1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2006 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
30 #include <net/ip6_checksum.h>
32 char e1000_driver_name
[] = "e1000";
33 static char e1000_driver_string
[] = "Intel(R) PRO/1000 Network Driver";
34 #define DRV_VERSION "7.3.21-k5-NAPI"
35 const char e1000_driver_version
[] = DRV_VERSION
;
36 static const char e1000_copyright
[] = "Copyright (c) 1999-2006 Intel Corporation.";
38 /* e1000_pci_tbl - PCI Device ID Table
40 * Last entry must be all 0s
43 * {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
45 static DEFINE_PCI_DEVICE_TABLE(e1000_pci_tbl
) = {
46 INTEL_E1000_ETHERNET_DEVICE(0x1000),
47 INTEL_E1000_ETHERNET_DEVICE(0x1001),
48 INTEL_E1000_ETHERNET_DEVICE(0x1004),
49 INTEL_E1000_ETHERNET_DEVICE(0x1008),
50 INTEL_E1000_ETHERNET_DEVICE(0x1009),
51 INTEL_E1000_ETHERNET_DEVICE(0x100C),
52 INTEL_E1000_ETHERNET_DEVICE(0x100D),
53 INTEL_E1000_ETHERNET_DEVICE(0x100E),
54 INTEL_E1000_ETHERNET_DEVICE(0x100F),
55 INTEL_E1000_ETHERNET_DEVICE(0x1010),
56 INTEL_E1000_ETHERNET_DEVICE(0x1011),
57 INTEL_E1000_ETHERNET_DEVICE(0x1012),
58 INTEL_E1000_ETHERNET_DEVICE(0x1013),
59 INTEL_E1000_ETHERNET_DEVICE(0x1014),
60 INTEL_E1000_ETHERNET_DEVICE(0x1015),
61 INTEL_E1000_ETHERNET_DEVICE(0x1016),
62 INTEL_E1000_ETHERNET_DEVICE(0x1017),
63 INTEL_E1000_ETHERNET_DEVICE(0x1018),
64 INTEL_E1000_ETHERNET_DEVICE(0x1019),
65 INTEL_E1000_ETHERNET_DEVICE(0x101A),
66 INTEL_E1000_ETHERNET_DEVICE(0x101D),
67 INTEL_E1000_ETHERNET_DEVICE(0x101E),
68 INTEL_E1000_ETHERNET_DEVICE(0x1026),
69 INTEL_E1000_ETHERNET_DEVICE(0x1027),
70 INTEL_E1000_ETHERNET_DEVICE(0x1028),
71 INTEL_E1000_ETHERNET_DEVICE(0x1075),
72 INTEL_E1000_ETHERNET_DEVICE(0x1076),
73 INTEL_E1000_ETHERNET_DEVICE(0x1077),
74 INTEL_E1000_ETHERNET_DEVICE(0x1078),
75 INTEL_E1000_ETHERNET_DEVICE(0x1079),
76 INTEL_E1000_ETHERNET_DEVICE(0x107A),
77 INTEL_E1000_ETHERNET_DEVICE(0x107B),
78 INTEL_E1000_ETHERNET_DEVICE(0x107C),
79 INTEL_E1000_ETHERNET_DEVICE(0x108A),
80 INTEL_E1000_ETHERNET_DEVICE(0x1099),
81 INTEL_E1000_ETHERNET_DEVICE(0x10B5),
82 /* required last entry */
86 MODULE_DEVICE_TABLE(pci
, e1000_pci_tbl
);
88 int e1000_up(struct e1000_adapter
*adapter
);
89 void e1000_down(struct e1000_adapter
*adapter
);
90 void e1000_reinit_locked(struct e1000_adapter
*adapter
);
91 void e1000_reset(struct e1000_adapter
*adapter
);
92 int e1000_set_spd_dplx(struct e1000_adapter
*adapter
, u16 spddplx
);
93 int e1000_setup_all_tx_resources(struct e1000_adapter
*adapter
);
94 int e1000_setup_all_rx_resources(struct e1000_adapter
*adapter
);
95 void e1000_free_all_tx_resources(struct e1000_adapter
*adapter
);
96 void e1000_free_all_rx_resources(struct e1000_adapter
*adapter
);
97 static int e1000_setup_tx_resources(struct e1000_adapter
*adapter
,
98 struct e1000_tx_ring
*txdr
);
99 static int e1000_setup_rx_resources(struct e1000_adapter
*adapter
,
100 struct e1000_rx_ring
*rxdr
);
101 static void e1000_free_tx_resources(struct e1000_adapter
*adapter
,
102 struct e1000_tx_ring
*tx_ring
);
103 static void e1000_free_rx_resources(struct e1000_adapter
*adapter
,
104 struct e1000_rx_ring
*rx_ring
);
105 void e1000_update_stats(struct e1000_adapter
*adapter
);
107 static int e1000_init_module(void);
108 static void e1000_exit_module(void);
109 static int e1000_probe(struct pci_dev
*pdev
, const struct pci_device_id
*ent
);
110 static void __devexit
e1000_remove(struct pci_dev
*pdev
);
111 static int e1000_alloc_queues(struct e1000_adapter
*adapter
);
112 static int e1000_sw_init(struct e1000_adapter
*adapter
);
113 static int e1000_open(struct net_device
*netdev
);
114 static int e1000_close(struct net_device
*netdev
);
115 static void e1000_configure_tx(struct e1000_adapter
*adapter
);
116 static void e1000_configure_rx(struct e1000_adapter
*adapter
);
117 static void e1000_setup_rctl(struct e1000_adapter
*adapter
);
118 static void e1000_clean_all_tx_rings(struct e1000_adapter
*adapter
);
119 static void e1000_clean_all_rx_rings(struct e1000_adapter
*adapter
);
120 static void e1000_clean_tx_ring(struct e1000_adapter
*adapter
,
121 struct e1000_tx_ring
*tx_ring
);
122 static void e1000_clean_rx_ring(struct e1000_adapter
*adapter
,
123 struct e1000_rx_ring
*rx_ring
);
124 static void e1000_set_rx_mode(struct net_device
*netdev
);
125 static void e1000_update_phy_info(unsigned long data
);
126 static void e1000_watchdog(unsigned long data
);
127 static void e1000_82547_tx_fifo_stall(unsigned long data
);
128 static netdev_tx_t
e1000_xmit_frame(struct sk_buff
*skb
,
129 struct net_device
*netdev
);
130 static struct net_device_stats
* e1000_get_stats(struct net_device
*netdev
);
131 static int e1000_change_mtu(struct net_device
*netdev
, int new_mtu
);
132 static int e1000_set_mac(struct net_device
*netdev
, void *p
);
133 static irqreturn_t
e1000_intr(int irq
, void *data
);
134 static bool e1000_clean_tx_irq(struct e1000_adapter
*adapter
,
135 struct e1000_tx_ring
*tx_ring
);
136 static int e1000_clean(struct napi_struct
*napi
, int budget
);
137 static bool e1000_clean_rx_irq(struct e1000_adapter
*adapter
,
138 struct e1000_rx_ring
*rx_ring
,
139 int *work_done
, int work_to_do
);
140 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter
*adapter
,
141 struct e1000_rx_ring
*rx_ring
,
142 int *work_done
, int work_to_do
);
143 static void e1000_alloc_rx_buffers(struct e1000_adapter
*adapter
,
144 struct e1000_rx_ring
*rx_ring
,
146 static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter
*adapter
,
147 struct e1000_rx_ring
*rx_ring
,
149 static int e1000_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
, int cmd
);
150 static int e1000_mii_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
,
152 static void e1000_enter_82542_rst(struct e1000_adapter
*adapter
);
153 static void e1000_leave_82542_rst(struct e1000_adapter
*adapter
);
154 static void e1000_tx_timeout(struct net_device
*dev
);
155 static void e1000_reset_task(struct work_struct
*work
);
156 static void e1000_smartspeed(struct e1000_adapter
*adapter
);
157 static int e1000_82547_fifo_workaround(struct e1000_adapter
*adapter
,
158 struct sk_buff
*skb
);
160 static void e1000_vlan_rx_register(struct net_device
*netdev
, struct vlan_group
*grp
);
161 static void e1000_vlan_rx_add_vid(struct net_device
*netdev
, u16 vid
);
162 static void e1000_vlan_rx_kill_vid(struct net_device
*netdev
, u16 vid
);
163 static void e1000_restore_vlan(struct e1000_adapter
*adapter
);
166 static int e1000_suspend(struct pci_dev
*pdev
, pm_message_t state
);
167 static int e1000_resume(struct pci_dev
*pdev
);
169 static void e1000_shutdown(struct pci_dev
*pdev
);
171 #ifdef CONFIG_NET_POLL_CONTROLLER
172 /* for netdump / net console */
173 static void e1000_netpoll (struct net_device
*netdev
);
176 #define COPYBREAK_DEFAULT 256
177 static unsigned int copybreak __read_mostly
= COPYBREAK_DEFAULT
;
178 module_param(copybreak
, uint
, 0644);
179 MODULE_PARM_DESC(copybreak
,
180 "Maximum size of packet that is copied to a new buffer on receive");
182 static pci_ers_result_t
e1000_io_error_detected(struct pci_dev
*pdev
,
183 pci_channel_state_t state
);
184 static pci_ers_result_t
e1000_io_slot_reset(struct pci_dev
*pdev
);
185 static void e1000_io_resume(struct pci_dev
*pdev
);
187 static struct pci_error_handlers e1000_err_handler
= {
188 .error_detected
= e1000_io_error_detected
,
189 .slot_reset
= e1000_io_slot_reset
,
190 .resume
= e1000_io_resume
,
193 static struct pci_driver e1000_driver
= {
194 .name
= e1000_driver_name
,
195 .id_table
= e1000_pci_tbl
,
196 .probe
= e1000_probe
,
197 .remove
= __devexit_p(e1000_remove
),
199 /* Power Managment Hooks */
200 .suspend
= e1000_suspend
,
201 .resume
= e1000_resume
,
203 .shutdown
= e1000_shutdown
,
204 .err_handler
= &e1000_err_handler
207 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
208 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
209 MODULE_LICENSE("GPL");
210 MODULE_VERSION(DRV_VERSION
);
212 static int debug
= NETIF_MSG_DRV
| NETIF_MSG_PROBE
;
213 module_param(debug
, int, 0);
214 MODULE_PARM_DESC(debug
, "Debug level (0=none,...,16=all)");
217 * e1000_init_module - Driver Registration Routine
219 * e1000_init_module is the first routine called when the driver is
220 * loaded. All it does is register with the PCI subsystem.
223 static int __init
e1000_init_module(void)
226 printk(KERN_INFO
"%s - version %s\n",
227 e1000_driver_string
, e1000_driver_version
);
229 printk(KERN_INFO
"%s\n", e1000_copyright
);
231 ret
= pci_register_driver(&e1000_driver
);
232 if (copybreak
!= COPYBREAK_DEFAULT
) {
234 printk(KERN_INFO
"e1000: copybreak disabled\n");
236 printk(KERN_INFO
"e1000: copybreak enabled for "
237 "packets <= %u bytes\n", copybreak
);
242 module_init(e1000_init_module
);
245 * e1000_exit_module - Driver Exit Cleanup Routine
247 * e1000_exit_module is called just before the driver is removed
251 static void __exit
e1000_exit_module(void)
253 pci_unregister_driver(&e1000_driver
);
256 module_exit(e1000_exit_module
);
258 static int e1000_request_irq(struct e1000_adapter
*adapter
)
260 struct net_device
*netdev
= adapter
->netdev
;
261 irq_handler_t handler
= e1000_intr
;
262 int irq_flags
= IRQF_SHARED
;
265 err
= request_irq(adapter
->pdev
->irq
, handler
, irq_flags
, netdev
->name
,
269 "Unable to allocate interrupt Error: %d\n", err
);
275 static void e1000_free_irq(struct e1000_adapter
*adapter
)
277 struct net_device
*netdev
= adapter
->netdev
;
279 free_irq(adapter
->pdev
->irq
, netdev
);
283 * e1000_irq_disable - Mask off interrupt generation on the NIC
284 * @adapter: board private structure
287 static void e1000_irq_disable(struct e1000_adapter
*adapter
)
289 struct e1000_hw
*hw
= &adapter
->hw
;
293 synchronize_irq(adapter
->pdev
->irq
);
297 * e1000_irq_enable - Enable default interrupt generation settings
298 * @adapter: board private structure
301 static void e1000_irq_enable(struct e1000_adapter
*adapter
)
303 struct e1000_hw
*hw
= &adapter
->hw
;
305 ew32(IMS
, IMS_ENABLE_MASK
);
309 static void e1000_update_mng_vlan(struct e1000_adapter
*adapter
)
311 struct e1000_hw
*hw
= &adapter
->hw
;
312 struct net_device
*netdev
= adapter
->netdev
;
313 u16 vid
= hw
->mng_cookie
.vlan_id
;
314 u16 old_vid
= adapter
->mng_vlan_id
;
315 if (adapter
->vlgrp
) {
316 if (!vlan_group_get_device(adapter
->vlgrp
, vid
)) {
317 if (hw
->mng_cookie
.status
&
318 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT
) {
319 e1000_vlan_rx_add_vid(netdev
, vid
);
320 adapter
->mng_vlan_id
= vid
;
322 adapter
->mng_vlan_id
= E1000_MNG_VLAN_NONE
;
324 if ((old_vid
!= (u16
)E1000_MNG_VLAN_NONE
) &&
326 !vlan_group_get_device(adapter
->vlgrp
, old_vid
))
327 e1000_vlan_rx_kill_vid(netdev
, old_vid
);
329 adapter
->mng_vlan_id
= vid
;
333 static void e1000_init_manageability(struct e1000_adapter
*adapter
)
335 struct e1000_hw
*hw
= &adapter
->hw
;
337 if (adapter
->en_mng_pt
) {
338 u32 manc
= er32(MANC
);
340 /* disable hardware interception of ARP */
341 manc
&= ~(E1000_MANC_ARP_EN
);
347 static void e1000_release_manageability(struct e1000_adapter
*adapter
)
349 struct e1000_hw
*hw
= &adapter
->hw
;
351 if (adapter
->en_mng_pt
) {
352 u32 manc
= er32(MANC
);
354 /* re-enable hardware interception of ARP */
355 manc
|= E1000_MANC_ARP_EN
;
362 * e1000_configure - configure the hardware for RX and TX
363 * @adapter = private board structure
365 static void e1000_configure(struct e1000_adapter
*adapter
)
367 struct net_device
*netdev
= adapter
->netdev
;
370 e1000_set_rx_mode(netdev
);
372 e1000_restore_vlan(adapter
);
373 e1000_init_manageability(adapter
);
375 e1000_configure_tx(adapter
);
376 e1000_setup_rctl(adapter
);
377 e1000_configure_rx(adapter
);
378 /* call E1000_DESC_UNUSED which always leaves
379 * at least 1 descriptor unused to make sure
380 * next_to_use != next_to_clean */
381 for (i
= 0; i
< adapter
->num_rx_queues
; i
++) {
382 struct e1000_rx_ring
*ring
= &adapter
->rx_ring
[i
];
383 adapter
->alloc_rx_buf(adapter
, ring
,
384 E1000_DESC_UNUSED(ring
));
388 int e1000_up(struct e1000_adapter
*adapter
)
390 struct e1000_hw
*hw
= &adapter
->hw
;
392 /* hardware has been reset, we need to reload some things */
393 e1000_configure(adapter
);
395 clear_bit(__E1000_DOWN
, &adapter
->flags
);
397 napi_enable(&adapter
->napi
);
399 e1000_irq_enable(adapter
);
401 netif_wake_queue(adapter
->netdev
);
403 /* fire a link change interrupt to start the watchdog */
404 ew32(ICS
, E1000_ICS_LSC
);
409 * e1000_power_up_phy - restore link in case the phy was powered down
410 * @adapter: address of board private structure
412 * The phy may be powered down to save power and turn off link when the
413 * driver is unloaded and wake on lan is not enabled (among others)
414 * *** this routine MUST be followed by a call to e1000_reset ***
418 void e1000_power_up_phy(struct e1000_adapter
*adapter
)
420 struct e1000_hw
*hw
= &adapter
->hw
;
423 /* Just clear the power down bit to wake the phy back up */
424 if (hw
->media_type
== e1000_media_type_copper
) {
425 /* according to the manual, the phy will retain its
426 * settings across a power-down/up cycle */
427 e1000_read_phy_reg(hw
, PHY_CTRL
, &mii_reg
);
428 mii_reg
&= ~MII_CR_POWER_DOWN
;
429 e1000_write_phy_reg(hw
, PHY_CTRL
, mii_reg
);
433 static void e1000_power_down_phy(struct e1000_adapter
*adapter
)
435 struct e1000_hw
*hw
= &adapter
->hw
;
437 /* Power down the PHY so no link is implied when interface is down *
438 * The PHY cannot be powered down if any of the following is true *
441 * (c) SoL/IDER session is active */
442 if (!adapter
->wol
&& hw
->mac_type
>= e1000_82540
&&
443 hw
->media_type
== e1000_media_type_copper
) {
446 switch (hw
->mac_type
) {
449 case e1000_82545_rev_3
:
451 case e1000_82546_rev_3
:
453 case e1000_82541_rev_2
:
455 case e1000_82547_rev_2
:
456 if (er32(MANC
) & E1000_MANC_SMBUS_EN
)
462 e1000_read_phy_reg(hw
, PHY_CTRL
, &mii_reg
);
463 mii_reg
|= MII_CR_POWER_DOWN
;
464 e1000_write_phy_reg(hw
, PHY_CTRL
, mii_reg
);
471 void e1000_down(struct e1000_adapter
*adapter
)
473 struct e1000_hw
*hw
= &adapter
->hw
;
474 struct net_device
*netdev
= adapter
->netdev
;
477 /* signal that we're down so the interrupt handler does not
478 * reschedule our watchdog timer */
479 set_bit(__E1000_DOWN
, &adapter
->flags
);
481 /* disable receives in the hardware */
483 ew32(RCTL
, rctl
& ~E1000_RCTL_EN
);
484 /* flush and sleep below */
486 netif_tx_disable(netdev
);
488 /* disable transmits in the hardware */
490 tctl
&= ~E1000_TCTL_EN
;
492 /* flush both disables and wait for them to finish */
496 napi_disable(&adapter
->napi
);
498 e1000_irq_disable(adapter
);
500 del_timer_sync(&adapter
->tx_fifo_stall_timer
);
501 del_timer_sync(&adapter
->watchdog_timer
);
502 del_timer_sync(&adapter
->phy_info_timer
);
504 adapter
->link_speed
= 0;
505 adapter
->link_duplex
= 0;
506 netif_carrier_off(netdev
);
508 e1000_reset(adapter
);
509 e1000_clean_all_tx_rings(adapter
);
510 e1000_clean_all_rx_rings(adapter
);
513 void e1000_reinit_locked(struct e1000_adapter
*adapter
)
515 WARN_ON(in_interrupt());
516 while (test_and_set_bit(__E1000_RESETTING
, &adapter
->flags
))
520 clear_bit(__E1000_RESETTING
, &adapter
->flags
);
523 void e1000_reset(struct e1000_adapter
*adapter
)
525 struct e1000_hw
*hw
= &adapter
->hw
;
526 u32 pba
= 0, tx_space
, min_tx_space
, min_rx_space
;
527 bool legacy_pba_adjust
= false;
530 /* Repartition Pba for greater than 9k mtu
531 * To take effect CTRL.RST is required.
