priv->pause_tx)
823 phydev->advertising |= SUPPORTED_Pause;
824 else
825 phydev->advertising &= ~SUPPORTED_Pause;
827 dev_info(kdev, "attached PHY at address %d [%s]\n",
828 phydev->addr, phydev->drv->name);
830 priv->old_link = 0;
831 priv->old_duplex = -1;
832 priv->old_pause = -1;
833 priv->phydev = phydev;
836 /* mask all interrupts and request them */
837 enet_writel(priv, 0, ENET_IRMASK_REG);
838 enet_dma_writel(priv, 0, ENETDMA_IRMASK_REG(priv->rx_chan));
839 enet_dma_writel(priv, 0, ENETDMA_IRMASK_REG(priv->tx_chan));
841 ret = request_irq(dev->irq, bcm_enet_isr_mac, 0, dev->name, dev);
842 if (ret)
843 goto out_phy_disconnect;
845 ret = request_irq(priv->irq_rx, bcm_enet_isr_dma,
846 IRQF_SAMPLE_RANDOM | IRQF_DISABLED, dev->name, dev);
847 if (ret)
848 goto out_freeirq;
850 ret = request_irq(priv->irq_tx, bcm_enet_isr_dma,
851 IRQF_DISABLED, dev->name, dev);
852 if (ret)
853 goto out_freeirq_rx;
855 /* initialize perfect match registers */
856 for (i = 0; i < 4; i++) {
857 enet_writel(priv, 0, ENET_PML_REG(i));
858 enet_writel(priv, 0, ENET_PMH_REG(i));
861 /* write device mac address */
862 memcpy(addr.sa_data, dev->dev_addr, ETH_ALEN);
863 bcm_enet_set_mac_address(dev, &addr);
865 /* allocate rx dma ring */
866 size = priv->rx_ring_size * sizeof(struct bcm_enet_desc);
867 p = dma_alloc_coherent(kdev, size, &priv->rx_desc_dma, GFP_KERNEL);
868 if (!p) {
869 dev_err(kdev, "cannot allocate rx ring %u\n", size);
870 ret = -ENOMEM;
871 goto out_freeirq_tx;
874 memset(p, 0, size);
875 priv->rx_desc_alloc_size = size;
876 priv->rx_desc_cpu = p;
878 /* allocate tx dma ring */
879 size = priv->tx_ring_size * sizeof(struct bcm_enet_desc);
880 p = dma_alloc_coherent(kdev, size, &priv->tx_desc_dma, GFP_KERNEL);
881 if (!p) {
882 dev_err(kdev, "cannot allocate tx ring\n");
883 ret = -ENOMEM;
884 goto out_free_rx_ring;
887 memset(p, 0, size);
888 priv->tx_desc_alloc_size = size;
889 priv->tx_desc_cpu = p;
891 priv->tx_skb = kzalloc(sizeof(struct sk_buff *) * priv->tx_ring_size,
892 GFP_KERNEL);
893 if (!priv->tx_skb) {
894 dev_err(kdev, "cannot allocate rx skb queue\n");
895 ret = -ENOMEM;
896 goto out_free_tx_ring;
899 priv->tx_desc_count = priv->tx_ring_size;
900 priv->tx_dirty_desc = 0;
901 priv->tx_curr_desc = 0;
902 spin_lock_init(&priv->tx_lock);
904 /* init & fill rx ring with skbs */
905 priv->rx_skb = kzalloc(sizeof(struct sk_buff *) * priv->rx_ring_size,
906 GFP_KERNEL);
907 if (!priv->rx_skb) {
908 dev_err(kdev, "cannot allocate rx skb queue\n");
909 ret = -ENOMEM;
910 goto out_free_tx_skb;
913 priv->rx_desc_count = 0;
914 priv->rx_dirty_desc = 0;
915 priv->rx_curr_desc = 0;
917 /* initialize flow control buffer allocation */
918 enet_dma_writel(priv, ENETDMA_BUFALLOC_FORCE_MASK | 0,
919 ENETDMA_BUFALLOC_REG(priv->rx_chan));
921 if (bcm_enet_refill_rx(dev)) {
922 dev_err(kdev, "cannot allocate rx skb queue\n");
923 ret = -ENOMEM;
924 goto out;
927 /* write rx & tx ring addresses */
928 enet_dma_writel(priv, priv->rx_desc_dma,
929 ENETDMA_RSTART_REG(priv->rx_chan));
930 enet_dma_writel(priv, priv->tx_desc_dma,
931 ENETDMA_RSTART_REG(priv->tx_chan));
933 /* clear remaining state ram for rx & tx channel */
934 enet_dma_writel(priv, 0, ENETDMA_SRAM2_REG(priv->rx_chan));
935 enet_dma_writel(priv, 0, ENETDMA_SRAM2_REG(priv->tx_chan));
936 enet_dma_writel(priv, 0, ENETDMA_SRAM3_REG(priv->rx_chan));
937 enet_dma_writel(priv, 0, ENETDMA_SRAM3_REG(priv->tx_chan));
938 enet_dma_writel(priv, 0, ENETDMA_SRAM4_REG(priv->rx_chan));
939 enet_dma_writel(priv, 0, ENETDMA_SRAM4_REG(priv->tx_chan));
941 /* set max rx/tx length */
942 enet_writel(priv, priv->hw_mtu, ENET_RXMAXLEN_REG);
943 enet_writel(priv, priv->hw_mtu, ENET_TXMAXLEN_REG);
945 /* set dma maximum burst len */
946 enet_dma_writel(priv, BCMENET_DMA_MAXBURST,
947 ENETDMA_MAXBURST_REG(priv->rx_chan));
948 enet_dma_writel(priv, BCMENET_DMA_MAXBURST,
