Staging: netwave: delete the driver
[linux/fpc-iii.git] / drivers / net / cassini.c
blob9bd155e4111c6ef5e771319c38066ad3f9a1c7f0
1 /* cassini.c: Sun Microsystems Cassini(+) ethernet driver.
3 * Copyright (C) 2004 Sun Microsystems Inc.
4 * Copyright (C) 2003 Adrian Sun (asun@darksunrising.com)
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as
8 * published by the Free Software Foundation; either version 2 of the
9 * License, or (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
19 * 02111-1307, USA.
21 * This driver uses the sungem driver (c) David Miller
22 * (davem@redhat.com) as its basis.
24 * The cassini chip has a number of features that distinguish it from
25 * the gem chip:
26 * 4 transmit descriptor rings that are used for either QoS (VLAN) or
27 * load balancing (non-VLAN mode)
28 * batching of multiple packets
29 * multiple CPU dispatching
30 * page-based RX descriptor engine with separate completion rings
31 * Gigabit support (GMII and PCS interface)
32 * MIF link up/down detection works
34 * RX is handled by page sized buffers that are attached as fragments to
35 * the skb. here's what's done:
36 * -- driver allocates pages at a time and keeps reference counts
37 * on them.
38 * -- the upper protocol layers assume that the header is in the skb
39 * itself. as a result, cassini will copy a small amount (64 bytes)
40 * to make them happy.
41 * -- driver appends the rest of the data pages as frags to skbuffs
42 * and increments the reference count
43 * -- on page reclamation, the driver swaps the page with a spare page.
44 * if that page is still in use, it frees its reference to that page,
45 * and allocates a new page for use. otherwise, it just recycles the
46 * the page.
48 * NOTE: cassini can parse the header. however, it's not worth it
49 * as long as the network stack requires a header copy.
51 * TX has 4 queues. currently these queues are used in a round-robin
52 * fashion for load balancing. They can also be used for QoS. for that
53 * to work, however, QoS information needs to be exposed down to the driver
54 * level so that subqueues get targetted to particular transmit rings.
55 * alternatively, the queues can be configured via use of the all-purpose
56 * ioctl.
58 * RX DATA: the rx completion ring has all the info, but the rx desc
59 * ring has all of the data. RX can conceivably come in under multiple
60 * interrupts, but the INT# assignment needs to be set up properly by
61 * the BIOS and conveyed to the driver. PCI BIOSes don't know how to do
62 * that. also, the two descriptor rings are designed to distinguish between
63 * encrypted and non-encrypted packets, but we use them for buffering
64 * instead.
66 * by default, the selective clear mask is set up to process rx packets.
69 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
71 #include <linux/module.h>
72 #include <linux/kernel.h>
73 #include <linux/types.h>
74 #include <linux/compiler.h>
75 #include <linux/slab.h>
76 #include <linux/delay.h>
77 #include <linux/init.h>
78 #include <linux/vmalloc.h>
79 #include <linux/ioport.h>
80 #include <linux/pci.h>
81 #include <linux/mm.h>
82 #include <linux/highmem.h>
83 #include <linux/list.h>
84 #include <linux/dma-mapping.h>
86 #include <linux/netdevice.h>
87 #include <linux/etherdevice.h>
88 #include <linux/skbuff.h>
89 #include <linux/ethtool.h>
90 #include <linux/crc32.h>
91 #include <linux/random.h>
92 #include <linux/mii.h>
93 #include <linux/ip.h>
94 #include <linux/tcp.h>
95 #include <linux/mutex.h>
96 #include <linux/firmware.h>
98 #include <net/checksum.h>
100 #include <asm/atomic.h>
101 #include <asm/system.h>
102 #include <asm/io.h>
103 #include <asm/byteorder.h>
104 #include <asm/uaccess.h>
106 #define cas_page_map(x) kmap_atomic((x), KM_SKB_DATA_SOFTIRQ)
107 #define cas_page_unmap(x) kunmap_atomic((x), KM_SKB_DATA_SOFTIRQ)
108 #define CAS_NCPUS num_online_cpus()
110 #ifdef CONFIG_CASSINI_NAPI
111 #define USE_NAPI
112 #define cas_skb_release(x) netif_receive_skb(x)
113 #else
114 #define cas_skb_release(x) netif_rx(x)
115 #endif
117 /* select which firmware to use */
118 #define USE_HP_WORKAROUND
119 #define HP_WORKAROUND_DEFAULT /* select which firmware to use as default */
120 #define CAS_HP_ALT_FIRMWARE cas_prog_null /* alternate firmware */
122 #include "cassini.h"
124 #define USE_TX_COMPWB /* use completion writeback registers */
125 #define USE_CSMA_CD_PROTO /* standard CSMA/CD */
126 #define USE_RX_BLANK /* hw interrupt mitigation */
127 #undef USE_ENTROPY_DEV /* don't test for entropy device */
129 /* NOTE: these aren't useable unless PCI interrupts can be assigned.
130 * also, we need to make cp->lock finer-grained.
132 #undef USE_PCI_INTB
133 #undef USE_PCI_INTC
134 #undef USE_PCI_INTD
135 #undef USE_QOS
137 #undef USE_VPD_DEBUG /* debug vpd information if defined */
139 /* rx processing options */
140 #define USE_PAGE_ORDER /* specify to allocate large rx pages */
141 #define RX_DONT_BATCH 0 /* if 1, don't batch flows */
142 #define RX_COPY_ALWAYS 0 /* if 0, use frags */
143 #define RX_COPY_MIN 64 /* copy a little to make upper layers happy */
144 #undef RX_COUNT_BUFFERS /* define to calculate RX buffer stats */
146 #define DRV_MODULE_NAME "cassini"
147 #define DRV_MODULE_VERSION "1.6"
148 #define DRV_MODULE_RELDATE "21 May 2008"
150 #define CAS_DEF_MSG_ENABLE \
151 (NETIF_MSG_DRV | \
152 NETIF_MSG_PROBE | \
153 NETIF_MSG_LINK | \
154 NETIF_MSG_TIMER | \
155 NETIF_MSG_IFDOWN | \
156 NETIF_MSG_IFUP | \
157 NETIF_MSG_RX_ERR | \
158 NETIF_MSG_TX_ERR)
160 /* length of time before we decide the hardware is borked,
161 * and dev->tx_timeout() should be called to fix the problem
163 #define CAS_TX_TIMEOUT (HZ)
164 #define CAS_LINK_TIMEOUT (22*HZ/10)
165 #define CAS_LINK_FAST_TIMEOUT (1)
167 /* timeout values for state changing. these specify the number
168 * of 10us delays to be used before giving up.
170 #define STOP_TRIES_PHY 1000
171 #define STOP_TRIES 5000
173 /* specify a minimum frame size to deal with some fifo issues
174 * max mtu == 2 * page size - ethernet header - 64 - swivel =
175 * 2 * page_size - 0x50
177 #define CAS_MIN_FRAME 97
178 #define CAS_1000MB_MIN_FRAME 255
179 #define CAS_MIN_MTU 60
180 #define CAS_MAX_MTU min(((cp->page_size << 1) - 0x50), 9000)
182 #if 1
184 * Eliminate these and use separate atomic counters for each, to
185 * avoid a race condition.
187 #else
188 #define CAS_RESET_MTU 1
189 #define CAS_RESET_ALL 2
190 #define CAS_RESET_SPARE 3
191 #endif
193 static char version[] __devinitdata =
194 DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
196 static int cassini_debug = -1; /* -1 == use CAS_DEF_MSG_ENABLE as value */
197 static int link_mode;
199 MODULE_AUTHOR("Adrian Sun (asun@darksunrising.com)");
200 MODULE_DESCRIPTION("Sun Cassini(+) ethernet driver");
201 MODULE_LICENSE("GPL");
202 MODULE_FIRMWARE("sun/cassini.bin");
203 module_param(cassini_debug, int, 0);
204 MODULE_PARM_DESC(cassini_debug, "Cassini bitmapped debugging message enable value");
205 module_param(link_mode, int, 0);
206 MODULE_PARM_DESC(link_mode, "default link mode");
209 * Work around for a PCS bug in which the link goes down due to the chip
210 * being confused and never showing a link status of "up."
212 #define DEFAULT_LINKDOWN_TIMEOUT 5
214 * Value in seconds, for user input.
216 static int linkdown_timeout = DEFAULT_LINKDOWN_TIMEOUT;
217 module_param(linkdown_timeout, int, 0);
218 MODULE_PARM_DESC(linkdown_timeout,
219 "min reset interval in sec. for PCS linkdown issue; disabled if not positive");
222 * value in 'ticks' (units used by jiffies). Set when we init the
223 * module because 'HZ' in actually a function call on some flavors of
224 * Linux. This will default to DEFAULT_LINKDOWN_TIMEOUT * HZ.
226 static int link_transition_timeout;
230 static u16 link_modes[] __devinitdata = {
231 BMCR_ANENABLE, /* 0 : autoneg */
232 0, /* 1 : 10bt half duplex */
233 BMCR_SPEED100, /* 2 : 100bt half duplex */
234 BMCR_FULLDPLX, /* 3 : 10bt full duplex */
235 BMCR_SPEED100|BMCR_FULLDPLX, /* 4 : 100bt full duplex */
236 CAS_BMCR_SPEED1000|BMCR_FULLDPLX /* 5 : 1000bt full duplex */
239 static DEFINE_PCI_DEVICE_TABLE(cas_pci_tbl) = {
240 { PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_CASSINI,
241 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
242 { PCI_VENDOR_ID_NS, PCI_DEVICE_ID_NS_SATURN,
243 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
244 { 0, }
247 MODULE_DEVICE_TABLE(pci, cas_pci_tbl);
249 static void cas_set_link_modes(struct cas *cp);
251 static inline void cas_lock_tx(struct cas *cp)
253 int i;
255 for (i = 0; i < N_TX_RINGS; i++)
256 spin_lock(&cp->tx_lock[i]);
259 static inline void cas_lock_all(struct cas *cp)
261 spin_lock_irq(&cp->lock);
262 cas_lock_tx(cp);
265 /* WTZ: QA was finding deadlock problems with the previous
266 * versions after long test runs with multiple cards per machine.
267 * See if replacing cas_lock_all with safer versions helps. The
268 * symptoms QA is reporting match those we'd expect if interrupts
269 * aren't being properly restored, and we fixed a previous deadlock
270 * with similar symptoms by using save/restore versions in other
271 * places.
273 #define cas_lock_all_save(cp, flags) \
274 do { \
275 struct cas *xxxcp = (cp); \
276 spin_lock_irqsave(&xxxcp->lock, flags); \
277 cas_lock_tx(xxxcp); \
278 } while (0)
280 static inline void cas_unlock_tx(struct cas *cp)
282 int i;
284 for (i = N_TX_RINGS; i > 0; i--)
285 spin_unlock(&cp->tx_lock[i - 1]);
288 static inline void cas_unlock_all(struct cas *cp)
290 cas_unlock_tx(cp);
291 spin_unlock_irq(&cp->lock);
294 #define cas_unlock_all_restore(cp, flags) \
295 do { \
296 struct cas *xxxcp = (cp); \
297 cas_unlock_tx(xxxcp); \
298 spin_unlock_irqrestore(&xxxcp->lock, flags); \
299 } while (0)
301 static void cas_disable_irq(struct cas *cp, const int ring)
303 /* Make sure we won't get any more interrupts */
304 if (ring == 0) {
305 writel(0xFFFFFFFF, cp->regs + REG_INTR_MASK);
306 return;
309 /* disable completion interrupts and selectively mask */
310 if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
311 switch (ring) {
312 #if defined (USE_PCI_INTB) || defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
313 #ifdef USE_PCI_INTB
314 case 1:
315 #endif
316 #ifdef USE_PCI_INTC
317 case 2:
318 #endif
319 #ifdef USE_PCI_INTD
320 case 3:
321 #endif
322 writel(INTRN_MASK_CLEAR_ALL | INTRN_MASK_RX_EN,
323 cp->regs + REG_PLUS_INTRN_MASK(ring));
324 break;
325 #endif
326 default:
327 writel(INTRN_MASK_CLEAR_ALL, cp->regs +
328 REG_PLUS_INTRN_MASK(ring));
329 break;
334 static inline void cas_mask_intr(struct cas *cp)
336 int i;
338 for (i = 0; i < N_RX_COMP_RINGS; i++)
339 cas_disable_irq(cp, i);
342 static void cas_enable_irq(struct cas *cp, const int ring)
344 if (ring == 0) { /* all but TX_DONE */
345 writel(INTR_TX_DONE, cp->regs + REG_INTR_MASK);
346 return;
349 if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
350 switch (ring) {
351 #if defined (USE_PCI_INTB) || defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
352 #ifdef USE_PCI_INTB
353 case 1:
354 #endif
355 #ifdef USE_PCI_INTC
356 case 2:
357 #endif
358 #ifdef USE_PCI_INTD
359 case 3:
360 #endif
361 writel(INTRN_MASK_RX_EN, cp->regs +
362 REG_PLUS_INTRN_MASK(ring));
363 break;
364 #endif
365 default:
366 break;
371 static inline void cas_unmask_intr(struct cas *cp)
373 int i;
375 for (i = 0; i < N_RX_COMP_RINGS; i++)
376 cas_enable_irq(cp, i);
379 static inline void cas_entropy_gather(struct cas *cp)
381 #ifdef USE_ENTROPY_DEV
382 if ((cp->cas_flags & CAS_FLAG_ENTROPY_DEV) == 0)
383 return;
385 batch_entropy_store(readl(cp->regs + REG_ENTROPY_IV),
386 readl(cp->regs + REG_ENTROPY_IV),
387 sizeof(uint64_t)*8);
388 #endif
391 static inline void cas_entropy_reset(struct cas *cp)
393 #ifdef USE_ENTROPY_DEV
394 if ((cp->cas_flags & CAS_FLAG_ENTROPY_DEV) == 0)
395 return;
397 writel(BIM_LOCAL_DEV_PAD | BIM_LOCAL_DEV_PROM | BIM_LOCAL_DEV_EXT,
398 cp->regs + REG_BIM_LOCAL_DEV_EN);
399 writeb(ENTROPY_RESET_STC_MODE, cp->regs + REG_ENTROPY_RESET);
400 writeb(0x55, cp->regs + REG_ENTROPY_RAND_REG);
402 /* if we read back 0x0, we don't have an entropy device */
403 if (readb(cp->regs + REG_ENTROPY_RAND_REG) == 0)
404 cp->cas_flags &= ~CAS_FLAG_ENTROPY_DEV;
405 #endif
408 /* access to the phy. the following assumes that we've initialized the MIF to
409 * be in frame rather than bit-bang mode
411 static u16 cas_phy_read(struct cas *cp, int reg)
413 u32 cmd;
414 int limit = STOP_TRIES_PHY;
416 cmd = MIF_FRAME_ST | MIF_FRAME_OP_READ;
417 cmd |= CAS_BASE(MIF_FRAME_PHY_ADDR, cp->phy_addr);
418 cmd |= CAS_BASE(MIF_FRAME_REG_ADDR, reg);
419 cmd |= MIF_FRAME_TURN_AROUND_MSB;
420 writel(cmd, cp->regs + REG_MIF_FRAME);
422 /* poll for completion */
423 while (limit-- > 0) {
424 udelay(10);
425 cmd = readl(cp->regs + REG_MIF_FRAME);
426 if (cmd & MIF_FRAME_TURN_AROUND_LSB)
427 return (cmd & MIF_FRAME_DATA_MASK);
429 return 0xFFFF; /* -1 */
432 static int cas_phy_write(struct cas *cp, int reg, u16 val)
434 int limit = STOP_TRIES_PHY;
435 u32 cmd;
437 cmd = MIF_FRAME_ST | MIF_FRAME_OP_WRITE;
438 cmd |= CAS_BASE(MIF_FRAME_PHY_ADDR, cp->phy_addr);
439 cmd |= CAS_BASE(MIF_FRAME_REG_ADDR, reg);
440 cmd |= MIF_FRAME_TURN_AROUND_MSB;
441 cmd |= val & MIF_FRAME_DATA_MASK;
442 writel(cmd, cp->regs + REG_MIF_FRAME);
444 /* poll for completion */
445 while (limit-- > 0) {
446 udelay(10);
447 cmd = readl(cp->regs + REG_MIF_FRAME);
448 if (cmd & MIF_FRAME_TURN_AROUND_LSB)
449 return 0;
451 return -1;
454 static void cas_phy_powerup(struct cas *cp)
456 u16 ctl = cas_phy_read(cp, MII_BMCR);
458 if ((ctl & BMCR_PDOWN) == 0)
459 return;
460 ctl &= ~BMCR_PDOWN;
461 cas_phy_write(cp, MII_BMCR, ctl);
464 static void cas_phy_powerdown(struct cas *cp)
466 u16 ctl = cas_phy_read(cp, MII_BMCR);
468 if (ctl & BMCR_PDOWN)
469 return;
470 ctl |= BMCR_PDOWN;
471 cas_phy_write(cp, MII_BMCR, ctl);
474 /* cp->lock held. note: the last put_page will free the buffer */
475 static int cas_page_free(struct cas *cp, cas_page_t *page)
477 pci_unmap_page(cp->pdev, page->dma_addr, cp->page_size,
478 PCI_DMA_FROMDEVICE);
479 __free_pages(page->buffer, cp->page_order);
480 kfree(page);
481 return 0;
484 #ifdef RX_COUNT_BUFFERS
485 #define RX_USED_ADD(x, y) ((x)->used += (y))
486 #define RX_USED_SET(x, y) ((x)->used = (y))
487 #else
488 #define RX_USED_ADD(x, y)
489 #define RX_USED_SET(x, y)
490 #endif
492 /* local page allocation routines for the receive buffers. jumbo pages
493 * require at least 8K contiguous and 8K aligned buffers.
495 static cas_page_t *cas_page_alloc(struct cas *cp, const gfp_t flags)
497 cas_page_t *page;
499 page = kmalloc(sizeof(cas_page_t), flags);
500 if (!page)
501 return NULL;
503 INIT_LIST_HEAD(&page->list);
504 RX_USED_SET(page, 0);
505 page->buffer = alloc_pages(flags, cp->page_order);
506 if (!page->buffer)
507 goto page_err;
508 page->dma_addr = pci_map_page(cp->pdev, page->buffer, 0,
509 cp->page_size, PCI_DMA_FROMDEVICE);
510 return page;
512 page_err:
513 kfree(page);
514 return NULL;
517 /* initialize spare pool of rx buffers, but allocate during the open */
518 static void cas_spare_init(struct cas *cp)
520 spin_lock(&cp->rx_inuse_lock);
521 INIT_LIST_HEAD(&cp->rx_inuse_list);
522 spin_unlock(&cp->rx_inuse_lock);
524 spin_lock(&cp->rx_spare_lock);
525 INIT_LIST_HEAD(&cp->rx_spare_list);
526 cp->rx_spares_needed = RX_SPARE_COUNT;
527 spin_unlock(&cp->rx_spare_lock);
530 /* used on close. free all the spare buffers. */
531 static void cas_spare_free(struct cas *cp)
533 struct list_head list, *elem, *tmp;
535 /* free spare buffers */
536 INIT_LIST_HEAD(&list);
537 spin_lock(&cp->rx_spare_lock);
538 list_splice_init(&cp->rx_spare_list, &list);
539 spin_unlock(&cp->rx_spare_lock);
540 list_for_each_safe(elem, tmp, &list) {
541 cas_page_free(cp, list_entry(elem, cas_page_t, list));
544 INIT_LIST_HEAD(&list);
545 #if 1
547 * Looks like Adrian had protected this with a different
548 * lock than used everywhere else to manipulate this list.
550 spin_lock(&cp->rx_inuse_lock);
551 list_splice_init(&cp->rx_inuse_list, &list);
552 spin_unlock(&cp->rx_inuse_lock);
553 #else
554 spin_lock(&cp->rx_spare_lock);
555 list_splice_init(&cp->rx_inuse_list, &list);
556 spin_unlock(&cp->rx_spare_lock);
557 #endif
558 list_for_each_safe(elem, tmp, &list) {
559 cas_page_free(cp, list_entry(elem, cas_page_t, list));
563 /* replenish spares if needed */
564 static void cas_spare_recover(struct cas *cp, const gfp_t flags)
566 struct list_head list, *elem, *tmp;
567 int needed, i;
569 /* check inuse list. if we don't need any more free buffers,
570 * just free it
573 /* make a local copy of the list */
574 INIT_LIST_HEAD(&list);
575 spin_lock(&cp->rx_inuse_lock);
576 list_splice_init(&cp->rx_inuse_list, &list);
577 spin_unlock(&cp->rx_inuse_lock);
579 list_for_each_safe(elem, tmp, &list) {
580 cas_page_t *page = list_entry(elem, cas_page_t, list);
583 * With the lockless pagecache, cassini buffering scheme gets
584 * slightly less accurate: we might find that a page has an
585 * elevated reference count here, due to a speculative ref,
586 * and skip it as in-use. Ideally we would be able to reclaim
587 * it. However this would be such a rare case, it doesn't
588 * matter too much as we should pick it up the next time round.
590 * Importantly, if we find that the page has a refcount of 1
591 * here (our refcount), then we know it is definitely not inuse
592 * so we can reuse it.
594 if (page_count(page->buffer) > 1)
595 continue;
597 list_del(elem);
598 spin_lock(&cp->rx_spare_lock);
599 if (cp->rx_spares_needed > 0) {
600 list_add(elem, &cp->rx_spare_list);
601 cp->rx_spares_needed--;
602 spin_unlock(&cp->rx_spare_lock);
603 } else {
604 spin_unlock(&cp->rx_spare_lock);
605 cas_page_free(cp, page);
609 /* put any inuse buffers back on the list */
610 if (!list_empty(&list)) {
611 spin_lock(&cp->rx_inuse_lock);
612 list_splice(&list, &cp->rx_inuse_list);
613 spin_unlock(&cp->rx_inuse_lock);
616 spin_lock(&cp->rx_spare_lock);
617 needed = cp->rx_spares_needed;
618 spin_unlock(&cp->rx_spare_lock);
619 if (!needed)
620 return;
622 /* we still need spares, so try to allocate some */
623 INIT_LIST_HEAD(&list);
624 i = 0;
625 while (i < needed) {
626 cas_page_t *spare = cas_page_alloc(cp, flags);
627 if (!spare)
628 break;
629 list_add(&spare->list, &list);
630 i++;
633 spin_lock(&cp->rx_spare_lock);
634 list_splice(&list, &cp->rx_spare_list);
635 cp->rx_spares_needed -= i;
636 spin_unlock(&cp->rx_spare_lock);
639 /* pull a page from the list. */
640 static cas_page_t *cas_page_dequeue(struct cas *cp)
642 struct list_head *entry;
643 int recover;
645 spin_lock(&cp->rx_spare_lock);
646 if (list_empty(&cp->rx_spare_list)) {
647 /* try to do a quick recovery */
648 spin_unlock(&cp->rx_spare_lock);
649 cas_spare_recover(cp, GFP_ATOMIC);
650 spin_lock(&cp->rx_spare_lock);
651 if (list_empty(&cp->rx_spare_list)) {
652 netif_err(cp, rx_err, cp->dev,
653 "no spare buffers available\n");
654 spin_unlock(&cp->rx_spare_lock);
655 return NULL;
659 entry = cp->rx_spare_list.next;
660 list_del(entry);
661 recover = ++cp->rx_spares_needed;
662 spin_unlock(&cp->rx_spare_lock);
664 /* trigger the timer to do the recovery */
665 if ((recover & (RX_SPARE_RECOVER_VAL - 1)) == 0) {
666 #if 1
667 atomic_inc(&cp->reset_task_pending);
668 atomic_inc(&cp->reset_task_pending_spare);
669 schedule_work(&cp->reset_task);
670 #else
671 atomic_set(&cp->reset_task_pending, CAS_RESET_SPARE);
672 schedule_work(&cp->reset_task);
673 #endif
675 return list_entry(entry, cas_page_t, list);
679 static void cas_mif_poll(struct cas *cp, const int enable)
681 u32 cfg;
683 cfg = readl(cp->regs + REG_MIF_CFG);
684 cfg &= (MIF_CFG_MDIO_0 | MIF_CFG_MDIO_1);
686 if (cp->phy_type & CAS_PHY_MII_MDIO1)
687 cfg |= MIF_CFG_PHY_SELECT;
689 /* poll and interrupt on link status change. */
690 if (enable) {
691 cfg |= MIF_CFG_POLL_EN;
692 cfg |= CAS_BASE(MIF_CFG_POLL_REG, MII_BMSR);
693 cfg |= CAS_BASE(MIF_CFG_POLL_PHY, cp->phy_addr);
695 writel((enable) ? ~(BMSR_LSTATUS | BMSR_ANEGCOMPLETE) : 0xFFFF,
696 cp->regs + REG_MIF_MASK);
697 writel(cfg, cp->regs + REG_MIF_CFG);
700 /* Must be invoked under cp->lock */
701 static void cas_begin_auto_negotiation(struct cas *cp, struct ethtool_cmd *ep)
703 u16 ctl;
704 #if 1
705 int lcntl;
706 int changed = 0;
707 int oldstate = cp->lstate;
708 int link_was_not_down = !(oldstate == link_down);
709 #endif
710 /* Setup link parameters */
711 if (!ep)
712 goto start_aneg;
713 lcntl = cp->link_cntl;
714 if (ep->autoneg == AUTONEG_ENABLE)
715 cp->link_cntl = BMCR_ANENABLE;
716 else {
717 cp->link_cntl = 0;
718 if (ep->speed == SPEED_100)
719 cp->link_cntl |= BMCR_SPEED100;
720 else if (ep->speed == SPEED_1000)
721 cp->link_cntl |= CAS_BMCR_SPEED1000;
722 if (ep->duplex == DUPLEX_FULL)
723 cp->link_cntl |= BMCR_FULLDPLX;
725 #if 1
726 changed = (lcntl != cp->link_cntl);
727 #endif
728 start_aneg:
729 if (cp->lstate == link_up) {
730 netdev_info(cp->dev, "PCS link down\n");
731 } else {
732 if (changed) {
733 netdev_info(cp->dev, "link configuration changed\n");
736 cp->lstate = link_down;
737 cp->link_transition = LINK_TRANSITION_LINK_DOWN;
738 if (!cp->hw_running)
739 return;
740 #if 1
742 * WTZ: If the old state was link_up, we turn off the carrier
743 * to replicate everything we do elsewhere on a link-down
744 * event when we were already in a link-up state..