534 switch (hw
->mac_type
) {
535 case e1000_82542_rev2_0
:
536 case e1000_82542_rev2_1
:
541 case e1000_82541_rev_2
:
542 legacy_pba_adjust
= true;
546 case e1000_82545_rev_3
:
548 case e1000_82546_rev_3
:
552 case e1000_82547_rev_2
:
553 legacy_pba_adjust
= true;
556 case e1000_undefined
:
561 if (legacy_pba_adjust
) {
562 if (hw
->max_frame_size
> E1000_RXBUFFER_8192
)
563 pba
-= 8; /* allocate more FIFO for Tx */
565 if (hw
->mac_type
== e1000_82547
) {
566 adapter
->tx_fifo_head
= 0;
567 adapter
->tx_head_addr
= pba
<< E1000_TX_HEAD_ADDR_SHIFT
;
568 adapter
->tx_fifo_size
=
569 (E1000_PBA_40K
- pba
) << E1000_PBA_BYTES_SHIFT
;
570 atomic_set(&adapter
->tx_fifo_stall
, 0);
572 } else if (hw
->max_frame_size
> ETH_FRAME_LEN
+ ETH_FCS_LEN
) {
573 /* adjust PBA for jumbo frames */
576 /* To maintain wire speed transmits, the Tx FIFO should be
577 * large enough to accommodate two full transmit packets,
578 * rounded up to the next 1KB and expressed in KB. Likewise,
579 * the Rx FIFO should be large enough to accommodate at least
580 * one full receive packet and is similarly rounded up and
581 * expressed in KB. */
583 /* upper 16 bits has Tx packet buffer allocation size in KB */
584 tx_space
= pba
>> 16;
585 /* lower 16 bits has Rx packet buffer allocation size in KB */
588 * the tx fifo also stores 16 bytes of information about the tx
589 * but don't include ethernet FCS because hardware appends it
591 min_tx_space
= (hw
->max_frame_size
+
592 sizeof(struct e1000_tx_desc
) -
594 min_tx_space
= ALIGN(min_tx_space
, 1024);
596 /* software strips receive CRC, so leave room for it */
597 min_rx_space
= hw
->max_frame_size
;
598 min_rx_space
= ALIGN(min_rx_space
, 1024);
601 /* If current Tx allocation is less than the min Tx FIFO size,
602 * and the min Tx FIFO size is less than the current Rx FIFO
603 * allocation, take space away from current Rx allocation */
604 if (tx_space
< min_tx_space
&&
605 ((min_tx_space
- tx_space
) < pba
)) {
606 pba
= pba
- (min_tx_space
- tx_space
);
608 /* PCI/PCIx hardware has PBA alignment constraints */
609 switch (hw
->mac_type
) {
610 case e1000_82545
... e1000_82546_rev_3
:
611 pba
&= ~(E1000_PBA_8K
- 1);
617 /* if short on rx space, rx wins and must trump tx
618 * adjustment or use Early Receive if available */
619 if (pba
< min_rx_space
)
627 * flow control settings:
628 * The high water mark must be low enough to fit one full frame
629 * (or the size used for early receive) above it in the Rx FIFO.
630 * Set it to the lower of:
631 * - 90% of the Rx FIFO size, and
632 * - the full Rx FIFO size minus the early receive size (for parts
633 * with ERT support assuming ERT set to E1000_ERT_2048), or
634 * - the full Rx FIFO size minus one full frame
636 hwm
= min(((pba
<< 10) * 9 / 10),
637 ((pba
<< 10) - hw
->max_frame_size
));
639 hw
->fc_high_water
= hwm
& 0xFFF8; /* 8-byte granularity */
640 hw
->fc_low_water
= hw
->fc_high_water
- 8;
641 hw
->fc_pause_time
= E1000_FC_PAUSE_TIME
;
643 hw
->fc
= hw
->original_fc
;
645 /* Allow time for pending master requests to run */
647 if (hw
->mac_type
>= e1000_82544
)
650 if (e1000_init_hw(hw
))
651 DPRINTK(PROBE
, ERR
, "Hardware Error\n");
652 e1000_update_mng_vlan(adapter
);
654 /* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
655 if (hw
->mac_type
>= e1000_82544
&&
657 hw
->autoneg_advertised
== ADVERTISE_1000_FULL
) {
658 u32 ctrl
= er32(CTRL
);
659 /* clear phy power management bit if we are in gig only mode,
660 * which if enabled will attempt negotiation to 100Mb, which
661 * can cause a loss of link at power off or driver unload */
662 ctrl
&= ~E1000_CTRL_SWDPIN3
;
666 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
667 ew32(VET
, ETHERNET_IEEE_VLAN_TYPE
);
669 e1000_reset_adaptive(hw
);
670 e1000_phy_get_info(hw
, &adapter
->phy_info
);
672 e1000_release_manageability(adapter
);
676 * Dump the eeprom for users having checksum issues
678 static void e1000_dump_eeprom(struct e1000_adapter
*adapter
)
680 struct net_device
*netdev
= adapter
->netdev
;
681 struct ethtool_eeprom eeprom
;
682 const struct ethtool_ops
*ops
= netdev
->ethtool_ops
;
685 u16 csum_old
, csum_new
= 0;
687 eeprom
.len
= ops
->get_eeprom_len(netdev
);
690 data
= kmalloc(eeprom
.len
, GFP_KERNEL
);
692 printk(KERN_ERR
"Unable to allocate memory to dump EEPROM"
697 ops
->get_eeprom(netdev
, &eeprom
, data
);
699 csum_old
= (data
[EEPROM_CHECKSUM_REG
* 2]) +
700 (data
[EEPROM_CHECKSUM_REG
* 2 + 1] << 8);
701 for (i
= 0; i
< EEPROM_CHECKSUM_REG
* 2; i
+= 2)
702 csum_new
+= data
[i
] + (data
[i
+ 1] << 8);
703 csum_new
= EEPROM_SUM
- csum_new
;
705 printk(KERN_ERR
"/*********************/\n");
706 printk(KERN_ERR
"Current EEPROM Checksum : 0x%04x\n", csum_old
);
707 printk(KERN_ERR
"Calculated : 0x%04x\n", csum_new
);
709 printk(KERN_ERR
"Offset Values\n");
710 printk(KERN_ERR
"======== ======\n");
711 print_hex_dump(KERN_ERR
, "", DUMP_PREFIX_OFFSET
, 16, 1, data
, 128, 0);
713 printk(KERN_ERR
"Include this output when contacting your support "
715 printk(KERN_ERR
"This is not a software error! Something bad "
716 "happened to your hardware or\n");
717 printk(KERN_ERR
"EEPROM image. Ignoring this "
718 "problem could result in further problems,\n");
719 printk(KERN_ERR
"possibly loss of data, corruption or system hangs!\n");
720 printk(KERN_ERR
"The MAC Address will be reset to 00:00:00:00:00:00, "
721 "which is invalid\n");
722 printk(KERN_ERR
"and requires you to set the proper MAC "
723 "address manually before continuing\n");
724 printk(KERN_ERR
"to enable this network device.\n");
725 printk(KERN_ERR
"Please inspect the EEPROM dump and report the issue "
726 "to your hardware vendor\n");
727 printk(KERN_ERR
"or Intel Customer Support.\n");
728 printk(KERN_ERR
"/*********************/\n");
734 * e1000_is_need_ioport - determine if an adapter needs ioport resources or not
735 * @pdev: PCI device information struct
737 * Return true if an adapter needs ioport resources
739 static int e1000_is_need_ioport(struct pci_dev
*pdev
)
741 switch (pdev
->device
) {
742 case E1000_DEV_ID_82540EM
:
743 case E1000_DEV_ID_82540EM_LOM
:
744 case E1000_DEV_ID_82540EP
:
745 case E1000_DEV_ID_82540EP_LOM
:
746 case E1000_DEV_ID_82540EP_LP
:
747 case E1000_DEV_ID_82541EI
:
748 case E1000_DEV_ID_82541EI_MOBILE
:
749 case E1000_DEV_ID_82541ER
:
750 case E1000_DEV_ID_82541ER_LOM
:
751 case E1000_DEV_ID_82541GI
:
752 case E1000_DEV_ID_82541GI_LF
:
753 case E1000_DEV_ID_82541GI_MOBILE
:
754 case E1000_DEV_ID_82544EI_COPPER
:
755 case E1000_DEV_ID_82544EI_FIBER
:
756 case E1000_DEV_ID_82544GC_COPPER
:
757 case E1000_DEV_ID_82544GC_LOM
:
758 case E1000_DEV_ID_82545EM_COPPER
:
759 case E1000_DEV_ID_82545EM_FIBER
:
760 case E1000_DEV_ID_82546EB_COPPER
:
761 case E1000_DEV_ID_82546EB_FIBER
:
762 case E1000_DEV_ID_82546EB_QUAD_COPPER
:
769 static const struct net_device_ops e1000_netdev_ops
= {
770 .ndo_open
= e1000_open
,
771 .ndo_stop
= e1000_close
,
772 .ndo_start_xmit
= e1000_xmit_frame
,
773 .ndo_get_stats
= e1000_get_stats
,
774 .ndo_set_rx_mode
= e1000_set_rx_mode
,
775 .ndo_set_mac_address
= e1000_set_mac
,
776 .ndo_tx_timeout
= e1000_tx_timeout
,
777 .ndo_change_mtu
= e1000_change_mtu
,
778 .ndo_do_ioctl
= e1000_ioctl
,
779 .ndo_validate_addr
= eth_validate_addr
,
781 .ndo_vlan_rx_register
= e1000_vlan_rx_register
,
782 .ndo_vlan_rx_add_vid
= e1000_vlan_rx_add_vid
,
783 .ndo_vlan_rx_kill_vid
= e1000_vlan_rx_kill_vid
,
784 #ifdef CONFIG_NET_POLL_CONTROLLER
785 .ndo_poll_controller
= e1000_netpoll
,
790 * e1000_probe - Device Initialization Routine
791 * @pdev: PCI device information struct
792 * @ent: entry in e1000_pci_tbl
794 * Returns 0 on success, negative on failure
796 * e1000_probe initializes an adapter identified by a pci_dev structure.
797 * The OS initialization, configuring of the adapter private structure,
798 * and a hardware reset occur.