949 ENETDMA_MAXBURST_REG(priv->tx_chan));
951 /* set correct transmit fifo watermark */
952 enet_writel(priv, BCMENET_TX_FIFO_TRESH, ENET_TXWMARK_REG);
954 /* set flow control low/high threshold to 1/3 / 2/3 */
955 val = priv->rx_ring_size / 3;
956 enet_dma_writel(priv, val, ENETDMA_FLOWCL_REG(priv->rx_chan));
957 val = (priv->rx_ring_size * 2) / 3;
958 enet_dma_writel(priv, val, ENETDMA_FLOWCH_REG(priv->rx_chan));
960 /* all set, enable mac and interrupts, start dma engine and
961 * kick rx dma channel */
962 wmb();
963 enet_writel(priv, ENET_CTL_ENABLE_MASK, ENET_CTL_REG);
964 enet_dma_writel(priv, ENETDMA_CFG_EN_MASK, ENETDMA_CFG_REG);
965 enet_dma_writel(priv, ENETDMA_CHANCFG_EN_MASK,
966 ENETDMA_CHANCFG_REG(priv->rx_chan));
968 /* watch "mib counters about to overflow" interrupt */
969 enet_writel(priv, ENET_IR_MIB, ENET_IR_REG);
970 enet_writel(priv, ENET_IR_MIB, ENET_IRMASK_REG);
972 /* watch "packet transferred" interrupt in rx and tx */
973 enet_dma_writel(priv, ENETDMA_IR_PKTDONE_MASK,
974 ENETDMA_IR_REG(priv->rx_chan));
975 enet_dma_writel(priv, ENETDMA_IR_PKTDONE_MASK,
976 ENETDMA_IR_REG(priv->tx_chan));
978 /* make sure we enable napi before rx interrupt */
979 napi_enable(&priv->napi);
981 enet_dma_writel(priv, ENETDMA_IR_PKTDONE_MASK,
982 ENETDMA_IRMASK_REG(priv->rx_chan));
983 enet_dma_writel(priv, ENETDMA_IR_PKTDONE_MASK,
984 ENETDMA_IRMASK_REG(priv->tx_chan));
986 if (priv->has_phy)
987 phy_start(priv->phydev);
988 else
989 bcm_enet_adjust_link(dev);
991 netif_start_queue(dev);
992 return 0;
994 out:
995 for (i = 0; i < priv->rx_ring_size; i++) {
996 struct bcm_enet_desc *desc;
998 if (!priv->rx_skb[i])
999 continue;
1001 desc = &priv->rx_desc_cpu[i];
1002 dma_unmap_single(kdev, desc->address, priv->rx_skb_size,
1003 DMA_FROM_DEVICE);
1004 kfree_skb(priv->rx_skb[i]);
1006 kfree(priv->rx_skb);
1008 out_free_tx_skb:
1009 kfree(priv->tx_skb);
1011 out_free_tx_ring:
1012 dma_free_coherent(kdev, priv->tx_desc_alloc_size,
1013 priv->tx_desc_cpu, priv->tx_desc_dma);
1015 out_free_rx_ring:
1016 dma_free_coherent(kdev, priv->rx_desc_alloc_size,
1017 priv->rx_desc_cpu, priv->rx_desc_dma);
1019 out_freeirq_tx:
1020 free_irq(priv->irq_tx, dev);
1022 out_freeirq_rx:
1023 free_irq(priv->irq_rx, dev);
1025 out_freeirq:
1026 free_irq(dev->irq, dev);
1028 out_phy_disconnect:
1029 phy_disconnect(priv->phydev);
1031 return ret;
1035 * disable mac
1037 static void bcm_enet_disable_mac(struct bcm_enet_priv *priv)
1039 int limit;
1040 u32 val;
1042 val = enet_readl(priv, ENET_CTL_REG);
1043 val |= ENET_CTL_DISABLE_MASK;
1044 enet_writel(priv, val, ENET_CTL_REG);
1046 limit = 1000;
1047 do {
1048 u32 val;
1050 val = enet_readl(priv, ENET_CTL_REG);
1051 if (!(val & ENET_CTL_DISABLE_MASK))
1052 break;
1053 udelay(1);
1054 } while (limit--);
1058 * disable dma in given channel
1060 static void bcm_enet_disable_dma(struct bcm_enet_priv *priv, int chan)
1062 int limit;
1064 enet_dma_writel(priv, 0, ENETDMA_CHANCFG_REG(chan));
1066 limit = 1000;
1067 do {
1068 u32 val;
1070 val = enet_dma_readl(priv, ENETDMA_CHANCFG_REG(chan));
1071 if (!(val & ENETDMA_CHANCFG_EN_MASK))
1072 break;
1073 udelay(1);
1074 } while (limit--);
1078 * stop callback
1080 static int bcm_enet_stop(struct net_device *dev)
1082 struct bcm_enet_priv *priv;
1083 struct device *kdev;
1084 int i;
1086 priv = netdev_priv(dev);
1087 kdev = &priv->pdev->dev;
1089 netif_stop_queue(dev);
1090 napi_disable(&priv->napi);
1091 if (priv->has_phy)
1092 phy_stop(priv->phydev);
1093 del_timer_sync(&priv->rx_timeout);
1095 /* mask all interrupts */
1096 enet_writel(priv, 0, ENET_IRMASK_REG);
1097 enet_dma_writel(priv, 0, ENETDMA_IRMASK_REG(priv->rx_chan));
1098 enet_dma_writel(priv, 0, ENETDMA_IRMASK_REG(priv->tx_chan));
1100 /* make sure no mib update is scheduled */
1101 flush_scheduled_work();
1103 /* disable dma & mac */