746 if (oldstate == link_up)
747 netif_carrier_off(cp->dev);
748 if (changed && link_was_not_down) {
750 * WTZ: This branch will simply schedule a full reset after
751 * we explicitly changed link modes in an ioctl. See if this
752 * fixes the link-problems we were having for forced mode.
754 atomic_inc(&cp->reset_task_pending);
755 atomic_inc(&cp->reset_task_pending_all);
756 schedule_work(&cp->reset_task);
757 cp->timer_ticks = 0;
758 mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT);
759 return;
761 #endif
762 if (cp->phy_type & CAS_PHY_SERDES) {
763 u32 val = readl(cp->regs + REG_PCS_MII_CTRL);
765 if (cp->link_cntl & BMCR_ANENABLE) {
766 val |= (PCS_MII_RESTART_AUTONEG | PCS_MII_AUTONEG_EN);
767 cp->lstate = link_aneg;
768 } else {
769 if (cp->link_cntl & BMCR_FULLDPLX)
770 val |= PCS_MII_CTRL_DUPLEX;
771 val &= ~PCS_MII_AUTONEG_EN;
772 cp->lstate = link_force_ok;
774 cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
775 writel(val, cp->regs + REG_PCS_MII_CTRL);
777 } else {
778 cas_mif_poll(cp, 0);
779 ctl = cas_phy_read(cp, MII_BMCR);
780 ctl &= ~(BMCR_FULLDPLX | BMCR_SPEED100 |
781 CAS_BMCR_SPEED1000 | BMCR_ANENABLE);
782 ctl |= cp->link_cntl;
783 if (ctl & BMCR_ANENABLE) {
784 ctl |= BMCR_ANRESTART;
785 cp->lstate = link_aneg;
786 } else {
787 cp->lstate = link_force_ok;
789 cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
790 cas_phy_write(cp, MII_BMCR, ctl);
791 cas_mif_poll(cp, 1);
794 cp->timer_ticks = 0;
795 mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT);
798 /* Must be invoked under cp->lock. */
799 static int cas_reset_mii_phy(struct cas *cp)
801 int limit = STOP_TRIES_PHY;
802 u16 val;
804 cas_phy_write(cp, MII_BMCR, BMCR_RESET);
805 udelay(100);
806 while (--limit) {
807 val = cas_phy_read(cp, MII_BMCR);
808 if ((val & BMCR_RESET) == 0)
809 break;
810 udelay(10);
812 return (limit <= 0);
815 static int cas_saturn_firmware_init(struct cas *cp)
817 const struct firmware *fw;
818 const char fw_name[] = "sun/cassini.bin";
819 int err;
821 if (PHY_NS_DP83065 != cp->phy_id)
822 return 0;
824 err = request_firmware(&fw, fw_name, &cp->pdev->dev);
825 if (err) {
826 pr_err("Failed to load firmware \"%s\"\n",
827 fw_name);
828 return err;
830 if (fw->size < 2) {
831 pr_err("bogus length %zu in \"%s\"\n",
832 fw->size, fw_name);
833 err = -EINVAL;
834 goto out;
836 cp->fw_load_addr= fw->data[1] << 8 | fw->data[0];
837 cp->fw_size = fw->size - 2;
838 cp->fw_data = vmalloc(cp->fw_size);
839 if (!cp->fw_data) {
840 err = -ENOMEM;
841 pr_err("\"%s\" Failed %d\n", fw_name, err);
842 goto out;
844 memcpy(cp->fw_data, &fw->data[2], cp->fw_size);
845 out:
846 release_firmware(fw);
847 return err;
850 static void cas_saturn_firmware_load(struct cas *cp)
852 int i;
854 cas_phy_powerdown(cp);
856 /* expanded memory access mode */
857 cas_phy_write(cp, DP83065_MII_MEM, 0x0);
859 /* pointer configuration for new firmware */
860 cas_phy_write(cp, DP83065_MII_REGE, 0x8ff9);
861 cas_phy_write(cp, DP83065_MII_REGD, 0xbd);
862 cas_phy_write(cp, DP83065_MII_REGE, 0x8ffa);
863 cas_phy_write(cp, DP83065_MII_REGD, 0x82);
864 cas_phy_write(cp, DP83065_MII_REGE, 0x8ffb);
865 cas_phy_write(cp, DP83065_MII_REGD, 0x0);
866 cas_phy_write(cp, DP83065_MII_REGE, 0x8ffc);
867 cas_phy_write(cp, DP83065_MII_REGD, 0x39);
869 /* download new firmware */
870 cas_phy_write(cp, DP83065_MII_MEM, 0x1);
871 cas_phy_write(cp, DP83065_MII_REGE, cp->fw_load_addr);
872 for (i = 0; i < cp->fw_size; i++)
873 cas_phy_write(cp, DP83065_MII_REGD, cp->fw_data[i]);
875 /* enable firmware */
876 cas_phy_write(cp, DP83065_MII_REGE, 0x8ff8);
877 cas_phy_write(cp, DP83065_MII_REGD, 0x1);
881 /* phy initialization */
882 static void cas_phy_init(struct cas *cp)
884 u16 val;
886 /* if we're in MII/GMII mode, set up phy */
887 if (CAS_PHY_MII(cp->phy_type)) {
888 writel(PCS_DATAPATH_MODE_MII,
889 cp->regs + REG_PCS_DATAPATH_MODE);
891 cas_mif_poll(cp, 0);
892 cas_reset_mii_phy(cp); /* take out of isolate mode */
894 if (PHY_LUCENT_B0 == cp->phy_id) {
895 /* workaround link up/down issue with lucent */
896 cas_phy_write(cp, LUCENT_MII_REG, 0x8000);
897 cas_phy_write(cp, MII_BMCR, 0x00f1);
898 cas_phy_write(cp, LUCENT_MII_REG, 0x0);
900 } else if (PHY_BROADCOM_B0 == (cp->phy_id & 0xFFFFFFFC)) {
901 /* workarounds for broadcom phy */
902 cas_phy_write(cp, BROADCOM_MII_REG8, 0x0C20);
903 cas_phy_write(cp, BROADCOM_MII_REG7, 0x0012);
904 cas_phy_write(cp, BROADCOM_MII_REG5, 0x1804);
905 cas_phy_write(cp, BROADCOM_MII_REG7, 0x0013);
906 cas_phy_write(cp, BROADCOM_MII_REG5, 0x1204);
907 cas_phy_write(cp, BROADCOM_MII_REG7, 0x8006);
908 cas_phy_write(cp, BROADCOM_MII_REG5, 0x0132);
909 cas_phy_write(cp, BROADCOM_MII_REG7, 0x8006);
910 cas_phy_write(cp, BROADCOM_MII_REG5, 0x0232);
911 cas_phy_write(cp, BROADCOM_MII_REG7, 0x201F);
912 cas_phy_write(cp, BROADCOM_MII_REG5, 0x0A20);
914 } else if (PHY_BROADCOM_5411 == cp->phy_id) {
915 val = cas_phy_read(cp, BROADCOM_MII_REG4);
916 val = cas_phy_read(cp, BROADCOM_MII_REG4);
917 if (val & 0x0080) {
918 /* link workaround */
919 cas_phy_write(cp, BROADCOM_MII_REG4,
920 val & ~0x0080);
923 } else if (cp->cas_flags & CAS_FLAG_SATURN) {
924 writel((cp->phy_type & CAS_PHY_MII_MDIO0) ?
925 SATURN_PCFG_FSI : 0x0,
926 cp->regs + REG_SATURN_PCFG);
928 /* load firmware to address 10Mbps auto-negotiation
929 * issue. NOTE: this will need to be changed if the
930 * default firmware gets fixed.
932 if (PHY_NS_DP83065 == cp->phy_id) {
933 cas_saturn_firmware_load(cp);
935 cas_phy_powerup(cp);
938 /* advertise capabilities */
939 val = cas_phy_read(cp, MII_BMCR);
940 val &= ~BMCR_ANENABLE;
941 cas_phy_write(cp, MII_BMCR, val);
942 udelay(10);
944 cas_phy_write(cp, MII_ADVERTISE,
945 cas_phy_read(cp, MII_ADVERTISE) |
946 (ADVERTISE_10HALF | ADVERTISE_10FULL |
947 ADVERTISE_100HALF | ADVERTISE_100FULL |
948 CAS_ADVERTISE_PAUSE |
949 CAS_ADVERTISE_ASYM_PAUSE));
951 if (cp->cas_flags & CAS_FLAG_1000MB_CAP) {
952 /* make sure that we don't advertise half
953 * duplex to avoid a chip issue
955 val = cas_phy_read(cp, CAS_MII_1000_CTRL);
956 val &= ~CAS_ADVERTISE_1000HALF;
957 val |= CAS_ADVERTISE_1000FULL;
958 cas_phy_write(cp, CAS_MII_1000_CTRL, val);
961 } else {
962 /* reset pcs for serdes */
963 u32 val;
964 int limit;
966 writel(PCS_DATAPATH_MODE_SERDES,
967 cp->regs + REG_PCS_DATAPATH_MODE);
969 /* enable serdes pins on saturn */
970 if (cp->cas_flags & CAS_FLAG_SATURN)
971 writel(0, cp->regs + REG_SATURN_PCFG);
973 /* Reset PCS unit. */
974 val = readl(cp->regs + REG_PCS_MII_CTRL);
975 val |= PCS_MII_RESET;
976 writel(val, cp->regs + REG_PCS_MII_CTRL);
978 limit = STOP_TRIES;
979 while (--limit > 0) {
980 udelay(10);
981 if ((readl(cp->regs + REG_PCS_MII_CTRL) &
982 PCS_MII_RESET) == 0)
983 break;
985 if (limit <= 0)
986 netdev_warn(cp->dev, "PCS reset bit would not clear [%08x]\n",
987 readl(cp->regs + REG_PCS_STATE_MACHINE));
989 /* Make sure PCS is disabled while changing advertisement
990 * configuration.
992 writel(0x0, cp->regs + REG_PCS_CFG);
994 /* Advertise all capabilities except half-duplex. */
995 val = readl(cp->regs + REG_PCS_MII_ADVERT);
996 val &= ~PCS_MII_ADVERT_HD;
997 val |= (PCS_MII_ADVERT_FD | PCS_MII_ADVERT_SYM_PAUSE |
998 PCS_MII_ADVERT_ASYM_PAUSE);
999 writel(val, cp->regs + REG_PCS_MII_ADVERT);
1001 /* enable PCS */
1002 writel(PCS_CFG_EN, cp->regs + REG_PCS_CFG);
1004 /* pcs workaround: enable sync detect */
1005 writel(PCS_SERDES_CTRL_SYNCD_EN,
1006 cp->regs + REG_PCS_SERDES_CTRL);
1011 static int cas_pcs_link_check(struct cas *cp)
1013 u32 stat, state_machine;
1014 int retval = 0;
1016 /* The link status bit latches on zero, so you must
1017 * read it twice in such a case to see a transition
1018 * to the link being up.
1020 stat = readl(cp->regs + REG_PCS_MII_STATUS);
1021 if ((stat & PCS_MII_STATUS_LINK_STATUS) == 0)
1022 stat = readl(cp->regs + REG_PCS_MII_STATUS);
1024 /* The remote-fault indication is only valid
1025 * when autoneg has completed.
1027 if ((stat & (PCS_MII_STATUS_AUTONEG_COMP |
1028 PCS_MII_STATUS_REMOTE_FAULT)) ==
1029 (PCS_MII_STATUS_AUTONEG_COMP | PCS_MII_STATUS_REMOTE_FAULT))
1030 netif_info(cp, link, cp->dev, "PCS RemoteFault\n");
1032 /* work around link detection issue by querying the PCS state
1033 * machine directly.
1035 state_machine = readl(cp->regs + REG_PCS_STATE_MACHINE);
1036 if ((state_machine & PCS_SM_LINK_STATE_MASK) != SM_LINK_STATE_UP) {
1037 stat &= ~PCS_MII_STATUS_LINK_STATUS;
1038 } else if (state_machine & PCS_SM_WORD_SYNC_STATE_MASK) {
1039 stat |= PCS_MII_STATUS_LINK_STATUS;
1042 if (stat & PCS_MII_STATUS_LINK_STATUS) {
1043 if (cp->lstate != link_up) {
1044 if (cp->opened) {
1045 cp->lstate = link_up;
1046 cp->link_transition = LINK_TRANSITION_LINK_UP;
1048 cas_set_link_modes(cp);
1049 netif_carrier_on(cp->dev);
1052 } else if (cp->lstate == link_up) {
1053 cp->lstate = link_down;
1054 if (link_transition_timeout != 0 &&
1055 cp->link_transition != LINK_TRANSITION_REQUESTED_RESET &&
1056 !cp->link_transition_jiffies_valid) {
1058 * force a reset, as a workaround for the
1059 * link-failure problem. May want to move this to a
1060 * point a bit earlier in the sequence. If we had
1061 * generated a reset a short time ago, we'll wait for
1062 * the link timer to check the status until a
1063 * timer expires (link_transistion_jiffies_valid is
1064 * true when the timer is running.) Instead of using
1065 * a system timer, we just do a check whenever the
1066 * link timer is running - this clears the flag after
1067 * a suitable delay.
1069 retval = 1;
1070 cp->link_transition = LINK_TRANSITION_REQUESTED_RESET;
1071 cp->link_transition_jiffies = jiffies;
1072 cp->link_transition_jiffies_valid = 1;
1073 } else {
1074 cp->link_transition = LINK_TRANSITION_ON_FAILURE;
1076 netif_carrier_off(cp->dev);
1077 if (cp->opened)
1078 netif_info(cp, link, cp->dev, "PCS link down\n");
1080 /* Cassini only: if you force a mode, there can be
1081 * sync problems on link down. to fix that, the following
1082 * things need to be checked:
1083 * 1) read serialink state register
1084 * 2) read pcs status register to verify link down.
1085 * 3) if link down and serial link == 0x03, then you need
1086 * to global reset the chip.
1088 if ((cp->cas_flags & CAS_FLAG_REG_PLUS) == 0) {
1089 /* should check to see if we're in a forced mode */
1090 stat = readl(cp->regs + REG_PCS_SERDES_STATE);
1091 if (stat == 0x03)
1092 return 1;
1094 } else if (cp->lstate == link_down) {
1095 if (link_transition_timeout != 0 &&
1096 cp->link_transition != LINK_TRANSITION_REQUESTED_RESET &&
1097 !cp->link_transition_jiffies_valid) {
1098 /* force a reset, as a workaround for the
1099 * link-failure problem. May want to move
1100 * this to a point a bit earlier in the
1101 * sequence.
1103 retval = 1;
1104 cp->link_transition = LINK_TRANSITION_REQUESTED_RESET;
1105 cp->link_transition_jiffies = jiffies;
1106 cp->link_transition_jiffies_valid = 1;
1107 } else {
1108 cp->link_transition = LINK_TRANSITION_STILL_FAILED;
1112 return retval;
1115 static int cas_pcs_interrupt(struct net_device *dev,
1116 struct cas *cp, u32 status)
1118 u32 stat = readl(cp->regs + REG_PCS_INTR_STATUS);
1120 if ((stat & PCS_INTR_STATUS_LINK_CHANGE) == 0)
1121 return 0;
1122 return cas_pcs_link_check(cp);
1125 static int cas_txmac_interrupt(struct net_device *dev,
1126 struct cas *cp, u32 status)
1128 u32 txmac_stat = readl(cp->regs + REG_MAC_TX_STATUS);
1130 if (!txmac_stat)
1131 return 0;
1133 netif_printk(cp, intr, KERN_DEBUG, cp->dev,
1134 "txmac interrupt, txmac_stat: 0x%x\n", txmac_stat);
1136 /* Defer timer expiration is quite normal,
1137 * don't even log the event.
1139 if ((txmac_stat & MAC_TX_DEFER_TIMER) &&
1140 !(txmac_stat & ~MAC_TX_DEFER_TIMER))
1141 return 0;
1143 spin_lock(&cp->stat_lock[0]);
1144 if (txmac_stat & MAC_TX_UNDERRUN) {
1145 netdev_err(dev, "TX MAC xmit underrun\n");
1146 cp->net_stats[0].tx_fifo_errors++;
1149 if (txmac_stat & MAC_TX_MAX_PACKET_ERR) {
1150 netdev_err(dev, "TX MAC max packet size error\n");
1151 cp->net_stats[0].tx_errors++;
1154 /* The rest are all cases of one of the 16-bit TX
1155 * counters expiring.
1157 if (txmac_stat & MAC_TX_COLL_NORMAL)
1158 cp->net_stats[0].collisions += 0x10000;
1160 if (txmac_stat & MAC_TX_COLL_EXCESS) {
1161 cp->net_stats[0].tx_aborted_errors += 0x10000;
1162 cp->net_stats[0].collisions += 0x10000;
1165 if (txmac_stat & MAC_TX_COLL_LATE) {
1166 cp->net_stats[0].tx_aborted_errors += 0x10000;
1167 cp->net_stats[0].collisions += 0x10000;
1169 spin_unlock(&cp->stat_lock[0]);
1171 /* We do not keep track of MAC_TX_COLL_FIRST and
1172 * MAC_TX_PEAK_ATTEMPTS events.
1174 return 0;
1177 static void cas_load_firmware(struct cas *cp, cas_hp_inst_t *firmware)
1179 cas_hp_inst_t *inst;
1180 u32 val;
1181 int i;
1183 i = 0;
1184 while ((inst = firmware) && inst->note) {
1185 writel(i, cp->regs + REG_HP_INSTR_RAM_ADDR);
1187 val = CAS_BASE(HP_INSTR_RAM_HI_VAL, inst->val);
1188 val |= CAS_BASE(HP_INSTR_RAM_HI_MASK, inst->mask);
1189 writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_HI);
1191 val = CAS_BASE(HP_INSTR_RAM_MID_OUTARG, inst->outarg >> 10);
1192 val |= CAS_BASE(HP_INSTR_RAM_MID_OUTOP, inst->outop);
1193 val |= CAS_BASE(HP_INSTR_RAM_MID_FNEXT, inst->fnext);
1194 val |= CAS_BASE(HP_INSTR_RAM_MID_FOFF, inst->foff);
1195 val |= CAS_BASE(HP_INSTR_RAM_MID_SNEXT, inst->snext);
1196 val |= CAS_BASE(HP_INSTR_RAM_MID_SOFF, inst->soff);
1197 val |= CAS_BASE(HP_INSTR_RAM_MID_OP, inst->op);
1198 writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_MID);
1200 val = CAS_BASE(HP_INSTR_RAM_LOW_OUTMASK, inst->outmask);
1201 val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTSHIFT, inst->outshift);
1202 val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTEN, inst->outenab);
1203 val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTARG, inst->outarg);
1204 writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_LOW);
1205 ++firmware;
1206 ++i;
1210 static void cas_init_rx_dma(struct cas *cp)
1212 u64 desc_dma = cp->block_dvma;
1213 u32 val;
1214 int i, size;
1216 /* rx free descriptors */
1217 val = CAS_BASE(RX_CFG_SWIVEL, RX_SWIVEL_OFF_VAL);
1218 val |= CAS_BASE(RX_CFG_DESC_RING, RX_DESC_RINGN_INDEX(0));
1219 val |= CAS_BASE(RX_CFG_COMP_RING, RX_COMP_RINGN_INDEX(0));
1220 if ((N_RX_DESC_RINGS > 1) &&
1221 (cp->cas_flags & CAS_FLAG_REG_PLUS)) /* do desc 2 */
1222 val |= CAS_BASE(RX_CFG_DESC_RING1, RX_DESC_RINGN_INDEX(1));
1223 writel(val, cp->regs + REG_RX_CFG);
1225 val = (unsigned long) cp->init_rxds[0] -
1226 (unsigned long) cp->init_block;
1227 writel((desc_dma + val) >> 32, cp->regs + REG_RX_DB_HI);
1228 writel((desc_dma + val) & 0xffffffff, cp->regs + REG_RX_DB_LOW);
1229 writel(RX_DESC_RINGN_SIZE(0) - 4, cp->regs + REG_RX_KICK);
1231 if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1232 /* rx desc 2 is for IPSEC packets. however,
1233 * we don't it that for that purpose.
1235 val = (unsigned long) cp->init_rxds[1] -
1236 (unsigned long) cp->init_block;
1237 writel((desc_dma + val) >> 32, cp->regs + REG_PLUS_RX_DB1_HI);
1238 writel((desc_dma + val) & 0xffffffff, cp->regs +
1239 REG_PLUS_RX_DB1_LOW);
1240 writel(RX_DESC_RINGN_SIZE(1) - 4, cp->regs +
1241 REG_PLUS_RX_KICK1);
1244 /* rx completion registers */
1245 val = (unsigned long) cp->init_rxcs[0] -
1246 (unsigned long) cp->init_block;
1247 writel((desc_dma + val) >> 32, cp->regs + REG_RX_CB_HI);
1248 writel((desc_dma + val) & 0xffffffff, cp->regs + REG_RX_CB_LOW);
1250 if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1251 /* rx comp 2-4 */
1252 for (i = 1; i < MAX_RX_COMP_RINGS; i++) {
1253 val = (unsigned long) cp->init_rxcs[i] -
1254 (unsigned long) cp->init_block;
1255 writel((desc_dma + val) >> 32, cp->regs +
1256 REG_PLUS_RX_CBN_HI(i));
1257 writel((desc_dma + val) & 0xffffffff, cp->regs +
1258 REG_PLUS_RX_CBN_LOW(i));
1262 /* read selective clear regs to prevent spurious interrupts
1263 * on reset because complete == kick.
1264 * selective clear set up to prevent interrupts on resets
1266 readl(cp->regs + REG_INTR_STATUS_ALIAS);
1267 writel(INTR_RX_DONE | INTR_RX_BUF_UNAVAIL, cp->regs + REG_ALIAS_CLEAR);
1268 if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1269 for (i = 1; i < N_RX_COMP_RINGS; i++)
1270 readl(cp->regs + REG_PLUS_INTRN_STATUS_ALIAS(i));
1272 /* 2 is different from 3 and 4 */
1273 if (N_RX_COMP_RINGS > 1)
1274 writel(INTR_RX_DONE_ALT | INTR_RX_BUF_UNAVAIL_1,
1275 cp->regs + REG_PLUS_ALIASN_CLEAR(1));
1277 for (i = 2; i < N_RX_COMP_RINGS; i++)
1278 writel(INTR_RX_DONE_ALT,
1279 cp->regs + REG_PLUS_ALIASN_CLEAR(i));
1282 /* set up pause thresholds */
1283 val = CAS_BASE(RX_PAUSE_THRESH_OFF,
1284 cp->rx_pause_off / RX_PAUSE_THRESH_QUANTUM);
1285 val |= CAS_BASE(RX_PAUSE_THRESH_ON,
1286 cp->rx_pause_on / RX_PAUSE_THRESH_QUANTUM);
1287 writel(val, cp->regs + REG_RX_PAUSE_THRESH);
1289 /* zero out dma reassembly buffers */
1290 for (i = 0; i < 64; i++) {
1291 writel(i, cp->regs + REG_RX_TABLE_ADDR);
1292 writel(0x0, cp->regs + REG_RX_TABLE_DATA_LOW);
1293 writel(0x0, cp->regs + REG_RX_TABLE_DATA_MID);
1294 writel(0x0, cp->regs + REG_RX_TABLE_DATA_HI);
1297 /* make sure address register is 0 for normal operation */
1298 writel(0x0, cp->regs + REG_RX_CTRL_FIFO_ADDR);
1299 writel(0x0, cp->regs + REG_RX_IPP_FIFO_ADDR);
1301 /* interrupt mitigation */
1302 #ifdef USE_RX_BLANK
1303 val = CAS_BASE(RX_BLANK_INTR_TIME, RX_BLANK_INTR_TIME_VAL);
1304 val |= CAS_BASE(RX_BLANK_INTR_PKT, RX_BLANK_INTR_PKT_VAL);
1305 writel(val, cp->regs + REG_RX_BLANK);
1306 #else
1307 writel(0x0, cp->regs + REG_RX_BLANK);
1308 #endif
1310 /* interrupt generation as a function of low water marks for
1311 * free desc and completion entries. these are used to trigger
1312 * housekeeping for rx descs. we don't use the free interrupt
1313 * as it's not very useful
1315 /* val = CAS_BASE(RX_AE_THRESH_FREE, RX_AE_FREEN_VAL(0)); */
1316 val = CAS_BASE(RX_AE_THRESH_COMP, RX_AE_COMP_VAL);
1317 writel(val, cp->regs + REG_RX_AE_THRESH);
1318 if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1319 val = CAS_BASE(RX_AE1_THRESH_FREE, RX_AE_FREEN_VAL(1));
1320 writel(val, cp->regs + REG_PLUS_RX_AE1_THRESH);
1323 /* Random early detect registers. useful for congestion avoidance.