800 static int __devinit
e1000_probe(struct pci_dev
*pdev
,
801 const struct pci_device_id
*ent
)
803 struct net_device
*netdev
;
804 struct e1000_adapter
*adapter
;
807 static int cards_found
= 0;
808 static int global_quad_port_a
= 0; /* global ksp3 port a indication */
809 int i
, err
, pci_using_dac
;
811 u16 eeprom_apme_mask
= E1000_EEPROM_APME
;
812 int bars
, need_ioport
;
814 /* do not allocate ioport bars when not needed */
815 need_ioport
= e1000_is_need_ioport(pdev
);
817 bars
= pci_select_bars(pdev
, IORESOURCE_MEM
| IORESOURCE_IO
);
818 err
= pci_enable_device(pdev
);
820 bars
= pci_select_bars(pdev
, IORESOURCE_MEM
);
821 err
= pci_enable_device_mem(pdev
);
826 if (!pci_set_dma_mask(pdev
, DMA_BIT_MASK(64)) &&
827 !pci_set_consistent_dma_mask(pdev
, DMA_BIT_MASK(64))) {
830 err
= pci_set_dma_mask(pdev
, DMA_BIT_MASK(32));
832 err
= pci_set_consistent_dma_mask(pdev
, DMA_BIT_MASK(32));
834 E1000_ERR("No usable DMA configuration, "
842 err
= pci_request_selected_regions(pdev
, bars
, e1000_driver_name
);
846 pci_set_master(pdev
);
847 err
= pci_save_state(pdev
);
849 goto err_alloc_etherdev
;
852 netdev
= alloc_etherdev(sizeof(struct e1000_adapter
));
854 goto err_alloc_etherdev
;
856 SET_NETDEV_DEV(netdev
, &pdev
->dev
);
858 pci_set_drvdata(pdev
, netdev
);
859 adapter
= netdev_priv(netdev
);
860 adapter
->netdev
= netdev
;
861 adapter
->pdev
= pdev
;
862 adapter
->msg_enable
= (1 << debug
) - 1;
863 adapter
->bars
= bars
;
864 adapter
->need_ioport
= need_ioport
;
870 hw
->hw_addr
= pci_ioremap_bar(pdev
, BAR_0
);
874 if (adapter
->need_ioport
) {
875 for (i
= BAR_1
; i
<= BAR_5
; i
++) {
876 if (pci_resource_len(pdev
, i
) == 0)
878 if (pci_resource_flags(pdev
, i
) & IORESOURCE_IO
) {
879 hw
->io_base
= pci_resource_start(pdev
, i
);
885 netdev
->netdev_ops
= &e1000_netdev_ops
;
886 e1000_set_ethtool_ops(netdev
);
887 netdev
->watchdog_timeo
= 5 * HZ
;
888 netif_napi_add(netdev
, &adapter
->napi
, e1000_clean
, 64);
890 strncpy(netdev
->name
, pci_name(pdev
), sizeof(netdev
->name
) - 1);
892 adapter
->bd_number
= cards_found
;
894 /* setup the private structure */
896 err
= e1000_sw_init(adapter
);
902 if (hw
->mac_type
>= e1000_82543
) {
903 netdev
->features
= NETIF_F_SG
|
907 NETIF_F_HW_VLAN_FILTER
;
910 if ((hw
->mac_type
>= e1000_82544
) &&
911 (hw
->mac_type
!= e1000_82547
))
912 netdev
->features
|= NETIF_F_TSO
;
915 netdev
->features
|= NETIF_F_HIGHDMA
;
917 netdev
->vlan_features
|= NETIF_F_TSO
;
918 netdev
->vlan_features
|= NETIF_F_HW_CSUM
;
919 netdev
->vlan_features
|= NETIF_F_SG
;
921 adapter
->en_mng_pt
= e1000_enable_mng_pass_thru(hw
);
923 /* initialize eeprom parameters */
924 if (e1000_init_eeprom_params(hw
)) {
925 E1000_ERR("EEPROM initialization failed\n");
929 /* before reading the EEPROM, reset the controller to
930 * put the device in a known good starting state */
934 /* make sure the EEPROM is good */
935 if (e1000_validate_eeprom_checksum(hw
) < 0) {
936 DPRINTK(PROBE
, ERR
, "The EEPROM Checksum Is Not Valid\n");
937 e1000_dump_eeprom(adapter
);
939 * set MAC address to all zeroes to invalidate and temporary
940 * disable this device for the user. This blocks regular
941 * traffic while still permitting ethtool ioctls from reaching
942 * the hardware as well as allowing the user to run the
943 * interface after manually setting a hw addr using
946 memset(hw
->mac_addr
, 0, netdev
->addr_len
);
948 /* copy the MAC address out of the EEPROM */
949 if (e1000_read_mac_addr(hw
))
950 DPRINTK(PROBE
, ERR
, "EEPROM Read Error\n");
952 /* don't block initalization here due to bad MAC address */
953 memcpy(netdev
->dev_addr
, hw
->mac_addr
, netdev
->addr_len
);
954 memcpy(netdev
->perm_addr
, hw
->mac_addr
, netdev
->addr_len
);
956 if (!is_valid_ether_addr(netdev
->perm_addr
))
957 DPRINTK(PROBE
, ERR
, "Invalid MAC Address\n");
959 e1000_get_bus_info(hw
);
961 init_timer(&adapter
->tx_fifo_stall_timer
);
962 adapter
->tx_fifo_stall_timer
.function
= &e1000_82547_tx_fifo_stall
;
963 adapter
->tx_fifo_stall_timer
.data
= (unsigned long)adapter
;
965 init_timer(&adapter
->watchdog_timer
);
966 adapter
->watchdog_timer
.function
= &e1000_watchdog
;
967 adapter
->watchdog_timer
.data
= (unsigned long) adapter
;
969 init_timer(&adapter
->phy_info_timer
);
970 adapter
->phy_info_timer
.function
= &e1000_update_phy_info
;
971 adapter
->phy_info_timer
.data
= (unsigned long)adapter
;
973 INIT_WORK(&adapter
->reset_task
, e1000_reset_task
);
975 e1000_check_options(adapter
);
977 /* Initial Wake on LAN setting
978 * If APM wake is enabled in the EEPROM,
979 * enable the ACPI Magic Packet filter
982 switch (hw
->mac_type
) {
983 case e1000_82542_rev2_0
:
984 case e1000_82542_rev2_1
:
988 e1000_read_eeprom(hw
,
989 EEPROM_INIT_CONTROL2_REG
, 1, &eeprom_data
);
990 eeprom_apme_mask
= E1000_EEPROM_82544_APM
;
993 case e1000_82546_rev_3
:
994 if (er32(STATUS
) & E1000_STATUS_FUNC_1
){
995 e1000_read_eeprom(hw
,
996 EEPROM_INIT_CONTROL3_PORT_B
, 1, &eeprom_data
);
1001 e1000_read_eeprom(hw
,
1002 EEPROM_INIT_CONTROL3_PORT_A
, 1, &eeprom_data
);
1005 if (eeprom_data
& eeprom_apme_mask
)
1006 adapter
->eeprom_wol
|= E1000_WUFC_MAG
;
1008 /* now that we have the eeprom settings, apply the special cases
1009 * where the eeprom may be wrong or the board simply won't support
1010 * wake on lan on a particular port */
1011 switch (pdev
->device
) {
1012 case E1000_DEV_ID_82546GB_PCIE
:
1013 adapter
->eeprom_wol
= 0;
1015 case E1000_DEV_ID_82546EB_FIBER
:
1016 case E1000_DEV_ID_82546GB_FIBER
:
1017 /* Wake events only supported on port A for dual fiber
1018 * regardless of eeprom setting */
1019 if (er32(STATUS
) & E1000_STATUS_FUNC_1
)
1020 adapter
->eeprom_wol
= 0;
1022 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3
:
1023 /* if quad port adapter, disable WoL on all but port A */
1024 if (global_quad_port_a
!= 0)
1025 adapter
->eeprom_wol
= 0;
1027 adapter
->quad_port_a
= 1;
1028 /* Reset for multiple quad port adapters */
1029 if (++global_quad_port_a
== 4)
1030 global_quad_port_a
= 0;
1034 /* initialize the wol settings based on the eeprom settings */
1035 adapter
->wol
= adapter
->eeprom_wol
;
1036 device_set_wakeup_enable(&adapter
->pdev
->dev
, adapter
->wol
);
1038 /* print bus type/speed/width info */
1039 DPRINTK(PROBE
, INFO
, "(PCI%s:%s:%s) ",
1040 ((hw
->bus_type
== e1000_bus_type_pcix
) ? "-X" : ""),
1041 ((hw
->bus_speed
== e1000_bus_speed_133
) ? "133MHz" :
1042 (hw
->bus_speed
== e1000_bus_speed_120
) ? "120MHz" :
1043 (hw
->bus_speed
== e1000_bus_speed_100
) ? "100MHz" :
1044 (hw
->bus_speed
== e1000_bus_speed_66
) ? "66MHz" : "33MHz"),
1045 ((hw
->bus_width
== e1000_bus_width_64
) ? "64-bit" : "32-bit"));
1047 printk("%pM\n", netdev
->dev_addr
);
1049 /* reset the hardware with the new settings */
1050 e1000_reset(adapter
);
1052 strcpy(netdev
->name
, "eth%d");
1053 err
= register_netdev(netdev
);
1057 /* carrier off reporting is important to ethtool even BEFORE open */
1058 netif_carrier_off(netdev
);
1060 DPRINTK(PROBE
, INFO
, "Intel(R) PRO/1000 Network Connection\n");
1067 e1000_phy_hw_reset(hw
);
1069 if (hw
->flash_address
)
1070 iounmap(hw
->flash_address
);
1071 kfree(adapter
->tx_ring
);
1072 kfree(adapter
->rx_ring
);
1074 iounmap(hw
->hw_addr
);
1076 free_netdev(netdev
);
1078 pci_release_selected_regions(pdev
, bars
);
1081 pci_disable_device(pdev
);
1086 * e1000_remove - Device Removal Routine
1087 * @pdev: PCI device information struct
1089 * e1000_remove is called by the PCI subsystem to alert the driver
1090 * that it should release a PCI device. The could be caused by a
1091 * Hot-Plug event, or because the driver is going to be removed from
1095 static void __devexit
e1000_remove(struct pci_dev
*pdev
)
1097 struct net_device
*netdev
= pci_get_drvdata(pdev
);
1098 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1099 struct e1000_hw
*hw
= &adapter
->hw
;
1101 set_bit(__E1000_DOWN
, &adapter
->flags
);
1102 del_timer_sync(&adapter
->tx_fifo_stall_timer
);
1103 del_timer_sync(&adapter
->watchdog_timer
);
1104 del_timer_sync(&adapter
->phy_info_timer
);
1106 cancel_work_sync(&adapter
->reset_task
);
1108 e1000_release_manageability(adapter
);
1110 unregister_netdev(netdev
);
1112 e1000_phy_hw_reset(hw
);
1114 kfree(adapter
->tx_ring
);
1115 kfree(adapter
->rx_ring
);
1117 iounmap(hw
->hw_addr
);
1118 if (hw
->flash_address
)
1119 iounmap(hw
->flash_address
);
1120 pci_release_selected_regions(pdev
, adapter
->bars
);
1122 free_netdev(netdev
);
1124 pci_disable_device(pdev
);
1128 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1129 * @adapter: board private structure to initialize
1131 * e1000_sw_init initializes the Adapter private data structure.
1132 * Fields are initialized based on PCI device information and
1133 * OS network device settings (MTU size).
1136 static int __devinit
e1000_sw_init(struct e1000_adapter
*adapter
)
1138 struct e1000_hw
*hw
= &adapter
->hw
;
1139 struct net_device
*netdev
= adapter
->netdev
;
1140 struct pci_dev
*pdev
= adapter
->pdev
;
1142 /* PCI config space info */
1144 hw
->vendor_id
= pdev
->vendor
;
1145 hw
->device_id
= pdev
->device
;
1146 hw
->subsystem_vendor_id
= pdev
->subsystem_vendor
;
1147 hw
->subsystem_id
= pdev
->subsystem_device
;
1148 hw
->revision_id
= pdev
->revision
;
1150 pci_read_config_word(pdev
, PCI_COMMAND
, &hw
->pci_cmd_word
);
1152 adapter
->rx_buffer_len
= MAXIMUM_ETHERNET_VLAN_SIZE
;
1153 hw
->max_frame_size
= netdev
->mtu
+
1154 ENET_HEADER_SIZE
+ ETHERNET_FCS_SIZE
;
1155 hw
->min_frame_size
= MINIMUM_ETHERNET_FRAME_SIZE
;
1157 /* identify the MAC */
1159 if (e1000_set_mac_type(hw
)) {
1160 DPRINTK(PROBE
, ERR
, "Unknown MAC Type\n");
1164 switch (hw
->mac_type
) {
1169 case e1000_82541_rev_2
:
1170 case e1000_82547_rev_2
:
1171 hw
->phy_init_script
= 1;
1175 e1000_set_media_type(hw
);
1177 hw
->wait_autoneg_complete
= false;
1178 hw
->tbi_compatibility_en
= true;
1179 hw
->adaptive_ifs
= true;
1181 /* Copper options */
1183 if (hw
->media_type
== e1000_media_type_copper
) {
1184 hw
->mdix
= AUTO_ALL_MODES
;
1185 hw
->disable_polarity_correction
= false;
1186 hw
->master_slave
= E1000_MASTER_SLAVE
;
1189 adapter
->num_tx_queues
= 1;
1190 adapter
->num_rx_queues
= 1;
1192 if (e1000_alloc_queues(adapter
)) {
1193 DPRINTK(PROBE
, ERR
, "Unable to allocate memory for queues\n");
1197 /* Explicitly disable IRQ since the NIC can be in any state. */
1198 e1000_irq_disable(adapter
);
1200 spin_lock_init(&adapter
->stats_lock
);
1202 set_bit(__E1000_DOWN
, &adapter
->flags
);
1208 * e1000_alloc_queues - Allocate memory for all rings
1209 * @adapter: board private structure to initialize
1211 * We allocate one ring per queue at run-time since we don't know the
1212 * number of queues at compile-time.
1215 static int __devinit
e1000_alloc_queues(struct e1000_adapter
*adapter
)
1217 adapter
->tx_ring
= kcalloc(adapter
->num_tx_queues
,
1218 sizeof(struct e1000_tx_ring
), GFP_KERNEL
);
1219 if (!adapter
->tx_ring
)
1222 adapter
->rx_ring
= kcalloc(adapter
->num_rx_queues
,
1223 sizeof(struct e1000_rx_ring
), GFP_KERNEL
);
1224 if (!adapter
->rx_ring
) {
1225 kfree(adapter
->tx_ring
);
1229 return E1000_SUCCESS
;
1233 * e1000_open - Called when a network interface is made active
1234 * @netdev: network interface device structure
1236 * Returns 0 on success, negative value on failure
1238 * The open entry point is called when a network interface is made
1239 * active by the system (IFF_UP). At this point all resources needed
1240 * for transmit and receive operations are allocated, the interrupt
1241 * handler is registered with the OS, the watchdog timer is started,
1242 * and the stack is notified that the interface is ready.
1245 static int e1000_open(struct net_device
*netdev
)
1247 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1248 struct e1000_hw
*hw
= &adapter
->hw
;
1251 /* disallow open during test */
1252 if (test_bit(__E1000_TESTING
, &adapter
->flags
))
1255 netif_carrier_off(netdev
);
1257 /* allocate transmit descriptors */
1258 err
= e1000_setup_all_tx_resources(adapter
);
1262 /* allocate receive descriptors */
1263 err
= e1000_setup_all_rx_resources(adapter
);
1267 e1000_power_up_phy(adapter
);
1269 adapter
->mng_vlan_id
= E1000_MNG_VLAN_NONE
;
1270 if ((hw
->mng_cookie
.status
&
1271 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT
)) {
1272 e1000_update_mng_vlan(adapter
);
1275 /* before we allocate an interrupt, we must be ready to handle it.
1276 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1277 * as soon as we call pci_request_irq, so we have to setup our
1278 * clean_rx handler before we do so. */
1279 e1000_configure(adapter
);
1281 err
= e1000_request_irq(adapter
);
1285 /* From here on the code is the same as e1000_up() */
1286 clear_bit(__E1000_DOWN
, &adapter
->flags
);
1288 napi_enable(&adapter
->napi
);
1290 e1000_irq_enable(adapter
);
1292 netif_start_queue(netdev
);
1294 /* fire a link status change interrupt to start the watchdog */
1295 ew32(ICS
, E1000_ICS_LSC
);
1297 return E1000_SUCCESS
;
1300 e1000_power_down_phy(adapter
);
1301 e1000_free_all_rx_resources(adapter
);
1303 e1000_free_all_tx_resources(adapter
);
1305 e1000_reset(adapter
);
1311 * e1000_close - Disables a network interface
1312 * @netdev: network interface device structure
1314 * Returns 0, this is not allowed to fail
1316 * The close entry point is called when an interface is de-activated
1317 * by the OS. The hardware is still under the drivers control, but
1318 * needs to be disabled. A global MAC reset is issued to stop the
1319 * hardware, and all transmit and receive resources are freed.