1104 bcm_enet_disable_dma(priv, priv->tx_chan);
1105 bcm_enet_disable_dma(priv, priv->rx_chan);
1106 bcm_enet_disable_mac(priv);
1108 /* force reclaim of all tx buffers */
1109 bcm_enet_tx_reclaim(dev, 1);
1111 /* free the rx skb ring */
1112 for (i = 0; i < priv->rx_ring_size; i++) {
1113 struct bcm_enet_desc *desc;
1115 if (!priv->rx_skb[i])
1116 continue;
1118 desc = &priv->rx_desc_cpu[i];
1119 dma_unmap_single(kdev, desc->address, priv->rx_skb_size,
1120 DMA_FROM_DEVICE);
1121 kfree_skb(priv->rx_skb[i]);
1124 /* free remaining allocated memory */
1125 kfree(priv->rx_skb);
1126 kfree(priv->tx_skb);
1127 dma_free_coherent(kdev, priv->rx_desc_alloc_size,
1128 priv->rx_desc_cpu, priv->rx_desc_dma);
1129 dma_free_coherent(kdev, priv->tx_desc_alloc_size,
1130 priv->tx_desc_cpu, priv->tx_desc_dma);
1131 free_irq(priv->irq_tx, dev);
1132 free_irq(priv->irq_rx, dev);
1133 free_irq(dev->irq, dev);
1135 /* release phy */
1136 if (priv->has_phy) {
1137 phy_disconnect(priv->phydev);
1138 priv->phydev = NULL;
1141 return 0;
1145 * core request to return device rx/tx stats
1147 static struct net_device_stats *bcm_enet_get_stats(struct net_device *dev)
1149 struct bcm_enet_priv *priv;
1151 priv = netdev_priv(dev);
1152 return &priv->stats;
1156 * ethtool callbacks
1158 struct bcm_enet_stats {
1159 char stat_string[ETH_GSTRING_LEN];
1160 int sizeof_stat;
1161 int stat_offset;
1162 int mib_reg;
1165 #define GEN_STAT(m) sizeof(((struct bcm_enet_priv *)0)->m), \
1166 offsetof(struct bcm_enet_priv, m)
1168 static const struct bcm_enet_stats bcm_enet_gstrings_stats[] = {
1169 { "rx_packets", GEN_STAT(stats.rx_packets), -1 },
1170 { "tx_packets", GEN_STAT(stats.tx_packets), -1 },
1171 { "rx_bytes", GEN_STAT(stats.rx_bytes), -1 },
1172 { "tx_bytes", GEN_STAT(stats.tx_bytes), -1 },
1173 { "rx_errors", GEN_STAT(stats.rx_errors), -1 },
1174 { "tx_errors", GEN_STAT(stats.tx_errors), -1 },
1175 { "rx_dropped", GEN_STAT(stats.rx_dropped), -1 },
1176 { "tx_dropped", GEN_STAT(stats.tx_dropped), -1 },
1178 { "rx_good_octets", GEN_STAT(mib.rx_gd_octets), ETH_MIB_RX_GD_OCTETS},
1179 { "rx_good_pkts", GEN_STAT(mib.rx_gd_pkts), ETH_MIB_RX_GD_PKTS },
1180 { "rx_broadcast", GEN_STAT(mib.rx_brdcast), ETH_MIB_RX_BRDCAST },
1181 { "rx_multicast", GEN_STAT(mib.rx_mult), ETH_MIB_RX_MULT },
1182 { "rx_64_octets", GEN_STAT(mib.rx_64), ETH_MIB_RX_64 },
1183 { "rx_65_127_oct", GEN_STAT(mib.rx_65_127), ETH_MIB_RX_65_127 },
1184 { "rx_128_255_oct", GEN_STAT(mib.rx_128_255), ETH_MIB_RX_128_255 },
1185 { "rx_256_511_oct", GEN_STAT(mib.rx_256_511), ETH_MIB_RX_256_511 },
1186 { "rx_512_1023_oct", GEN_STAT(mib.rx_512_1023), ETH_MIB_RX_512_1023 },
1187 { "rx_1024_max_oct", GEN_STAT(mib.rx_1024_max), ETH_MIB_RX_1024_MAX },
1188 { "rx_jabber", GEN_STAT(mib.rx_jab), ETH_MIB_RX_JAB },
1189 { "rx_oversize", GEN_STAT(mib.rx_ovr), ETH_MIB_RX_OVR },
1190 { "rx_fragment", GEN_STAT(mib.rx_frag), ETH_MIB_RX_FRAG },
1191 { "rx_dropped", GEN_STAT(mib.rx_drop), ETH_MIB_RX_DROP },
1192 { "rx_crc_align", GEN_STAT(mib.rx_crc_align), ETH_MIB_RX_CRC_ALIGN },
1193 { "rx_undersize", GEN_STAT(mib.rx_und), ETH_MIB_RX_UND },
1194 { "rx_crc", GEN_STAT(mib.rx_crc), ETH_MIB_RX_CRC },
1195 { "rx_align", GEN_STAT(mib.rx_align), ETH_MIB_RX_ALIGN },
1196 { "rx_symbol_error", GEN_STAT(mib.rx_sym), ETH_MIB_RX_SYM },
1197 { "rx_pause", GEN_STAT(mib.rx_pause), ETH_MIB_RX_PAUSE },
1198 { "rx_control", GEN_STAT(mib.rx_cntrl), ETH_MIB_RX_CNTRL },
1200 { "tx_good_octets", GEN_STAT(mib.tx_gd_octets), ETH_MIB_TX_GD_OCTETS },
1201 { "tx_good_pkts", GEN_STAT(mib.tx_gd_pkts), ETH_MIB_TX_GD_PKTS },
1202 { "tx_broadcast", GEN_STAT(mib.tx_brdcast), ETH_MIB_TX_BRDCAST },
1203 { "tx_multicast", GEN_STAT(mib.tx_mult), ETH_MIB_TX_MULT },
1204 { "tx_64_oct", GEN_STAT(mib.tx_64), ETH_MIB_TX_64 },
1205 { "tx_65_127_oct", GEN_STAT(mib.tx_65_127), ETH_MIB_TX_65_127 },