1324 * this should be tunable.
1326 writel(0x0, cp->regs + REG_RX_RED);
1328 /* receive page sizes. default == 2K (0x800) */
1329 val = 0;
1330 if (cp->page_size == 0x1000)
1331 val = 0x1;
1332 else if (cp->page_size == 0x2000)
1333 val = 0x2;
1334 else if (cp->page_size == 0x4000)
1335 val = 0x3;
1337 /* round mtu + offset. constrain to page size. */
1338 size = cp->dev->mtu + 64;
1339 if (size > cp->page_size)
1340 size = cp->page_size;
1342 if (size <= 0x400)
1343 i = 0x0;
1344 else if (size <= 0x800)
1345 i = 0x1;
1346 else if (size <= 0x1000)
1347 i = 0x2;
1348 else
1349 i = 0x3;
1351 cp->mtu_stride = 1 << (i + 10);
1352 val = CAS_BASE(RX_PAGE_SIZE, val);
1353 val |= CAS_BASE(RX_PAGE_SIZE_MTU_STRIDE, i);
1354 val |= CAS_BASE(RX_PAGE_SIZE_MTU_COUNT, cp->page_size >> (i + 10));
1355 val |= CAS_BASE(RX_PAGE_SIZE_MTU_OFF, 0x1);
1356 writel(val, cp->regs + REG_RX_PAGE_SIZE);
1358 /* enable the header parser if desired */
1359 if (CAS_HP_FIRMWARE == cas_prog_null)
1360 return;
1362 val = CAS_BASE(HP_CFG_NUM_CPU, CAS_NCPUS > 63 ? 0 : CAS_NCPUS);
1363 val |= HP_CFG_PARSE_EN | HP_CFG_SYN_INC_MASK;
1364 val |= CAS_BASE(HP_CFG_TCP_THRESH, HP_TCP_THRESH_VAL);
1365 writel(val, cp->regs + REG_HP_CFG);
1368 static inline void cas_rxc_init(struct cas_rx_comp *rxc)
1370 memset(rxc, 0, sizeof(*rxc));
1371 rxc->word4 = cpu_to_le64(RX_COMP4_ZERO);
1374 /* NOTE: we use the ENC RX DESC ring for spares. the rx_page[0,1]
1375 * flipping is protected by the fact that the chip will not
1376 * hand back the same page index while it's being processed.
1378 static inline cas_page_t *cas_page_spare(struct cas *cp, const int index)
1380 cas_page_t *page = cp->rx_pages[1][index];
1381 cas_page_t *new;
1383 if (page_count(page->buffer) == 1)
1384 return page;
1386 new = cas_page_dequeue(cp);
1387 if (new) {
1388 spin_lock(&cp->rx_inuse_lock);
1389 list_add(&page->list, &cp->rx_inuse_list);
1390 spin_unlock(&cp->rx_inuse_lock);
1392 return new;
1395 /* this needs to be changed if we actually use the ENC RX DESC ring */
1396 static cas_page_t *cas_page_swap(struct cas *cp, const int ring,
1397 const int index)
1399 cas_page_t **page0 = cp->rx_pages[0];
1400 cas_page_t **page1 = cp->rx_pages[1];
1402 /* swap if buffer is in use */
1403 if (page_count(page0[index]->buffer) > 1) {
1404 cas_page_t *new = cas_page_spare(cp, index);
1405 if (new) {
1406 page1[index] = page0[index];
1407 page0[index] = new;
1410 RX_USED_SET(page0[index], 0);
1411 return page0[index];
1414 static void cas_clean_rxds(struct cas *cp)
1416 /* only clean ring 0 as ring 1 is used for spare buffers */
1417 struct cas_rx_desc *rxd = cp->init_rxds[0];
1418 int i, size;
1420 /* release all rx flows */
1421 for (i = 0; i < N_RX_FLOWS; i++) {
1422 struct sk_buff *skb;
1423 while ((skb = __skb_dequeue(&cp->rx_flows[i]))) {
1424 cas_skb_release(skb);
1428 /* initialize descriptors */
1429 size = RX_DESC_RINGN_SIZE(0);
1430 for (i = 0; i < size; i++) {
1431 cas_page_t *page = cas_page_swap(cp, 0, i);
1432 rxd[i].buffer = cpu_to_le64(page->dma_addr);
1433 rxd[i].index = cpu_to_le64(CAS_BASE(RX_INDEX_NUM, i) |
1434 CAS_BASE(RX_INDEX_RING, 0));
1437 cp->rx_old[0] = RX_DESC_RINGN_SIZE(0) - 4;
1438 cp->rx_last[0] = 0;
1439 cp->cas_flags &= ~CAS_FLAG_RXD_POST(0);
1442 static void cas_clean_rxcs(struct cas *cp)
1444 int i, j;
1446 /* take ownership of rx comp descriptors */
1447 memset(cp->rx_cur, 0, sizeof(*cp->rx_cur)*N_RX_COMP_RINGS);
1448 memset(cp->rx_new, 0, sizeof(*cp->rx_new)*N_RX_COMP_RINGS);
1449 for (i = 0; i < N_RX_COMP_RINGS; i++) {
1450 struct cas_rx_comp *rxc = cp->init_rxcs[i];
1451 for (j = 0; j < RX_COMP_RINGN_SIZE(i); j++) {
1452 cas_rxc_init(rxc + j);
1457 #if 0
1458 /* When we get a RX fifo overflow, the RX unit is probably hung
1459 * so we do the following.
1461 * If any part of the reset goes wrong, we return 1 and that causes the
1462 * whole chip to be reset.
1464 static int cas_rxmac_reset(struct cas *cp)
1466 struct net_device *dev = cp->dev;
1467 int limit;
1468 u32 val;
1470 /* First, reset MAC RX. */
1471 writel(cp->mac_rx_cfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
1472 for (limit = 0; limit < STOP_TRIES; limit++) {
1473 if (!(readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_EN))
1474 break;
1475 udelay(10);
1477 if (limit == STOP_TRIES) {
1478 netdev_err(dev, "RX MAC will not disable, resetting whole chip\n");
1479 return 1;
1482 /* Second, disable RX DMA. */
1483 writel(0, cp->regs + REG_RX_CFG);
1484 for (limit = 0; limit < STOP_TRIES; limit++) {
1485 if (!(readl(cp->regs + REG_RX_CFG) & RX_CFG_DMA_EN))
1486 break;
1487 udelay(10);
1489 if (limit == STOP_TRIES) {
1490 netdev_err(dev, "RX DMA will not disable, resetting whole chip\n");
1491 return 1;
1494 mdelay(5);
1496 /* Execute RX reset command. */
1497 writel(SW_RESET_RX, cp->regs + REG_SW_RESET);
1498 for (limit = 0; limit < STOP_TRIES; limit++) {
1499 if (!(readl(cp->regs + REG_SW_RESET) & SW_RESET_RX))
1500 break;
1501 udelay(10);
1503 if (limit == STOP_TRIES) {
1504 netdev_err(dev, "RX reset command will not execute, resetting whole chip\n");
1505 return 1;
1508 /* reset driver rx state */
1509 cas_clean_rxds(cp);
1510 cas_clean_rxcs(cp);
1512 /* Now, reprogram the rest of RX unit. */
1513 cas_init_rx_dma(cp);
1515 /* re-enable */
1516 val = readl(cp->regs + REG_RX_CFG);
1517 writel(val | RX_CFG_DMA_EN, cp->regs + REG_RX_CFG);
1518 writel(MAC_RX_FRAME_RECV, cp->regs + REG_MAC_RX_MASK);
1519 val = readl(cp->regs + REG_MAC_RX_CFG);
1520 writel(val | MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
1521 return 0;
1523 #endif
1525 static int cas_rxmac_interrupt(struct net_device *dev, struct cas *cp,
1526 u32 status)
1528 u32 stat = readl(cp->regs + REG_MAC_RX_STATUS);
1530 if (!stat)
1531 return 0;
1533 netif_dbg(cp, intr, cp->dev, "rxmac interrupt, stat: 0x%x\n", stat);
1535 /* these are all rollovers */
1536 spin_lock(&cp->stat_lock[0]);
1537 if (stat & MAC_RX_ALIGN_ERR)
1538 cp->net_stats[0].rx_frame_errors += 0x10000;
1540 if (stat & MAC_RX_CRC_ERR)
1541 cp->net_stats[0].rx_crc_errors += 0x10000;
1543 if (stat & MAC_RX_LEN_ERR)
1544 cp->net_stats[0].rx_length_errors += 0x10000;
1546 if (stat & MAC_RX_OVERFLOW) {
1547 cp->net_stats[0].rx_over_errors++;
1548 cp->net_stats[0].rx_fifo_errors++;
1551 /* We do not track MAC_RX_FRAME_COUNT and MAC_RX_VIOL_ERR
1552 * events.
1554 spin_unlock(&cp->stat_lock[0]);
1555 return 0;
1558 static int cas_mac_interrupt(struct net_device *dev, struct cas *cp,
1559 u32 status)
1561 u32 stat = readl(cp->regs + REG_MAC_CTRL_STATUS);
1563 if (!stat)
1564 return 0;
1566 netif_printk(cp, intr, KERN_DEBUG, cp->dev,
1567 "mac interrupt, stat: 0x%x\n", stat);
1569 /* This interrupt is just for pause frame and pause
1570 * tracking. It is useful for diagnostics and debug
1571 * but probably by default we will mask these events.
1573 if (stat & MAC_CTRL_PAUSE_STATE)
1574 cp->pause_entered++;
1576 if (stat & MAC_CTRL_PAUSE_RECEIVED)
1577 cp->pause_last_time_recvd = (stat >> 16);
1579 return 0;
1583 /* Must be invoked under cp->lock. */
1584 static inline int cas_mdio_link_not_up(struct cas *cp)
1586 u16 val;
1588 switch (cp->lstate) {
1589 case link_force_ret:
1590 netif_info(cp, link, cp->dev, "Autoneg failed again, keeping forced mode\n");
1591 cas_phy_write(cp, MII_BMCR, cp->link_fcntl);
1592 cp->timer_ticks = 5;
1593 cp->lstate = link_force_ok;
1594 cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
1595 break;
1597 case link_aneg:
1598 val = cas_phy_read(cp, MII_BMCR);
1600 /* Try forced modes. we try things in the following order:
1601 * 1000 full -> 100 full/half -> 10 half
1603 val &= ~(BMCR_ANRESTART | BMCR_ANENABLE);
1604 val |= BMCR_FULLDPLX;
1605 val |= (cp->cas_flags & CAS_FLAG_1000MB_CAP) ?
1606 CAS_BMCR_SPEED1000 : BMCR_SPEED100;
1607 cas_phy_write(cp, MII_BMCR, val);
1608 cp->timer_ticks = 5;
1609 cp->lstate = link_force_try;
1610 cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
1611 break;
1613 case link_force_try:
1614 /* Downgrade from 1000 to 100 to 10 Mbps if necessary. */
1615 val = cas_phy_read(cp, MII_BMCR);
1616 cp->timer_ticks = 5;
1617 if (val & CAS_BMCR_SPEED1000) { /* gigabit */
1618 val &= ~CAS_BMCR_SPEED1000;
1619 val |= (BMCR_SPEED100 | BMCR_FULLDPLX);
1620 cas_phy_write(cp, MII_BMCR, val);
1621 break;
1624 if (val & BMCR_SPEED100) {
1625 if (val & BMCR_FULLDPLX) /* fd failed */
1626 val &= ~BMCR_FULLDPLX;
1627 else { /* 100Mbps failed */
1628 val &= ~BMCR_SPEED100;
1630 cas_phy_write(cp, MII_BMCR, val);
1631 break;
1633 default:
1634 break;
1636 return 0;
1640 /* must be invoked with cp->lock held */
1641 static int cas_mii_link_check(struct cas *cp, const u16 bmsr)
1643 int restart;
1645 if (bmsr & BMSR_LSTATUS) {
1646 /* Ok, here we got a link. If we had it due to a forced
1647 * fallback, and we were configured for autoneg, we
1648 * retry a short autoneg pass. If you know your hub is
1649 * broken, use ethtool ;)
1651 if ((cp->lstate == link_force_try) &&
1652 (cp->link_cntl & BMCR_ANENABLE)) {
1653 cp->lstate = link_force_ret;
1654 cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
1655 cas_mif_poll(cp, 0);
1656 cp->link_fcntl = cas_phy_read(cp, MII_BMCR);
1657 cp->timer_ticks = 5;
1658 if (cp->opened)
1659 netif_info(cp, link, cp->dev,
1660 "Got link after fallback, retrying autoneg once...\n");
1661 cas_phy_write(cp, MII_BMCR,
1662 cp->link_fcntl | BMCR_ANENABLE |
1663 BMCR_ANRESTART);
1664 cas_mif_poll(cp, 1);
1666 } else if (cp->lstate != link_up) {
1667 cp->lstate = link_up;
1668 cp->link_transition = LINK_TRANSITION_LINK_UP;
1670 if (cp->opened) {
1671 cas_set_link_modes(cp);
1672 netif_carrier_on(cp->dev);
1675 return 0;
1678 /* link not up. if the link was previously up, we restart the
1679 * whole process
1681 restart = 0;
1682 if (cp->lstate == link_up) {
1683 cp->lstate = link_down;
1684 cp->link_transition = LINK_TRANSITION_LINK_DOWN;
1686 netif_carrier_off(cp->dev);
1687 if (cp->opened)
1688 netif_info(cp, link, cp->dev, "Link down\n");
1689 restart = 1;
1691 } else if (++cp->timer_ticks > 10)
1692 cas_mdio_link_not_up(cp);
1694 return restart;
1697 static int cas_mif_interrupt(struct net_device *dev, struct cas *cp,
1698 u32 status)
1700 u32 stat = readl(cp->regs + REG_MIF_STATUS);
1701 u16 bmsr;
1703 /* check for a link change */
1704 if (CAS_VAL(MIF_STATUS_POLL_STATUS, stat) == 0)
1705 return 0;
1707 bmsr = CAS_VAL(MIF_STATUS_POLL_DATA, stat);
1708 return cas_mii_link_check(cp, bmsr);
1711 static int cas_pci_interrupt(struct net_device *dev, struct cas *cp,
1712 u32 status)
1714 u32 stat = readl(cp->regs + REG_PCI_ERR_STATUS);
1716 if (!stat)
1717 return 0;
1719 netdev_err(dev, "PCI error [%04x:%04x]",
1720 stat, readl(cp->regs + REG_BIM_DIAG));
1722 /* cassini+ has this reserved */
1723 if ((stat & PCI_ERR_BADACK) &&
1724 ((cp->cas_flags & CAS_FLAG_REG_PLUS) == 0))
1725 pr_cont(" <No ACK64# during ABS64 cycle>");
1727 if (stat & PCI_ERR_DTRTO)
1728 pr_cont(" <Delayed transaction timeout>");
1729 if (stat & PCI_ERR_OTHER)
1730 pr_cont(" <other>");
1731 if (stat & PCI_ERR_BIM_DMA_WRITE)
1732 pr_cont(" <BIM DMA 0 write req>");
1733 if (stat & PCI_ERR_BIM_DMA_READ)
1734 pr_cont(" <BIM DMA 0 read req>");
1735 pr_cont("\n");
1737 if (stat & PCI_ERR_OTHER) {
1738 u16 cfg;
1740 /* Interrogate PCI config space for the
1741 * true cause.
1743 pci_read_config_word(cp->pdev, PCI_STATUS, &cfg);
1744 netdev_err(dev, "Read PCI cfg space status [%04x]\n", cfg);
1745 if (cfg & PCI_STATUS_PARITY)
1746 netdev_err(dev, "PCI parity error detected\n");
1747 if (cfg & PCI_STATUS_SIG_TARGET_ABORT)
1748 netdev_err(dev, "PCI target abort\n");
1749 if (cfg & PCI_STATUS_REC_TARGET_ABORT)
1750 netdev_err(dev, "PCI master acks target abort\n");
1751 if (cfg & PCI_STATUS_REC_MASTER_ABORT)
1752 netdev_err(dev, "PCI master abort\n");
1753 if (cfg & PCI_STATUS_SIG_SYSTEM_ERROR)
1754 netdev_err(dev, "PCI system error SERR#\n");
1755 if (cfg & PCI_STATUS_DETECTED_PARITY)
1756 netdev_err(dev, "PCI parity error\n");
1758 /* Write the error bits back to clear them. */
1759 cfg &= (PCI_STATUS_PARITY |
1760 PCI_STATUS_SIG_TARGET_ABORT |
1761 PCI_STATUS_REC_TARGET_ABORT |
1762 PCI_STATUS_REC_MASTER_ABORT |
1763 PCI_STATUS_SIG_SYSTEM_ERROR |
1764 PCI_STATUS_DETECTED_PARITY);
1765 pci_write_config_word(cp->pdev, PCI_STATUS, cfg);
1768 /* For all PCI errors, we should reset the chip. */
1769 return 1;
1772 /* All non-normal interrupt conditions get serviced here.
1773 * Returns non-zero if we should just exit the interrupt
1774 * handler right now (ie. if we reset the card which invalidates
1775 * all of the other original irq status bits).
1777 static int cas_abnormal_irq(struct net_device *dev, struct cas *cp,
1778 u32 status)
1780 if (status & INTR_RX_TAG_ERROR) {
1781 /* corrupt RX tag framing */
1782 netif_printk(cp, rx_err, KERN_DEBUG, cp->dev,
1783 "corrupt rx tag framing\n");
1784 spin_lock(&cp->stat_lock[0]);
1785 cp->net_stats[0].rx_errors++;
1786 spin_unlock(&cp->stat_lock[0]);
1787 goto do_reset;
1790 if (status & INTR_RX_LEN_MISMATCH) {
1791 /* length mismatch. */
1792 netif_printk(cp, rx_err, KERN_DEBUG, cp->dev,
1793 "length mismatch for rx frame\n");
1794 spin_lock(&cp->stat_lock[0]);
1795 cp->net_stats[0].rx_errors++;
1796 spin_unlock(&cp->stat_lock[0]);
1797 goto do_reset;
1800 if (status & INTR_PCS_STATUS) {
1801 if (cas_pcs_interrupt(dev, cp, status))
1802 goto do_reset;
1805 if (status & INTR_TX_MAC_STATUS) {
1806 if (cas_txmac_interrupt(dev, cp, status))
1807 goto do_reset;
1810 if (status & INTR_RX_MAC_STATUS) {
1811 if (cas_rxmac_interrupt(dev, cp, status))
1812 goto do_reset;
1815 if (status & INTR_MAC_CTRL_STATUS) {
1816 if (cas_mac_interrupt(dev, cp, status))
1817 goto do_reset;
1820 if (status & INTR_MIF_STATUS) {
1821 if (cas_mif_interrupt(dev, cp, status))
1822 goto do_reset;
1825 if (status & INTR_PCI_ERROR_STATUS) {
1826 if (cas_pci_interrupt(dev, cp, status))
1827 goto do_reset;
1829 return 0;
1831 do_reset:
1832 #if 1
1833 atomic_inc(&cp->reset_task_pending);
1834 atomic_inc(&cp->reset_task_pending_all);
1835 netdev_err(dev, "reset called in cas_abnormal_irq [0x%x]\n", status);
1836 schedule_work(&cp->reset_task);
1837 #else
1838 atomic_set(&cp->reset_task_pending, CAS_RESET_ALL);
1839 netdev_err(dev, "reset called in cas_abnormal_irq\n");
1840 schedule_work(&cp->reset_task);
1841 #endif
1842 return 1;
1845 /* NOTE: CAS_TABORT returns 1 or 2 so that it can be used when
1846 * determining whether to do a netif_stop/wakeup
1848 #define CAS_TABORT(x) (((x)->cas_flags & CAS_FLAG_TARGET_ABORT) ? 2 : 1)
1849 #define CAS_ROUND_PAGE(x) (((x) + PAGE_SIZE - 1) & PAGE_MASK)
1850 static inline int cas_calc_tabort(struct cas *cp, const unsigned long addr,
1851 const int len)
1853 unsigned long off = addr + len;
1855 if (CAS_TABORT(cp) == 1)
1856 return 0;
1857 if ((CAS_ROUND_PAGE(off) - off) > TX_TARGET_ABORT_LEN)
1858 return 0;
1859 return TX_TARGET_ABORT_LEN;
1862 static inline void cas_tx_ringN(struct cas *cp, int ring, int limit)
1864 struct cas_tx_desc *txds;
1865 struct sk_buff **skbs;
1866 struct net_device *dev = cp->dev;
1867 int entry, count;
1869 spin_lock(&cp->tx_lock[ring]);
1870 txds = cp->init_txds[ring];
1871 skbs = cp->tx_skbs[ring];
1872 entry = cp->tx_old[ring];
1874 count = TX_BUFF_COUNT(ring, entry, limit);
1875 while (entry != limit) {
1876 struct sk_buff *skb = skbs[entry];
1877 dma_addr_t daddr;
1878 u32 dlen;
1879 int frag;
1881 if (!skb) {
1882 /* this should never occur */
1883 entry = TX_DESC_NEXT(ring, entry);
1884 continue;
1887 /* however, we might get only a partial skb release. */
1888 count -= skb_shinfo(skb)->nr_frags +
1889 + cp->tx_tiny_use[ring][entry].nbufs + 1;
1890 if (count < 0)
1891 break;
1893 netif_printk(cp, tx_done, KERN_DEBUG, cp->dev,
1894 "tx[%d] done, slot %d\n", ring, entry);
1896 skbs[entry] = NULL;
1897 cp->tx_tiny_use[ring][entry].nbufs = 0;
1899 for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
1900 struct cas_tx_desc *txd = txds + entry;
1902 daddr = le64_to_cpu(txd->buffer);
1903 dlen = CAS_VAL(TX_DESC_BUFLEN,
1904 le64_to_cpu(txd->control));
1905 pci_unmap_page(cp->pdev, daddr, dlen,
1906 PCI_DMA_TODEVICE);
1907 entry = TX_DESC_NEXT(ring, entry);
1909 /* tiny buffer may follow */
1910 if (cp->tx_tiny_use[ring][entry].used) {
1911 cp->tx_tiny_use[ring][entry].used = 0;
1912 entry = TX_DESC_NEXT(ring, entry);
1916 spin_lock(&cp->stat_lock[ring]);
1917 cp->net_stats[ring].tx_packets++;
1918 cp->net_stats[ring].tx_bytes += skb->len;
1919 spin_unlock(&cp->stat_lock[ring]);
1920 dev_kfree_skb_irq(skb);
1922 cp->tx_old[ring] = entry;
1924 /* this is wrong for multiple tx rings. the net device needs
1925 * multiple queues for this to do the right thing. we wait
1926 * for 2*packets to be available when using tiny buffers
1928 if (netif_queue_stopped(dev) &&
1929 (TX_BUFFS_AVAIL(cp, ring) > CAS_TABORT(cp)*(MAX_SKB_FRAGS + 1)))
1930 netif_wake_queue(dev);
1931 spin_unlock(&cp->tx_lock[ring]);
1934 static void cas_tx(struct net_device *dev, struct cas *cp,
1935 u32 status)
1937 int limit, ring;
1938 #ifdef USE_TX_COMPWB
1939 u64 compwb = le64_to_cpu(cp->init_block->tx_compwb);
1940 #endif
1941 netif_printk(cp, intr, KERN_DEBUG, cp->dev,
1942 "tx interrupt, status: 0x%x, %llx\n",
1943 status, (unsigned long long)compwb);
1944 /* process all the rings */
1945 for (ring = 0; ring < N_TX_RINGS; ring++) {
1946 #ifdef USE_TX_COMPWB
1947 /* use the completion writeback registers */
1948 limit = (CAS_VAL(TX_COMPWB_MSB, compwb) << 8) |
1949 CAS_VAL(TX_COMPWB_LSB, compwb);
1950 compwb = TX_COMPWB_NEXT(compwb);
1951 #else
1952 limit = readl(cp->regs + REG_TX_COMPN(ring));
1953 #endif
1954 if (cp->tx_old[ring] != limit)
1955 cas_tx_ringN(cp, ring, limit);
1960 static int cas_rx_process_pkt(struct cas *cp, struct cas_rx_comp *rxc,
1961 int entry, const u64 *words,
1962 struct sk_buff **skbref)
1964 int dlen, hlen, len, i, alloclen;
1965 int off, swivel = RX_SWIVEL_OFF_VAL;
1966 struct cas_page *page;
1967 struct sk_buff *skb;
1968 void *addr, *crcaddr;
1969 __sum16 csum;
1970 char *p;
1972 hlen = CAS_VAL(RX_COMP2_HDR_SIZE, words[1]);
1973 dlen = CAS_VAL(RX_COMP1_DATA_SIZE, words[0]);
1974 len = hlen + dlen;
1976 if (RX_COPY_ALWAYS || (words[2] & RX_COMP3_SMALL_PKT))
1977 alloclen = len;
1978 else
1979 alloclen = max(hlen, RX_COPY_MIN);
1981 skb = dev_alloc_skb(alloclen + swivel + cp->crc_size);
1982 if (skb == NULL)
1983 return -1;
1985 *skbref = skb;
1986 skb_reserve(skb, swivel);
1988 p = skb->data;
1989 addr = crcaddr = NULL;
1990 if (hlen) { /* always copy header pages */
1991 i = CAS_VAL(RX_COMP2_HDR_INDEX, words[1]);
1992 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
1993 off = CAS_VAL(RX_COMP2_HDR_OFF, words[1]) * 0x100 +
1994 swivel;
1996 i = hlen;
1997 if (!dlen) /* attach FCS */
1998 i += cp->crc_size;
1999 pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr + off, i,
2000 PCI_DMA_FROMDEVICE);
2001 addr = cas_page_map(page->buffer);
2002 memcpy(p, addr + off, i);
2003 pci_dma_sync_single_for_device(cp->pdev, page->dma_addr + off, i,
2004 PCI_DMA_FROMDEVICE);
2005 cas_page_unmap(addr);
2006 RX_USED_ADD(page, 0x100);
2007 p += hlen;
2008 swivel = 0;
2012 if (alloclen < (hlen + dlen)) {
2013 skb_frag_t *frag = skb_shinfo(skb)->frags;
2015 /* normal or jumbo packets. we use frags */
2016 i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]);
2017 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2018 off = CAS_VAL(RX_COMP1_DATA_OFF, words[0]) + swivel;
2020 hlen = min(cp->page_size - off, dlen);
2021 if (hlen < 0) {
2022 netif_printk(cp, rx_err, KERN_DEBUG, cp->dev,
2023 "rx page overflow: %d\n", hlen);
2024 dev_kfree_skb_irq(skb);
2025 return -1;
2027 i = hlen;
2028 if (i == dlen) /* attach FCS */
2029 i += cp->crc_size;
2030 pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr + off, i,
2031 PCI_DMA_FROMDEVICE);
2033 /* make sure we always copy a header */
2034 swivel = 0;
2035 if (p == (char *) skb->data) { /* not split */
2036 addr = cas_page_map(page->buffer);
2037 memcpy(p, addr + off, RX_COPY_MIN);
2038 pci_dma_sync_single_for_device(cp->pdev, page->dma_addr + off, i,
2039 PCI_DMA_FROMDEVICE);
2040 cas_page_unmap(addr);
2041 off += RX_COPY_MIN;
2042 swivel = RX_COPY_MIN;
2043 RX_USED_ADD(page, cp->mtu_stride);
2044 } else {
2045 RX_USED_ADD(page, hlen);
2047 skb_put(skb, alloclen);
2049 skb_shinfo(skb)->nr_frags++;
2050 skb->data_len += hlen - swivel;
2051 skb->truesize += hlen - swivel;
2052 skb->len += hlen - swivel;
2054 get_page(page->buffer);
2055 frag->page = page->buffer;
2056 frag->page_offset = off;
2057 frag->size = hlen - swivel;
2059 /* any more data? */
2060 if ((words[0] & RX_COMP1_SPLIT_PKT) && ((dlen -= hlen) > 0)) {
2061 hlen = dlen;
2062 off = 0;
2064 i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]);
2065 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2066 pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr,
2067 hlen + cp->crc_size,
2068 PCI_DMA_FROMDEVICE);
2069 pci_dma_sync_single_for_device(cp->pdev, page->dma_addr,
2070 hlen + cp->crc_size,
2071 PCI_DMA_FROMDEVICE);
2073 skb_shinfo(skb)->nr_frags++;
2074 skb->data_len += hlen;
2075 skb->len += hlen;
2076 frag++;
2078 get_page(page->buffer);
2079 frag->page = page->buffer;
2080 frag->page_offset = 0;
2081 frag->size = hlen;
2082 RX_USED_ADD(page, hlen + cp->crc_size);
2085 if (cp->crc_size) {
2086 addr = cas_page_map(page->buffer);
2087 crcaddr = addr + off + hlen;
2090 } else {
2091 /* copying packet */
2092 if (!dlen)
2093 goto end_copy_pkt;
2095 i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]);
2096 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2097 off = CAS_VAL(RX_COMP1_DATA_OFF, words[0]) + swivel;
2098 hlen = min(cp->page_size - off, dlen);
2099 if (hlen < 0) {
2100 netif_printk(cp, rx_err, KERN_DEBUG, cp->dev,
2101 "rx page overflow: %d\n", hlen);
2102 dev_kfree_skb_irq(skb);
2103 return -1;
2105 i = hlen;
2106 if (i == dlen) /* attach FCS */
2107 i += cp->crc_size;
2108 pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr + off, i,
2109 PCI_DMA_FROMDEVICE);
2110 addr = cas_page_map(page->buffer);
2111 memcpy(p, addr + off, i);
2112 pci_dma_sync_single_for_device(cp->pdev, page->dma_addr + off, i,
2113 PCI_DMA_FROMDEVICE);
2114 cas_page_unmap(addr);
2115 if (p == (char *) skb->data) /* not split */
2116 RX_USED_ADD(page, cp->mtu_stride);
2117 else
2118 RX_USED_ADD(page, i);
2120 /* any more data? */
2121 if ((words[0] & RX_COMP1_SPLIT_PKT) && ((dlen -= hlen) > 0)) {
2122 p += hlen;
2123 i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]);
2124 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2125 pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr,
2126 dlen + cp->crc_size,
2127 PCI_DMA_FROMDEVICE);
2128 addr = cas_page_map(page->buffer);
2129 memcpy(p, addr, dlen + cp->crc_size);
2130 pci_dma_sync_single_for_device(cp->pdev, page->dma_addr,
2131 dlen + cp->crc_size,
2132 PCI_DMA_FROMDEVICE);
2133 cas_page_unmap(addr);
2134 RX_USED_ADD(page, dlen + cp->crc_size);
2136 end_copy_pkt:
2137 if (cp->crc_size) {
2138 addr = NULL;
2139 crcaddr = skb->data + alloclen;
2141 skb_put(skb, alloclen);
2144 csum = (__force __sum16)htons(CAS_VAL(RX_COMP4_TCP_CSUM, words[3]));
2145 if (cp->crc_size) {
2146 /* checksum includes FCS. strip it out. */
2147 csum = csum_fold(csum_partial(crcaddr, cp->crc_size,
2148 csum_unfold(csum)));
2149 if (addr)
2150 cas_page_unmap(addr);
2152 skb->protocol = eth_type_trans(skb, cp->dev);
2153 if (skb->protocol == htons(ETH_P_IP)) {
2154 skb->csum = csum_unfold(~csum);
2155 skb->ip_summed = CHECKSUM_COMPLETE;
2156 } else
2157 skb->ip_summed = CHECKSUM_NONE;
2158 return len;
2162 /* we can handle up to 64 rx flows at a time. we do the same thing
2163 * as nonreassm except that we batch up the buffers.