1322 static int e1000_close(struct net_device
*netdev
)
1324 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1325 struct e1000_hw
*hw
= &adapter
->hw
;
1327 WARN_ON(test_bit(__E1000_RESETTING
, &adapter
->flags
));
1328 e1000_down(adapter
);
1329 e1000_power_down_phy(adapter
);
1330 e1000_free_irq(adapter
);
1332 e1000_free_all_tx_resources(adapter
);
1333 e1000_free_all_rx_resources(adapter
);
1335 /* kill manageability vlan ID if supported, but not if a vlan with
1336 * the same ID is registered on the host OS (let 8021q kill it) */
1337 if ((hw
->mng_cookie
.status
&
1338 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT
) &&
1340 vlan_group_get_device(adapter
->vlgrp
, adapter
->mng_vlan_id
))) {
1341 e1000_vlan_rx_kill_vid(netdev
, adapter
->mng_vlan_id
);
1348 * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1349 * @adapter: address of board private structure
1350 * @start: address of beginning of memory
1351 * @len: length of memory
1353 static bool e1000_check_64k_bound(struct e1000_adapter
*adapter
, void *start
,
1356 struct e1000_hw
*hw
= &adapter
->hw
;
1357 unsigned long begin
= (unsigned long)start
;
1358 unsigned long end
= begin
+ len
;
1360 /* First rev 82545 and 82546 need to not allow any memory
1361 * write location to cross 64k boundary due to errata 23 */
1362 if (hw
->mac_type
== e1000_82545
||
1363 hw
->mac_type
== e1000_82546
) {
1364 return ((begin
^ (end
- 1)) >> 16) != 0 ? false : true;
1371 * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1372 * @adapter: board private structure
1373 * @txdr: tx descriptor ring (for a specific queue) to setup
1375 * Return 0 on success, negative on failure
1378 static int e1000_setup_tx_resources(struct e1000_adapter
*adapter
,
1379 struct e1000_tx_ring
*txdr
)
1381 struct pci_dev
*pdev
= adapter
->pdev
;
1384 size
= sizeof(struct e1000_buffer
) * txdr
->count
;
1385 txdr
->buffer_info
= vmalloc(size
);
1386 if (!txdr
->buffer_info
) {
1388 "Unable to allocate memory for the transmit descriptor ring\n");
1391 memset(txdr
->buffer_info
, 0, size
);
1393 /* round up to nearest 4K */
1395 txdr
->size
= txdr
->count
* sizeof(struct e1000_tx_desc
);
1396 txdr
->size
= ALIGN(txdr
->size
, 4096);
1398 txdr
->desc
= pci_alloc_consistent(pdev
, txdr
->size
, &txdr
->dma
);
1401 vfree(txdr
->buffer_info
);
1403 "Unable to allocate memory for the transmit descriptor ring\n");
1407 /* Fix for errata 23, can't cross 64kB boundary */
1408 if (!e1000_check_64k_bound(adapter
, txdr
->desc
, txdr
->size
)) {
1409 void *olddesc
= txdr
->desc
;
1410 dma_addr_t olddma
= txdr
->dma
;
1411 DPRINTK(TX_ERR
, ERR
, "txdr align check failed: %u bytes "
1412 "at %p\n", txdr
->size
, txdr
->desc
);
1413 /* Try again, without freeing the previous */
1414 txdr
->desc
= pci_alloc_consistent(pdev
, txdr
->size
, &txdr
->dma
);
1415 /* Failed allocation, critical failure */
1417 pci_free_consistent(pdev
, txdr
->size
, olddesc
, olddma
);
1418 goto setup_tx_desc_die
;
1421 if (!e1000_check_64k_bound(adapter
, txdr
->desc
, txdr
->size
)) {
1423 pci_free_consistent(pdev
, txdr
->size
, txdr
->desc
,
1425 pci_free_consistent(pdev
, txdr
->size
, olddesc
, olddma
);
1427 "Unable to allocate aligned memory "
1428 "for the transmit descriptor ring\n");
1429 vfree(txdr
->buffer_info
);
1432 /* Free old allocation, new allocation was successful */
1433 pci_free_consistent(pdev
, txdr
->size
, olddesc
, olddma
);
1436 memset(txdr
->desc
, 0, txdr
->size
);
1438 txdr
->next_to_use
= 0;
1439 txdr
->next_to_clean
= 0;
1445 * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1446 * (Descriptors) for all queues
1447 * @adapter: board private structure
1449 * Return 0 on success, negative on failure
1452 int e1000_setup_all_tx_resources(struct e1000_adapter
*adapter
)
1456 for (i
= 0; i
< adapter
->num_tx_queues
; i
++) {
1457 err
= e1000_setup_tx_resources(adapter
, &adapter
->tx_ring
[i
]);
1460 "Allocation for Tx Queue %u failed\n", i
);
1461 for (i
-- ; i
>= 0; i
--)
1462 e1000_free_tx_resources(adapter
,
1463 &adapter
->tx_ring
[i
]);
1472 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1473 * @adapter: board private structure
1475 * Configure the Tx unit of the MAC after a reset.
1478 static void e1000_configure_tx(struct e1000_adapter
*adapter
)
1481 struct e1000_hw
*hw
= &adapter
->hw
;
1482 u32 tdlen
, tctl
, tipg
;
1485 /* Setup the HW Tx Head and Tail descriptor pointers */
1487 switch (adapter
->num_tx_queues
) {
1490 tdba
= adapter
->tx_ring
[0].dma
;
1491 tdlen
= adapter
->tx_ring
[0].count
*
1492 sizeof(struct e1000_tx_desc
);
1494 ew32(TDBAH
, (tdba
>> 32));
1495 ew32(TDBAL
, (tdba
& 0x00000000ffffffffULL
));
1498 adapter
->tx_ring
[0].tdh
= ((hw
->mac_type
>= e1000_82543
) ? E1000_TDH
: E1000_82542_TDH
);
1499 adapter
->tx_ring
[0].tdt
= ((hw
->mac_type
>= e1000_82543
) ? E1000_TDT
: E1000_82542_TDT
);
1503 /* Set the default values for the Tx Inter Packet Gap timer */
1504 if ((hw
->media_type
== e1000_media_type_fiber
||
1505 hw
->media_type
== e1000_media_type_internal_serdes
))
1506 tipg
= DEFAULT_82543_TIPG_IPGT_FIBER
;
1508 tipg
= DEFAULT_82543_TIPG_IPGT_COPPER
;
1510 switch (hw
->mac_type
) {
1511 case e1000_82542_rev2_0
:
1512 case e1000_82542_rev2_1
:
1513 tipg
= DEFAULT_82542_TIPG_IPGT
;
1514 ipgr1
= DEFAULT_82542_TIPG_IPGR1
;
1515 ipgr2
= DEFAULT_82542_TIPG_IPGR2
;
1518 ipgr1
= DEFAULT_82543_TIPG_IPGR1
;
1519 ipgr2
= DEFAULT_82543_TIPG_IPGR2
;
1522 tipg
|= ipgr1
<< E1000_TIPG_IPGR1_SHIFT
;
1523 tipg
|= ipgr2
<< E1000_TIPG_IPGR2_SHIFT
;
1526 /* Set the Tx Interrupt Delay register */
1528 ew32(TIDV
, adapter
->tx_int_delay
);
1529 if (hw
->mac_type
>= e1000_82540
)
1530 ew32(TADV
, adapter
->tx_abs_int_delay
);
1532 /* Program the Transmit Control Register */
1535 tctl
&= ~E1000_TCTL_CT
;
1536 tctl
|= E1000_TCTL_PSP
| E1000_TCTL_RTLC
|
1537 (E1000_COLLISION_THRESHOLD
<< E1000_CT_SHIFT
);
1539 e1000_config_collision_dist(hw
);
1541 /* Setup Transmit Descriptor Settings for eop descriptor */
1542 adapter
->txd_cmd
= E1000_TXD_CMD_EOP
| E1000_TXD_CMD_IFCS
;
1544 /* only set IDE if we are delaying interrupts using the timers */
1545 if (adapter
->tx_int_delay
)
1546 adapter
->txd_cmd
|= E1000_TXD_CMD_IDE
;
1548 if (hw
->mac_type
< e1000_82543
)
1549 adapter
->txd_cmd
|= E1000_TXD_CMD_RPS
;
1551 adapter
->txd_cmd
|= E1000_TXD_CMD_RS
;
1553 /* Cache if we're 82544 running in PCI-X because we'll
1554 * need this to apply a workaround later in the send path. */
1555 if (hw
->mac_type
== e1000_82544
&&
1556 hw
->bus_type
== e1000_bus_type_pcix
)
1557 adapter
->pcix_82544
= 1;
1564 * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1565 * @adapter: board private structure
1566 * @rxdr: rx descriptor ring (for a specific queue) to setup
1568 * Returns 0 on success, negative on failure
1571 static int e1000_setup_rx_resources(struct e1000_adapter
*adapter
,
1572 struct e1000_rx_ring
*rxdr
)
1574 struct pci_dev
*pdev
= adapter
->pdev
;
1577 size
= sizeof(struct e1000_buffer
) * rxdr
->count
;
1578 rxdr
->buffer_info
= vmalloc(size
);
1579 if (!rxdr
->buffer_info
) {
1581 "Unable to allocate memory for the receive descriptor ring\n");
1584 memset(rxdr
->buffer_info
, 0, size
);
1586 desc_len
= sizeof(struct e1000_rx_desc
);
1588 /* Round up to nearest 4K */
1590 rxdr
->size
= rxdr
->count
* desc_len
;
1591 rxdr
->size
= ALIGN(rxdr
->size
, 4096);
1593 rxdr
->desc
= pci_alloc_consistent(pdev
, rxdr
->size
, &rxdr
->dma
);
1597 "Unable to allocate memory for the receive descriptor ring\n");
1599 vfree(rxdr
->buffer_info
);
1603 /* Fix for errata 23, can't cross 64kB boundary */
1604 if (!e1000_check_64k_bound(adapter
, rxdr
->desc
, rxdr
->size
)) {
1605 void *olddesc
= rxdr
->desc
;
1606 dma_addr_t olddma
= rxdr
->dma
;
1607 DPRINTK(RX_ERR
, ERR
, "rxdr align check failed: %u bytes "
1608 "at %p\n", rxdr
->size
, rxdr
->desc
);
1609 /* Try again, without freeing the previous */
1610 rxdr
->desc
= pci_alloc_consistent(pdev
, rxdr
->size
, &rxdr
->dma
);
1611 /* Failed allocation, critical failure */
1613 pci_free_consistent(pdev
, rxdr
->size
, olddesc
, olddma
);
1615 "Unable to allocate memory "
1616 "for the receive descriptor ring\n");
1617 goto setup_rx_desc_die
;
1620 if (!e1000_check_64k_bound(adapter
, rxdr
->desc
, rxdr
->size
)) {
1622 pci_free_consistent(pdev
, rxdr
->size
, rxdr
->desc
,
1624 pci_free_consistent(pdev
, rxdr
->size
, olddesc
, olddma
);
1626 "Unable to allocate aligned memory "
1627 "for the receive descriptor ring\n");
1628 goto setup_rx_desc_die
;
1630 /* Free old allocation, new allocation was successful */
1631 pci_free_consistent(pdev
, rxdr
->size
, olddesc
, olddma
);
1634 memset(rxdr
->desc
, 0, rxdr
->size
);
1636 rxdr
->next_to_clean
= 0;
1637 rxdr
->next_to_use
= 0;
1638 rxdr
->rx_skb_top
= NULL
;
1644 * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1645 * (Descriptors) for all queues
1646 * @adapter: board private structure
1648 * Return 0 on success, negative on failure
1651 int e1000_setup_all_rx_resources(struct e1000_adapter
*adapter
)
1655 for (i
= 0; i
< adapter
->num_rx_queues
; i
++) {
1656 err
= e1000_setup_rx_resources(adapter
, &adapter
->rx_ring
[i
]);
1659 "Allocation for Rx Queue %u failed\n", i
);
1660 for (i
-- ; i
>= 0; i
--)
1661 e1000_free_rx_resources(adapter
,
1662 &adapter
->rx_ring
[i
]);
1671 * e1000_setup_rctl - configure the receive control registers
1672 * @adapter: Board private structure
1674 static void e1000_setup_rctl(struct e1000_adapter
*adapter
)
1676 struct e1000_hw
*hw
= &adapter
->hw
;
1681 rctl
&= ~(3 << E1000_RCTL_MO_SHIFT
);
1683 rctl
|= E1000_RCTL_EN
| E1000_RCTL_BAM
|
1684 E1000_RCTL_LBM_NO
| E1000_RCTL_RDMTS_HALF
|
1685 (hw
->mc_filter_type
<< E1000_RCTL_MO_SHIFT
);
1687 if (hw
->tbi_compatibility_on
== 1)
1688 rctl
|= E1000_RCTL_SBP
;
1690 rctl
&= ~E1000_RCTL_SBP
;
1692 if (adapter
->netdev
->mtu
<= ETH_DATA_LEN
)
1693 rctl
&= ~E1000_RCTL_LPE
;
1695 rctl
|= E1000_RCTL_LPE
;
1697 /* Setup buffer sizes */
1698 rctl
&= ~E1000_RCTL_SZ_4096
;
1699 rctl
|= E1000_RCTL_BSEX
;
1700 switch (adapter
->rx_buffer_len
) {
1701 case E1000_RXBUFFER_2048
:
1703 rctl
|= E1000_RCTL_SZ_2048
;
1704 rctl
&= ~E1000_RCTL_BSEX
;
1706 case E1000_RXBUFFER_4096
:
1707 rctl
|= E1000_RCTL_SZ_4096
;
1709 case E1000_RXBUFFER_8192
:
1710 rctl
|= E1000_RCTL_SZ_8192
;
1712 case E1000_RXBUFFER_16384
:
1713 rctl
|= E1000_RCTL_SZ_16384
;
1721 * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1722 * @adapter: board private structure
1724 * Configure the Rx unit of the MAC after a reset.