1206 { "tx_128_255_oct", GEN_STAT(mib.tx_128_255), ETH_MIB_TX_128_255 },
1207 { "tx_256_511_oct", GEN_STAT(mib.tx_256_511), ETH_MIB_TX_256_511 },
1208 { "tx_512_1023_oct", GEN_STAT(mib.tx_512_1023), ETH_MIB_TX_512_1023},
1209 { "tx_1024_max_oct", GEN_STAT(mib.tx_1024_max), ETH_MIB_TX_1024_MAX },
1210 { "tx_jabber", GEN_STAT(mib.tx_jab), ETH_MIB_TX_JAB },
1211 { "tx_oversize", GEN_STAT(mib.tx_ovr), ETH_MIB_TX_OVR },
1212 { "tx_fragment", GEN_STAT(mib.tx_frag), ETH_MIB_TX_FRAG },
1213 { "tx_underrun", GEN_STAT(mib.tx_underrun), ETH_MIB_TX_UNDERRUN },
1214 { "tx_collisions", GEN_STAT(mib.tx_col), ETH_MIB_TX_COL },
1215 { "tx_single_collision", GEN_STAT(mib.tx_1_col), ETH_MIB_TX_1_COL },
1216 { "tx_multiple_collision", GEN_STAT(mib.tx_m_col), ETH_MIB_TX_M_COL },
1217 { "tx_excess_collision", GEN_STAT(mib.tx_ex_col), ETH_MIB_TX_EX_COL },
1218 { "tx_late_collision", GEN_STAT(mib.tx_late), ETH_MIB_TX_LATE },
1219 { "tx_deferred", GEN_STAT(mib.tx_def), ETH_MIB_TX_DEF },
1220 { "tx_carrier_sense", GEN_STAT(mib.tx_crs), ETH_MIB_TX_CRS },
1221 { "tx_pause", GEN_STAT(mib.tx_pause), ETH_MIB_TX_PAUSE },
1225 #define BCM_ENET_STATS_LEN \
1226 (sizeof(bcm_enet_gstrings_stats) / sizeof(struct bcm_enet_stats))
1228 static const u32 unused_mib_regs[] = {
1229 ETH_MIB_TX_ALL_OCTETS,
1230 ETH_MIB_TX_ALL_PKTS,
1231 ETH_MIB_RX_ALL_OCTETS,
1232 ETH_MIB_RX_ALL_PKTS,
1236 static void bcm_enet_get_drvinfo(struct net_device *netdev,
1237 struct ethtool_drvinfo *drvinfo)
1239 strncpy(drvinfo->driver, bcm_enet_driver_name, 32);
1240 strncpy(drvinfo->version, bcm_enet_driver_version, 32);
1241 strncpy(drvinfo->fw_version, "N/A", 32);
1242 strncpy(drvinfo->bus_info, "bcm63xx", 32);
1243 drvinfo->n_stats = BCM_ENET_STATS_LEN;
1246 static int bcm_enet_get_sset_count(struct net_device *netdev,
1247 int string_set)
1249 switch (string_set) {
1250 case ETH_SS_STATS:
1251 return BCM_ENET_STATS_LEN;
1252 default:
1253 return -EINVAL;
1257 static void bcm_enet_get_strings(struct net_device *netdev,
1258 u32 stringset, u8 *data)
1260 int i;
1262 switch (stringset) {
1263 case ETH_SS_STATS:
1264 for (i = 0; i < BCM_ENET_STATS_LEN; i++) {
1265 memcpy(data + i * ETH_GSTRING_LEN,
1266 bcm_enet_gstrings_stats[i].stat_string,
1267 ETH_GSTRING_LEN);
1269 break;
1273 static void update_mib_counters(struct bcm_enet_priv *priv)
1275 int i;
1277 for (i = 0; i < BCM_ENET_STATS_LEN; i++) {
1278 const struct bcm_enet_stats *s;
1279 u32 val;
1280 char *p;
1282 s = &bcm_enet_gstrings_stats[i];
1283 if (s->mib_reg == -1)
1284 continue;
1286 val = enet_readl(priv, ENET_MIB_REG(s->mib_reg));
1287 p = (char *)priv + s->stat_offset;
1289 if (s->sizeof_stat == sizeof(u64))
1290 *(u64 *)p += val;
1291 else
1292 *(u32 *)p += val;
1295 /* also empty unused mib counters to make sure mib counter
1296 * overflow interrupt is cleared */
1297 for (i = 0; i < ARRAY_SIZE(unused_mib_regs); i++)
1298 (void)enet_readl(priv, ENET_MIB_REG(unused_mib_regs[i]));
1301 static void bcm_enet_update_mib_counters_defer(struct work_struct *t)
1303 struct bcm_enet_priv *priv;
1305 priv = container_of(t, struct bcm_enet_priv, mib_update_task);
1306 mutex_lock(&priv->mib_update_lock);
1307 update_mib_counters(priv);
1308 mutex_unlock(&priv->mib_update_lock);
1310 /* reenable mib interrupt */
1311 if (netif_running(priv->net_dev))
1312 enet_writel(priv, ENET_IR_MIB, ENET_IRMASK_REG);
1315 static void bcm_enet_get_ethtool_stats(struct net_device *netdev,
1316 struct ethtool_stats *stats,
1317 u64 *data)
1319 struct bcm_enet_priv *priv;
1320 int i;
1322 priv = netdev_priv(netdev);
1324 mutex_lock(&priv->mib_update_lock);
1325 update_mib_counters(priv);
1327 for (i = 0; i < BCM_ENET_STATS_LEN; i++) {
1328 const struct bcm_enet_stats *s;
1329 char *p;
1331 s = &bcm_enet_gstrings_stats[i];
1332 p = (char *)priv + s->stat_offset;
1333 data[i] = (s->sizeof_stat == sizeof(u64)) ?