2164 * NOTE: we currently just treat each flow as a bunch of packets that
2165 * we pass up. a better way would be to coalesce the packets
2166 * into a jumbo packet. to do that, we need to do the following:
2167 * 1) the first packet will have a clean split between header and
2168 * data. save both.
2169 * 2) each time the next flow packet comes in, extend the
2170 * data length and merge the checksums.
2171 * 3) on flow release, fix up the header.
2172 * 4) make sure the higher layer doesn't care.
2173 * because packets get coalesced, we shouldn't run into fragment count
2174 * issues.
2176 static inline void cas_rx_flow_pkt(struct cas *cp, const u64 *words,
2177 struct sk_buff *skb)
2179 int flowid = CAS_VAL(RX_COMP3_FLOWID, words[2]) & (N_RX_FLOWS - 1);
2180 struct sk_buff_head *flow = &cp->rx_flows[flowid];
2182 /* this is protected at a higher layer, so no need to
2183 * do any additional locking here. stick the buffer
2184 * at the end.
2186 __skb_queue_tail(flow, skb);
2187 if (words[0] & RX_COMP1_RELEASE_FLOW) {
2188 while ((skb = __skb_dequeue(flow))) {
2189 cas_skb_release(skb);
2194 /* put rx descriptor back on ring. if a buffer is in use by a higher
2195 * layer, this will need to put in a replacement.
2197 static void cas_post_page(struct cas *cp, const int ring, const int index)
2199 cas_page_t *new;
2200 int entry;
2202 entry = cp->rx_old[ring];
2204 new = cas_page_swap(cp, ring, index);
2205 cp->init_rxds[ring][entry].buffer = cpu_to_le64(new->dma_addr);
2206 cp->init_rxds[ring][entry].index =
2207 cpu_to_le64(CAS_BASE(RX_INDEX_NUM, index) |
2208 CAS_BASE(RX_INDEX_RING, ring));
2210 entry = RX_DESC_ENTRY(ring, entry + 1);
2211 cp->rx_old[ring] = entry;
2213 if (entry % 4)
2214 return;
2216 if (ring == 0)
2217 writel(entry, cp->regs + REG_RX_KICK);
2218 else if ((N_RX_DESC_RINGS > 1) &&
2219 (cp->cas_flags & CAS_FLAG_REG_PLUS))
2220 writel(entry, cp->regs + REG_PLUS_RX_KICK1);
2224 /* only when things are bad */
2225 static int cas_post_rxds_ringN(struct cas *cp, int ring, int num)
2227 unsigned int entry, last, count, released;
2228 int cluster;
2229 cas_page_t **page = cp->rx_pages[ring];
2231 entry = cp->rx_old[ring];
2233 netif_printk(cp, intr, KERN_DEBUG, cp->dev,
2234 "rxd[%d] interrupt, done: %d\n", ring, entry);
2236 cluster = -1;
2237 count = entry & 0x3;
2238 last = RX_DESC_ENTRY(ring, num ? entry + num - 4: entry - 4);
2239 released = 0;
2240 while (entry != last) {
2241 /* make a new buffer if it's still in use */
2242 if (page_count(page[entry]->buffer) > 1) {
2243 cas_page_t *new = cas_page_dequeue(cp);
2244 if (!new) {
2245 /* let the timer know that we need to
2246 * do this again
2248 cp->cas_flags |= CAS_FLAG_RXD_POST(ring);
2249 if (!timer_pending(&cp->link_timer))
2250 mod_timer(&cp->link_timer, jiffies +
2251 CAS_LINK_FAST_TIMEOUT);
2252 cp->rx_old[ring] = entry;
2253 cp->rx_last[ring] = num ? num - released : 0;
2254 return -ENOMEM;
2256 spin_lock(&cp->rx_inuse_lock);
2257 list_add(&page[entry]->list, &cp->rx_inuse_list);
2258 spin_unlock(&cp->rx_inuse_lock);
2259 cp->init_rxds[ring][entry].buffer =
2260 cpu_to_le64(new->dma_addr);
2261 page[entry] = new;
2265 if (++count == 4) {
2266 cluster = entry;
2267 count = 0;
2269 released++;
2270 entry = RX_DESC_ENTRY(ring, entry + 1);
2272 cp->rx_old[ring] = entry;
2274 if (cluster < 0)
2275 return 0;
2277 if (ring == 0)
2278 writel(cluster, cp->regs + REG_RX_KICK);
2279 else if ((N_RX_DESC_RINGS > 1) &&
2280 (cp->cas_flags & CAS_FLAG_REG_PLUS))
2281 writel(cluster, cp->regs + REG_PLUS_RX_KICK1);
2282 return 0;
2286 /* process a completion ring. packets are set up in three basic ways:
2287 * small packets: should be copied header + data in single buffer.
2288 * large packets: header and data in a single buffer.
2289 * split packets: header in a separate buffer from data.
2290 * data may be in multiple pages. data may be > 256
2291 * bytes but in a single page.
2293 * NOTE: RX page posting is done in this routine as well. while there's
2294 * the capability of using multiple RX completion rings, it isn't
2295 * really worthwhile due to the fact that the page posting will
2296 * force serialization on the single descriptor ring.
2298 static int cas_rx_ringN(struct cas *cp, int ring, int budget)
2300 struct cas_rx_comp *rxcs = cp->init_rxcs[ring];
2301 int entry, drops;
2302 int npackets = 0;
2304 netif_printk(cp, intr, KERN_DEBUG, cp->dev,
2305 "rx[%d] interrupt, done: %d/%d\n",
2306 ring,
2307 readl(cp->regs + REG_RX_COMP_HEAD), cp->rx_new[ring]);
2309 entry = cp->rx_new[ring];
2310 drops = 0;
2311 while (1) {
2312 struct cas_rx_comp *rxc = rxcs + entry;
2313 struct sk_buff *uninitialized_var(skb);
2314 int type, len;
2315 u64 words[4];
2316 int i, dring;
2318 words[0] = le64_to_cpu(rxc->word1);
2319 words[1] = le64_to_cpu(rxc->word2);
2320 words[2] = le64_to_cpu(rxc->word3);
2321 words[3] = le64_to_cpu(rxc->word4);
2323 /* don't touch if still owned by hw */
2324 type = CAS_VAL(RX_COMP1_TYPE, words[0]);
2325 if (type == 0)
2326 break;
2328 /* hw hasn't cleared the zero bit yet */
2329 if (words[3] & RX_COMP4_ZERO) {
2330 break;
2333 /* get info on the packet */
2334 if (words[3] & (RX_COMP4_LEN_MISMATCH | RX_COMP4_BAD)) {
2335 spin_lock(&cp->stat_lock[ring]);
2336 cp->net_stats[ring].rx_errors++;
2337 if (words[3] & RX_COMP4_LEN_MISMATCH)
2338 cp->net_stats[ring].rx_length_errors++;
2339 if (words[3] & RX_COMP4_BAD)
2340 cp->net_stats[ring].rx_crc_errors++;
2341 spin_unlock(&cp->stat_lock[ring]);
2343 /* We'll just return it to Cassini. */
2344 drop_it:
2345 spin_lock(&cp->stat_lock[ring]);
2346 ++cp->net_stats[ring].rx_dropped;
2347 spin_unlock(&cp->stat_lock[ring]);
2348 goto next;
2351 len = cas_rx_process_pkt(cp, rxc, entry, words, &skb);
2352 if (len < 0) {
2353 ++drops;
2354 goto drop_it;
2357 /* see if it's a flow re-assembly or not. the driver
2358 * itself handles release back up.
2360 if (RX_DONT_BATCH || (type == 0x2)) {
2361 /* non-reassm: these always get released */
2362 cas_skb_release(skb);
2363 } else {
2364 cas_rx_flow_pkt(cp, words, skb);
2367 spin_lock(&cp->stat_lock[ring]);
2368 cp->net_stats[ring].rx_packets++;
2369 cp->net_stats[ring].rx_bytes += len;
2370 spin_unlock(&cp->stat_lock[ring]);
2372 next:
2373 npackets++;
2375 /* should it be released? */
2376 if (words[0] & RX_COMP1_RELEASE_HDR) {
2377 i = CAS_VAL(RX_COMP2_HDR_INDEX, words[1]);
2378 dring = CAS_VAL(RX_INDEX_RING, i);
2379 i = CAS_VAL(RX_INDEX_NUM, i);
2380 cas_post_page(cp, dring, i);
2383 if (words[0] & RX_COMP1_RELEASE_DATA) {
2384 i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]);
2385 dring = CAS_VAL(RX_INDEX_RING, i);
2386 i = CAS_VAL(RX_INDEX_NUM, i);
2387 cas_post_page(cp, dring, i);
2390 if (words[0] & RX_COMP1_RELEASE_NEXT) {
2391 i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]);
2392 dring = CAS_VAL(RX_INDEX_RING, i);
2393 i = CAS_VAL(RX_INDEX_NUM, i);
2394 cas_post_page(cp, dring, i);
2397 /* skip to the next entry */
2398 entry = RX_COMP_ENTRY(ring, entry + 1 +
2399 CAS_VAL(RX_COMP1_SKIP, words[0]));
2400 #ifdef USE_NAPI
2401 if (budget && (npackets >= budget))
2402 break;
2403 #endif
2405 cp->rx_new[ring] = entry;
2407 if (drops)
2408 netdev_info(cp->dev, "Memory squeeze, deferring packet\n");
2409 return npackets;
2413 /* put completion entries back on the ring */
2414 static void cas_post_rxcs_ringN(struct net_device *dev,
2415 struct cas *cp, int ring)
2417 struct cas_rx_comp *rxc = cp->init_rxcs[ring];
2418 int last, entry;
2420 last = cp->rx_cur[ring];
2421 entry = cp->rx_new[ring];
2422 netif_printk(cp, intr, KERN_DEBUG, dev,
2423 "rxc[%d] interrupt, done: %d/%d\n",
2424 ring, readl(cp->regs + REG_RX_COMP_HEAD), entry);
2426 /* zero and re-mark descriptors */
2427 while (last != entry) {
2428 cas_rxc_init(rxc + last);
2429 last = RX_COMP_ENTRY(ring, last + 1);
2431 cp->rx_cur[ring] = last;
2433 if (ring == 0)
2434 writel(last, cp->regs + REG_RX_COMP_TAIL);
2435 else if (cp->cas_flags & CAS_FLAG_REG_PLUS)
2436 writel(last, cp->regs + REG_PLUS_RX_COMPN_TAIL(ring));
2441 /* cassini can use all four PCI interrupts for the completion ring.
2442 * rings 3 and 4 are identical
2444 #if defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
2445 static inline void cas_handle_irqN(struct net_device *dev,
2446 struct cas *cp, const u32 status,
2447 const int ring)
2449 if (status & (INTR_RX_COMP_FULL_ALT | INTR_RX_COMP_AF_ALT))
2450 cas_post_rxcs_ringN(dev, cp, ring);
2453 static irqreturn_t cas_interruptN(int irq, void *dev_id)
2455 struct net_device *dev = dev_id;
2456 struct cas *cp = netdev_priv(dev);
2457 unsigned long flags;
2458 int ring;
2459 u32 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(ring));
2461 /* check for shared irq */
2462 if (status == 0)
2463 return IRQ_NONE;
2465 ring = (irq == cp->pci_irq_INTC) ? 2 : 3;
2466 spin_lock_irqsave(&cp->lock, flags);
2467 if (status & INTR_RX_DONE_ALT) { /* handle rx separately */
2468 #ifdef USE_NAPI
2469 cas_mask_intr(cp);
2470 napi_schedule(&cp->napi);
2471 #else
2472 cas_rx_ringN(cp, ring, 0);
2473 #endif
2474 status &= ~INTR_RX_DONE_ALT;
2477 if (status)
2478 cas_handle_irqN(dev, cp, status, ring);
2479 spin_unlock_irqrestore(&cp->lock, flags);
2480 return IRQ_HANDLED;
2482 #endif
2484 #ifdef USE_PCI_INTB
2485 /* everything but rx packets */
2486 static inline void cas_handle_irq1(struct cas *cp, const u32 status)
2488 if (status & INTR_RX_BUF_UNAVAIL_1) {
2489 /* Frame arrived, no free RX buffers available.
2490 * NOTE: we can get this on a link transition. */
2491 cas_post_rxds_ringN(cp, 1, 0);
2492 spin_lock(&cp->stat_lock[1]);
2493 cp->net_stats[1].rx_dropped++;
2494 spin_unlock(&cp->stat_lock[1]);
2497 if (status & INTR_RX_BUF_AE_1)
2498 cas_post_rxds_ringN(cp, 1, RX_DESC_RINGN_SIZE(1) -
2499 RX_AE_FREEN_VAL(1));
2501 if (status & (INTR_RX_COMP_AF | INTR_RX_COMP_FULL))
2502 cas_post_rxcs_ringN(cp, 1);
2505 /* ring 2 handles a few more events than 3 and 4 */
2506 static irqreturn_t cas_interrupt1(int irq, void *dev_id)
2508 struct net_device *dev = dev_id;
2509 struct cas *cp = netdev_priv(dev);
2510 unsigned long flags;
2511 u32 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(1));
2513 /* check for shared interrupt */
2514 if (status == 0)
2515 return IRQ_NONE;
2517 spin_lock_irqsave(&cp->lock, flags);
2518 if (status & INTR_RX_DONE_ALT) { /* handle rx separately */
2519 #ifdef USE_NAPI
2520 cas_mask_intr(cp);
2521 napi_schedule(&cp->napi);
2522 #else
2523 cas_rx_ringN(cp, 1, 0);
2524 #endif
2525 status &= ~INTR_RX_DONE_ALT;
2527 if (status)
2528 cas_handle_irq1(cp, status);
2529 spin_unlock_irqrestore(&cp->lock, flags);
2530 return IRQ_HANDLED;
2532 #endif
2534 static inline void cas_handle_irq(struct net_device *dev,
2535 struct cas *cp, const u32 status)
2537 /* housekeeping interrupts */
2538 if (status & INTR_ERROR_MASK)
2539 cas_abnormal_irq(dev, cp, status);
2541 if (status & INTR_RX_BUF_UNAVAIL) {
2542 /* Frame arrived, no free RX buffers available.
2543 * NOTE: we can get this on a link transition.