1727 static void e1000_configure_rx(struct e1000_adapter
*adapter
)
1730 struct e1000_hw
*hw
= &adapter
->hw
;
1731 u32 rdlen
, rctl
, rxcsum
;
1733 if (adapter
->netdev
->mtu
> ETH_DATA_LEN
) {
1734 rdlen
= adapter
->rx_ring
[0].count
*
1735 sizeof(struct e1000_rx_desc
);
1736 adapter
->clean_rx
= e1000_clean_jumbo_rx_irq
;
1737 adapter
->alloc_rx_buf
= e1000_alloc_jumbo_rx_buffers
;
1739 rdlen
= adapter
->rx_ring
[0].count
*
1740 sizeof(struct e1000_rx_desc
);
1741 adapter
->clean_rx
= e1000_clean_rx_irq
;
1742 adapter
->alloc_rx_buf
= e1000_alloc_rx_buffers
;
1745 /* disable receives while setting up the descriptors */
1747 ew32(RCTL
, rctl
& ~E1000_RCTL_EN
);
1749 /* set the Receive Delay Timer Register */
1750 ew32(RDTR
, adapter
->rx_int_delay
);
1752 if (hw
->mac_type
>= e1000_82540
) {
1753 ew32(RADV
, adapter
->rx_abs_int_delay
);
1754 if (adapter
->itr_setting
!= 0)
1755 ew32(ITR
, 1000000000 / (adapter
->itr
* 256));
1758 /* Setup the HW Rx Head and Tail Descriptor Pointers and
1759 * the Base and Length of the Rx Descriptor Ring */
1760 switch (adapter
->num_rx_queues
) {
1763 rdba
= adapter
->rx_ring
[0].dma
;
1765 ew32(RDBAH
, (rdba
>> 32));
1766 ew32(RDBAL
, (rdba
& 0x00000000ffffffffULL
));
1769 adapter
->rx_ring
[0].rdh
= ((hw
->mac_type
>= e1000_82543
) ? E1000_RDH
: E1000_82542_RDH
);
1770 adapter
->rx_ring
[0].rdt
= ((hw
->mac_type
>= e1000_82543
) ? E1000_RDT
: E1000_82542_RDT
);
1774 /* Enable 82543 Receive Checksum Offload for TCP and UDP */
1775 if (hw
->mac_type
>= e1000_82543
) {
1776 rxcsum
= er32(RXCSUM
);
1777 if (adapter
->rx_csum
)
1778 rxcsum
|= E1000_RXCSUM_TUOFL
;
1780 /* don't need to clear IPPCSE as it defaults to 0 */
1781 rxcsum
&= ~E1000_RXCSUM_TUOFL
;
1782 ew32(RXCSUM
, rxcsum
);
1785 /* Enable Receives */
1790 * e1000_free_tx_resources - Free Tx Resources per Queue
1791 * @adapter: board private structure
1792 * @tx_ring: Tx descriptor ring for a specific queue
1794 * Free all transmit software resources
1797 static void e1000_free_tx_resources(struct e1000_adapter
*adapter
,
1798 struct e1000_tx_ring
*tx_ring
)
1800 struct pci_dev
*pdev
= adapter
->pdev
;
1802 e1000_clean_tx_ring(adapter
, tx_ring
);
1804 vfree(tx_ring
->buffer_info
);
1805 tx_ring
->buffer_info
= NULL
;
1807 pci_free_consistent(pdev
, tx_ring
->size
, tx_ring
->desc
, tx_ring
->dma
);
1809 tx_ring
->desc
= NULL
;
1813 * e1000_free_all_tx_resources - Free Tx Resources for All Queues
1814 * @adapter: board private structure
1816 * Free all transmit software resources
1819 void e1000_free_all_tx_resources(struct e1000_adapter
*adapter
)
1823 for (i
= 0; i
< adapter
->num_tx_queues
; i
++)
1824 e1000_free_tx_resources(adapter
, &adapter
->tx_ring
[i
]);
1827 static void e1000_unmap_and_free_tx_resource(struct e1000_adapter
*adapter
,
1828 struct e1000_buffer
*buffer_info
)
1830 if (buffer_info
->dma
) {
1831 if (buffer_info
->mapped_as_page
)
1832 pci_unmap_page(adapter
->pdev
, buffer_info
->dma
,
1833 buffer_info
->length
, PCI_DMA_TODEVICE
);
1835 pci_unmap_single(adapter
->pdev
, buffer_info
->dma
,
1836 buffer_info
->length
,
1838 buffer_info
->dma
= 0;
1840 if (buffer_info
->skb
) {
1841 dev_kfree_skb_any(buffer_info
->skb
);
1842 buffer_info
->skb
= NULL
;
1844 buffer_info
->time_stamp
= 0;
1845 /* buffer_info must be completely set up in the transmit path */
1849 * e1000_clean_tx_ring - Free Tx Buffers
1850 * @adapter: board private structure
1851 * @tx_ring: ring to be cleaned
1854 static void e1000_clean_tx_ring(struct e1000_adapter
*adapter
,
1855 struct e1000_tx_ring
*tx_ring
)
1857 struct e1000_hw
*hw
= &adapter
->hw
;
1858 struct e1000_buffer
*buffer_info
;
1862 /* Free all the Tx ring sk_buffs */
1864 for (i
= 0; i
< tx_ring
->count
; i
++) {
1865 buffer_info
= &tx_ring
->buffer_info
[i
];
1866 e1000_unmap_and_free_tx_resource(adapter
, buffer_info
);
1869 size
= sizeof(struct e1000_buffer
) * tx_ring
->count
;
1870 memset(tx_ring
->buffer_info
, 0, size
);
1872 /* Zero out the descriptor ring */
1874 memset(tx_ring
->desc
, 0, tx_ring
->size
);
1876 tx_ring
->next_to_use
= 0;
1877 tx_ring
->next_to_clean
= 0;
1878 tx_ring
->last_tx_tso
= 0;
1880 writel(0, hw
->hw_addr
+ tx_ring
->tdh
);
1881 writel(0, hw
->hw_addr
+ tx_ring
->tdt
);
1885 * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
1886 * @adapter: board private structure
1889 static void e1000_clean_all_tx_rings(struct e1000_adapter
*adapter
)
1893 for (i
= 0; i
< adapter
->num_tx_queues
; i
++)
1894 e1000_clean_tx_ring(adapter
, &adapter
->tx_ring
[i
]);
1898 * e1000_free_rx_resources - Free Rx Resources
1899 * @adapter: board private structure
1900 * @rx_ring: ring to clean the resources from
1902 * Free all receive software resources
1905 static void e1000_free_rx_resources(struct e1000_adapter
*adapter
,
1906 struct e1000_rx_ring
*rx_ring
)
1908 struct pci_dev
*pdev
= adapter
->pdev
;
1910 e1000_clean_rx_ring(adapter
, rx_ring
);
1912 vfree(rx_ring
->buffer_info
);
1913 rx_ring
->buffer_info
= NULL
;
1915 pci_free_consistent(pdev
, rx_ring
->size
, rx_ring
->desc
, rx_ring
->dma
);
1917 rx_ring
->desc
= NULL
;
1921 * e1000_free_all_rx_resources - Free Rx Resources for All Queues
1922 * @adapter: board private structure
1924 * Free all receive software resources
1927 void e1000_free_all_rx_resources(struct e1000_adapter
*adapter
)
1931 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
1932 e1000_free_rx_resources(adapter
, &adapter
->rx_ring
[i
]);
1936 * e1000_clean_rx_ring - Free Rx Buffers per Queue
1937 * @adapter: board private structure
1938 * @rx_ring: ring to free buffers from
1941 static void e1000_clean_rx_ring(struct e1000_adapter
*adapter
,
1942 struct e1000_rx_ring
*rx_ring
)
1944 struct e1000_hw
*hw
= &adapter
->hw
;
1945 struct e1000_buffer
*buffer_info
;
1946 struct pci_dev
*pdev
= adapter
->pdev
;
1950 /* Free all the Rx ring sk_buffs */
1951 for (i
= 0; i
< rx_ring
->count
; i
++) {
1952 buffer_info
= &rx_ring
->buffer_info
[i
];
1953 if (buffer_info
->dma
&&
1954 adapter
->clean_rx
== e1000_clean_rx_irq
) {
1955 pci_unmap_single(pdev
, buffer_info
->dma
,
1956 buffer_info
->length
,
1957 PCI_DMA_FROMDEVICE
);
1958 } else if (buffer_info
->dma
&&
1959 adapter
->clean_rx
== e1000_clean_jumbo_rx_irq
) {
1960 pci_unmap_page(pdev
, buffer_info
->dma
,
1961 buffer_info
->length
,
1962 PCI_DMA_FROMDEVICE
);
1965 buffer_info
->dma
= 0;
1966 if (buffer_info
->page
) {
1967 put_page(buffer_info
->page
);
1968 buffer_info
->page
= NULL
;
1970 if (buffer_info
->skb
) {
1971 dev_kfree_skb(buffer_info
->skb
);
1972 buffer_info
->skb
= NULL
;
1976 /* there also may be some cached data from a chained receive */
1977 if (rx_ring
->rx_skb_top
) {
1978 dev_kfree_skb(rx_ring
->rx_skb_top
);
1979 rx_ring
->rx_skb_top
= NULL
;
1982 size
= sizeof(struct e1000_buffer
) * rx_ring
->count
;
1983 memset(rx_ring
->buffer_info
, 0, size
);
1985 /* Zero out the descriptor ring */
1986 memset(rx_ring
->desc
, 0, rx_ring
->size
);
1988 rx_ring
->next_to_clean
= 0;
1989 rx_ring
->next_to_use
= 0;
1991 writel(0, hw
->hw_addr
+ rx_ring
->rdh
);
1992 writel(0, hw
->hw_addr
+ rx_ring
->rdt
);
1996 * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
1997 * @adapter: board private structure
2000 static void e1000_clean_all_rx_rings(struct e1000_adapter
*adapter
)
2004 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
2005 e1000_clean_rx_ring(adapter
, &adapter
->rx_ring
[i
]);
2008 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2009 * and memory write and invalidate disabled for certain operations
2011 static void e1000_enter_82542_rst(struct e1000_adapter
*adapter
)
2013 struct e1000_hw
*hw
= &adapter
->hw
;
2014 struct net_device
*netdev
= adapter
->netdev
;
2017 e1000_pci_clear_mwi(hw
);
2020 rctl
|= E1000_RCTL_RST
;
2022 E1000_WRITE_FLUSH();
2025 if (netif_running(netdev
))
2026 e1000_clean_all_rx_rings(adapter
);
2029 static void e1000_leave_82542_rst(struct e1000_adapter
*adapter
)
2031 struct e1000_hw
*hw
= &adapter
->hw
;
2032 struct net_device
*netdev
= adapter
->netdev
;
2036 rctl
&= ~E1000_RCTL_RST
;
2038 E1000_WRITE_FLUSH();
2041 if (hw
->pci_cmd_word
& PCI_COMMAND_INVALIDATE
)
2042 e1000_pci_set_mwi(hw
);
2044 if (netif_running(netdev
)) {
2045 /* No need to loop, because 82542 supports only 1 queue */
2046 struct e1000_rx_ring
*ring
= &adapter
->rx_ring
[0];
2047 e1000_configure_rx(adapter
);
2048 adapter
->alloc_rx_buf(adapter
, ring
, E1000_DESC_UNUSED(ring
));
2053 * e1000_set_mac - Change the Ethernet Address of the NIC
2054 * @netdev: network interface device structure
2055 * @p: pointer to an address structure
2057 * Returns 0 on success, negative on failure
2060 static int e1000_set_mac(struct net_device
*netdev
, void *p
)
2062 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
2063 struct e1000_hw
*hw
= &adapter
->hw
;
2064 struct sockaddr
*addr
= p
;
2066 if (!is_valid_ether_addr(addr
->sa_data
))
2067 return -EADDRNOTAVAIL
;
2069 /* 82542 2.0 needs to be in reset to write receive address registers */
2071 if (hw
->mac_type
== e1000_82542_rev2_0
)
2072 e1000_enter_82542_rst(adapter
);
2074 memcpy(netdev
->dev_addr
, addr
->sa_data
, netdev
->addr_len
);
2075 memcpy(hw
->mac_addr
, addr
->sa_data
, netdev
->addr_len
);
2077 e1000_rar_set(hw
, hw
->mac_addr
, 0);
2079 if (hw
->mac_type
== e1000_82542_rev2_0
)
2080 e1000_leave_82542_rst(adapter
);
2086 * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2087 * @netdev: network interface device structure
2089 * The set_rx_mode entry point is called whenever the unicast or multicast
2090 * address lists or the network interface flags are updated. This routine is
2091 * responsible for configuring the hardware for proper unicast, multicast,
2092 * promiscuous mode, and all-multi behavior.
2095 static void e1000_set_rx_mode(struct net_device
*netdev
)
2097 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
2098 struct e1000_hw
*hw
= &adapter
->hw
;
2099 struct netdev_hw_addr
*ha
;
2100 bool use_uc
= false;
2101 struct dev_addr_list
*mc_ptr
;
2104 int i
, rar_entries
= E1000_RAR_ENTRIES
;
2105 int mta_reg_count
= E1000_NUM_MTA_REGISTERS
;
2106 u32
*mcarray
= kcalloc(mta_reg_count
, sizeof(u32
), GFP_ATOMIC
);
2109 DPRINTK(PROBE
, ERR
, "memory allocation failed\n");
2113 /* Check for Promiscuous and All Multicast modes */
2117 if (netdev
->flags
& IFF_PROMISC
) {
2118 rctl
|= (E1000_RCTL_UPE
| E1000_RCTL_MPE
);
2119 rctl
&= ~E1000_RCTL_VFE
;
2121 if (netdev
->flags
& IFF_ALLMULTI
)
2122 rctl
|= E1000_RCTL_MPE
;
2124 rctl
&= ~E1000_RCTL_MPE
;
2125 /* Enable VLAN filter if there is a VLAN */
2127 rctl
|= E1000_RCTL_VFE
;
2130 if (netdev_uc_count(netdev
) > rar_entries
- 1) {
2131 rctl
|= E1000_RCTL_UPE
;
2132 } else if (!(netdev
->flags
& IFF_PROMISC
)) {
2133 rctl
&= ~E1000_RCTL_UPE
;
2139 /* 82542 2.0 needs to be in reset to write receive address registers */
2141 if (hw
->mac_type
== e1000_82542_rev2_0
)
2142 e1000_enter_82542_rst(adapter
);
2144 /* load the first 14 addresses into the exact filters 1-14. Unicast
2145 * addresses take precedence to avoid disabling unicast filtering
2148 * RAR 0 is used for the station MAC adddress
2149 * if there are not 14 addresses, go ahead and clear the filters
2153 netdev_for_each_uc_addr(ha
, netdev
) {
2154 if (i
== rar_entries
)
2156 e1000_rar_set(hw
, ha
->addr
, i
++);
2159 WARN_ON(i
== rar_entries
);
2161 netdev_for_each_mc_addr(mc_ptr
, netdev
) {
2162 if (i
== rar_entries
) {
2163 /* load any remaining addresses into the hash table */
2164 u32 hash_reg
, hash_bit
, mta
;
2165 hash_value
= e1000_hash_mc_addr(hw
, mc_ptr
->da_addr
);
2166 hash_reg
= (hash_value
>> 5) & 0x7F;
2167 hash_bit
= hash_value
& 0x1F;
2168 mta
= (1 << hash_bit
);
2169 mcarray
[hash_reg
] |= mta
;
2171 e1000_rar_set(hw
, mc_ptr
->da_addr
, i
++);
2175 for (; i
< rar_entries
; i
++) {
2176 E1000_WRITE_REG_ARRAY(hw
, RA
, i
<< 1, 0);
2177 E1000_WRITE_FLUSH();
2178 E1000_WRITE_REG_ARRAY(hw
, RA
, (i
<< 1) + 1, 0);
2179 E1000_WRITE_FLUSH();
2182 /* write the hash table completely, write from bottom to avoid
2183 * both stupid write combining chipsets, and flushing each write */
2184 for (i
= mta_reg_count
- 1; i
>= 0 ; i
--) {
2186 * If we are on an 82544 has an errata where writing odd
2187 * offsets overwrites the previous even offset, but writing
2188 * backwards over the range solves the issue by always
2189 * writing the odd offset first
2191 E1000_WRITE_REG_ARRAY(hw
, MTA
, i
, mcarray
[i
]);
2193 E1000_WRITE_FLUSH();
2195 if (hw
->mac_type
== e1000_82542_rev2_0
)
2196 e1000_leave_82542_rst(adapter
);
2201 /* Need to wait a few seconds after link up to get diagnostic information from
2204 static void e1000_update_phy_info(unsigned long data
)
2206 struct e1000_adapter
*adapter
= (struct e1000_adapter
*)data
;
2207 struct e1000_hw
*hw
= &adapter
->hw
;
2208 e1000_phy_get_info(hw
, &adapter
->phy_info
);
2212 * e1000_82547_tx_fifo_stall - Timer Call-back
2213 * @data: pointer to adapter cast into an unsigned long
2216 static void e1000_82547_tx_fifo_stall(unsigned long data
)
2218 struct e1000_adapter
*adapter
= (struct e1000_adapter
*)data
;
2219 struct e1000_hw
*hw
= &adapter
->hw
;
2220 struct net_device
*netdev
= adapter
->netdev
;
2223 if (atomic_read(&adapter
->tx_fifo_stall
)) {
2224 if ((er32(TDT
) == er32(TDH
)) &&
2225 (er32(TDFT
) == er32(TDFH
)) &&
2226 (er32(TDFTS
) == er32(TDFHS
))) {
2228 ew32(TCTL
, tctl
& ~E1000_TCTL_EN
);
2229 ew32(TDFT
, adapter
->tx_head_addr
);
2230 ew32(TDFH
, adapter
->tx_head_addr
);
2231 ew32(TDFTS
, adapter
->tx_head_addr
);
2232 ew32(TDFHS
, adapter
->tx_head_addr
);
2234 E1000_WRITE_FLUSH();
2236 adapter
->tx_fifo_head
= 0;
2237 atomic_set(&adapter
->tx_fifo_stall
, 0);
2238 netif_wake_queue(netdev
);
2239 } else if (!test_bit(__E1000_DOWN
, &adapter
->flags
)) {
2240 mod_timer(&adapter
->tx_fifo_stall_timer
, jiffies
+ 1);
2245 bool e1000_has_link(struct e1000_adapter
*adapter
)
2247 struct e1000_hw
*hw
= &adapter
->hw
;
2248 bool link_active
= false;
2250 /* get_link_status is set on LSC (link status) interrupt or
2251 * rx sequence error interrupt. get_link_status will stay
2252 * false until the e1000_check_for_link establishes link
2253 * for copper adapters ONLY
2255 switch (hw
->media_type
) {
2256 case e1000_media_type_copper
:
2257 if (hw
->get_link_status
) {
2258 e1000_check_for_link(hw
);
2259 link_active
= !hw
->get_link_status
;
2264 case e1000_media_type_fiber
:
2265 e1000_check_for_link(hw
);
2266 link_active
= !!(er32(STATUS
) & E1000_STATUS_LU
);
2268 case e1000_media_type_internal_serdes
:
2269 e1000_check_for_link(hw
);
2270 link_active
= hw
->serdes_has_link
;
2280 * e1000_watchdog - Timer Call-back
2281 * @data: pointer to adapter cast into an unsigned long
2283 static void e1000_watchdog(unsigned long data
)
2285 struct e1000_adapter
*adapter
= (struct e1000_adapter
*)data
;
2286 struct e1000_hw
*hw
= &adapter
->hw
;
2287 struct net_device
*netdev
= adapter
->netdev
;
2288 struct e1000_tx_ring
*txdr
= adapter
->tx_ring
;
2291 link
= e1000_has_link(adapter
);
2292 if ((netif_carrier_ok(netdev
)) && link
)
2296 if (!netif_carrier_ok(netdev
)) {
2299 /* update snapshot of PHY registers on LSC */
2300 e1000_get_speed_and_duplex(hw
,
2301 &adapter
->link_speed
,
2302 &adapter
->link_duplex
);
2305 printk(KERN_INFO
"e1000: %s NIC Link is Up %d Mbps %s, "
2306 "Flow Control: %s\n",
2308 adapter
->link_speed
,
2309 adapter
->link_duplex
== FULL_DUPLEX
?