1334 *(u64 *)p : *(u32 *)p;
1336 mutex_unlock(&priv->mib_update_lock);
1339 static int bcm_enet_get_settings(struct net_device *dev,
1340 struct ethtool_cmd *cmd)
1342 struct bcm_enet_priv *priv;
1344 priv = netdev_priv(dev);
1346 cmd->maxrxpkt = 0;
1347 cmd->maxtxpkt = 0;
1349 if (priv->has_phy) {
1350 if (!priv->phydev)
1351 return -ENODEV;
1352 return phy_ethtool_gset(priv->phydev, cmd);
1353 } else {
1354 cmd->autoneg = 0;
1355 cmd->speed = (priv->force_speed_100) ? SPEED_100 : SPEED_10;
1356 cmd->duplex = (priv->force_duplex_full) ?
1357 DUPLEX_FULL : DUPLEX_HALF;
1358 cmd->supported = ADVERTISED_10baseT_Half |
1359 ADVERTISED_10baseT_Full |
1360 ADVERTISED_100baseT_Half |
1361 ADVERTISED_100baseT_Full;
1362 cmd->advertising = 0;
1363 cmd->port = PORT_MII;
1364 cmd->transceiver = XCVR_EXTERNAL;
1366 return 0;
1369 static int bcm_enet_set_settings(struct net_device *dev,
1370 struct ethtool_cmd *cmd)
1372 struct bcm_enet_priv *priv;
1374 priv = netdev_priv(dev);
1375 if (priv->has_phy) {
1376 if (!priv->phydev)
1377 return -ENODEV;
1378 return phy_ethtool_sset(priv->phydev, cmd);
1379 } else {
1381 if (cmd->autoneg ||
1382 (cmd->speed != SPEED_100 && cmd->speed != SPEED_10) ||
1383 cmd->port != PORT_MII)
1384 return -EINVAL;
1386 priv->force_speed_100 = (cmd->speed == SPEED_100) ? 1 : 0;
1387 priv->force_duplex_full = (cmd->duplex == DUPLEX_FULL) ? 1 : 0;
1389 if (netif_running(dev))
1390 bcm_enet_adjust_link(dev);
1391 return 0;
1395 static void bcm_enet_get_ringparam(struct net_device *dev,
1396 struct ethtool_ringparam *ering)
1398 struct bcm_enet_priv *priv;
1400 priv = netdev_priv(dev);
1402 /* rx/tx ring is actually only limited by memory */
1403 ering->rx_max_pending = 8192;
1404 ering->tx_max_pending = 8192;
1405 ering->rx_mini_max_pending = 0;
1406 ering->rx_jumbo_max_pending = 0;
1407 ering->rx_pending = priv->rx_ring_size;
1408 ering->tx_pending = priv->tx_ring_size;
1411 static int bcm_enet_set_ringparam(struct net_device *dev,
1412 struct ethtool_ringparam *ering)
1414 struct bcm_enet_priv *priv;
1415 int was_running;
1417 priv = netdev_priv(dev);
1419 was_running = 0;
1420 if (netif_running(dev)) {
1421 bcm_enet_stop(dev);
1422 was_running = 1;
1425 priv->rx_ring_size = ering->rx_pending;
1426 priv->tx_ring_size = ering->tx_pending;
1428 if (was_running) {
1429 int err;
1431 err = bcm_enet_open(dev);
1432 if (err)
1433 dev_close(dev);
1434 else
1435 bcm_enet_set_multicast_list(dev);
1437 return 0;
1440 static void bcm_enet_get_pauseparam(struct net_device *dev,
1441 struct ethtool_pauseparam *ecmd)
1443 struct bcm_enet_priv *priv;
1445 priv = netdev_priv(dev);
1446 ecmd->autoneg = priv->pause_auto;
1447 ecmd->rx_pause = priv->pause_rx;
1448 ecmd->tx_pause = priv->pause_tx;
1451 static int bcm_enet_set_pauseparam(struct net_device *dev,
1452 struct ethtool_pauseparam *ecmd)
1454 struct bcm_enet_priv *priv;
1456 priv = netdev_priv(dev);
1458 if (priv->has_phy) {
1459 if (ecmd->autoneg && (ecmd->rx_pause != ecmd->tx_pause)) {
1460 /* asymetric pause mode not supported,
1461 * actually possible but integrated PHY has RO
1462 * asym_pause bit */
1463 return -EINVAL;
1465 } else {
1466 /* no pause autoneg on direct mii connection */
1467 if (ecmd->autoneg)
1468 return -EINVAL;
1471 priv->pause_auto = ecmd->autoneg;
1472 priv->pause_rx = ecmd->rx_pause;
1473 priv->pause_tx = ecmd->tx_pause;
1475 return 0;
1478 static struct ethtool_ops bcm_enet_ethtool_ops = {
1479 .get_strings = bcm_enet_get_strings,
1480 .get_sset_count = bcm_enet_get_sset_count,
1481 .get_ethtool_stats = bcm_enet_get_ethtool_stats,