2545 cas_post_rxds_ringN(cp, 0, 0);
2546 spin_lock(&cp->stat_lock[0]);
2547 cp->net_stats[0].rx_dropped++;
2548 spin_unlock(&cp->stat_lock[0]);
2549 } else if (status & INTR_RX_BUF_AE) {
2550 cas_post_rxds_ringN(cp, 0, RX_DESC_RINGN_SIZE(0) -
2551 RX_AE_FREEN_VAL(0));
2554 if (status & (INTR_RX_COMP_AF | INTR_RX_COMP_FULL))
2555 cas_post_rxcs_ringN(dev, cp, 0);
2558 static irqreturn_t cas_interrupt(int irq, void *dev_id)
2560 struct net_device *dev = dev_id;
2561 struct cas *cp = netdev_priv(dev);
2562 unsigned long flags;
2563 u32 status = readl(cp->regs + REG_INTR_STATUS);
2565 if (status == 0)
2566 return IRQ_NONE;
2568 spin_lock_irqsave(&cp->lock, flags);
2569 if (status & (INTR_TX_ALL | INTR_TX_INTME)) {
2570 cas_tx(dev, cp, status);
2571 status &= ~(INTR_TX_ALL | INTR_TX_INTME);
2574 if (status & INTR_RX_DONE) {
2575 #ifdef USE_NAPI
2576 cas_mask_intr(cp);
2577 napi_schedule(&cp->napi);
2578 #else
2579 cas_rx_ringN(cp, 0, 0);
2580 #endif
2581 status &= ~INTR_RX_DONE;
2584 if (status)
2585 cas_handle_irq(dev, cp, status);
2586 spin_unlock_irqrestore(&cp->lock, flags);
2587 return IRQ_HANDLED;
2591 #ifdef USE_NAPI
2592 static int cas_poll(struct napi_struct *napi, int budget)
2594 struct cas *cp = container_of(napi, struct cas, napi);
2595 struct net_device *dev = cp->dev;
2596 int i, enable_intr, credits;
2597 u32 status = readl(cp->regs + REG_INTR_STATUS);
2598 unsigned long flags;
2600 spin_lock_irqsave(&cp->lock, flags);
2601 cas_tx(dev, cp, status);
2602 spin_unlock_irqrestore(&cp->lock, flags);
2604 /* NAPI rx packets. we spread the credits across all of the
2605 * rxc rings
2607 * to make sure we're fair with the work we loop through each
2608 * ring N_RX_COMP_RING times with a request of
2609 * budget / N_RX_COMP_RINGS
2611 enable_intr = 1;
2612 credits = 0;
2613 for (i = 0; i < N_RX_COMP_RINGS; i++) {
2614 int j;
2615 for (j = 0; j < N_RX_COMP_RINGS; j++) {
2616 credits += cas_rx_ringN(cp, j, budget / N_RX_COMP_RINGS);
2617 if (credits >= budget) {
2618 enable_intr = 0;
2619 goto rx_comp;
2624 rx_comp:
2625 /* final rx completion */
2626 spin_lock_irqsave(&cp->lock, flags);
2627 if (status)
2628 cas_handle_irq(dev, cp, status);
2630 #ifdef USE_PCI_INTB
2631 if (N_RX_COMP_RINGS > 1) {
2632 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(1));
2633 if (status)
2634 cas_handle_irq1(dev, cp, status);
2636 #endif
2638 #ifdef USE_PCI_INTC
2639 if (N_RX_COMP_RINGS > 2) {
2640 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(2));
2641 if (status)
2642 cas_handle_irqN(dev, cp, status, 2);
2644 #endif
2646 #ifdef USE_PCI_INTD
2647 if (N_RX_COMP_RINGS > 3) {
2648 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(3));
2649 if (status)
2650 cas_handle_irqN(dev, cp, status, 3);
2652 #endif
2653 spin_unlock_irqrestore(&cp->lock, flags);
2654 if (enable_intr) {
2655 napi_complete(napi);
2656 cas_unmask_intr(cp);
2658 return credits;
2660 #endif
2662 #ifdef CONFIG_NET_POLL_CONTROLLER
2663 static void cas_netpoll(struct net_device *dev)
2665 struct cas *cp = netdev_priv(dev);
2667 cas_disable_irq(cp, 0);
2668 cas_interrupt(cp->pdev->irq, dev);
2669 cas_enable_irq(cp, 0);
2671 #ifdef USE_PCI_INTB
2672 if (N_RX_COMP_RINGS > 1) {
2673 /* cas_interrupt1(); */
2675 #endif
2676 #ifdef USE_PCI_INTC
2677 if (N_RX_COMP_RINGS > 2) {
2678 /* cas_interruptN(); */
2680 #endif
2681 #ifdef USE_PCI_INTD
2682 if (N_RX_COMP_RINGS > 3) {
2683 /* cas_interruptN(); */
2685 #endif
2687 #endif
2689 static void cas_tx_timeout(struct net_device *dev)
2691 struct cas *cp = netdev_priv(dev);
2693 netdev_err(dev, "transmit timed out, resetting\n");
2694 if (!cp->hw_running) {
2695 netdev_err(dev, "hrm.. hw not running!\n");
2696 return;
2699 netdev_err(dev, "MIF_STATE[%08x]\n",
2700 readl(cp->regs + REG_MIF_STATE_MACHINE));
2702 netdev_err(dev, "MAC_STATE[%08x]\n",
2703 readl(cp->regs + REG_MAC_STATE_MACHINE));
2705 netdev_err(dev, "TX_STATE[%08x:%08x:%08x] FIFO[%08x:%08x:%08x] SM1[%08x] SM2[%08x]\n",
2706 readl(cp->regs + REG_TX_CFG),
2707 readl(cp->regs + REG_MAC_TX_STATUS),
2708 readl(cp->regs + REG_MAC_TX_CFG),
2709 readl(cp->regs + REG_TX_FIFO_PKT_CNT),
2710 readl(cp->regs + REG_TX_FIFO_WRITE_PTR),
2711 readl(cp->regs + REG_TX_FIFO_READ_PTR),
2712 readl(cp->regs + REG_TX_SM_1),
2713 readl(cp->regs + REG_TX_SM_2));
2715 netdev_err(dev, "RX_STATE[%08x:%08x:%08x]\n",
2716 readl(cp->regs + REG_RX_CFG),
2717 readl(cp->regs + REG_MAC_RX_STATUS),
2718 readl(cp->regs + REG_MAC_RX_CFG));
2720 netdev_err(dev, "HP_STATE[%08x:%08x:%08x:%08x]\n",
2721 readl(cp->regs + REG_HP_STATE_MACHINE),
2722 readl(cp->regs + REG_HP_STATUS0),
2723 readl(cp->regs + REG_HP_STATUS1),
2724 readl(cp->regs + REG_HP_STATUS2));
2726 #if 1
2727 atomic_inc(&cp->reset_task_pending);
2728 atomic_inc(&cp->reset_task_pending_all);
2729 schedule_work(&cp->reset_task);
2730 #else
2731 atomic_set(&cp->reset_task_pending, CAS_RESET_ALL);
2732 schedule_work(&cp->reset_task);
2733 #endif
2736 static inline int cas_intme(int ring, int entry)
2738 /* Algorithm: IRQ every 1/2 of descriptors. */
2739 if (!(entry & ((TX_DESC_RINGN_SIZE(ring) >> 1) - 1)))
2740 return 1;
2741 return 0;
2745 static void cas_write_txd(struct cas *cp, int ring, int entry,
2746 dma_addr_t mapping, int len, u64 ctrl, int last)
2748 struct cas_tx_desc *txd = cp->init_txds[ring] + entry;
2750 ctrl |= CAS_BASE(TX_DESC_BUFLEN, len);
2751 if (cas_intme(ring, entry))
2752 ctrl |= TX_DESC_INTME;
2753 if (last)
2754 ctrl |= TX_DESC_EOF;
2755 txd->control = cpu_to_le64(ctrl);
2756 txd->buffer = cpu_to_le64(mapping);
2759 static inline void *tx_tiny_buf(struct cas *cp, const int ring,
2760 const int entry)
2762 return cp->tx_tiny_bufs[ring] + TX_TINY_BUF_LEN*entry;
2765 static inline dma_addr_t tx_tiny_map(struct cas *cp, const int ring,
2766 const int entry, const int tentry)
2768 cp->tx_tiny_use[ring][tentry].nbufs++;
2769 cp->tx_tiny_use[ring][entry].used = 1;
2770 return cp->tx_tiny_dvma[ring] + TX_TINY_BUF_LEN*entry;
2773 static inline int cas_xmit_tx_ringN(struct cas *cp, int ring,
2774 struct sk_buff *skb)
2776 struct net_device *dev = cp->dev;
2777 int entry, nr_frags, frag, tabort, tentry;
2778 dma_addr_t mapping;
2779 unsigned long flags;
2780 u64 ctrl;
2781 u32 len;
2783 spin_lock_irqsave(&cp->tx_lock[ring], flags);
2785 /* This is a hard error, log it. */
2786 if (TX_BUFFS_AVAIL(cp, ring) <=
2787 CAS_TABORT(cp)*(skb_shinfo(skb)->nr_frags + 1)) {
2788 netif_stop_queue(dev);
2789 spin_unlock_irqrestore(&cp->tx_lock[ring], flags);
2790 netdev_err(dev, "BUG! Tx Ring full when queue awake!\n");
2791 return 1;
2794 ctrl = 0;
2795 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2796 const u64 csum_start_off = skb_transport_offset(skb);
2797 const u64 csum_stuff_off = csum_start_off + skb->csum_offset;
2799 ctrl = TX_DESC_CSUM_EN |
2800 CAS_BASE(TX_DESC_CSUM_START, csum_start_off) |
2801 CAS_BASE(TX_DESC_CSUM_STUFF, csum_stuff_off);
2804 entry = cp->tx_new[ring];
2805 cp->tx_skbs[ring][entry] = skb;
2807 nr_frags = skb_shinfo(skb)->nr_frags;
2808 len = skb_headlen(skb);
2809 mapping = pci_map_page(cp->pdev, virt_to_page(skb->data),
2810 offset_in_page(skb->data), len,
2811 PCI_DMA_TODEVICE);
2813 tentry = entry;
2814 tabort = cas_calc_tabort(cp, (unsigned long) skb->data, len);
2815 if (unlikely(tabort)) {
2816 /* NOTE: len is always > tabort */
2817 cas_write_txd(cp, ring, entry, mapping, len - tabort,
2818 ctrl | TX_DESC_SOF, 0);
2819 entry = TX_DESC_NEXT(ring, entry);
2821 skb_copy_from_linear_data_offset(skb, len - tabort,
2822 tx_tiny_buf(cp, ring, entry), tabort);
2823 mapping = tx_tiny_map(cp, ring, entry, tentry);
2824 cas_write_txd(cp, ring, entry, mapping, tabort, ctrl,
2825 (nr_frags == 0));
2826 } else {
2827 cas_write_txd(cp, ring, entry, mapping, len, ctrl |
2828 TX_DESC_SOF, (nr_frags == 0));
2830 entry = TX_DESC_NEXT(ring, entry);
2832 for (frag = 0; frag < nr_frags; frag++) {
2833 skb_frag_t *fragp = &skb_shinfo(skb)->frags[frag];
2835 len = fragp->size;
2836 mapping = pci_map_page(cp->pdev, fragp->page,
2837 fragp->page_offset, len,
2838 PCI_DMA_TODEVICE);
2840 tabort = cas_calc_tabort(cp, fragp->page_offset, len);
2841 if (unlikely(tabort)) {
2842 void *addr;
2844 /* NOTE: len is always > tabort */
2845 cas_write_txd(cp, ring, entry, mapping, len - tabort,
2846 ctrl, 0);
2847 entry = TX_DESC_NEXT(ring, entry);
2849 addr = cas_page_map(fragp->page);
2850 memcpy(tx_tiny_buf(cp, ring, entry),
2851 addr + fragp->page_offset + len - tabort,
2852 tabort);
2853 cas_page_unmap(addr);
2854 mapping = tx_tiny_map(cp, ring, entry, tentry);
2855 len = tabort;
2858 cas_write_txd(cp, ring, entry, mapping, len, ctrl,
2859 (frag + 1 == nr_frags));
2860 entry = TX_DESC_NEXT(ring, entry);
2863 cp->tx_new[ring] = entry;
2864 if (TX_BUFFS_AVAIL(cp, ring) <= CAS_TABORT(cp)*(MAX_SKB_FRAGS + 1))
2865 netif_stop_queue(dev);
2867 netif_printk(cp, tx_queued, KERN_DEBUG, dev,
2868 "tx[%d] queued, slot %d, skblen %d, avail %d\n",
2869 ring, entry, skb->len, TX_BUFFS_AVAIL(cp, ring));
2870 writel(entry, cp->regs + REG_TX_KICKN(ring));
2871 spin_unlock_irqrestore(&cp->tx_lock[ring], flags);
2872 return 0;
2875 static netdev_tx_t cas_start_xmit(struct sk_buff *skb, struct net_device *dev)
2877 struct cas *cp = netdev_priv(dev);
2879 /* this is only used as a load-balancing hint, so it doesn't
2880 * need to be SMP safe
2882 static int ring;
2884 if (skb_padto(skb, cp->min_frame_size))
2885 return NETDEV_TX_OK;
2887 /* XXX: we need some higher-level QoS hooks to steer packets to
2888 * individual queues.
2890 if (cas_xmit_tx_ringN(cp, ring++ & N_TX_RINGS_MASK, skb))
2891 return NETDEV_TX_BUSY;
2892 dev->trans_start = jiffies;
2893 return NETDEV_TX_OK;
2896 static void cas_init_tx_dma(struct cas *cp)
2898 u64 desc_dma = cp->block_dvma;
2899 unsigned long off;
2900 u32 val;
2901 int i;
2903 /* set up tx completion writeback registers. must be 8-byte aligned */
2904 #ifdef USE_TX_COMPWB
2905 off = offsetof(struct cas_init_block, tx_compwb);
2906 writel((desc_dma + off) >> 32, cp->regs + REG_TX_COMPWB_DB_HI);
2907 writel((desc_dma + off) & 0xffffffff, cp->regs + REG_TX_COMPWB_DB_LOW);
2908 #endif
2910 /* enable completion writebacks, enable paced mode,
2911 * disable read pipe, and disable pre-interrupt compwbs
2913 val = TX_CFG_COMPWB_Q1 | TX_CFG_COMPWB_Q2 |
2914 TX_CFG_COMPWB_Q3 | TX_CFG_COMPWB_Q4 |
2915 TX_CFG_DMA_RDPIPE_DIS | TX_CFG_PACED_MODE |
2916 TX_CFG_INTR_COMPWB_DIS;
2918 /* write out tx ring info and tx desc bases */
2919 for (i = 0; i < MAX_TX_RINGS; i++) {
2920 off = (unsigned long) cp->init_txds[i] -
2921 (unsigned long) cp->init_block;
2923 val |= CAS_TX_RINGN_BASE(i);
2924 writel((desc_dma + off) >> 32, cp->regs + REG_TX_DBN_HI(i));
2925 writel((desc_dma + off) & 0xffffffff, cp->regs +
2926 REG_TX_DBN_LOW(i));
2927 /* don't zero out the kick register here as the system
2928 * will wedge
2931 writel(val, cp->regs + REG_TX_CFG);
2933 /* program max burst sizes. these numbers should be different
2934 * if doing QoS.
2936 #ifdef USE_QOS
2937 writel(0x800, cp->regs + REG_TX_MAXBURST_0);
2938 writel(0x1600, cp->regs + REG_TX_MAXBURST_1);
2939 writel(0x2400, cp->regs + REG_TX_MAXBURST_2);
2940 writel(0x4800, cp->regs + REG_TX_MAXBURST_3);
2941 #else
2942 writel(0x800, cp->regs + REG_TX_MAXBURST_0);
2943 writel(0x800, cp->regs + REG_TX_MAXBURST_1);
2944 writel(0x800, cp->regs + REG_TX_MAXBURST_2);
2945 writel(0x800, cp->regs + REG_TX_MAXBURST_3);
2946 #endif
2949 /* Must be invoked under cp->lock. */
2950 static inline void cas_init_dma(struct cas *cp)
2952 cas_init_tx_dma(cp);
2953 cas_init_rx_dma(cp);
2956 static void cas_process_mc_list(struct cas *cp)
2958 u16 hash_table[16];
2959 u32 crc;
2960 struct dev_mc_list *dmi;
2961 int i = 1;
2963 memset(hash_table, 0, sizeof(hash_table));
2964 netdev_for_each_mc_addr(dmi, cp->dev) {
2965 if (i <= CAS_MC_EXACT_MATCH_SIZE) {
2966 /* use the alternate mac address registers for the
2967 * first 15 multicast addresses
2969 writel((dmi->dmi_addr[4] << 8) | dmi->dmi_addr[5],
2970 cp->regs + REG_MAC_ADDRN(i*3 + 0));
2971 writel((dmi->dmi_addr[2] << 8) | dmi->dmi_addr[3],
2972 cp->regs + REG_MAC_ADDRN(i*3 + 1));
2973 writel((dmi->dmi_addr[0] << 8) | dmi->dmi_addr[1],
2974 cp->regs + REG_MAC_ADDRN(i*3 + 2));
2975 i++;
2977 else {
2978 /* use hw hash table for the next series of
2979 * multicast addresses
2981 crc = ether_crc_le(ETH_ALEN, dmi->dmi_addr);
2982 crc >>= 24;
2983 hash_table[crc >> 4] |= 1 << (15 - (crc & 0xf));
2986 for (i = 0; i < 16; i++)
2987 writel(hash_table[i], cp->regs + REG_MAC_HASH_TABLEN(i));
2990 /* Must be invoked under cp->lock. */
2991 static u32 cas_setup_multicast(struct cas *cp)
2993 u32 rxcfg = 0;
2994 int i;
2996 if (cp->dev->flags & IFF_PROMISC) {
2997 rxcfg |= MAC_RX_CFG_PROMISC_EN;
2999 } else if (cp->dev->flags & IFF_ALLMULTI) {
3000 for (i=0; i < 16; i++)
3001 writel(0xFFFF, cp->regs + REG_MAC_HASH_TABLEN(i));
3002 rxcfg |= MAC_RX_CFG_HASH_FILTER_EN;
3004 } else {
3005 cas_process_mc_list(cp);
3006 rxcfg |= MAC_RX_CFG_HASH_FILTER_EN;
3009 return rxcfg;
3012 /* must be invoked under cp->stat_lock[N_TX_RINGS] */
3013 static void cas_clear_mac_err(struct cas *cp)
3015 writel(0, cp->regs + REG_MAC_COLL_NORMAL);
3016 writel(0, cp->regs + REG_MAC_COLL_FIRST);
3017 writel(0, cp->regs + REG_MAC_COLL_EXCESS);
3018 writel(0, cp->regs + REG_MAC_COLL_LATE);
3019 writel(0, cp->regs + REG_MAC_TIMER_DEFER);
3020 writel(0, cp->regs + REG_MAC_ATTEMPTS_PEAK);
3021 writel(0, cp->regs + REG_MAC_RECV_FRAME);
3022 writel(0, cp->regs + REG_MAC_LEN_ERR);
3023 writel(0, cp->regs + REG_MAC_ALIGN_ERR);
3024 writel(0, cp->regs + REG_MAC_FCS_ERR);
3025 writel(0, cp->regs + REG_MAC_RX_CODE_ERR);
3029 static void cas_mac_reset(struct cas *cp)
3031 int i;
3033 /* do both TX and RX reset */
3034 writel(0x1, cp->regs + REG_MAC_TX_RESET);
3035 writel(0x1, cp->regs + REG_MAC_RX_RESET);
3037 /* wait for TX */
3038 i = STOP_TRIES;
3039 while (i-- > 0) {
3040 if (readl(cp->regs + REG_MAC_TX_RESET) == 0)
3041 break;
3042 udelay(10);
3045 /* wait for RX */
3046 i = STOP_TRIES;
3047 while (i-- > 0) {
3048 if (readl(cp->regs + REG_MAC_RX_RESET) == 0)
3049 break;
3050 udelay(10);
3053 if (readl(cp->regs + REG_MAC_TX_RESET) |
3054 readl(cp->regs + REG_MAC_RX_RESET))
3055 netdev_err(cp->dev, "mac tx[%d]/rx[%d] reset failed [%08x]\n",
3056 readl(cp->regs + REG_MAC_TX_RESET),
3057 readl(cp->regs + REG_MAC_RX_RESET),
3058 readl(cp->regs + REG_MAC_STATE_MACHINE));
3062 /* Must be invoked under cp->lock. */
3063 static void cas_init_mac(struct cas *cp)
3065 unsigned char *e = &cp->dev->dev_addr[0];
3066 int i;
3067 #ifdef CONFIG_CASSINI_MULTICAST_REG_WRITE
3068 u32 rxcfg;
3069 #endif
3070 cas_mac_reset(cp);
3072 /* setup core arbitration weight register */
3073 writel(CAWR_RR_DIS, cp->regs + REG_CAWR);
3075 /* XXX Use pci_dma_burst_advice() */
3076 #if !defined(CONFIG_SPARC64) && !defined(CONFIG_ALPHA)
3077 /* set the infinite burst register for chips that don't have
3078 * pci issues.
3080 if ((cp->cas_flags & CAS_FLAG_TARGET_ABORT) == 0)
3081 writel(INF_BURST_EN, cp->regs + REG_INF_BURST);
3082 #endif
3084 writel(0x1BF0, cp->regs + REG_MAC_SEND_PAUSE);
3086 writel(0x00, cp->regs + REG_MAC_IPG0);
3087 writel(0x08, cp->regs + REG_MAC_IPG1);
3088 writel(0x04, cp->regs + REG_MAC_IPG2);
3090 /* change later for 802.3z */
3091 writel(0x40, cp->regs + REG_MAC_SLOT_TIME);
3093 /* min frame + FCS */
3094 writel(ETH_ZLEN + 4, cp->regs + REG_MAC_FRAMESIZE_MIN);
3096 /* Ethernet payload + header + FCS + optional VLAN tag. NOTE: we
3097 * specify the maximum frame size to prevent RX tag errors on
3098 * oversized frames.
3100 writel(CAS_BASE(MAC_FRAMESIZE_MAX_BURST, 0x2000) |
3101 CAS_BASE(MAC_FRAMESIZE_MAX_FRAME,
3102 (CAS_MAX_MTU + ETH_HLEN + 4 + 4)),
3103 cp->regs + REG_MAC_FRAMESIZE_MAX);
3105 /* NOTE: crc_size is used as a surrogate for half-duplex.
3106 * workaround saturn half-duplex issue by increasing preamble
3107 * size to 65 bytes.
3109 if ((cp->cas_flags & CAS_FLAG_SATURN) && cp->crc_size)
3110 writel(0x41, cp->regs + REG_MAC_PA_SIZE);
3111 else
3112 writel(0x07, cp->regs + REG_MAC_PA_SIZE);
3113 writel(0x04, cp->regs + REG_MAC_JAM_SIZE);
3114 writel(0x10, cp->regs + REG_MAC_ATTEMPT_LIMIT);
3115 writel(0x8808, cp->regs + REG_MAC_CTRL_TYPE);
3117 writel((e[5] | (e[4] << 8)) & 0x3ff, cp->regs + REG_MAC_RANDOM_SEED);
3119 writel(0, cp->regs + REG_MAC_ADDR_FILTER0);
3120 writel(0, cp->regs + REG_MAC_ADDR_FILTER1);
3121 writel(0, cp->regs + REG_MAC_ADDR_FILTER2);
3122 writel(0, cp->regs + REG_MAC_ADDR_FILTER2_1_MASK);
3123 writel(0, cp->regs + REG_MAC_ADDR_FILTER0_MASK);
3125 /* setup mac address in perfect filter array */
3126 for (i = 0; i < 45; i++)
3127 writel(0x0, cp->regs + REG_MAC_ADDRN(i));
3129 writel((e[4] << 8) | e[5], cp->regs + REG_MAC_ADDRN(0));
3130 writel((e[2] << 8) | e[3], cp->regs + REG_MAC_ADDRN(1));
3131 writel((e[0] << 8) | e[1], cp->regs + REG_MAC_ADDRN(2));
3133 writel(0x0001, cp->regs + REG_MAC_ADDRN(42));
3134 writel(0xc200, cp->regs + REG_MAC_ADDRN(43));
3135 writel(0x0180, cp->regs + REG_MAC_ADDRN(44));
3137 #ifndef CONFIG_CASSINI_MULTICAST_REG_WRITE
3138 cp->mac_rx_cfg = cas_setup_multicast(cp);
3139 #else
3140 /* WTZ: Do what Adrian did in cas_set_multicast. Doing
3141 * a writel does not seem to be necessary because Cassini
3142 * seems to preserve the configuration when we do the reset.
3143 * If the chip is in trouble, though, it is not clear if we
3144 * can really count on this behavior. cas_set_multicast uses
3145 * spin_lock_irqsave, but we are called only in cas_init_hw and
3146 * cas_init_hw is protected by cas_lock_all, which calls
3147 * spin_lock_irq (so it doesn't need to save the flags, and
3148 * we should be OK for the writel, as that is the only
3149 * difference).
3151 cp->mac_rx_cfg = rxcfg = cas_setup_multicast(cp);
3152 writel(rxcfg, cp->regs + REG_MAC_RX_CFG);
3153 #endif
3154 spin_lock(&cp->stat_lock[N_TX_RINGS]);
3155 cas_clear_mac_err(cp);
3156 spin_unlock(&cp->stat_lock[N_TX_RINGS]);
3158 /* Setup MAC interrupts. We want to get all of the interesting
3159 * counter expiration events, but we do not want to hear about
3160 * normal rx/tx as the DMA engine tells us that.
3162 writel(MAC_TX_FRAME_XMIT, cp->regs + REG_MAC_TX_MASK);
3163 writel(MAC_RX_FRAME_RECV, cp->regs + REG_MAC_RX_MASK);
3165 /* Don't enable even the PAUSE interrupts for now, we
3166 * make no use of those events other than to record them.
3168 writel(0xffffffff, cp->regs + REG_MAC_CTRL_MASK);
3171 /* Must be invoked under cp->lock. */
3172 static void cas_init_pause_thresholds(struct cas *cp)
3174 /* Calculate pause thresholds. Setting the OFF threshold to the
3175 * full RX fifo size effectively disables PAUSE generation
3177 if (cp->rx_fifo_size <= (2 * 1024)) {
3178 cp->rx_pause_off = cp->rx_pause_on = cp->rx_fifo_size;
3179 } else {
3180 int max_frame = (cp->dev->mtu + ETH_HLEN + 4 + 4 + 64) & ~63;
3181 if (max_frame * 3 > cp->rx_fifo_size) {
3182 cp->rx_pause_off = 7104;
3183 cp->rx_pause_on = 960;
3184 } else {
3185 int off = (cp->rx_fifo_size - (max_frame * 2));
3186 int on = off - max_frame;
3187 cp->rx_pause_off = off;
3188 cp->rx_pause_on = on;
3193 static int cas_vpd_match(const void __iomem *p, const char *str)
3195 int len = strlen(str) + 1;
3196 int i;
3198 for (i = 0; i < len; i++) {
3199 if (readb(p + i) != str[i])
3200 return 0;
3202 return 1;
3206 /* get the mac address by reading the vpd information in the rom.
3207 * also get the phy type and determine if there's an entropy generator.
3208 * NOTE: this is a bit convoluted for the following reasons:
3209 * 1) vpd info has order-dependent mac addresses for multinic cards
3210 * 2) the only way to determine the nic order is to use the slot
3211 * number.
3212 * 3) fiber cards don't have bridges, so their slot numbers don't
3213 * mean anything.
3214 * 4) we don't actually know we have a fiber card until after
3215 * the mac addresses are parsed.