2310 "Full Duplex" : "Half Duplex",
2311 ((ctrl
& E1000_CTRL_TFCE
) && (ctrl
&
2312 E1000_CTRL_RFCE
)) ? "RX/TX" : ((ctrl
&
2313 E1000_CTRL_RFCE
) ? "RX" : ((ctrl
&
2314 E1000_CTRL_TFCE
) ? "TX" : "None" )));
2316 /* adjust timeout factor according to speed/duplex */
2317 adapter
->tx_timeout_factor
= 1;
2318 switch (adapter
->link_speed
) {
2321 adapter
->tx_timeout_factor
= 16;
2325 /* maybe add some timeout factor ? */
2329 /* enable transmits in the hardware */
2331 tctl
|= E1000_TCTL_EN
;
2334 netif_carrier_on(netdev
);
2335 if (!test_bit(__E1000_DOWN
, &adapter
->flags
))
2336 mod_timer(&adapter
->phy_info_timer
,
2337 round_jiffies(jiffies
+ 2 * HZ
));
2338 adapter
->smartspeed
= 0;
2341 if (netif_carrier_ok(netdev
)) {
2342 adapter
->link_speed
= 0;
2343 adapter
->link_duplex
= 0;
2344 printk(KERN_INFO
"e1000: %s NIC Link is Down\n",
2346 netif_carrier_off(netdev
);
2348 if (!test_bit(__E1000_DOWN
, &adapter
->flags
))
2349 mod_timer(&adapter
->phy_info_timer
,
2350 round_jiffies(jiffies
+ 2 * HZ
));
2353 e1000_smartspeed(adapter
);
2357 e1000_update_stats(adapter
);
2359 hw
->tx_packet_delta
= adapter
->stats
.tpt
- adapter
->tpt_old
;
2360 adapter
->tpt_old
= adapter
->stats
.tpt
;
2361 hw
->collision_delta
= adapter
->stats
.colc
- adapter
->colc_old
;
2362 adapter
->colc_old
= adapter
->stats
.colc
;
2364 adapter
->gorcl
= adapter
->stats
.gorcl
- adapter
->gorcl_old
;
2365 adapter
->gorcl_old
= adapter
->stats
.gorcl
;
2366 adapter
->gotcl
= adapter
->stats
.gotcl
- adapter
->gotcl_old
;
2367 adapter
->gotcl_old
= adapter
->stats
.gotcl
;
2369 e1000_update_adaptive(hw
);
2371 if (!netif_carrier_ok(netdev
)) {
2372 if (E1000_DESC_UNUSED(txdr
) + 1 < txdr
->count
) {
2373 /* We've lost link, so the controller stops DMA,
2374 * but we've got queued Tx work that's never going
2375 * to get done, so reset controller to flush Tx.
2376 * (Do the reset outside of interrupt context). */
2377 adapter
->tx_timeout_count
++;
2378 schedule_work(&adapter
->reset_task
);
2379 /* return immediately since reset is imminent */
2384 /* Cause software interrupt to ensure rx ring is cleaned */
2385 ew32(ICS
, E1000_ICS_RXDMT0
);
2387 /* Force detection of hung controller every watchdog period */
2388 adapter
->detect_tx_hung
= true;
2390 /* Reset the timer */
2391 if (!test_bit(__E1000_DOWN
, &adapter
->flags
))
2392 mod_timer(&adapter
->watchdog_timer
,
2393 round_jiffies(jiffies
+ 2 * HZ
));
2396 enum latency_range
{
2400 latency_invalid
= 255
2404 * e1000_update_itr - update the dynamic ITR value based on statistics
2405 * @adapter: pointer to adapter
2406 * @itr_setting: current adapter->itr
2407 * @packets: the number of packets during this measurement interval
2408 * @bytes: the number of bytes during this measurement interval
2410 * Stores a new ITR value based on packets and byte
2411 * counts during the last interrupt. The advantage of per interrupt
2412 * computation is faster updates and more accurate ITR for the current
2413 * traffic pattern. Constants in this function were computed
2414 * based on theoretical maximum wire speed and thresholds were set based
2415 * on testing data as well as attempting to minimize response time
2416 * while increasing bulk throughput.
2417 * this functionality is controlled by the InterruptThrottleRate module
2418 * parameter (see e1000_param.c)
2420 static unsigned int e1000_update_itr(struct e1000_adapter
*adapter
,
2421 u16 itr_setting
, int packets
, int bytes
)
2423 unsigned int retval
= itr_setting
;
2424 struct e1000_hw
*hw
= &adapter
->hw
;
2426 if (unlikely(hw
->mac_type
< e1000_82540
))
2427 goto update_itr_done
;
2430 goto update_itr_done
;
2432 switch (itr_setting
) {
2433 case lowest_latency
:
2434 /* jumbo frames get bulk treatment*/
2435 if (bytes
/packets
> 8000)
2436 retval
= bulk_latency
;
2437 else if ((packets
< 5) && (bytes
> 512))
2438 retval
= low_latency
;
2440 case low_latency
: /* 50 usec aka 20000 ints/s */
2441 if (bytes
> 10000) {
2442 /* jumbo frames need bulk latency setting */
2443 if (bytes
/packets
> 8000)
2444 retval
= bulk_latency
;
2445 else if ((packets
< 10) || ((bytes
/packets
) > 1200))
2446 retval
= bulk_latency
;
2447 else if ((packets
> 35))
2448 retval
= lowest_latency
;
2449 } else if (bytes
/packets
> 2000)
2450 retval
= bulk_latency
;
2451 else if (packets
<= 2 && bytes
< 512)
2452 retval
= lowest_latency
;
2454 case bulk_latency
: /* 250 usec aka 4000 ints/s */
2455 if (bytes
> 25000) {
2457 retval
= low_latency
;
2458 } else if (bytes
< 6000) {
2459 retval
= low_latency
;
2468 static void e1000_set_itr(struct e1000_adapter
*adapter
)
2470 struct e1000_hw
*hw
= &adapter
->hw
;
2472 u32 new_itr
= adapter
->itr
;
2474 if (unlikely(hw
->mac_type
< e1000_82540
))
2477 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2478 if (unlikely(adapter
->link_speed
!= SPEED_1000
)) {
2484 adapter
->tx_itr
= e1000_update_itr(adapter
,
2486 adapter
->total_tx_packets
,
2487 adapter
->total_tx_bytes
);
2488 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2489 if (adapter
->itr_setting
== 3 && adapter
->tx_itr
== lowest_latency
)
2490 adapter
->tx_itr
= low_latency
;
2492 adapter
->rx_itr
= e1000_update_itr(adapter
,
2494 adapter
->total_rx_packets
,
2495 adapter
->total_rx_bytes
);
2496 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2497 if (adapter
->itr_setting
== 3 && adapter
->rx_itr
== lowest_latency
)
2498 adapter
->rx_itr
= low_latency
;
2500 current_itr
= max(adapter
->rx_itr
, adapter
->tx_itr
);
2502 switch (current_itr
) {
2503 /* counts and packets in update_itr are dependent on these numbers */
2504 case lowest_latency
:
2508 new_itr
= 20000; /* aka hwitr = ~200 */
2518 if (new_itr
!= adapter
->itr
) {
2519 /* this attempts to bias the interrupt rate towards Bulk
2520 * by adding intermediate steps when interrupt rate is
2522 new_itr
= new_itr
> adapter
->itr
?
2523 min(adapter
->itr
+ (new_itr
>> 2), new_itr
) :
2525 adapter
->itr
= new_itr
;
2526 ew32(ITR
, 1000000000 / (new_itr
* 256));
2532 #define E1000_TX_FLAGS_CSUM 0x00000001
2533 #define E1000_TX_FLAGS_VLAN 0x00000002
2534 #define E1000_TX_FLAGS_TSO 0x00000004
2535 #define E1000_TX_FLAGS_IPV4 0x00000008
2536 #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
2537 #define E1000_TX_FLAGS_VLAN_SHIFT 16
2539 static int e1000_tso(struct e1000_adapter
*adapter
,
2540 struct e1000_tx_ring
*tx_ring
, struct sk_buff
*skb
)
2542 struct e1000_context_desc
*context_desc
;
2543 struct e1000_buffer
*buffer_info
;
2546 u16 ipcse
= 0, tucse
, mss
;
2547 u8 ipcss
, ipcso
, tucss
, tucso
, hdr_len
;
2550 if (skb_is_gso(skb
)) {
2551 if (skb_header_cloned(skb
)) {
2552 err
= pskb_expand_head(skb
, 0, 0, GFP_ATOMIC
);
2557 hdr_len
= skb_transport_offset(skb
) + tcp_hdrlen(skb
);
2558 mss
= skb_shinfo(skb
)->gso_size
;
2559 if (skb
->protocol
== htons(ETH_P_IP
)) {
2560 struct iphdr
*iph
= ip_hdr(skb
);
2563 tcp_hdr(skb
)->check
= ~csum_tcpudp_magic(iph
->saddr
,
2567 cmd_length
= E1000_TXD_CMD_IP
;
2568 ipcse
= skb_transport_offset(skb
) - 1;
2569 } else if (skb
->protocol
== htons(ETH_P_IPV6
)) {
2570 ipv6_hdr(skb
)->payload_len
= 0;
2571 tcp_hdr(skb
)->check
=
2572 ~csum_ipv6_magic(&ipv6_hdr(skb
)->saddr
,
2573 &ipv6_hdr(skb
)->daddr
,
2577 ipcss
= skb_network_offset(skb
);
2578 ipcso
= (void *)&(ip_hdr(skb
)->check
) - (void *)skb
->data
;
2579 tucss
= skb_transport_offset(skb
);
2580 tucso
= (void *)&(tcp_hdr(skb
)->check
) - (void *)skb
->data
;
2583 cmd_length
|= (E1000_TXD_CMD_DEXT
| E1000_TXD_CMD_TSE
|
2584 E1000_TXD_CMD_TCP
| (skb
->len
- (hdr_len
)));
2586 i
= tx_ring
->next_to_use
;
2587 context_desc
= E1000_CONTEXT_DESC(*tx_ring
, i
);
2588 buffer_info
= &tx_ring
->buffer_info
[i
];
2590 context_desc
->lower_setup
.ip_fields
.ipcss
= ipcss
;
2591 context_desc
->lower_setup
.ip_fields
.ipcso
= ipcso
;
2592 context_desc
->lower_setup
.ip_fields
.ipcse
= cpu_to_le16(ipcse
);
2593 context_desc
->upper_setup
.tcp_fields
.tucss
= tucss
;
2594 context_desc
->upper_setup
.tcp_fields
.tucso
= tucso
;
2595 context_desc
->upper_setup
.tcp_fields
.tucse
= cpu_to_le16(tucse
);
2596 context_desc
->tcp_seg_setup
.fields
.mss
= cpu_to_le16(mss
);
2597 context_desc
->tcp_seg_setup
.fields
.hdr_len
= hdr_len
;
2598 context_desc
->cmd_and_length
= cpu_to_le32(cmd_length
);
2600 buffer_info
->time_stamp
= jiffies
;
2601 buffer_info
->next_to_watch
= i
;
2603 if (++i
== tx_ring
->count
) i
= 0;
2604 tx_ring
->next_to_use
= i
;
2611 static bool e1000_tx_csum(struct e1000_adapter
*adapter
,
2612 struct e1000_tx_ring
*tx_ring
, struct sk_buff
*skb
)
2614 struct e1000_context_desc
*context_desc
;
2615 struct e1000_buffer
*buffer_info
;
2618 u32 cmd_len
= E1000_TXD_CMD_DEXT
;
2620 if (skb
->ip_summed
!= CHECKSUM_PARTIAL
)
2623 switch (skb
->protocol
) {
2624 case cpu_to_be16(ETH_P_IP
):
2625 if (ip_hdr(skb
)->protocol
== IPPROTO_TCP
)
2626 cmd_len
|= E1000_TXD_CMD_TCP
;
2628 case cpu_to_be16(ETH_P_IPV6
):
2629 /* XXX not handling all IPV6 headers */
2630 if (ipv6_hdr(skb
)->nexthdr
== IPPROTO_TCP
)
2631 cmd_len
|= E1000_TXD_CMD_TCP
;
2634 if (unlikely(net_ratelimit()))
2635 DPRINTK(DRV
, WARNING
,
2636 "checksum_partial proto=%x!\n", skb
->protocol
);
2640 css
= skb_transport_offset(skb
);
2642 i
= tx_ring
->next_to_use
;
2643 buffer_info
= &tx_ring
->buffer_info
[i
];
2644 context_desc
= E1000_CONTEXT_DESC(*tx_ring
, i
);
2646 context_desc
->lower_setup
.ip_config
= 0;
2647 context_desc
->upper_setup
.tcp_fields
.tucss
= css
;
2648 context_desc
->upper_setup
.tcp_fields
.tucso
=
2649 css
+ skb
->csum_offset
;
2650 context_desc
->upper_setup
.tcp_fields
.tucse
= 0;
2651 context_desc
->tcp_seg_setup
.data
= 0;
2652 context_desc
->cmd_and_length
= cpu_to_le32(cmd_len
);
2654 buffer_info
->time_stamp
= jiffies
;
2655 buffer_info
->next_to_watch
= i
;
2657 if (unlikely(++i
== tx_ring
->count
)) i
= 0;
2658 tx_ring
->next_to_use
= i
;
2663 #define E1000_MAX_TXD_PWR 12
2664 #define E1000_MAX_DATA_PER_TXD (1<<E1000_MAX_TXD_PWR)
2666 static int e1000_tx_map(struct e1000_adapter
*adapter
,
2667 struct e1000_tx_ring
*tx_ring
,
2668 struct sk_buff
*skb
, unsigned int first
,
2669 unsigned int max_per_txd
, unsigned int nr_frags
,
2672 struct e1000_hw
*hw
= &adapter
->hw
;
2673 struct pci_dev
*pdev
= adapter
->pdev
;
2674 struct e1000_buffer
*buffer_info
;
2675 unsigned int len
= skb_headlen(skb
);
2676 unsigned int offset
= 0, size
, count
= 0, i
;
2679 i
= tx_ring
->next_to_use
;
2682 buffer_info
= &tx_ring
->buffer_info
[i
];
2683 size
= min(len
, max_per_txd
);
2684 /* Workaround for Controller erratum --
2685 * descriptor for non-tso packet in a linear SKB that follows a
2686 * tso gets written back prematurely before the data is fully
2687 * DMA'd to the controller */
2688 if (!skb
->data_len
&& tx_ring
->last_tx_tso
&&
2690 tx_ring
->last_tx_tso
= 0;
2694 /* Workaround for premature desc write-backs
2695 * in TSO mode. Append 4-byte sentinel desc */
2696 if (unlikely(mss
&& !nr_frags
&& size
== len
&& size
> 8))
2698 /* work-around for errata 10 and it applies
2699 * to all controllers in PCI-X mode
2700 * The fix is to make sure that the first descriptor of a
2701 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2703 if (unlikely((hw
->bus_type
== e1000_bus_type_pcix
) &&
2704 (size
> 2015) && count
== 0))
2707 /* Workaround for potential 82544 hang in PCI-X. Avoid
2708 * terminating buffers within evenly-aligned dwords. */
2709 if (unlikely(adapter
->pcix_82544
&&
2710 !((unsigned long)(skb
->data
+ offset
+ size
- 1) & 4) &&
2714 buffer_info
->length
= size
;
2715 /* set time_stamp *before* dma to help avoid a possible race */
2716 buffer_info
->time_stamp
= jiffies
;
2717 buffer_info
->mapped_as_page
= false;
2718 buffer_info
->dma
= pci_map_single(pdev
, skb
->data
+ offset
,
2719 size
, PCI_DMA_TODEVICE
);
2720 if (pci_dma_mapping_error(pdev
, buffer_info
->dma
))
2722 buffer_info
->next_to_watch
= i
;
2729 if (unlikely(i
== tx_ring
->count
))
2734 for (f
= 0; f
< nr_frags
; f
++) {
2735 struct skb_frag_struct
*frag
;
2737 frag
= &skb_shinfo(skb
)->frags
[f
];
2739 offset
= frag
->page_offset
;
2743 if (unlikely(i
== tx_ring
->count
))
2746 buffer_info
= &tx_ring
->buffer_info
[i
];
2747 size
= min(len
, max_per_txd
);
2748 /* Workaround for premature desc write-backs
2749 * in TSO mode. Append 4-byte sentinel desc */
2750 if (unlikely(mss
&& f
== (nr_frags
-1) && size
== len
&& size
> 8))
2752 /* Workaround for potential 82544 hang in PCI-X.