1482 .get_settings = bcm_enet_get_settings,
1483 .set_settings = bcm_enet_set_settings,
1484 .get_drvinfo = bcm_enet_get_drvinfo,
1485 .get_link = ethtool_op_get_link,
1486 .get_ringparam = bcm_enet_get_ringparam,
1487 .set_ringparam = bcm_enet_set_ringparam,
1488 .get_pauseparam = bcm_enet_get_pauseparam,
1489 .set_pauseparam = bcm_enet_set_pauseparam,
1492 static int bcm_enet_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1494 struct bcm_enet_priv *priv;
1496 priv = netdev_priv(dev);
1497 if (priv->has_phy) {
1498 if (!priv->phydev)
1499 return -ENODEV;
1500 return phy_mii_ioctl(priv->phydev, if_mii(rq), cmd);
1501 } else {
1502 struct mii_if_info mii;
1504 mii.dev = dev;
1505 mii.mdio_read = bcm_enet_mdio_read_mii;
1506 mii.mdio_write = bcm_enet_mdio_write_mii;
1507 mii.phy_id = 0;
1508 mii.phy_id_mask = 0x3f;
1509 mii.reg_num_mask = 0x1f;
1510 return generic_mii_ioctl(&mii, if_mii(rq), cmd, NULL);
1515 * calculate actual hardware mtu
1517 static int compute_hw_mtu(struct bcm_enet_priv *priv, int mtu)
1519 int actual_mtu;
1521 actual_mtu = mtu;
1523 /* add ethernet header + vlan tag size */
1524 actual_mtu += VLAN_ETH_HLEN;
1526 if (actual_mtu < 64 || actual_mtu > BCMENET_MAX_MTU)
1527 return -EINVAL;
1530 * setup maximum size before we get overflow mark in
1531 * descriptor, note that this will not prevent reception of
1532 * big frames, they will be split into multiple buffers
1533 * anyway
1535 priv->hw_mtu = actual_mtu;
1538 * align rx buffer size to dma burst len, account FCS since
1539 * it's appended
1541 priv->rx_skb_size = ALIGN(actual_mtu + ETH_FCS_LEN,
1542 BCMENET_DMA_MAXBURST * 4);
1543 return 0;
1547 * adjust mtu, can't be called while device is running
1549 static int bcm_enet_change_mtu(struct net_device *dev, int new_mtu)
1551 int ret;
1553 if (netif_running(dev))
1554 return -EBUSY;
1556 ret = compute_hw_mtu(netdev_priv(dev), new_mtu);
1557 if (ret)
1558 return ret;
1559 dev->mtu = new_mtu;
1560 return 0;
1564 * preinit hardware to allow mii operation while device is down
1566 static void bcm_enet_hw_preinit(struct bcm_enet_priv *priv)
1568 u32 val;
1569 int limit;
1571 /* make sure mac is disabled */
1572 bcm_enet_disable_mac(priv);
1574 /* soft reset mac */
1575 val = ENET_CTL_SRESET_MASK;
1576 enet_writel(priv, val, ENET_CTL_REG);
1577 wmb();
1579 limit = 1000;
1580 do {
1581 val = enet_readl(priv, ENET_CTL_REG);
1582 if (!(val & ENET_CTL_SRESET_MASK))
1583 break;
1584 udelay(1);
1585 } while (limit--);
1587 /* select correct mii interface */
1588 val = enet_readl(priv, ENET_CTL_REG);
1589 if (priv->use_external_mii)
1590 val |= ENET_CTL_EPHYSEL_MASK;
1591 else
1592 val &= ~ENET_CTL_EPHYSEL_MASK;
1593 enet_writel(priv, val, ENET_CTL_REG);
1595 /* turn on mdc clock */
1596 enet_writel(priv, (0x1f << ENET_MIISC_MDCFREQDIV_SHIFT) |
1597 ENET_MIISC_PREAMBLEEN_MASK, ENET_MIISC_REG);
1599 /* set mib counters to self-clear when read */
1600 val = enet_readl(priv, ENET_MIBCTL_REG);
1601 val |= ENET_MIBCTL_RDCLEAR_MASK;
1602 enet_writel(priv, val, ENET_MIBCTL_REG);
1605 static const struct net_device_ops bcm_enet_ops = {
1606 .ndo_open = bcm_enet_open,
1607 .ndo_stop = bcm_enet_stop,
1608 .ndo_start_xmit = bcm_enet_start_xmit,
1609 .ndo_get_stats = bcm_enet_get_stats,
1610 .ndo_set_mac_address = bcm_enet_set_mac_address,
1611 .ndo_set_multicast_list = bcm_enet_set_multicast_list,
1612 .ndo_do_ioctl = bcm_enet_ioctl,
1613 .ndo_change_mtu = bcm_enet_change_mtu,
1614 #ifdef CONFIG_NET_POLL_CONTROLLER
1615 .ndo_poll_controller = bcm_enet_netpoll,
1616 #endif
1620 * allocate netdevice, request register memory and register device.