3217 static int cas_get_vpd_info(struct cas *cp, unsigned char *dev_addr,
3218 const int offset)
3220 void __iomem *p = cp->regs + REG_EXPANSION_ROM_RUN_START;
3221 void __iomem *base, *kstart;
3222 int i, len;
3223 int found = 0;
3224 #define VPD_FOUND_MAC 0x01
3225 #define VPD_FOUND_PHY 0x02
3227 int phy_type = CAS_PHY_MII_MDIO0; /* default phy type */
3228 int mac_off = 0;
3230 /* give us access to the PROM */
3231 writel(BIM_LOCAL_DEV_PROM | BIM_LOCAL_DEV_PAD,
3232 cp->regs + REG_BIM_LOCAL_DEV_EN);
3234 /* check for an expansion rom */
3235 if (readb(p) != 0x55 || readb(p + 1) != 0xaa)
3236 goto use_random_mac_addr;
3238 /* search for beginning of vpd */
3239 base = NULL;
3240 for (i = 2; i < EXPANSION_ROM_SIZE; i++) {
3241 /* check for PCIR */
3242 if ((readb(p + i + 0) == 0x50) &&
3243 (readb(p + i + 1) == 0x43) &&
3244 (readb(p + i + 2) == 0x49) &&
3245 (readb(p + i + 3) == 0x52)) {
3246 base = p + (readb(p + i + 8) |
3247 (readb(p + i + 9) << 8));
3248 break;
3252 if (!base || (readb(base) != 0x82))
3253 goto use_random_mac_addr;
3255 i = (readb(base + 1) | (readb(base + 2) << 8)) + 3;
3256 while (i < EXPANSION_ROM_SIZE) {
3257 if (readb(base + i) != 0x90) /* no vpd found */
3258 goto use_random_mac_addr;
3260 /* found a vpd field */
3261 len = readb(base + i + 1) | (readb(base + i + 2) << 8);
3263 /* extract keywords */
3264 kstart = base + i + 3;
3265 p = kstart;
3266 while ((p - kstart) < len) {
3267 int klen = readb(p + 2);
3268 int j;
3269 char type;
3271 p += 3;
3273 /* look for the following things:
3274 * -- correct length == 29
3275 * 3 (type) + 2 (size) +
3276 * 18 (strlen("local-mac-address") + 1) +
3277 * 6 (mac addr)
3278 * -- VPD Instance 'I'
3279 * -- VPD Type Bytes 'B'
3280 * -- VPD data length == 6
3281 * -- property string == local-mac-address
3283 * -- correct length == 24
3284 * 3 (type) + 2 (size) +
3285 * 12 (strlen("entropy-dev") + 1) +
3286 * 7 (strlen("vms110") + 1)
3287 * -- VPD Instance 'I'
3288 * -- VPD Type String 'B'
3289 * -- VPD data length == 7
3290 * -- property string == entropy-dev
3292 * -- correct length == 18
3293 * 3 (type) + 2 (size) +
3294 * 9 (strlen("phy-type") + 1) +
3295 * 4 (strlen("pcs") + 1)
3296 * -- VPD Instance 'I'
3297 * -- VPD Type String 'S'
3298 * -- VPD data length == 4
3299 * -- property string == phy-type
3301 * -- correct length == 23
3302 * 3 (type) + 2 (size) +
3303 * 14 (strlen("phy-interface") + 1) +
3304 * 4 (strlen("pcs") + 1)
3305 * -- VPD Instance 'I'
3306 * -- VPD Type String 'S'
3307 * -- VPD data length == 4
3308 * -- property string == phy-interface
3310 if (readb(p) != 'I')
3311 goto next;
3313 /* finally, check string and length */
3314 type = readb(p + 3);
3315 if (type == 'B') {
3316 if ((klen == 29) && readb(p + 4) == 6 &&
3317 cas_vpd_match(p + 5,
3318 "local-mac-address")) {
3319 if (mac_off++ > offset)
3320 goto next;
3322 /* set mac address */
3323 for (j = 0; j < 6; j++)
3324 dev_addr[j] =
3325 readb(p + 23 + j);
3326 goto found_mac;
3330 if (type != 'S')
3331 goto next;
3333 #ifdef USE_ENTROPY_DEV
3334 if ((klen == 24) &&
3335 cas_vpd_match(p + 5, "entropy-dev") &&
3336 cas_vpd_match(p + 17, "vms110")) {
3337 cp->cas_flags |= CAS_FLAG_ENTROPY_DEV;
3338 goto next;
3340 #endif
3342 if (found & VPD_FOUND_PHY)
3343 goto next;
3345 if ((klen == 18) && readb(p + 4) == 4 &&
3346 cas_vpd_match(p + 5, "phy-type")) {
3347 if (cas_vpd_match(p + 14, "pcs")) {
3348 phy_type = CAS_PHY_SERDES;
3349 goto found_phy;
3353 if ((klen == 23) && readb(p + 4) == 4 &&
3354 cas_vpd_match(p + 5, "phy-interface")) {
3355 if (cas_vpd_match(p + 19, "pcs")) {
3356 phy_type = CAS_PHY_SERDES;
3357 goto found_phy;
3360 found_mac:
3361 found |= VPD_FOUND_MAC;
3362 goto next;
3364 found_phy:
3365 found |= VPD_FOUND_PHY;
3367 next:
3368 p += klen;
3370 i += len + 3;
3373 use_random_mac_addr:
3374 if (found & VPD_FOUND_MAC)
3375 goto done;
3377 /* Sun MAC prefix then 3 random bytes. */
3378 pr_info("MAC address not found in ROM VPD\n");
3379 dev_addr[0] = 0x08;
3380 dev_addr[1] = 0x00;
3381 dev_addr[2] = 0x20;
3382 get_random_bytes(dev_addr + 3, 3);
3384 done:
3385 writel(0, cp->regs + REG_BIM_LOCAL_DEV_EN);
3386 return phy_type;
3389 /* check pci invariants */
3390 static void cas_check_pci_invariants(struct cas *cp)
3392 struct pci_dev *pdev = cp->pdev;
3394 cp->cas_flags = 0;
3395 if ((pdev->vendor == PCI_VENDOR_ID_SUN) &&
3396 (pdev->device == PCI_DEVICE_ID_SUN_CASSINI)) {
3397 if (pdev->revision >= CAS_ID_REVPLUS)
3398 cp->cas_flags |= CAS_FLAG_REG_PLUS;
3399 if (pdev->revision < CAS_ID_REVPLUS02u)
3400 cp->cas_flags |= CAS_FLAG_TARGET_ABORT;
3402 /* Original Cassini supports HW CSUM, but it's not
3403 * enabled by default as it can trigger TX hangs.
3405 if (pdev->revision < CAS_ID_REV2)
3406 cp->cas_flags |= CAS_FLAG_NO_HW_CSUM;
3407 } else {
3408 /* Only sun has original cassini chips. */
3409 cp->cas_flags |= CAS_FLAG_REG_PLUS;
3411 /* We use a flag because the same phy might be externally
3412 * connected.
3414 if ((pdev->vendor == PCI_VENDOR_ID_NS) &&
3415 (pdev->device == PCI_DEVICE_ID_NS_SATURN))
3416 cp->cas_flags |= CAS_FLAG_SATURN;
3421 static int cas_check_invariants(struct cas *cp)
3423 struct pci_dev *pdev = cp->pdev;
3424 u32 cfg;
3425 int i;
3427 /* get page size for rx buffers. */
3428 cp->page_order = 0;
3429 #ifdef USE_PAGE_ORDER
3430 if (PAGE_SHIFT < CAS_JUMBO_PAGE_SHIFT) {
3431 /* see if we can allocate larger pages */
3432 struct page *page = alloc_pages(GFP_ATOMIC,
3433 CAS_JUMBO_PAGE_SHIFT -
3434 PAGE_SHIFT);
3435 if (page) {
3436 __free_pages(page, CAS_JUMBO_PAGE_SHIFT - PAGE_SHIFT);
3437 cp->page_order = CAS_JUMBO_PAGE_SHIFT - PAGE_SHIFT;
3438 } else {
3439 printk("MTU limited to %d bytes\n", CAS_MAX_MTU);
3442 #endif
3443 cp->page_size = (PAGE_SIZE << cp->page_order);
3445 /* Fetch the FIFO configurations. */
3446 cp->tx_fifo_size = readl(cp->regs + REG_TX_FIFO_SIZE) * 64;
3447 cp->rx_fifo_size = RX_FIFO_SIZE;
3449 /* finish phy determination. MDIO1 takes precedence over MDIO0 if
3450 * they're both connected.
3452 cp->phy_type = cas_get_vpd_info(cp, cp->dev->dev_addr,
3453 PCI_SLOT(pdev->devfn));
3454 if (cp->phy_type & CAS_PHY_SERDES) {
3455 cp->cas_flags |= CAS_FLAG_1000MB_CAP;
3456 return 0; /* no more checking needed */
3459 /* MII */
3460 cfg = readl(cp->regs + REG_MIF_CFG);
3461 if (cfg & MIF_CFG_MDIO_1) {
3462 cp->phy_type = CAS_PHY_MII_MDIO1;
3463 } else if (cfg & MIF_CFG_MDIO_0) {
3464 cp->phy_type = CAS_PHY_MII_MDIO0;
3467 cas_mif_poll(cp, 0);
3468 writel(PCS_DATAPATH_MODE_MII, cp->regs + REG_PCS_DATAPATH_MODE);
3470 for (i = 0; i < 32; i++) {
3471 u32 phy_id;
3472 int j;
3474 for (j = 0; j < 3; j++) {
3475 cp->phy_addr = i;
3476 phy_id = cas_phy_read(cp, MII_PHYSID1) << 16;
3477 phy_id |= cas_phy_read(cp, MII_PHYSID2);
3478 if (phy_id && (phy_id != 0xFFFFFFFF)) {
3479 cp->phy_id = phy_id;
3480 goto done;
3484 pr_err("MII phy did not respond [%08x]\n",
3485 readl(cp->regs + REG_MIF_STATE_MACHINE));
3486 return -1;
3488 done:
3489 /* see if we can do gigabit */
3490 cfg = cas_phy_read(cp, MII_BMSR);
3491 if ((cfg & CAS_BMSR_1000_EXTEND) &&
3492 cas_phy_read(cp, CAS_MII_1000_EXTEND))
3493 cp->cas_flags |= CAS_FLAG_1000MB_CAP;
3494 return 0;
3497 /* Must be invoked under cp->lock. */
3498 static inline void cas_start_dma(struct cas *cp)
3500 int i;
3501 u32 val;
3502 int txfailed = 0;
3504 /* enable dma */
3505 val = readl(cp->regs + REG_TX_CFG) | TX_CFG_DMA_EN;
3506 writel(val, cp->regs + REG_TX_CFG);
3507 val = readl(cp->regs + REG_RX_CFG) | RX_CFG_DMA_EN;
3508 writel(val, cp->regs + REG_RX_CFG);
3510 /* enable the mac */
3511 val = readl(cp->regs + REG_MAC_TX_CFG) | MAC_TX_CFG_EN;
3512 writel(val, cp->regs + REG_MAC_TX_CFG);
3513 val = readl(cp->regs + REG_MAC_RX_CFG) | MAC_RX_CFG_EN;
3514 writel(val, cp->regs + REG_MAC_RX_CFG);
3516 i = STOP_TRIES;
3517 while (i-- > 0) {
3518 val = readl(cp->regs + REG_MAC_TX_CFG);
3519 if ((val & MAC_TX_CFG_EN))
3520 break;
3521 udelay(10);
3523 if (i < 0) txfailed = 1;
3524 i = STOP_TRIES;
3525 while (i-- > 0) {
3526 val = readl(cp->regs + REG_MAC_RX_CFG);
3527 if ((val & MAC_RX_CFG_EN)) {
3528 if (txfailed) {
3529 netdev_err(cp->dev,
3530 "enabling mac failed [tx:%08x:%08x]\n",
3531 readl(cp->regs + REG_MIF_STATE_MACHINE),
3532 readl(cp->regs + REG_MAC_STATE_MACHINE));
3534 goto enable_rx_done;
3536 udelay(10);
3538 netdev_err(cp->dev, "enabling mac failed [%s:%08x:%08x]\n",
3539 (txfailed ? "tx,rx" : "rx"),
3540 readl(cp->regs + REG_MIF_STATE_MACHINE),
3541 readl(cp->regs + REG_MAC_STATE_MACHINE));
3543 enable_rx_done:
3544 cas_unmask_intr(cp); /* enable interrupts */
3545 writel(RX_DESC_RINGN_SIZE(0) - 4, cp->regs + REG_RX_KICK);
3546 writel(0, cp->regs + REG_RX_COMP_TAIL);
3548 if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
3549 if (N_RX_DESC_RINGS > 1)
3550 writel(RX_DESC_RINGN_SIZE(1) - 4,
3551 cp->regs + REG_PLUS_RX_KICK1);
3553 for (i = 1; i < N_RX_COMP_RINGS; i++)
3554 writel(0, cp->regs + REG_PLUS_RX_COMPN_TAIL(i));
3558 /* Must be invoked under cp->lock. */
3559 static void cas_read_pcs_link_mode(struct cas *cp, int *fd, int *spd,
3560 int *pause)
3562 u32 val = readl(cp->regs + REG_PCS_MII_LPA);
3563 *fd = (val & PCS_MII_LPA_FD) ? 1 : 0;
3564 *pause = (val & PCS_MII_LPA_SYM_PAUSE) ? 0x01 : 0x00;
3565 if (val & PCS_MII_LPA_ASYM_PAUSE)
3566 *pause |= 0x10;
3567 *spd = 1000;
3570 /* Must be invoked under cp->lock. */
3571 static void cas_read_mii_link_mode(struct cas *cp, int *fd, int *spd,
3572 int *pause)
3574 u32 val;
3576 *fd = 0;
3577 *spd = 10;
3578 *pause = 0;
3580 /* use GMII registers */
3581 val = cas_phy_read(cp, MII_LPA);
3582 if (val & CAS_LPA_PAUSE)
3583 *pause = 0x01;
3585 if (val & CAS_LPA_ASYM_PAUSE)
3586 *pause |= 0x10;
3588 if (val & LPA_DUPLEX)
3589 *fd = 1;
3590 if (val & LPA_100)
3591 *spd = 100;
3593 if (cp->cas_flags & CAS_FLAG_1000MB_CAP) {
3594 val = cas_phy_read(cp, CAS_MII_1000_STATUS);
3595 if (val & (CAS_LPA_1000FULL | CAS_LPA_1000HALF))
3596 *spd = 1000;
3597 if (val & CAS_LPA_1000FULL)
3598 *fd = 1;
3602 /* A link-up condition has occurred, initialize and enable the
3603 * rest of the chip.
3605 * Must be invoked under cp->lock.
3607 static void cas_set_link_modes(struct cas *cp)
3609 u32 val;
3610 int full_duplex, speed, pause;
3612 full_duplex = 0;
3613 speed = 10;
3614 pause = 0;
3616 if (CAS_PHY_MII(cp->phy_type)) {
3617 cas_mif_poll(cp, 0);
3618 val = cas_phy_read(cp, MII_BMCR);
3619 if (val & BMCR_ANENABLE) {
3620 cas_read_mii_link_mode(cp, &full_duplex, &speed,
3621 &pause);
3622 } else {
3623 if (val & BMCR_FULLDPLX)
3624 full_duplex = 1;
3626 if (val & BMCR_SPEED100)
3627 speed = 100;
3628 else if (val & CAS_BMCR_SPEED1000)
3629 speed = (cp->cas_flags & CAS_FLAG_1000MB_CAP) ?
3630 1000 : 100;
3632 cas_mif_poll(cp, 1);
3634 } else {
3635 val = readl(cp->regs + REG_PCS_MII_CTRL);
3636 cas_read_pcs_link_mode(cp, &full_duplex, &speed, &pause);
3637 if ((val & PCS_MII_AUTONEG_EN) == 0) {
3638 if (val & PCS_MII_CTRL_DUPLEX)
3639 full_duplex = 1;
3643 netif_info(cp, link, cp->dev, "Link up at %d Mbps, %s-duplex\n",
3644 speed, full_duplex ? "full" : "half");
3646 val = MAC_XIF_TX_MII_OUTPUT_EN | MAC_XIF_LINK_LED;
3647 if (CAS_PHY_MII(cp->phy_type)) {
3648 val |= MAC_XIF_MII_BUFFER_OUTPUT_EN;
3649 if (!full_duplex)
3650 val |= MAC_XIF_DISABLE_ECHO;
3652 if (full_duplex)
3653 val |= MAC_XIF_FDPLX_LED;
3654 if (speed == 1000)
3655 val |= MAC_XIF_GMII_MODE;
3656 writel(val, cp->regs + REG_MAC_XIF_CFG);
3658 /* deal with carrier and collision detect. */
3659 val = MAC_TX_CFG_IPG_EN;
3660 if (full_duplex) {
3661 val |= MAC_TX_CFG_IGNORE_CARRIER;
3662 val |= MAC_TX_CFG_IGNORE_COLL;
3663 } else {
3664 #ifndef USE_CSMA_CD_PROTO
3665 val |= MAC_TX_CFG_NEVER_GIVE_UP_EN;
3666 val |= MAC_TX_CFG_NEVER_GIVE_UP_LIM;
3667 #endif
3669 /* val now set up for REG_MAC_TX_CFG */
3671 /* If gigabit and half-duplex, enable carrier extension
3672 * mode. increase slot time to 512 bytes as well.
3673 * else, disable it and make sure slot time is 64 bytes.
3674 * also activate checksum bug workaround
3676 if ((speed == 1000) && !full_duplex) {
3677 writel(val | MAC_TX_CFG_CARRIER_EXTEND,
3678 cp->regs + REG_MAC_TX_CFG);
3680 val = readl(cp->regs + REG_MAC_RX_CFG);
3681 val &= ~MAC_RX_CFG_STRIP_FCS; /* checksum workaround */
3682 writel(val | MAC_RX_CFG_CARRIER_EXTEND,
3683 cp->regs + REG_MAC_RX_CFG);
3685 writel(0x200, cp->regs + REG_MAC_SLOT_TIME);
3687 cp->crc_size = 4;
3688 /* minimum size gigabit frame at half duplex */
3689 cp->min_frame_size = CAS_1000MB_MIN_FRAME;
3691 } else {
3692 writel(val, cp->regs + REG_MAC_TX_CFG);
3694 /* checksum bug workaround. don't strip FCS when in
3695 * half-duplex mode
3697 val = readl(cp->regs + REG_MAC_RX_CFG);
3698 if (full_duplex) {
3699 val |= MAC_RX_CFG_STRIP_FCS;
3700 cp->crc_size = 0;
3701 cp->min_frame_size = CAS_MIN_MTU;
3702 } else {
3703 val &= ~MAC_RX_CFG_STRIP_FCS;
3704 cp->crc_size = 4;
3705 cp->min_frame_size = CAS_MIN_FRAME;
3707 writel(val & ~MAC_RX_CFG_CARRIER_EXTEND,
3708 cp->regs + REG_MAC_RX_CFG);
3709 writel(0x40, cp->regs + REG_MAC_SLOT_TIME);
3712 if (netif_msg_link(cp)) {
3713 if (pause & 0x01) {
3714 netdev_info(cp->dev, "Pause is enabled (rxfifo: %d off: %d on: %d)\n",
3715 cp->rx_fifo_size,
3716 cp->rx_pause_off,
3717 cp->rx_pause_on);
3718 } else if (pause & 0x10) {
3719 netdev_info(cp->dev, "TX pause enabled\n");
3720 } else {
3721 netdev_info(cp->dev, "Pause is disabled\n");
3725 val = readl(cp->regs + REG_MAC_CTRL_CFG);
3726 val &= ~(MAC_CTRL_CFG_SEND_PAUSE_EN | MAC_CTRL_CFG_RECV_PAUSE_EN);
3727 if (pause) { /* symmetric or asymmetric pause */
3728 val |= MAC_CTRL_CFG_SEND_PAUSE_EN;
3729 if (pause & 0x01) { /* symmetric pause */
3730 val |= MAC_CTRL_CFG_RECV_PAUSE_EN;
3733 writel(val, cp->regs + REG_MAC_CTRL_CFG);
3734 cas_start_dma(cp);
3737 /* Must be invoked under cp->lock. */
3738 static void cas_init_hw(struct cas *cp, int restart_link)
3740 if (restart_link)
3741 cas_phy_init(cp);
3743 cas_init_pause_thresholds(cp);
3744 cas_init_mac(cp);
3745 cas_init_dma(cp);
3747 if (restart_link) {
3748 /* Default aneg parameters */
3749 cp->timer_ticks = 0;
3750 cas_begin_auto_negotiation(cp, NULL);
3751 } else if (cp->lstate == link_up) {
3752 cas_set_link_modes(cp);
3753 netif_carrier_on(cp->dev);
3757 /* Must be invoked under cp->lock. on earlier cassini boards,
3758 * SOFT_0 is tied to PCI reset. we use this to force a pci reset,
3759 * let it settle out, and then restore pci state.
3761 static void cas_hard_reset(struct cas *cp)
3763 writel(BIM_LOCAL_DEV_SOFT_0, cp->regs + REG_BIM_LOCAL_DEV_EN);
3764 udelay(20);
3765 pci_restore_state(cp->pdev);
3769 static void cas_global_reset(struct cas *cp, int blkflag)
3771 int limit;
3773 /* issue a global reset. don't use RSTOUT. */
3774 if (blkflag && !CAS_PHY_MII(cp->phy_type)) {
3775 /* For PCS, when the blkflag is set, we should set the
3776 * SW_REST_BLOCK_PCS_SLINK bit to prevent the results of
3777 * the last autonegotiation from being cleared. We'll
3778 * need some special handling if the chip is set into a
3779 * loopback mode.
3781 writel((SW_RESET_TX | SW_RESET_RX | SW_RESET_BLOCK_PCS_SLINK),
3782 cp->regs + REG_SW_RESET);
3783 } else {
3784 writel(SW_RESET_TX | SW_RESET_RX, cp->regs + REG_SW_RESET);
3787 /* need to wait at least 3ms before polling register */
3788 mdelay(3);
3790 limit = STOP_TRIES;
3791 while (limit-- > 0) {
3792 u32 val = readl(cp->regs + REG_SW_RESET);
3793 if ((val & (SW_RESET_TX | SW_RESET_RX)) == 0)
3794 goto done;
3795 udelay(10);
3797 netdev_err(cp->dev, "sw reset failed\n");
3799 done:
3800 /* enable various BIM interrupts */
3801 writel(BIM_CFG_DPAR_INTR_ENABLE | BIM_CFG_RMA_INTR_ENABLE |
3802 BIM_CFG_RTA_INTR_ENABLE, cp->regs + REG_BIM_CFG);
3804 /* clear out pci error status mask for handled errors.
3805 * we don't deal with DMA counter overflows as they happen
3806 * all the time.
3808 writel(0xFFFFFFFFU & ~(PCI_ERR_BADACK | PCI_ERR_DTRTO |
3809 PCI_ERR_OTHER | PCI_ERR_BIM_DMA_WRITE |
3810 PCI_ERR_BIM_DMA_READ), cp->regs +
3811 REG_PCI_ERR_STATUS_MASK);
3813 /* set up for MII by default to address mac rx reset timeout
3814 * issue
3816 writel(PCS_DATAPATH_MODE_MII, cp->regs + REG_PCS_DATAPATH_MODE);
3819 static void cas_reset(struct cas *cp, int blkflag)
3821 u32 val;
3823 cas_mask_intr(cp);
3824 cas_global_reset(cp, blkflag);
3825 cas_mac_reset(cp);
3826 cas_entropy_reset(cp);
3828 /* disable dma engines. */
3829 val = readl(cp->regs + REG_TX_CFG);
3830 val &= ~TX_CFG_DMA_EN;
3831 writel(val, cp->regs + REG_TX_CFG);
3833 val = readl(cp->regs + REG_RX_CFG);
3834 val &= ~RX_CFG_DMA_EN;
3835 writel(val, cp->regs + REG_RX_CFG);
3837 /* program header parser */
3838 if ((cp->cas_flags & CAS_FLAG_TARGET_ABORT) ||
3839 (CAS_HP_ALT_FIRMWARE == cas_prog_null)) {
3840 cas_load_firmware(cp, CAS_HP_FIRMWARE);
3841 } else {
3842 cas_load_firmware(cp, CAS_HP_ALT_FIRMWARE);
3845 /* clear out error registers */
3846 spin_lock(&cp->stat_lock[N_TX_RINGS]);
3847 cas_clear_mac_err(cp);
3848 spin_unlock(&cp->stat_lock[N_TX_RINGS]);
3851 /* Shut down the chip, must be called with pm_mutex held. */
3852 static void cas_shutdown(struct cas *cp)
3854 unsigned long flags;
3856 /* Make us not-running to avoid timers respawning */
3857 cp->hw_running = 0;
3859 del_timer_sync(&cp->link_timer);
3861 /* Stop the reset task */
3862 #if 0
3863 while (atomic_read(&cp->reset_task_pending_mtu) ||
3864 atomic_read(&cp->reset_task_pending_spare) ||
3865 atomic_read(&cp->reset_task_pending_all))
3866 schedule();
3868 #else
3869 while (atomic_read(&cp->reset_task_pending))
3870 schedule();
3871 #endif
3872 /* Actually stop the chip */
3873 cas_lock_all_save(cp, flags);
3874 cas_reset(cp, 0);
3875 if (cp->cas_flags & CAS_FLAG_SATURN)
3876 cas_phy_powerdown(cp);
3877 cas_unlock_all_restore(cp, flags);
3880 static int cas_change_mtu(struct net_device *dev, int new_mtu)
3882 struct cas *cp = netdev_priv(dev);
3884 if (new_mtu < CAS_MIN_MTU || new_mtu > CAS_MAX_MTU)
3885 return -EINVAL;
3887 dev->mtu = new_mtu;
3888 if (!netif_running(dev) || !netif_device_present(dev))
3889 return 0;
3891 /* let the reset task handle it */
3892 #if 1
3893 atomic_inc(&cp->reset_task_pending);
3894 if ((cp->phy_type & CAS_PHY_SERDES)) {
3895 atomic_inc(&cp->reset_task_pending_all);
3896 } else {
3897 atomic_inc(&cp->reset_task_pending_mtu);
3899 schedule_work(&cp->reset_task);
3900 #else
3901 atomic_set(&cp->reset_task_pending, (cp->phy_type & CAS_PHY_SERDES) ?
3902 CAS_RESET_ALL : CAS_RESET_MTU);
3903 pr_err("reset called in cas_change_mtu\n");
3904 schedule_work(&cp->reset_task);
3905 #endif
3907 flush_scheduled_work();
3908 return 0;
3911 static void cas_clean_txd(struct cas *cp, int ring)
3913 struct cas_tx_desc *txd = cp->init_txds[ring];
3914 struct sk_buff *skb, **skbs = cp->tx_skbs[ring];
3915 u64 daddr, dlen;
3916 int i, size;
3918 size = TX_DESC_RINGN_SIZE(ring);
3919 for (i = 0; i < size; i++) {
3920 int frag;
3922 if (skbs[i] == NULL)
3923 continue;
3925 skb = skbs[i];
3926 skbs[i] = NULL;
3928 for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
3929 int ent = i & (size - 1);
3931 /* first buffer is never a tiny buffer and so
3932 * needs to be unmapped.