2753 * Avoid terminating buffers within evenly-aligned
2755 if (unlikely(adapter
->pcix_82544
&&
2756 !((unsigned long)(page_to_phys(frag
->page
) + offset
2761 buffer_info
->length
= size
;
2762 buffer_info
->time_stamp
= jiffies
;
2763 buffer_info
->mapped_as_page
= true;
2764 buffer_info
->dma
= pci_map_page(pdev
, frag
->page
,
2767 if (pci_dma_mapping_error(pdev
, buffer_info
->dma
))
2769 buffer_info
->next_to_watch
= i
;
2777 tx_ring
->buffer_info
[i
].skb
= skb
;
2778 tx_ring
->buffer_info
[first
].next_to_watch
= i
;
2783 dev_err(&pdev
->dev
, "TX DMA map failed\n");
2784 buffer_info
->dma
= 0;
2790 i
+= tx_ring
->count
;
2792 buffer_info
= &tx_ring
->buffer_info
[i
];
2793 e1000_unmap_and_free_tx_resource(adapter
, buffer_info
);
2799 static void e1000_tx_queue(struct e1000_adapter
*adapter
,
2800 struct e1000_tx_ring
*tx_ring
, int tx_flags
,
2803 struct e1000_hw
*hw
= &adapter
->hw
;
2804 struct e1000_tx_desc
*tx_desc
= NULL
;
2805 struct e1000_buffer
*buffer_info
;
2806 u32 txd_upper
= 0, txd_lower
= E1000_TXD_CMD_IFCS
;
2809 if (likely(tx_flags
& E1000_TX_FLAGS_TSO
)) {
2810 txd_lower
|= E1000_TXD_CMD_DEXT
| E1000_TXD_DTYP_D
|
2812 txd_upper
|= E1000_TXD_POPTS_TXSM
<< 8;
2814 if (likely(tx_flags
& E1000_TX_FLAGS_IPV4
))
2815 txd_upper
|= E1000_TXD_POPTS_IXSM
<< 8;
2818 if (likely(tx_flags
& E1000_TX_FLAGS_CSUM
)) {
2819 txd_lower
|= E1000_TXD_CMD_DEXT
| E1000_TXD_DTYP_D
;
2820 txd_upper
|= E1000_TXD_POPTS_TXSM
<< 8;
2823 if (unlikely(tx_flags
& E1000_TX_FLAGS_VLAN
)) {
2824 txd_lower
|= E1000_TXD_CMD_VLE
;
2825 txd_upper
|= (tx_flags
& E1000_TX_FLAGS_VLAN_MASK
);
2828 i
= tx_ring
->next_to_use
;
2831 buffer_info
= &tx_ring
->buffer_info
[i
];
2832 tx_desc
= E1000_TX_DESC(*tx_ring
, i
);
2833 tx_desc
->buffer_addr
= cpu_to_le64(buffer_info
->dma
);
2834 tx_desc
->lower
.data
=
2835 cpu_to_le32(txd_lower
| buffer_info
->length
);
2836 tx_desc
->upper
.data
= cpu_to_le32(txd_upper
);
2837 if (unlikely(++i
== tx_ring
->count
)) i
= 0;
2840 tx_desc
->lower
.data
|= cpu_to_le32(adapter
->txd_cmd
);
2842 /* Force memory writes to complete before letting h/w
2843 * know there are new descriptors to fetch. (Only
2844 * applicable for weak-ordered memory model archs,
2845 * such as IA-64). */
2848 tx_ring
->next_to_use
= i
;
2849 writel(i
, hw
->hw_addr
+ tx_ring
->tdt
);
2850 /* we need this if more than one processor can write to our tail
2851 * at a time, it syncronizes IO on IA64/Altix systems */
2856 * 82547 workaround to avoid controller hang in half-duplex environment.
2857 * The workaround is to avoid queuing a large packet that would span
2858 * the internal Tx FIFO ring boundary by notifying the stack to resend
2859 * the packet at a later time. This gives the Tx FIFO an opportunity to
2860 * flush all packets. When that occurs, we reset the Tx FIFO pointers
2861 * to the beginning of the Tx FIFO.
2864 #define E1000_FIFO_HDR 0x10
2865 #define E1000_82547_PAD_LEN 0x3E0
2867 static int e1000_82547_fifo_workaround(struct e1000_adapter
*adapter
,
2868 struct sk_buff
*skb
)
2870 u32 fifo_space
= adapter
->tx_fifo_size
- adapter
->tx_fifo_head
;
2871 u32 skb_fifo_len
= skb
->len
+ E1000_FIFO_HDR
;
2873 skb_fifo_len
= ALIGN(skb_fifo_len
, E1000_FIFO_HDR
);
2875 if (adapter
->link_duplex
!= HALF_DUPLEX
)
2876 goto no_fifo_stall_required
;
2878 if (atomic_read(&adapter
->tx_fifo_stall
))
2881 if (skb_fifo_len
>= (E1000_82547_PAD_LEN
+ fifo_space
)) {
2882 atomic_set(&adapter
->tx_fifo_stall
, 1);
2886 no_fifo_stall_required
:
2887 adapter
->tx_fifo_head
+= skb_fifo_len
;
2888 if (adapter
->tx_fifo_head
>= adapter
->tx_fifo_size
)
2889 adapter
->tx_fifo_head
-= adapter
->tx_fifo_size
;
2893 static int __e1000_maybe_stop_tx(struct net_device
*netdev
, int size
)
2895 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
2896 struct e1000_tx_ring
*tx_ring
= adapter
->tx_ring
;
2898 netif_stop_queue(netdev
);
2899 /* Herbert's original patch had:
2900 * smp_mb__after_netif_stop_queue();
2901 * but since that doesn't exist yet, just open code it. */
2904 /* We need to check again in a case another CPU has just
2905 * made room available. */
2906 if (likely(E1000_DESC_UNUSED(tx_ring
) < size
))
2910 netif_start_queue(netdev
);
2911 ++adapter
->restart_queue
;
2915 static int e1000_maybe_stop_tx(struct net_device
*netdev
,
2916 struct e1000_tx_ring
*tx_ring
, int size
)
2918 if (likely(E1000_DESC_UNUSED(tx_ring
) >= size
))
2920 return __e1000_maybe_stop_tx(netdev
, size
);
2923 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
2924 static netdev_tx_t
e1000_xmit_frame(struct sk_buff
*skb
,
2925 struct net_device
*netdev
)
2927 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
2928 struct e1000_hw
*hw
= &adapter
->hw
;
2929 struct e1000_tx_ring
*tx_ring
;
2930 unsigned int first
, max_per_txd
= E1000_MAX_DATA_PER_TXD
;
2931 unsigned int max_txd_pwr
= E1000_MAX_TXD_PWR
;
2932 unsigned int tx_flags
= 0;
2933 unsigned int len
= skb
->len
- skb
->data_len
;
2934 unsigned int nr_frags
;
2940 /* This goes back to the question of how to logically map a tx queue
2941 * to a flow. Right now, performance is impacted slightly negatively
2942 * if using multiple tx queues. If the stack breaks away from a
2943 * single qdisc implementation, we can look at this again. */
2944 tx_ring
= adapter
->tx_ring
;
2946 if (unlikely(skb
->len
<= 0)) {
2947 dev_kfree_skb_any(skb
);
2948 return NETDEV_TX_OK
;
2951 mss
= skb_shinfo(skb
)->gso_size
;
2952 /* The controller does a simple calculation to
2953 * make sure there is enough room in the FIFO before
2954 * initiating the DMA for each buffer. The calc is:
2955 * 4 = ceil(buffer len/mss). To make sure we don't
2956 * overrun the FIFO, adjust the max buffer len if mss
2960 max_per_txd
= min(mss
<< 2, max_per_txd
);
2961 max_txd_pwr
= fls(max_per_txd
) - 1;
2963 hdr_len
= skb_transport_offset(skb
) + tcp_hdrlen(skb
);
2964 if (skb
->data_len
&& hdr_len
== len
) {
2965 switch (hw
->mac_type
) {
2966 unsigned int pull_size
;
2968 /* Make sure we have room to chop off 4 bytes,
2969 * and that the end alignment will work out to
2970 * this hardware's requirements
2971 * NOTE: this is a TSO only workaround
2972 * if end byte alignment not correct move us
2973 * into the next dword */
2974 if ((unsigned long)(skb_tail_pointer(skb
) - 1) & 4)
2977 pull_size
= min((unsigned int)4, skb
->data_len
);
2978 if (!__pskb_pull_tail(skb
, pull_size
)) {
2980 "__pskb_pull_tail failed.\n");
2981 dev_kfree_skb_any(skb
);
2982 return NETDEV_TX_OK
;
2984 len
= skb
->len
- skb
->data_len
;
2993 /* reserve a descriptor for the offload context */
2994 if ((mss
) || (skb
->ip_summed
== CHECKSUM_PARTIAL
))
2998 /* Controller Erratum workaround */
2999 if (!skb
->data_len
&& tx_ring
->last_tx_tso
&& !skb_is_gso(skb
))
3002 count
+= TXD_USE_COUNT(len
, max_txd_pwr
);
3004 if (adapter
->pcix_82544
)
3007 /* work-around for errata 10 and it applies to all controllers
3008 * in PCI-X mode, so add one more descriptor to the count
3010 if (unlikely((hw
->bus_type
== e1000_bus_type_pcix
) &&
3014 nr_frags
= skb_shinfo(skb
)->nr_frags
;
3015 for (f
= 0; f
< nr_frags
; f
++)
3016 count
+= TXD_USE_COUNT(skb_shinfo(skb
)->frags
[f
].size
,
3018 if (adapter
->pcix_82544
)
3021 /* need: count + 2 desc gap to keep tail from touching
3022 * head, otherwise try next time */
3023 if (unlikely(e1000_maybe_stop_tx(netdev
, tx_ring
, count
+ 2)))
3024 return NETDEV_TX_BUSY
;
3026 if (unlikely(hw
->mac_type
== e1000_82547
)) {
3027 if (unlikely(e1000_82547_fifo_workaround(adapter
, skb
))) {
3028 netif_stop_queue(netdev
);
3029 if (!test_bit(__E1000_DOWN
, &adapter
->flags
))
3030 mod_timer(&adapter
->tx_fifo_stall_timer
,
3032 return NETDEV_TX_BUSY
;
3036 if (unlikely(adapter
->vlgrp
&& vlan_tx_tag_present(skb
))) {
3037 tx_flags
|= E1000_TX_FLAGS_VLAN
;
3038 tx_flags
|= (vlan_tx_tag_get(skb
) << E1000_TX_FLAGS_VLAN_SHIFT
);
3041 first
= tx_ring
->next_to_use
;
3043 tso
= e1000_tso(adapter
, tx_ring
, skb
);
3045 dev_kfree_skb_any(skb
);
3046 return NETDEV_TX_OK
;
3050 if (likely(hw
->mac_type
!= e1000_82544
))
3051 tx_ring
->last_tx_tso
= 1;
3052 tx_flags
|= E1000_TX_FLAGS_TSO
;
3053 } else if (likely(e1000_tx_csum(adapter
, tx_ring
, skb
)))
3054 tx_flags
|= E1000_TX_FLAGS_CSUM
;
3056 if (likely(skb
->protocol
== htons(ETH_P_IP
)))
3057 tx_flags
|= E1000_TX_FLAGS_IPV4
;
3059 count
= e1000_tx_map(adapter
, tx_ring
, skb
, first
, max_per_txd
,
3063 e1000_tx_queue(adapter
, tx_ring
, tx_flags
, count
);
3064 /* Make sure there is space in the ring for the next send. */
3065 e1000_maybe_stop_tx(netdev
, tx_ring
, MAX_SKB_FRAGS
+ 2);
3068 dev_kfree_skb_any(skb
);
3069 tx_ring
->buffer_info
[first
].time_stamp
= 0;
3070 tx_ring
->next_to_use
= first
;
3073 return NETDEV_TX_OK
;
3077 * e1000_tx_timeout - Respond to a Tx Hang
3078 * @netdev: network interface device structure
3081 static void e1000_tx_timeout(struct net_device
*netdev
)
3083 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3085 /* Do the reset outside of interrupt context */
3086 adapter
->tx_timeout_count
++;
3087 schedule_work(&adapter
->reset_task
);
3090 static void e1000_reset_task(struct work_struct
*work
)
3092 struct e1000_adapter
*adapter
=
3093 container_of(work
, struct e1000_adapter
, reset_task
);
3095 e1000_reinit_locked(adapter
);
3099 * e1000_get_stats - Get System Network Statistics
3100 * @netdev: network interface device structure
3102 * Returns the address of the device statistics structure.
3103 * The statistics are actually updated from the timer callback.