1622 static int __devinit bcm_enet_probe(struct platform_device *pdev)
1624 struct bcm_enet_priv *priv;
1625 struct net_device *dev;
1626 struct bcm63xx_enet_platform_data *pd;
1627 struct resource *res_mem, *res_irq, *res_irq_rx, *res_irq_tx;
1628 struct mii_bus *bus;
1629 const char *clk_name;
1630 unsigned int iomem_size;
1631 int i, ret;
1633 /* stop if shared driver failed, assume driver->probe will be
1634 * called in the same order we register devices (correct ?) */
1635 if (!bcm_enet_shared_base)
1636 return -ENODEV;
1638 res_mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1639 res_irq = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
1640 res_irq_rx = platform_get_resource(pdev, IORESOURCE_IRQ, 1);
1641 res_irq_tx = platform_get_resource(pdev, IORESOURCE_IRQ, 2);
1642 if (!res_mem || !res_irq || !res_irq_rx || !res_irq_tx)
1643 return -ENODEV;
1645 ret = 0;
1646 dev = alloc_etherdev(sizeof(*priv));
1647 if (!dev)
1648 return -ENOMEM;
1649 priv = netdev_priv(dev);
1650 memset(priv, 0, sizeof(*priv));
1652 ret = compute_hw_mtu(priv, dev->mtu);
1653 if (ret)
1654 goto out;
1656 iomem_size = res_mem->end - res_mem->start + 1;
1657 if (!request_mem_region(res_mem->start, iomem_size, "bcm63xx_enet")) {
1658 ret = -EBUSY;
1659 goto out;
1662 priv->base = ioremap(res_mem->start, iomem_size);
1663 if (priv->base == NULL) {
1664 ret = -ENOMEM;
1665 goto out_release_mem;
1667 dev->irq = priv->irq = res_irq->start;
1668 priv->irq_rx = res_irq_rx->start;
1669 priv->irq_tx = res_irq_tx->start;
1670 priv->mac_id = pdev->id;
1672 /* get rx & tx dma channel id for this mac */
1673 if (priv->mac_id == 0) {
1674 priv->rx_chan = 0;
1675 priv->tx_chan = 1;
1676 clk_name = "enet0";
1677 } else {
1678 priv->rx_chan = 2;
1679 priv->tx_chan = 3;
1680 clk_name = "enet1";
1683 priv->mac_clk = clk_get(&pdev->dev, clk_name);
1684 if (IS_ERR(priv->mac_clk)) {
1685 ret = PTR_ERR(priv->mac_clk);
1686 goto out_unmap;
1688 clk_enable(priv->mac_clk);
1690 /* initialize default and fetch platform data */
1691 priv->rx_ring_size = BCMENET_DEF_RX_DESC;
1692 priv->tx_ring_size = BCMENET_DEF_TX_DESC;
1694 pd = pdev->dev.platform_data;
1695 if (pd) {
1696 memcpy(dev->dev_addr, pd->mac_addr, ETH_ALEN);
1697 priv->has_phy = pd->has_phy;
1698 priv->phy_id = pd->phy_id;
1699 priv->has_phy_interrupt = pd->has_phy_interrupt;
1700 priv->phy_interrupt = pd->phy_interrupt;
1701 priv->use_external_mii = !pd->use_internal_phy;
1702 priv->pause_auto = pd->pause_auto;
1703 priv->pause_rx = pd->pause_rx;
1704 priv->pause_tx = pd->pause_tx;
1705 priv->force_duplex_full = pd->force_duplex_full;
1706 priv->force_speed_100 = pd->force_speed_100;
1709 if (priv->mac_id == 0 && priv->has_phy && !priv->use_external_mii) {
1710 /* using internal PHY, enable clock */
1711 priv->phy_clk = clk_get(&pdev->dev, "ephy");
1712 if (IS_ERR(priv->phy_clk)) {
1713 ret = PTR_ERR(priv->phy_clk);
1714 priv->phy_clk = NULL;
1715 goto out_put_clk_mac;
1717 clk_enable(priv->phy_clk);
1720 /* do minimal hardware init to be able to probe mii bus */
1721 bcm_enet_hw_preinit(priv);
1723 /* MII bus registration */
1724 if (priv->has_phy) {
1726 priv->mii_bus = mdiobus_alloc();
1727 if (!priv->mii_bus) {
1728 ret = -ENOMEM;
1729 goto out_uninit_hw;
1732 bus = priv->mii_bus;
1733 bus->name = "bcm63xx_enet MII bus";
1734 bus->parent = &pdev->dev;
1735 bus->priv = priv;
1736 bus->read = bcm_enet_mdio_read_phylib;
1737 bus->write = bcm_enet_mdio_write_phylib;
1738 sprintf(bus->id, "%d", priv->mac_id);
1740 /* only probe bus where we think the PHY is, because
1741 * the mdio read operation return 0 instead of 0xffff
1742 * if a slave is not present on hw */
1743 bus->phy_mask = ~(1 << priv->phy_id);
1745 bus->irq = kmalloc(sizeof(int) * PHY_MAX_ADDR, GFP_KERNEL);
1746 if (!bus->irq) {
1747 ret = -ENOMEM;
1748 goto out_free_mdio;
1751 if (priv->has_phy_interrupt)
1752 bus->irq[priv->phy_id] = priv->phy_interrupt;
1753 else
1754 bus->irq[priv->phy_id] = PHY_POLL;
1756 ret = mdiobus_register(bus);
1757 if (ret) {
1758 dev_err(&pdev->dev, "unable to register mdio bus\n");
1759 goto out_free_mdio;
1761 } else {
1763 /* run platform code to initialize PHY device */
1764 if (pd->mii_config &&
1765 pd->mii_config(dev, 1, bcm_enet_mdio_read_mii,
1766 bcm_enet_mdio_write_mii)) {
1767 dev_err(&pdev->dev, "unable to configure mdio bus\n");
1768 goto out_uninit_hw;
1772 spin_lock_init(&priv->rx_lock);
1774 /* init rx timeout (used for oom) */
1775 init_timer(&priv->rx_timeout);
1776 priv->rx_timeout.function = bcm_enet_refill_rx_timer;
1777 priv->rx_timeout.data = (unsigned long)dev;
1779 /* init the mib update lock&work */