3934 daddr = le64_to_cpu(txd[ent].buffer);
3935 dlen = CAS_VAL(TX_DESC_BUFLEN,
3936 le64_to_cpu(txd[ent].control));
3937 pci_unmap_page(cp->pdev, daddr, dlen,
3938 PCI_DMA_TODEVICE);
3940 if (frag != skb_shinfo(skb)->nr_frags) {
3941 i++;
3943 /* next buffer might by a tiny buffer.
3944 * skip past it.
3946 ent = i & (size - 1);
3947 if (cp->tx_tiny_use[ring][ent].used)
3948 i++;
3951 dev_kfree_skb_any(skb);
3954 /* zero out tiny buf usage */
3955 memset(cp->tx_tiny_use[ring], 0, size*sizeof(*cp->tx_tiny_use[ring]));
3958 /* freed on close */
3959 static inline void cas_free_rx_desc(struct cas *cp, int ring)
3961 cas_page_t **page = cp->rx_pages[ring];
3962 int i, size;
3964 size = RX_DESC_RINGN_SIZE(ring);
3965 for (i = 0; i < size; i++) {
3966 if (page[i]) {
3967 cas_page_free(cp, page[i]);
3968 page[i] = NULL;
3973 static void cas_free_rxds(struct cas *cp)
3975 int i;
3977 for (i = 0; i < N_RX_DESC_RINGS; i++)
3978 cas_free_rx_desc(cp, i);
3981 /* Must be invoked under cp->lock. */
3982 static void cas_clean_rings(struct cas *cp)
3984 int i;
3986 /* need to clean all tx rings */
3987 memset(cp->tx_old, 0, sizeof(*cp->tx_old)*N_TX_RINGS);
3988 memset(cp->tx_new, 0, sizeof(*cp->tx_new)*N_TX_RINGS);
3989 for (i = 0; i < N_TX_RINGS; i++)
3990 cas_clean_txd(cp, i);
3992 /* zero out init block */
3993 memset(cp->init_block, 0, sizeof(struct cas_init_block));
3994 cas_clean_rxds(cp);
3995 cas_clean_rxcs(cp);
3998 /* allocated on open */
3999 static inline int cas_alloc_rx_desc(struct cas *cp, int ring)
4001 cas_page_t **page = cp->rx_pages[ring];
4002 int size, i = 0;
4004 size = RX_DESC_RINGN_SIZE(ring);
4005 for (i = 0; i < size; i++) {
4006 if ((page[i] = cas_page_alloc(cp, GFP_KERNEL)) == NULL)
4007 return -1;
4009 return 0;
4012 static int cas_alloc_rxds(struct cas *cp)
4014 int i;
4016 for (i = 0; i < N_RX_DESC_RINGS; i++) {
4017 if (cas_alloc_rx_desc(cp, i) < 0) {
4018 cas_free_rxds(cp);
4019 return -1;
4022 return 0;
4025 static void cas_reset_task(struct work_struct *work)
4027 struct cas *cp = container_of(work, struct cas, reset_task);
4028 #if 0
4029 int pending = atomic_read(&cp->reset_task_pending);
4030 #else
4031 int pending_all = atomic_read(&cp->reset_task_pending_all);
4032 int pending_spare = atomic_read(&cp->reset_task_pending_spare);
4033 int pending_mtu = atomic_read(&cp->reset_task_pending_mtu);
4035 if (pending_all == 0 && pending_spare == 0 && pending_mtu == 0) {
4036 /* We can have more tasks scheduled than actually
4037 * needed.
4039 atomic_dec(&cp->reset_task_pending);
4040 return;
4042 #endif
4043 /* The link went down, we reset the ring, but keep
4044 * DMA stopped. Use this function for reset
4045 * on error as well.
4047 if (cp->hw_running) {
4048 unsigned long flags;
4050 /* Make sure we don't get interrupts or tx packets */
4051 netif_device_detach(cp->dev);
4052 cas_lock_all_save(cp, flags);
4054 if (cp->opened) {
4055 /* We call cas_spare_recover when we call cas_open.
4056 * but we do not initialize the lists cas_spare_recover
4057 * uses until cas_open is called.
4059 cas_spare_recover(cp, GFP_ATOMIC);
4061 #if 1
4062 /* test => only pending_spare set */
4063 if (!pending_all && !pending_mtu)
4064 goto done;
4065 #else
4066 if (pending == CAS_RESET_SPARE)
4067 goto done;
4068 #endif
4069 /* when pending == CAS_RESET_ALL, the following
4070 * call to cas_init_hw will restart auto negotiation.
4071 * Setting the second argument of cas_reset to
4072 * !(pending == CAS_RESET_ALL) will set this argument
4073 * to 1 (avoiding reinitializing the PHY for the normal
4074 * PCS case) when auto negotiation is not restarted.
4076 #if 1
4077 cas_reset(cp, !(pending_all > 0));
4078 if (cp->opened)
4079 cas_clean_rings(cp);
4080 cas_init_hw(cp, (pending_all > 0));
4081 #else
4082 cas_reset(cp, !(pending == CAS_RESET_ALL));
4083 if (cp->opened)
4084 cas_clean_rings(cp);
4085 cas_init_hw(cp, pending == CAS_RESET_ALL);
4086 #endif
4088 done:
4089 cas_unlock_all_restore(cp, flags);
4090 netif_device_attach(cp->dev);
4092 #if 1
4093 atomic_sub(pending_all, &cp->reset_task_pending_all);
4094 atomic_sub(pending_spare, &cp->reset_task_pending_spare);
4095 atomic_sub(pending_mtu, &cp->reset_task_pending_mtu);
4096 atomic_dec(&cp->reset_task_pending);
4097 #else
4098 atomic_set(&cp->reset_task_pending, 0);
4099 #endif
4102 static void cas_link_timer(unsigned long data)
4104 struct cas *cp = (struct cas *) data;
4105 int mask, pending = 0, reset = 0;
4106 unsigned long flags;
4108 if (link_transition_timeout != 0 &&
4109 cp->link_transition_jiffies_valid &&
4110 ((jiffies - cp->link_transition_jiffies) >
4111 (link_transition_timeout))) {
4112 /* One-second counter so link-down workaround doesn't
4113 * cause resets to occur so fast as to fool the switch
4114 * into thinking the link is down.
4116 cp->link_transition_jiffies_valid = 0;
4119 if (!cp->hw_running)
4120 return;
4122 spin_lock_irqsave(&cp->lock, flags);
4123 cas_lock_tx(cp);
4124 cas_entropy_gather(cp);
4126 /* If the link task is still pending, we just
4127 * reschedule the link timer
4129 #if 1
4130 if (atomic_read(&cp->reset_task_pending_all) ||
4131 atomic_read(&cp->reset_task_pending_spare) ||
4132 atomic_read(&cp->reset_task_pending_mtu))
4133 goto done;
4134 #else
4135 if (atomic_read(&cp->reset_task_pending))
4136 goto done;
4137 #endif
4139 /* check for rx cleaning */
4140 if ((mask = (cp->cas_flags & CAS_FLAG_RXD_POST_MASK))) {
4141 int i, rmask;
4143 for (i = 0; i < MAX_RX_DESC_RINGS; i++) {
4144 rmask = CAS_FLAG_RXD_POST(i);
4145 if ((mask & rmask) == 0)
4146 continue;
4148 /* post_rxds will do a mod_timer */
4149 if (cas_post_rxds_ringN(cp, i, cp->rx_last[i]) < 0) {
4150 pending = 1;
4151 continue;
4153 cp->cas_flags &= ~rmask;
4157 if (CAS_PHY_MII(cp->phy_type)) {
4158 u16 bmsr;
4159 cas_mif_poll(cp, 0);
4160 bmsr = cas_phy_read(cp, MII_BMSR);
4161 /* WTZ: Solaris driver reads this twice, but that
4162 * may be due to the PCS case and the use of a
4163 * common implementation. Read it twice here to be
4164 * safe.
4166 bmsr = cas_phy_read(cp, MII_BMSR);
4167 cas_mif_poll(cp, 1);
4168 readl(cp->regs + REG_MIF_STATUS); /* avoid dups */
4169 reset = cas_mii_link_check(cp, bmsr);
4170 } else {
4171 reset = cas_pcs_link_check(cp);
4174 if (reset)
4175 goto done;
4177 /* check for tx state machine confusion */
4178 if ((readl(cp->regs + REG_MAC_TX_STATUS) & MAC_TX_FRAME_XMIT) == 0) {
4179 u32 val = readl(cp->regs + REG_MAC_STATE_MACHINE);
4180 u32 wptr, rptr;
4181 int tlm = CAS_VAL(MAC_SM_TLM, val);
4183 if (((tlm == 0x5) || (tlm == 0x3)) &&
4184 (CAS_VAL(MAC_SM_ENCAP_SM, val) == 0)) {
4185 netif_printk(cp, tx_err, KERN_DEBUG, cp->dev,
4186 "tx err: MAC_STATE[%08x]\n", val);
4187 reset = 1;
4188 goto done;
4191 val = readl(cp->regs + REG_TX_FIFO_PKT_CNT);
4192 wptr = readl(cp->regs + REG_TX_FIFO_WRITE_PTR);
4193 rptr = readl(cp->regs + REG_TX_FIFO_READ_PTR);
4194 if ((val == 0) && (wptr != rptr)) {
4195 netif_printk(cp, tx_err, KERN_DEBUG, cp->dev,
4196 "tx err: TX_FIFO[%08x:%08x:%08x]\n",
4197 val, wptr, rptr);
4198 reset = 1;
4201 if (reset)
4202 cas_hard_reset(cp);
4205 done:
4206 if (reset) {
4207 #if 1
4208 atomic_inc(&cp->reset_task_pending);
4209 atomic_inc(&cp->reset_task_pending_all);
4210 schedule_work(&cp->reset_task);
4211 #else
4212 atomic_set(&cp->reset_task_pending, CAS_RESET_ALL);
4213 pr_err("reset called in cas_link_timer\n");
4214 schedule_work(&cp->reset_task);
4215 #endif
4218 if (!pending)
4219 mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT);
4220 cas_unlock_tx(cp);
4221 spin_unlock_irqrestore(&cp->lock, flags);
4224 /* tiny buffers are used to avoid target abort issues with
4225 * older cassini's
4227 static void cas_tx_tiny_free(struct cas *cp)
4229 struct pci_dev *pdev = cp->pdev;
4230 int i;
4232 for (i = 0; i < N_TX_RINGS; i++) {
4233 if (!cp->tx_tiny_bufs[i])
4234 continue;
4236 pci_free_consistent(pdev, TX_TINY_BUF_BLOCK,
4237 cp->tx_tiny_bufs[i],
4238 cp->tx_tiny_dvma[i]);
4239 cp->tx_tiny_bufs[i] = NULL;
4243 static int cas_tx_tiny_alloc(struct cas *cp)
4245 struct pci_dev *pdev = cp->pdev;
4246 int i;
4248 for (i = 0; i < N_TX_RINGS; i++) {
4249 cp->tx_tiny_bufs[i] =
4250 pci_alloc_consistent(pdev, TX_TINY_BUF_BLOCK,
4251 &cp->tx_tiny_dvma[i]);
4252 if (!cp->tx_tiny_bufs[i]) {
4253 cas_tx_tiny_free(cp);
4254 return -1;
4257 return 0;
4261 static int cas_open(struct net_device *dev)
4263 struct cas *cp = netdev_priv(dev);
4264 int hw_was_up, err;
4265 unsigned long flags;
4267 mutex_lock(&cp->pm_mutex);
4269 hw_was_up = cp->hw_running;
4271 /* The power-management mutex protects the hw_running
4272 * etc. state so it is safe to do this bit without cp->lock
4274 if (!cp->hw_running) {
4275 /* Reset the chip */
4276 cas_lock_all_save(cp, flags);
4277 /* We set the second arg to cas_reset to zero
4278 * because cas_init_hw below will have its second
4279 * argument set to non-zero, which will force
4280 * autonegotiation to start.
4282 cas_reset(cp, 0);
4283 cp->hw_running = 1;
4284 cas_unlock_all_restore(cp, flags);
4287 err = -ENOMEM;
4288 if (cas_tx_tiny_alloc(cp) < 0)
4289 goto err_unlock;
4291 /* alloc rx descriptors */
4292 if (cas_alloc_rxds(cp) < 0)
4293 goto err_tx_tiny;
4295 /* allocate spares */
4296 cas_spare_init(cp);
4297 cas_spare_recover(cp, GFP_KERNEL);
4299 /* We can now request the interrupt as we know it's masked
4300 * on the controller. cassini+ has up to 4 interrupts
4301 * that can be used, but you need to do explicit pci interrupt
4302 * mapping to expose them
4304 if (request_irq(cp->pdev->irq, cas_interrupt,
4305 IRQF_SHARED, dev->name, (void *) dev)) {
4306 netdev_err(cp->dev, "failed to request irq !\n");
4307 err = -EAGAIN;
4308 goto err_spare;
4311 #ifdef USE_NAPI
4312 napi_enable(&cp->napi);
4313 #endif
4314 /* init hw */
4315 cas_lock_all_save(cp, flags);
4316 cas_clean_rings(cp);
4317 cas_init_hw(cp, !hw_was_up);
4318 cp->opened = 1;
4319 cas_unlock_all_restore(cp, flags);
4321 netif_start_queue(dev);
4322 mutex_unlock(&cp->pm_mutex);
4323 return 0;
4325 err_spare:
4326 cas_spare_free(cp);
4327 cas_free_rxds(cp);
4328 err_tx_tiny:
4329 cas_tx_tiny_free(cp);
4330 err_unlock:
4331 mutex_unlock(&cp->pm_mutex);
4332 return err;
4335 static int cas_close(struct net_device *dev)
4337 unsigned long flags;
4338 struct cas *cp = netdev_priv(dev);
4340 #ifdef USE_NAPI
4341 napi_disable(&cp->napi);
4342 #endif
4343 /* Make sure we don't get distracted by suspend/resume */
4344 mutex_lock(&cp->pm_mutex);
4346 netif_stop_queue(dev);
4348 /* Stop traffic, mark us closed */
4349 cas_lock_all_save(cp, flags);
4350 cp->opened = 0;
4351 cas_reset(cp, 0);
4352 cas_phy_init(cp);
4353 cas_begin_auto_negotiation(cp, NULL);
4354 cas_clean_rings(cp);
4355 cas_unlock_all_restore(cp, flags);
4357 free_irq(cp->pdev->irq, (void *) dev);
4358 cas_spare_free(cp);
4359 cas_free_rxds(cp);
4360 cas_tx_tiny_free(cp);
4361 mutex_unlock(&cp->pm_mutex);
4362 return 0;
4365 static struct {
4366 const char name[ETH_GSTRING_LEN];
4367 } ethtool_cassini_statnames[] = {
4368 {"collisions"},
4369 {"rx_bytes"},
4370 {"rx_crc_errors"},
4371 {"rx_dropped"},
4372 {"rx_errors"},
4373 {"rx_fifo_errors"},
4374 {"rx_frame_errors"},
4375 {"rx_length_errors"},
4376 {"rx_over_errors"},
4377 {"rx_packets"},
4378 {"tx_aborted_errors"},
4379 {"tx_bytes"},
4380 {"tx_dropped"},
4381 {"tx_errors"},
4382 {"tx_fifo_errors"},
4383 {"tx_packets"}
4385 #define CAS_NUM_STAT_KEYS ARRAY_SIZE(ethtool_cassini_statnames)
4387 static struct {
4388 const int offsets; /* neg. values for 2nd arg to cas_read_phy */
4389 } ethtool_register_table[] = {
4390 {-MII_BMSR},
4391 {-MII_BMCR},
4392 {REG_CAWR},
4393 {REG_INF_BURST},
4394 {REG_BIM_CFG},
4395 {REG_RX_CFG},
4396 {REG_HP_CFG},
4397 {REG_MAC_TX_CFG},
4398 {REG_MAC_RX_CFG},
4399 {REG_MAC_CTRL_CFG},
4400 {REG_MAC_XIF_CFG},
4401 {REG_MIF_CFG},
4402 {REG_PCS_CFG},
4403 {REG_SATURN_PCFG},
4404 {REG_PCS_MII_STATUS},
4405 {REG_PCS_STATE_MACHINE},
4406 {REG_MAC_COLL_EXCESS},
4407 {REG_MAC_COLL_LATE}
4409 #define CAS_REG_LEN ARRAY_SIZE(ethtool_register_table)
4410 #define CAS_MAX_REGS (sizeof (u32)*CAS_REG_LEN)
4412 static void cas_read_regs(struct cas *cp, u8 *ptr, int len)
4414 u8 *p;
4415 int i;
4416 unsigned long flags;
4418 spin_lock_irqsave(&cp->lock, flags);
4419 for (i = 0, p = ptr; i < len ; i ++, p += sizeof(u32)) {
4420 u16 hval;
4421 u32 val;
4422 if (ethtool_register_table[i].offsets < 0) {
4423 hval = cas_phy_read(cp,
4424 -ethtool_register_table[i].offsets);
4425 val = hval;
4426 } else {
4427 val= readl(cp->regs+ethtool_register_table[i].offsets);
4429 memcpy(p, (u8 *)&val, sizeof(u32));
4431 spin_unlock_irqrestore(&cp->lock, flags);
4434 static struct net_device_stats *cas_get_stats(struct net_device *dev)
4436 struct cas *cp = netdev_priv(dev);
4437 struct net_device_stats *stats = cp->net_stats;
4438 unsigned long flags;
4439 int i;
4440 unsigned long tmp;
4442 /* we collate all of the stats into net_stats[N_TX_RING] */
4443 if (!cp->hw_running)
4444 return stats + N_TX_RINGS;
4446 /* collect outstanding stats */
4447 /* WTZ: the Cassini spec gives these as 16 bit counters but
4448 * stored in 32-bit words. Added a mask of 0xffff to be safe,
4449 * in case the chip somehow puts any garbage in the other bits.
4450 * Also, counter usage didn't seem to mach what Adrian did
4451 * in the parts of the code that set these quantities. Made
4452 * that consistent.
4454 spin_lock_irqsave(&cp->stat_lock[N_TX_RINGS], flags);
4455 stats[N_TX_RINGS].rx_crc_errors +=
4456 readl(cp->regs + REG_MAC_FCS_ERR) & 0xffff;
4457 stats[N_TX_RINGS].rx_frame_errors +=
4458 readl(cp->regs + REG_MAC_ALIGN_ERR) &0xffff;
4459 stats[N_TX_RINGS].rx_length_errors +=
4460 readl(cp->regs + REG_MAC_LEN_ERR) & 0xffff;
4461 #if 1
4462 tmp = (readl(cp->regs + REG_MAC_COLL_EXCESS) & 0xffff) +
4463 (readl(cp->regs + REG_MAC_COLL_LATE) & 0xffff);
4464 stats[N_TX_RINGS].tx_aborted_errors += tmp;
4465 stats[N_TX_RINGS].collisions +=
4466 tmp + (readl(cp->regs + REG_MAC_COLL_NORMAL) & 0xffff);
4467 #else
4468 stats[N_TX_RINGS].tx_aborted_errors +=
4469 readl(cp->regs + REG_MAC_COLL_EXCESS);
4470 stats[N_TX_RINGS].collisions += readl(cp->regs + REG_MAC_COLL_EXCESS) +
4471 readl(cp->regs + REG_MAC_COLL_LATE);
4472 #endif
4473 cas_clear_mac_err(cp);
4475 /* saved bits that are unique to ring 0 */
4476 spin_lock(&cp->stat_lock[0]);
4477 stats[N_TX_RINGS].collisions += stats[0].collisions;
4478 stats[N_TX_RINGS].rx_over_errors += stats[0].rx_over_errors;
4479 stats[N_TX_RINGS].rx_frame_errors += stats[0].rx_frame_errors;
4480 stats[N_TX_RINGS].rx_fifo_errors += stats[0].rx_fifo_errors;
4481 stats[N_TX_RINGS].tx_aborted_errors += stats[0].tx_aborted_errors;
4482 stats[N_TX_RINGS].tx_fifo_errors += stats[0].tx_fifo_errors;
4483 spin_unlock(&cp->stat_lock[0]);
4485 for (i = 0; i < N_TX_RINGS; i++) {
4486 spin_lock(&cp->stat_lock[i]);
4487 stats[N_TX_RINGS].rx_length_errors +=
4488 stats[i].rx_length_errors;
4489 stats[N_TX_RINGS].rx_crc_errors += stats[i].rx_crc_errors;
4490 stats[N_TX_RINGS].rx_packets += stats[i].rx_packets;
4491 stats[N_TX_RINGS].tx_packets += stats[i].tx_packets;
4492 stats[N_TX_RINGS].rx_bytes += stats[i].rx_bytes;
4493 stats[N_TX_RINGS].tx_bytes += stats[i].tx_bytes;
4494 stats[N_TX_RINGS].rx_errors += stats[i].rx_errors;
4495 stats[N_TX_RINGS].tx_errors += stats[i].tx_errors;
4496 stats[N_TX_RINGS].rx_dropped += stats[i].rx_dropped;
4497 stats[N_TX_RINGS].tx_dropped += stats[i].tx_dropped;
4498 memset(stats + i, 0, sizeof(struct net_device_stats));
4499 spin_unlock(&cp->stat_lock[i]);
4501 spin_unlock_irqrestore(&cp->stat_lock[N_TX_RINGS], flags);
4502 return stats + N_TX_RINGS;
4506 static void cas_set_multicast(struct net_device *dev)
4508 struct cas *cp = netdev_priv(dev);
4509 u32 rxcfg, rxcfg_new;
4510 unsigned long flags;
4511 int limit = STOP_TRIES;
4513 if (!cp->hw_running)
4514 return;
4516 spin_lock_irqsave(&cp->lock, flags);
4517 rxcfg = readl(cp->regs + REG_MAC_RX_CFG);
4519 /* disable RX MAC and wait for completion */
4520 writel(rxcfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
4521 while (readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_EN) {
4522 if (!limit--)
4523 break;
4524 udelay(10);
4527 /* disable hash filter and wait for completion */
4528 limit = STOP_TRIES;
4529 rxcfg &= ~(MAC_RX_CFG_PROMISC_EN | MAC_RX_CFG_HASH_FILTER_EN);
4530 writel(rxcfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
4531 while (readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_HASH_FILTER_EN) {
4532 if (!limit--)
4533 break;
4534 udelay(10);
4537 /* program hash filters */
4538 cp->mac_rx_cfg = rxcfg_new = cas_setup_multicast(cp);
4539 rxcfg |= rxcfg_new;
4540 writel(rxcfg, cp->regs + REG_MAC_RX_CFG);
4541 spin_unlock_irqrestore(&cp->lock, flags);
4544 static void cas_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
4546 struct cas *cp = netdev_priv(dev);
4547 strncpy(info->driver, DRV_MODULE_NAME, ETHTOOL_BUSINFO_LEN);
4548 strncpy(info->version, DRV_MODULE_VERSION, ETHTOOL_BUSINFO_LEN);
4549 info->fw_version[0] = '\0';
4550 strncpy(info->bus_info, pci_name(cp->pdev), ETHTOOL_BUSINFO_LEN);
4551 info->regdump_len = cp->casreg_len < CAS_MAX_REGS ?
4552 cp->casreg_len : CAS_MAX_REGS;
4553 info->n_stats = CAS_NUM_STAT_KEYS;
4556 static int cas_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
4558 struct cas *cp = netdev_priv(dev);
4559 u16 bmcr;
4560 int full_duplex, speed, pause;
4561 unsigned long flags;
4562 enum link_state linkstate = link_up;
4564 cmd->advertising = 0;
4565 cmd->supported = SUPPORTED_Autoneg;
4566 if (cp->cas_flags & CAS_FLAG_1000MB_CAP) {
4567 cmd->supported |= SUPPORTED_1000baseT_Full;
4568 cmd->advertising |= ADVERTISED_1000baseT_Full;
4571 /* Record PHY settings if HW is on. */
4572 spin_lock_irqsave(&cp->lock, flags);
4573 bmcr = 0;
4574 linkstate = cp->lstate;
4575 if (CAS_PHY_MII(cp->phy_type)) {
4576 cmd->port = PORT_MII;
4577 cmd->transceiver = (cp->cas_flags & CAS_FLAG_SATURN) ?
4578 XCVR_INTERNAL : XCVR_EXTERNAL;
4579 cmd->phy_address = cp->phy_addr;
4580 cmd->advertising |= ADVERTISED_TP | ADVERTISED_MII |
4581 ADVERTISED_10baseT_Half |
4582 ADVERTISED_10baseT_Full |
4583 ADVERTISED_100baseT_Half |
4584 ADVERTISED_100baseT_Full;
4586 cmd->supported |=
4587 (SUPPORTED_10baseT_Half |
4588 SUPPORTED_10baseT_Full |
4589 SUPPORTED_100baseT_Half |
4590 SUPPORTED_100baseT_Full |
4591 SUPPORTED_TP | SUPPORTED_MII);
4593 if (cp->hw_running) {
4594 cas_mif_poll(cp, 0);
4595 bmcr = cas_phy_read(cp, MII_BMCR);
4596 cas_read_mii_link_mode(cp, &full_duplex,
4597 &speed, &pause);
4598 cas_mif_poll(cp, 1);
4601 } else {
4602 cmd->port = PORT_FIBRE;
4603 cmd->transceiver = XCVR_INTERNAL;
4604 cmd->phy_address = 0;
4605 cmd->supported |= SUPPORTED_FIBRE;
4606 cmd->advertising |= ADVERTISED_FIBRE;
4608 if (cp->hw_running) {
4609 /* pcs uses the same bits as mii */
4610 bmcr = readl(cp->regs + REG_PCS_MII_CTRL);
4611 cas_read_pcs_link_mode(cp, &full_duplex,
4612 &speed, &pause);
4615 spin_unlock_irqrestore(&cp->lock, flags);
4617 if (bmcr & BMCR_ANENABLE) {
4618 cmd->advertising |= ADVERTISED_Autoneg;
4619 cmd->autoneg = AUTONEG_ENABLE;
4620 cmd->speed = ((speed == 10) ?