1780 mutex_init(&priv->mib_update_lock);
1781 INIT_WORK(&priv->mib_update_task, bcm_enet_update_mib_counters_defer);
1783 /* zero mib counters */
1784 for (i = 0; i < ENET_MIB_REG_COUNT; i++)
1785 enet_writel(priv, 0, ENET_MIB_REG(i));
1787 /* register netdevice */
1788 dev->netdev_ops = &bcm_enet_ops;
1789 netif_napi_add(dev, &priv->napi, bcm_enet_poll, 16);
1791 SET_ETHTOOL_OPS(dev, &bcm_enet_ethtool_ops);
1792 SET_NETDEV_DEV(dev, &pdev->dev);
1794 ret = register_netdev(dev);
1795 if (ret)
1796 goto out_unregister_mdio;
1798 netif_carrier_off(dev);
1799 platform_set_drvdata(pdev, dev);
1800 priv->pdev = pdev;
1801 priv->net_dev = dev;
1803 return 0;
1805 out_unregister_mdio:
1806 if (priv->mii_bus) {
1807 mdiobus_unregister(priv->mii_bus);
1808 kfree(priv->mii_bus->irq);
1811 out_free_mdio:
1812 if (priv->mii_bus)
1813 mdiobus_free(priv->mii_bus);
1815 out_uninit_hw:
1816 /* turn off mdc clock */
1817 enet_writel(priv, 0, ENET_MIISC_REG);
1818 if (priv->phy_clk) {
1819 clk_disable(priv->phy_clk);
1820 clk_put(priv->phy_clk);
1823 out_put_clk_mac:
1824 clk_disable(priv->mac_clk);
1825 clk_put(priv->mac_clk);
1827 out_unmap:
1828 iounmap(priv->base);
1830 out_release_mem:
1831 release_mem_region(res_mem->start, iomem_size);
1832 out:
1833 free_netdev(dev);
1834 return ret;
1839 * exit func, stops hardware and unregisters netdevice
1841 static int __devexit bcm_enet_remove(struct platform_device *pdev)
1843 struct bcm_enet_priv *priv;
1844 struct net_device *dev;
1845 struct resource *res;
1847 /* stop netdevice */
1848 dev = platform_get_drvdata(pdev);
1849 priv = netdev_priv(dev);
1850 unregister_netdev(dev);
1852 /* turn off mdc clock */
1853 enet_writel(priv, 0, ENET_MIISC_REG);
1855 if (priv->has_phy) {
1856 mdiobus_unregister(priv->mii_bus);
1857 kfree(priv->mii_bus->irq);
1858 mdiobus_free(priv->mii_bus);
1859 } else {
1860 struct bcm63xx_enet_platform_data *pd;
1862 pd = pdev->dev.platform_data;
1863 if (pd && pd->mii_config)
1864 pd->mii_config(dev, 0, bcm_enet_mdio_read_mii,
1865 bcm_enet_mdio_write_mii);
1868 /* release device resources */
1869 iounmap(priv->base);
1870 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1871 release_mem_region(res->start, res->end - res->start + 1);
1873 /* disable hw block clocks */
1874 if (priv->phy_clk) {
1875 clk_disable(priv->phy_clk);
1876 clk_put(priv->phy_clk);
1878 clk_disable(priv->mac_clk);
1879 clk_put(priv->mac_clk);
1881 platform_set_drvdata(pdev, NULL);
1882 free_netdev(dev);
1883 return 0;
1886 struct platform_driver bcm63xx_enet_driver = {
1887 .probe = bcm_enet_probe,
1888 .remove = __devexit_p(bcm_enet_remove),
1889 .driver = {
1890 .name = "bcm63xx_enet",
1891 .owner = THIS_MODULE,
1896 * reserve & remap memory space shared between all macs
1898 static int __devinit bcm_enet_shared_probe(struct platform_device *pdev)
1900 struct resource *res;
1901 unsigned int iomem_size;
1903 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1904 if (!res)
1905 return -ENODEV;
1907 iomem_size = res->end - res->start + 1;
1908 if (!request_mem_region(res->start, iomem_size, "bcm63xx_enet_dma"))
1909 return -EBUSY;
1911 bcm_enet_shared_base = ioremap(res->start, iomem_size);
1912 if (!bcm_enet_shared_base) {
1913 release_mem_region(res->start, iomem_size);
1914 return -ENOMEM;
1916 return 0;
1919 static int __devexit bcm_enet_shared_remove(struct platform_device *pdev)
1921 struct resource *res;
1923 iounmap(bcm_enet_shared_base);
1924 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1925 release_mem_region(res->start, res->end - res->start + 1);
1926 return 0;
1930 * this "shared" driver is needed because both macs share a single
1931 * address space
1933 struct platform_driver bcm63xx_enet_shared_driver = {
1934 .probe = bcm_enet_shared_probe,
1935 .remove = __devexit_p(bcm_enet_shared_remove),
1936 .driver = {
1937 .name = "bcm63xx_enet_shared",
1938 .owner = THIS_MODULE,
1943 * entry point
1945 static int __init bcm_enet_init(void)
1947 int ret;
1949 ret = platform_driver_register(&bcm63xx_enet_shared_driver);
1950 if (ret)
1951 return ret;
1953 ret = platform_driver_register(&bcm63xx_enet_driver);
1954 if (ret)
1955 platform_driver_unregister(&bcm63xx_enet_shared_driver);
1957 return ret;
1960 static void __exit bcm_enet_exit(void)
1962 platform_driver_unregister(&bcm63xx_enet_driver);
1963 platform_driver_unregister(&bcm63xx_enet_shared_driver);
1967 module_init(bcm_enet_init);
1968 module_exit(bcm_enet_exit);
1970 MODULE_DESCRIPTION("BCM63xx internal ethernet mac driver");
1971 MODULE_AUTHOR("Maxime Bizon <mbizon@freebox.fr>");
1972 MODULE_LICENSE("GPL");