4621 SPEED_10 :
4622 ((speed == 1000) ?
4623 SPEED_1000 : SPEED_100));
4624 cmd->duplex = full_duplex ? DUPLEX_FULL : DUPLEX_HALF;
4625 } else {
4626 cmd->autoneg = AUTONEG_DISABLE;
4627 cmd->speed =
4628 (bmcr & CAS_BMCR_SPEED1000) ?
4629 SPEED_1000 :
4630 ((bmcr & BMCR_SPEED100) ? SPEED_100:
4631 SPEED_10);
4632 cmd->duplex =
4633 (bmcr & BMCR_FULLDPLX) ?
4634 DUPLEX_FULL : DUPLEX_HALF;
4636 if (linkstate != link_up) {
4637 /* Force these to "unknown" if the link is not up and
4638 * autonogotiation in enabled. We can set the link
4639 * speed to 0, but not cmd->duplex,
4640 * because its legal values are 0 and 1. Ethtool will
4641 * print the value reported in parentheses after the
4642 * word "Unknown" for unrecognized values.
4644 * If in forced mode, we report the speed and duplex
4645 * settings that we configured.
4647 if (cp->link_cntl & BMCR_ANENABLE) {
4648 cmd->speed = 0;
4649 cmd->duplex = 0xff;
4650 } else {
4651 cmd->speed = SPEED_10;
4652 if (cp->link_cntl & BMCR_SPEED100) {
4653 cmd->speed = SPEED_100;
4654 } else if (cp->link_cntl & CAS_BMCR_SPEED1000) {
4655 cmd->speed = SPEED_1000;
4657 cmd->duplex = (cp->link_cntl & BMCR_FULLDPLX)?
4658 DUPLEX_FULL : DUPLEX_HALF;
4661 return 0;
4664 static int cas_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
4666 struct cas *cp = netdev_priv(dev);
4667 unsigned long flags;
4669 /* Verify the settings we care about. */
4670 if (cmd->autoneg != AUTONEG_ENABLE &&
4671 cmd->autoneg != AUTONEG_DISABLE)
4672 return -EINVAL;
4674 if (cmd->autoneg == AUTONEG_DISABLE &&
4675 ((cmd->speed != SPEED_1000 &&
4676 cmd->speed != SPEED_100 &&
4677 cmd->speed != SPEED_10) ||
4678 (cmd->duplex != DUPLEX_HALF &&
4679 cmd->duplex != DUPLEX_FULL)))
4680 return -EINVAL;
4682 /* Apply settings and restart link process. */
4683 spin_lock_irqsave(&cp->lock, flags);
4684 cas_begin_auto_negotiation(cp, cmd);
4685 spin_unlock_irqrestore(&cp->lock, flags);
4686 return 0;
4689 static int cas_nway_reset(struct net_device *dev)
4691 struct cas *cp = netdev_priv(dev);
4692 unsigned long flags;
4694 if ((cp->link_cntl & BMCR_ANENABLE) == 0)
4695 return -EINVAL;
4697 /* Restart link process. */
4698 spin_lock_irqsave(&cp->lock, flags);
4699 cas_begin_auto_negotiation(cp, NULL);
4700 spin_unlock_irqrestore(&cp->lock, flags);
4702 return 0;
4705 static u32 cas_get_link(struct net_device *dev)
4707 struct cas *cp = netdev_priv(dev);
4708 return cp->lstate == link_up;
4711 static u32 cas_get_msglevel(struct net_device *dev)
4713 struct cas *cp = netdev_priv(dev);
4714 return cp->msg_enable;
4717 static void cas_set_msglevel(struct net_device *dev, u32 value)
4719 struct cas *cp = netdev_priv(dev);
4720 cp->msg_enable = value;
4723 static int cas_get_regs_len(struct net_device *dev)
4725 struct cas *cp = netdev_priv(dev);
4726 return cp->casreg_len < CAS_MAX_REGS ? cp->casreg_len: CAS_MAX_REGS;
4729 static void cas_get_regs(struct net_device *dev, struct ethtool_regs *regs,
4730 void *p)
4732 struct cas *cp = netdev_priv(dev);
4733 regs->version = 0;
4734 /* cas_read_regs handles locks (cp->lock). */
4735 cas_read_regs(cp, p, regs->len / sizeof(u32));
4738 static int cas_get_sset_count(struct net_device *dev, int sset)
4740 switch (sset) {
4741 case ETH_SS_STATS:
4742 return CAS_NUM_STAT_KEYS;
4743 default:
4744 return -EOPNOTSUPP;
4748 static void cas_get_strings(struct net_device *dev, u32 stringset, u8 *data)
4750 memcpy(data, &ethtool_cassini_statnames,
4751 CAS_NUM_STAT_KEYS * ETH_GSTRING_LEN);
4754 static void cas_get_ethtool_stats(struct net_device *dev,
4755 struct ethtool_stats *estats, u64 *data)
4757 struct cas *cp = netdev_priv(dev);
4758 struct net_device_stats *stats = cas_get_stats(cp->dev);
4759 int i = 0;
4760 data[i++] = stats->collisions;
4761 data[i++] = stats->rx_bytes;
4762 data[i++] = stats->rx_crc_errors;
4763 data[i++] = stats->rx_dropped;
4764 data[i++] = stats->rx_errors;
4765 data[i++] = stats->rx_fifo_errors;
4766 data[i++] = stats->rx_frame_errors;
4767 data[i++] = stats->rx_length_errors;
4768 data[i++] = stats->rx_over_errors;
4769 data[i++] = stats->rx_packets;
4770 data[i++] = stats->tx_aborted_errors;
4771 data[i++] = stats->tx_bytes;
4772 data[i++] = stats->tx_dropped;
4773 data[i++] = stats->tx_errors;
4774 data[i++] = stats->tx_fifo_errors;
4775 data[i++] = stats->tx_packets;
4776 BUG_ON(i != CAS_NUM_STAT_KEYS);
4779 static const struct ethtool_ops cas_ethtool_ops = {
4780 .get_drvinfo = cas_get_drvinfo,
4781 .get_settings = cas_get_settings,
4782 .set_settings = cas_set_settings,
4783 .nway_reset = cas_nway_reset,
4784 .get_link = cas_get_link,
4785 .get_msglevel = cas_get_msglevel,
4786 .set_msglevel = cas_set_msglevel,
4787 .get_regs_len = cas_get_regs_len,
4788 .get_regs = cas_get_regs,
4789 .get_sset_count = cas_get_sset_count,
4790 .get_strings = cas_get_strings,
4791 .get_ethtool_stats = cas_get_ethtool_stats,
4794 static int cas_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
4796 struct cas *cp = netdev_priv(dev);
4797 struct mii_ioctl_data *data = if_mii(ifr);
4798 unsigned long flags;
4799 int rc = -EOPNOTSUPP;
4801 /* Hold the PM mutex while doing ioctl's or we may collide
4802 * with open/close and power management and oops.
4804 mutex_lock(&cp->pm_mutex);
4805 switch (cmd) {
4806 case SIOCGMIIPHY: /* Get address of MII PHY in use. */
4807 data->phy_id = cp->phy_addr;
4808 /* Fallthrough... */
4810 case SIOCGMIIREG: /* Read MII PHY register. */
4811 spin_lock_irqsave(&cp->lock, flags);
4812 cas_mif_poll(cp, 0);
4813 data->val_out = cas_phy_read(cp, data->reg_num & 0x1f);
4814 cas_mif_poll(cp, 1);
4815 spin_unlock_irqrestore(&cp->lock, flags);
4816 rc = 0;
4817 break;
4819 case SIOCSMIIREG: /* Write MII PHY register. */
4820 spin_lock_irqsave(&cp->lock, flags);
4821 cas_mif_poll(cp, 0);
4822 rc = cas_phy_write(cp, data->reg_num & 0x1f, data->val_in);
4823 cas_mif_poll(cp, 1);
4824 spin_unlock_irqrestore(&cp->lock, flags);
4825 break;
4826 default:
4827 break;
4830 mutex_unlock(&cp->pm_mutex);
4831 return rc;
4834 /* When this chip sits underneath an Intel 31154 bridge, it is the
4835 * only subordinate device and we can tweak the bridge settings to
4836 * reflect that fact.
4838 static void __devinit cas_program_bridge(struct pci_dev *cas_pdev)
4840 struct pci_dev *pdev = cas_pdev->bus->self;
4841 u32 val;
4843 if (!pdev)
4844 return;
4846 if (pdev->vendor != 0x8086 || pdev->device != 0x537c)
4847 return;
4849 /* Clear bit 10 (Bus Parking Control) in the Secondary
4850 * Arbiter Control/Status Register which lives at offset
4851 * 0x41. Using a 32-bit word read/modify/write at 0x40
4852 * is much simpler so that's how we do this.
4854 pci_read_config_dword(pdev, 0x40, &val);
4855 val &= ~0x00040000;
4856 pci_write_config_dword(pdev, 0x40, val);
4858 /* Max out the Multi-Transaction Timer settings since
4859 * Cassini is the only device present.
4861 * The register is 16-bit and lives at 0x50. When the
4862 * settings are enabled, it extends the GRANT# signal
4863 * for a requestor after a transaction is complete. This
4864 * allows the next request to run without first needing
4865 * to negotiate the GRANT# signal back.
4867 * Bits 12:10 define the grant duration:
4869 * 1 -- 16 clocks
4870 * 2 -- 32 clocks
4871 * 3 -- 64 clocks
4872 * 4 -- 128 clocks
4873 * 5 -- 256 clocks
4875 * All other values are illegal.
4877 * Bits 09:00 define which REQ/GNT signal pairs get the
4878 * GRANT# signal treatment. We set them all.
4880 pci_write_config_word(pdev, 0x50, (5 << 10) | 0x3ff);
4882 /* The Read Prefecth Policy register is 16-bit and sits at
4883 * offset 0x52. It enables a "smart" pre-fetch policy. We
4884 * enable it and max out all of the settings since only one
4885 * device is sitting underneath and thus bandwidth sharing is
4886 * not an issue.
4888 * The register has several 3 bit fields, which indicates a
4889 * multiplier applied to the base amount of prefetching the
4890 * chip would do. These fields are at:
4892 * 15:13 --- ReRead Primary Bus
4893 * 12:10 --- FirstRead Primary Bus
4894 * 09:07 --- ReRead Secondary Bus
4895 * 06:04 --- FirstRead Secondary Bus
4897 * Bits 03:00 control which REQ/GNT pairs the prefetch settings
4898 * get enabled on. Bit 3 is a grouped enabler which controls
4899 * all of the REQ/GNT pairs from [8:3]. Bits 2 to 0 control
4900 * the individual REQ/GNT pairs [2:0].
4902 pci_write_config_word(pdev, 0x52,
4903 (0x7 << 13) |
4904 (0x7 << 10) |
4905 (0x7 << 7) |
4906 (0x7 << 4) |
4907 (0xf << 0));
4909 /* Force cacheline size to 0x8 */
4910 pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, 0x08);
4912 /* Force latency timer to maximum setting so Cassini can
4913 * sit on the bus as long as it likes.
4915 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0xff);
4918 static const struct net_device_ops cas_netdev_ops = {
4919 .ndo_open = cas_open,
4920 .ndo_stop = cas_close,
4921 .ndo_start_xmit = cas_start_xmit,
4922 .ndo_get_stats = cas_get_stats,
4923 .ndo_set_multicast_list = cas_set_multicast,
4924 .ndo_do_ioctl = cas_ioctl,
4925 .ndo_tx_timeout = cas_tx_timeout,
4926 .ndo_change_mtu = cas_change_mtu,
4927 .ndo_set_mac_address = eth_mac_addr,
4928 .ndo_validate_addr = eth_validate_addr,
4929 #ifdef CONFIG_NET_POLL_CONTROLLER
4930 .ndo_poll_controller = cas_netpoll,
4931 #endif
4934 static int __devinit cas_init_one(struct pci_dev *pdev,
4935 const struct pci_device_id *ent)
4937 static int cas_version_printed = 0;
4938 unsigned long casreg_len;
4939 struct net_device *dev;
4940 struct cas *cp;
4941 int i, err, pci_using_dac;
4942 u16 pci_cmd;
4943 u8 orig_cacheline_size = 0, cas_cacheline_size = 0;
4945 if (cas_version_printed++ == 0)
4946 pr_info("%s", version);
4948 err = pci_enable_device(pdev);
4949 if (err) {
4950 dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n");
4951 return err;
4954 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
4955 dev_err(&pdev->dev, "Cannot find proper PCI device "
4956 "base address, aborting\n");
4957 err = -ENODEV;
4958 goto err_out_disable_pdev;
4961 dev = alloc_etherdev(sizeof(*cp));
4962 if (!dev) {
4963 dev_err(&pdev->dev, "Etherdev alloc failed, aborting\n");
4964 err = -ENOMEM;
4965 goto err_out_disable_pdev;
4967 SET_NETDEV_DEV(dev, &pdev->dev);
4969 err = pci_request_regions(pdev, dev->name);
4970 if (err) {
4971 dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n");
4972 goto err_out_free_netdev;
4974 pci_set_master(pdev);
4976 /* we must always turn on parity response or else parity
4977 * doesn't get generated properly. disable SERR/PERR as well.
4978 * in addition, we want to turn MWI on.
4980 pci_read_config_word(pdev, PCI_COMMAND, &pci_cmd);
4981 pci_cmd &= ~PCI_COMMAND_SERR;
4982 pci_cmd |= PCI_COMMAND_PARITY;
4983 pci_write_config_word(pdev, PCI_COMMAND, pci_cmd);
4984 if (pci_try_set_mwi(pdev))
4985 pr_warning("Could not enable MWI for %s\n", pci_name(pdev));
4987 cas_program_bridge(pdev);
4990 * On some architectures, the default cache line size set
4991 * by pci_try_set_mwi reduces perforamnce. We have to increase
4992 * it for this case. To start, we'll print some configuration
4993 * data.
4995 #if 1
4996 pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE,
4997 &orig_cacheline_size);
4998 if (orig_cacheline_size < CAS_PREF_CACHELINE_SIZE) {
4999 cas_cacheline_size =
5000 (CAS_PREF_CACHELINE_SIZE < SMP_CACHE_BYTES) ?
5001 CAS_PREF_CACHELINE_SIZE : SMP_CACHE_BYTES;
5002 if (pci_write_config_byte(pdev,
5003 PCI_CACHE_LINE_SIZE,
5004 cas_cacheline_size)) {
5005 dev_err(&pdev->dev, "Could not set PCI cache "
5006 "line size\n");
5007 goto err_write_cacheline;
5010 #endif
5013 /* Configure DMA attributes. */
5014 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
5015 pci_using_dac = 1;
5016 err = pci_set_consistent_dma_mask(pdev,
5017 DMA_BIT_MASK(64));
5018 if (err < 0) {
5019 dev_err(&pdev->dev, "Unable to obtain 64-bit DMA "
5020 "for consistent allocations\n");
5021 goto err_out_free_res;
5024 } else {
5025 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
5026 if (err) {
5027 dev_err(&pdev->dev, "No usable DMA configuration, "
5028 "aborting\n");
5029 goto err_out_free_res;
5031 pci_using_dac = 0;
5034 casreg_len = pci_resource_len(pdev, 0);
5036 cp = netdev_priv(dev);
5037 cp->pdev = pdev;
5038 #if 1
5039 /* A value of 0 indicates we never explicitly set it */
5040 cp->orig_cacheline_size = cas_cacheline_size ? orig_cacheline_size: 0;
5041 #endif
5042 cp->dev = dev;
5043 cp->msg_enable = (cassini_debug < 0) ? CAS_DEF_MSG_ENABLE :
5044 cassini_debug;
5046 cp->link_transition = LINK_TRANSITION_UNKNOWN;
5047 cp->link_transition_jiffies_valid = 0;
5049 spin_lock_init(&cp->lock);
5050 spin_lock_init(&cp->rx_inuse_lock);
5051 spin_lock_init(&cp->rx_spare_lock);
5052 for (i = 0; i < N_TX_RINGS; i++) {
5053 spin_lock_init(&cp->stat_lock[i]);
5054 spin_lock_init(&cp->tx_lock[i]);
5056 spin_lock_init(&cp->stat_lock[N_TX_RINGS]);
5057 mutex_init(&cp->pm_mutex);
5059 init_timer(&cp->link_timer);
5060 cp->link_timer.function = cas_link_timer;
5061 cp->link_timer.data = (unsigned long) cp;
5063 #if 1
5064 /* Just in case the implementation of atomic operations
5065 * change so that an explicit initialization is necessary.
5067 atomic_set(&cp->reset_task_pending, 0);
5068 atomic_set(&cp->reset_task_pending_all, 0);
5069 atomic_set(&cp->reset_task_pending_spare, 0);
5070 atomic_set(&cp->reset_task_pending_mtu, 0);
5071 #endif
5072 INIT_WORK(&cp->reset_task, cas_reset_task);
5074 /* Default link parameters */
5075 if (link_mode >= 0 && link_mode < 6)
5076 cp->link_cntl = link_modes[link_mode];
5077 else
5078 cp->link_cntl = BMCR_ANENABLE;
5079 cp->lstate = link_down;
5080 cp->link_transition = LINK_TRANSITION_LINK_DOWN;
5081 netif_carrier_off(cp->dev);
5082 cp->timer_ticks = 0;
5084 /* give us access to cassini registers */
5085 cp->regs = pci_iomap(pdev, 0, casreg_len);
5086 if (!cp->regs) {
5087 dev_err(&pdev->dev, "Cannot map device registers, aborting\n");
5088 goto err_out_free_res;
5090 cp->casreg_len = casreg_len;
5092 pci_save_state(pdev);
5093 cas_check_pci_invariants(cp);
5094 cas_hard_reset(cp);
5095 cas_reset(cp, 0);
5096 if (cas_check_invariants(cp))
5097 goto err_out_iounmap;
5098 if (cp->cas_flags & CAS_FLAG_SATURN)
5099 if (cas_saturn_firmware_init(cp))
5100 goto err_out_iounmap;
5102 cp->init_block = (struct cas_init_block *)
5103 pci_alloc_consistent(pdev, sizeof(struct cas_init_block),
5104 &cp->block_dvma);
5105 if (!cp->init_block) {
5106 dev_err(&pdev->dev, "Cannot allocate init block, aborting\n");
5107 goto err_out_iounmap;
5110 for (i = 0; i < N_TX_RINGS; i++)
5111 cp->init_txds[i] = cp->init_block->txds[i];
5113 for (i = 0; i < N_RX_DESC_RINGS; i++)
5114 cp->init_rxds[i] = cp->init_block->rxds[i];
5116 for (i = 0; i < N_RX_COMP_RINGS; i++)
5117 cp->init_rxcs[i] = cp->init_block->rxcs[i];
5119 for (i = 0; i < N_RX_FLOWS; i++)
5120 skb_queue_head_init(&cp->rx_flows[i]);
5122 dev->netdev_ops = &cas_netdev_ops;
5123 dev->ethtool_ops = &cas_ethtool_ops;
5124 dev->watchdog_timeo = CAS_TX_TIMEOUT;
5126 #ifdef USE_NAPI
5127 netif_napi_add(dev, &cp->napi, cas_poll, 64);
5128 #endif
5129 dev->irq = pdev->irq;
5130 dev->dma = 0;
5132 /* Cassini features. */
5133 if ((cp->cas_flags & CAS_FLAG_NO_HW_CSUM) == 0)
5134 dev->features |= NETIF_F_HW_CSUM | NETIF_F_SG;
5136 if (pci_using_dac)
5137 dev->features |= NETIF_F_HIGHDMA;
5139 if (register_netdev(dev)) {
5140 dev_err(&pdev->dev, "Cannot register net device, aborting\n");
5141 goto err_out_free_consistent;
5144 i = readl(cp->regs + REG_BIM_CFG);
5145 netdev_info(dev, "Sun Cassini%s (%sbit/%sMHz PCI/%s) Ethernet[%d] %pM\n",
5146 (cp->cas_flags & CAS_FLAG_REG_PLUS) ? "+" : "",
5147 (i & BIM_CFG_32BIT) ? "32" : "64",
5148 (i & BIM_CFG_66MHZ) ? "66" : "33",
5149 (cp->phy_type == CAS_PHY_SERDES) ? "Fi" : "Cu", pdev->irq,
5150 dev->dev_addr);
5152 pci_set_drvdata(pdev, dev);
5153 cp->hw_running = 1;
5154 cas_entropy_reset(cp);
5155 cas_phy_init(cp);
5156 cas_begin_auto_negotiation(cp, NULL);
5157 return 0;
5159 err_out_free_consistent:
5160 pci_free_consistent(pdev, sizeof(struct cas_init_block),
5161 cp->init_block, cp->block_dvma);
5163 err_out_iounmap:
5164 mutex_lock(&cp->pm_mutex);
5165 if (cp->hw_running)
5166 cas_shutdown(cp);
5167 mutex_unlock(&cp->pm_mutex);
5169 pci_iounmap(pdev, cp->regs);
5172 err_out_free_res:
5173 pci_release_regions(pdev);
5175 err_write_cacheline:
5176 /* Try to restore it in case the error occured after we
5177 * set it.
5179 pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, orig_cacheline_size);
5181 err_out_free_netdev:
5182 free_netdev(dev);
5184 err_out_disable_pdev:
5185 pci_disable_device(pdev);
5186 pci_set_drvdata(pdev, NULL);
5187 return -ENODEV;
5190 static void __devexit cas_remove_one(struct pci_dev *pdev)
5192 struct net_device *dev = pci_get_drvdata(pdev);
5193 struct cas *cp;
5194 if (!dev)
5195 return;
5197 cp = netdev_priv(dev);
5198 unregister_netdev(dev);
5200 if (cp->fw_data)
5201 vfree(cp->fw_data);
5203 mutex_lock(&cp->pm_mutex);
5204 flush_scheduled_work();
5205 if (cp->hw_running)
5206 cas_shutdown(cp);
5207 mutex_unlock(&cp->pm_mutex);
5209 #if 1
5210 if (cp->orig_cacheline_size) {
5211 /* Restore the cache line size if we had modified
5212 * it.
5214 pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE,
5215 cp->orig_cacheline_size);
5217 #endif
5218 pci_free_consistent(pdev, sizeof(struct cas_init_block),
5219 cp->init_block, cp->block_dvma);
5220 pci_iounmap(pdev, cp->regs);
5221 free_netdev(dev);
5222 pci_release_regions(pdev);
5223 pci_disable_device(pdev);
5224 pci_set_drvdata(pdev, NULL);
5227 #ifdef CONFIG_PM
5228 static int cas_suspend(struct pci_dev *pdev, pm_message_t state)
5230 struct net_device *dev = pci_get_drvdata(pdev);
5231 struct cas *cp = netdev_priv(dev);
5232 unsigned long flags;
5234 mutex_lock(&cp->pm_mutex);
5236 /* If the driver is opened, we stop the DMA */
5237 if (cp->opened) {
5238 netif_device_detach(dev);
5240 cas_lock_all_save(cp, flags);
5242 /* We can set the second arg of cas_reset to 0
5243 * because on resume, we'll call cas_init_hw with
5244 * its second arg set so that autonegotiation is
5245 * restarted.
5247 cas_reset(cp, 0);
5248 cas_clean_rings(cp);
5249 cas_unlock_all_restore(cp, flags);
5252 if (cp->hw_running)
5253 cas_shutdown(cp);
5254 mutex_unlock(&cp->pm_mutex);
5256 return 0;
5259 static int cas_resume(struct pci_dev *pdev)
5261 struct net_device *dev = pci_get_drvdata(pdev);
5262 struct cas *cp = netdev_priv(dev);
5264 netdev_info(dev, "resuming\n");
5266 mutex_lock(&cp->pm_mutex);
5267 cas_hard_reset(cp);
5268 if (cp->opened) {
5269 unsigned long flags;
5270 cas_lock_all_save(cp, flags);
5271 cas_reset(cp, 0);
5272 cp->hw_running = 1;
5273 cas_clean_rings(cp);
5274 cas_init_hw(cp, 1);
5275 cas_unlock_all_restore(cp, flags);
5277 netif_device_attach(dev);
5279 mutex_unlock(&cp->pm_mutex);
5280 return 0;
5282 #endif /* CONFIG_PM */
5284 static struct pci_driver cas_driver = {
5285 .name = DRV_MODULE_NAME,
5286 .id_table = cas_pci_tbl,
5287 .probe = cas_init_one,
5288 .remove = __devexit_p(cas_remove_one),
5289 #ifdef CONFIG_PM
5290 .suspend = cas_suspend,
5291 .resume = cas_resume
5292 #endif
5295 static int __init cas_init(void)
5297 if (linkdown_timeout > 0)
5298 link_transition_timeout = linkdown_timeout * HZ;
5299 else
5300 link_transition_timeout = 0;
5302 return pci_register_driver(&cas_driver);
5305 static void __exit cas_cleanup(void)
5307 pci_unregister_driver(&cas_driver);
5310 module_init(cas_init);
5311 module_exit(cas_cleanup);