3106 static struct net_device_stats
*e1000_get_stats(struct net_device
*netdev
)
3108 /* only return the current stats */
3109 return &netdev
->stats
;
3113 * e1000_change_mtu - Change the Maximum Transfer Unit
3114 * @netdev: network interface device structure
3115 * @new_mtu: new value for maximum frame size
3117 * Returns 0 on success, negative on failure
3120 static int e1000_change_mtu(struct net_device
*netdev
, int new_mtu
)
3122 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3123 struct e1000_hw
*hw
= &adapter
->hw
;
3124 int max_frame
= new_mtu
+ ENET_HEADER_SIZE
+ ETHERNET_FCS_SIZE
;
3126 if ((max_frame
< MINIMUM_ETHERNET_FRAME_SIZE
) ||
3127 (max_frame
> MAX_JUMBO_FRAME_SIZE
)) {
3128 DPRINTK(PROBE
, ERR
, "Invalid MTU setting\n");
3132 /* Adapter-specific max frame size limits. */
3133 switch (hw
->mac_type
) {
3134 case e1000_undefined
... e1000_82542_rev2_1
:
3135 if (max_frame
> (ETH_FRAME_LEN
+ ETH_FCS_LEN
)) {
3136 DPRINTK(PROBE
, ERR
, "Jumbo Frames not supported.\n");
3141 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3145 while (test_and_set_bit(__E1000_RESETTING
, &adapter
->flags
))
3147 /* e1000_down has a dependency on max_frame_size */
3148 hw
->max_frame_size
= max_frame
;
3149 if (netif_running(netdev
))
3150 e1000_down(adapter
);
3152 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3153 * means we reserve 2 more, this pushes us to allocate from the next
3155 * i.e. RXBUFFER_2048 --> size-4096 slab
3156 * however with the new *_jumbo_rx* routines, jumbo receives will use
3157 * fragmented skbs */
3159 if (max_frame
<= E1000_RXBUFFER_2048
)
3160 adapter
->rx_buffer_len
= E1000_RXBUFFER_2048
;
3162 #if (PAGE_SIZE >= E1000_RXBUFFER_16384)
3163 adapter
->rx_buffer_len
= E1000_RXBUFFER_16384
;
3164 #elif (PAGE_SIZE >= E1000_RXBUFFER_4096)
3165 adapter
->rx_buffer_len
= PAGE_SIZE
;
3168 /* adjust allocation if LPE protects us, and we aren't using SBP */
3169 if (!hw
->tbi_compatibility_on
&&
3170 ((max_frame
== (ETH_FRAME_LEN
+ ETH_FCS_LEN
)) ||
3171 (max_frame
== MAXIMUM_ETHERNET_VLAN_SIZE
)))
3172 adapter
->rx_buffer_len
= MAXIMUM_ETHERNET_VLAN_SIZE
;
3174 printk(KERN_INFO
"e1000: %s changing MTU from %d to %d\n",
3175 netdev
->name
, netdev
->mtu
, new_mtu
);
3176 netdev
->mtu
= new_mtu
;
3178 if (netif_running(netdev
))
3181 e1000_reset(adapter
);
3183 clear_bit(__E1000_RESETTING
, &adapter
->flags
);
3189 * e1000_update_stats - Update the board statistics counters
3190 * @adapter: board private structure
3193 void e1000_update_stats(struct e1000_adapter
*adapter
)
3195 struct net_device
*netdev
= adapter
->netdev
;
3196 struct e1000_hw
*hw
= &adapter
->hw
;
3197 struct pci_dev
*pdev
= adapter
->pdev
;
3198 unsigned long flags
;
3201 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3204 * Prevent stats update while adapter is being reset, or if the pci
3205 * connection is down.
3207 if (adapter
->link_speed
== 0)
3209 if (pci_channel_offline(pdev
))
3212 spin_lock_irqsave(&adapter
->stats_lock
, flags
);
3214 /* these counters are modified from e1000_tbi_adjust_stats,
3215 * called from the interrupt context, so they must only
3216 * be written while holding adapter->stats_lock
3219 adapter
->stats
.crcerrs
+= er32(CRCERRS
);
3220 adapter
->stats
.gprc
+= er32(GPRC
);
3221 adapter
->stats
.gorcl
+= er32(GORCL
);
3222 adapter
->stats
.gorch
+= er32(GORCH
);
3223 adapter
->stats
.bprc
+= er32(BPRC
);
3224 adapter
->stats
.mprc
+= er32(MPRC
);
3225 adapter
->stats
.roc
+= er32(ROC
);
3227 adapter
->stats
.prc64
+= er32(PRC64
);
3228 adapter
->stats
.prc127
+= er32(PRC127
);
3229 adapter
->stats
.prc255
+= er32(PRC255
);
3230 adapter
->stats
.prc511
+= er32(PRC511
);
3231 adapter
->stats
.prc1023
+= er32(PRC1023
);
3232 adapter
->stats
.prc1522
+= er32(PRC1522
);
3234 adapter
->stats
.symerrs
+= er32(SYMERRS
);
3235 adapter
->stats
.mpc
+= er32(MPC
);
3236 adapter
->stats
.scc
+= er32(SCC
);
3237 adapter
->stats
.ecol
+= er32(ECOL
);
3238 adapter
->stats
.mcc
+= er32(MCC
);
3239 adapter
->stats
.latecol
+= er32(LATECOL
);
3240 adapter
->stats
.dc
+= er32(DC
);
3241 adapter
->stats
.sec
+= er32(SEC
);
3242 adapter
->stats
.rlec
+= er32(RLEC
);
3243 adapter
->stats
.xonrxc
+= er32(XONRXC
);
3244 adapter
->stats
.xontxc
+= er32(XONTXC
);
3245 adapter
->stats
.xoffrxc
+= er32(XOFFRXC
);
3246 adapter
->stats
.xofftxc
+= er32(XOFFTXC
);
3247 adapter
->stats
.fcruc
+= er32(FCRUC
);
3248 adapter
->stats
.gptc
+= er32(GPTC
);
3249 adapter
->stats
.gotcl
+= er32(GOTCL
);
3250 adapter
->stats
.gotch
+= er32(GOTCH
);
3251 adapter
->stats
.rnbc
+= er32(RNBC
);
3252 adapter
->stats
.ruc
+= er32(RUC
);
3253 adapter
->stats
.rfc
+= er32(RFC
);
3254 adapter
->stats
.rjc
+= er32(RJC
);
3255 adapter
->stats
.torl
+= er32(TORL
);
3256 adapter
->stats
.torh
+= er32(TORH
);
3257 adapter
->stats
.totl
+= er32(TOTL
);
3258 adapter
->stats
.toth
+= er32(TOTH
);
3259 adapter
->stats
.tpr
+= er32(TPR
);
3261 adapter
->stats
.ptc64
+= er32(PTC64
);
3262 adapter
->stats
.ptc127
+= er32(PTC127
);
3263 adapter
->stats
.ptc255
+= er32(PTC255
);
3264 adapter
->stats
.ptc511
+= er32(PTC511
);
3265 adapter
->stats
.ptc1023
+= er32(PTC1023
);
3266 adapter
->stats
.ptc1522
+= er32(PTC1522
);
3268 adapter
->stats
.mptc
+= er32(MPTC
);
3269 adapter
->stats
.bptc
+= er32(BPTC
);
3271 /* used for adaptive IFS */
3273 hw
->tx_packet_delta
= er32(TPT
);
3274 adapter
->stats
.tpt
+= hw
->tx_packet_delta
;
3275 hw
->collision_delta
= er32(COLC
);
3276 adapter
->stats
.colc
+= hw
->collision_delta
;
3278 if (hw
->mac_type
>= e1000_82543
) {
3279 adapter
->stats
.algnerrc
+= er32(ALGNERRC
);
3280 adapter
->stats
.rxerrc
+= er32(RXERRC
);
3281 adapter
->stats
.tncrs
+= er32(TNCRS
);
3282 adapter
->stats
.cexterr
+= er32(CEXTERR
);
3283 adapter
->stats
.tsctc
+= er32(TSCTC
);
3284 adapter
->stats
.tsctfc
+= er32(TSCTFC
);
3287 /* Fill out the OS statistics structure */
3288 netdev
->stats
.multicast
= adapter
->stats
.mprc
;
3289 netdev
->stats
.collisions
= adapter
->stats
.colc
;
3293 /* RLEC on some newer hardware can be incorrect so build
3294 * our own version based on RUC and ROC */
3295 netdev
->stats
.rx_errors
= adapter
->stats
.rxerrc
+
3296 adapter
->stats
.crcerrs
+ adapter
->stats
.algnerrc
+
3297 adapter
->stats
.ruc
+ adapter
->stats
.roc
+
3298 adapter
->stats
.cexterr
;
3299 adapter
->stats
.rlerrc
= adapter
->stats
.ruc
+ adapter
->stats
.roc
;
3300 netdev
->stats
.rx_length_errors
= adapter
->stats
.rlerrc
;
3301 netdev
->stats
.rx_crc_errors
= adapter
->stats
.crcerrs
;
3302 netdev
->stats
.rx_frame_errors
= adapter
->stats
.algnerrc
;
3303 netdev
->stats
.rx_missed_errors
= adapter
->stats
.mpc
;
3306 adapter
->stats
.txerrc
= adapter
->stats
.ecol
+ adapter
->stats
.latecol
;
3307 netdev
->stats
.tx_errors
= adapter
->stats
.txerrc
;
3308 netdev
->stats
.tx_aborted_errors
= adapter
->stats
.ecol
;
3309 netdev
->stats
.tx_window_errors
= adapter
->stats
.latecol
;
3310 netdev
->stats
.tx_carrier_errors
= adapter
->stats
.tncrs
;
3311 if (hw
->bad_tx_carr_stats_fd
&&
3312 adapter
->link_duplex
== FULL_DUPLEX
) {
3313 netdev
->stats
.tx_carrier_errors
= 0;
3314 adapter
->stats
.tncrs
= 0;
3317 /* Tx Dropped needs to be maintained elsewhere */
3320 if (hw
->media_type
== e1000_media_type_copper
) {
3321 if ((adapter
->link_speed
== SPEED_1000
) &&
3322 (!e1000_read_phy_reg(hw
, PHY_1000T_STATUS
, &phy_tmp
))) {
3323 phy_tmp
&= PHY_IDLE_ERROR_COUNT_MASK
;
3324 adapter
->phy_stats
.idle_errors
+= phy_tmp
;
3327 if ((hw
->mac_type
<= e1000_82546
) &&
3328 (hw
->phy_type
== e1000_phy_m88
) &&
3329 !e1000_read_phy_reg(hw
, M88E1000_RX_ERR_CNTR
, &phy_tmp
))
3330 adapter
->phy_stats
.receive_errors
+= phy_tmp
;
3333 /* Management Stats */
3334 if (hw
->has_smbus
) {
3335 adapter
->stats
.mgptc
+= er32(MGTPTC
);
3336 adapter
->stats
.mgprc
+= er32(MGTPRC
);
3337 adapter
->stats
.mgpdc
+= er32(MGTPDC
);
3340 spin_unlock_irqrestore(&adapter
->stats_lock
, flags
);
3344 * e1000_intr - Interrupt Handler
3345 * @irq: interrupt number
3346 * @data: pointer to a network interface device structure
3349 static irqreturn_t
e1000_intr(int irq
, void *data
)
3351 struct net_device
*netdev
= data
;
3352 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3353 struct e1000_hw
*hw
= &adapter
->hw
;
3354 u32 icr
= er32(ICR
);
3356 if (unlikely((!icr
) || test_bit(__E1000_DOWN
, &adapter
->flags
)))
3357 return IRQ_NONE
; /* Not our interrupt */
3359 if (unlikely(icr
& (E1000_ICR_RXSEQ
| E1000_ICR_LSC
))) {
3360 hw
->get_link_status
= 1;
3361 /* guard against interrupt when we're going down */
3362 if (!test_bit(__E1000_DOWN
, &adapter
->flags
))
3363 mod_timer(&adapter
->watchdog_timer
, jiffies
+ 1);
3366 /* disable interrupts, without the synchronize_irq bit */
3368 E1000_WRITE_FLUSH();
3370 if (likely(napi_schedule_prep(&adapter
->napi
))) {
3371 adapter
->total_tx_bytes
= 0;
3372 adapter
->total_tx_packets
= 0;
3373 adapter
->total_rx_bytes
= 0;
3374 adapter
->total_rx_packets
= 0;
3375 __napi_schedule(&adapter
->napi
);
3377 /* this really should not happen! if it does it is basically a
3378 * bug, but not a hard error, so enable ints and continue */
3379 if (!test_bit(__E1000_DOWN
, &adapter
->flags
))
3380 e1000_irq_enable(adapter
);
3387 * e1000_clean - NAPI Rx polling callback
3388 * @adapter: board private structure
3390 static int e1000_clean(struct napi_struct
*napi
, int budget
)
3392 struct e1000_adapter
*adapter
= container_of(napi
, struct e1000_adapter
, napi
);
3393 int tx_clean_complete
= 0, work_done
= 0;
3395 tx_clean_complete
= e1000_clean_tx_irq(adapter
, &adapter
->tx_ring
[0]);
3397 adapter
->clean_rx(adapter
, &adapter
->rx_ring
[0], &work_done
, budget
);
3399 if (!tx_clean_complete
)
3402 /* If budget not fully consumed, exit the polling mode */
3403 if (work_done
< budget
) {
3404 if (likely(adapter
->itr_setting
& 3))
3405 e1000_set_itr(adapter
);
3406 napi_complete(napi
);
3407 if (!test_bit(__E1000_DOWN
, &adapter
->flags
))
3408 e1000_irq_enable(adapter
);
3415 * e1000_clean_tx_irq - Reclaim resources after transmit completes
3416 * @adapter: board private structure
3418 static bool e1000_clean_tx_irq(struct e1000_adapter
*adapter
,
3419 struct e1000_tx_ring
*tx_ring
)
3421 struct e1000_hw
*hw
= &adapter
->hw
;
3422 struct net_device
*netdev
= adapter
->netdev
;
3423 struct e1000_tx_desc
*tx_desc
, *eop_desc
;
3424 struct e1000_buffer
*buffer_info
;
3425 unsigned int i
, eop
;
3426 unsigned int count
= 0;
3427 unsigned int total_tx_bytes
=0, total_tx_packets
=0;
3429 i
= tx_ring
->next_to_clean
;
3430 eop
= tx_ring
->buffer_info
[i
].next_to_watch
;
3431 eop_desc
= E1000_TX_DESC(*tx_ring
, eop
);
3433 while ((eop_desc
->upper
.data
& cpu_to_le32(E1000_TXD_STAT_DD
)) &&
3434 (count
< tx_ring
->count
)) {
3435 bool cleaned
= false;
3436 for ( ; !cleaned
; count
++) {
3437 tx_desc
= E1000_TX_DESC(*tx_ring
, i
);
3438 buffer_info
= &tx_ring
->buffer_info
[i
];
3439 cleaned
= (i
== eop
);
3442 struct sk_buff
*skb
= buffer_info
->skb
;
3443 unsigned int segs
, bytecount
;
3444 segs
= skb_shinfo(skb
)->gso_segs
?: 1;
3445 /* multiply data chunks by size of headers */
3446 bytecount
= ((segs
- 1) * skb_headlen(skb
)) +
3448 total_tx_packets
+= segs
;
3449 total_tx_bytes
+= bytecount
;
3451 e1000_unmap_and_free_tx_resource(adapter
, buffer_info
);
3452 tx_desc
->upper
.data
= 0;
3454 if (unlikely(++i
== tx_ring
->count
)) i
= 0;
3457 eop
= tx_ring
->buffer_info
[i
].next_to_watch
;
3458 eop_desc
= E1000_TX_DESC(*tx_ring
, eop
);
3461 tx_ring
->next_to_clean
= i
;
3463 #define TX_WAKE_THRESHOLD 32
3464 if (unlikely(count
&& netif_carrier_ok(netdev
) &&
3465 E1000_DESC_UNUSED(tx_ring
) >= TX_WAKE_THRESHOLD
)) {
3466 /* Make sure that anybody stopping the queue after this
3467 * sees the new next_to_clean.
3471 if (netif_queue_stopped(netdev
) &&
3472 !(test_bit(__E1000_DOWN
, &adapter
->flags
))) {
3473 netif_wake_queue(netdev
);
3474 ++adapter
->restart_queue
;
3478 if (adapter
->detect_tx_hung
) {
3479 /* Detect a transmit hang in hardware, this serializes the
3480 * check with the clearing of time_stamp and movement of i */
3481 adapter
->detect_tx_hung
= false;
3482 if (tx_ring
->buffer_info
[eop
].time_stamp
&&
3483 time_after(jiffies
, tx_ring
->buffer_info
[eop
].time_stamp
+
3484 (adapter
->tx_timeout_factor
* HZ
)) &&
3485 !(er32(STATUS
) & E1000_STATUS_TXOFF
)) {
3487 /* detected Tx unit hang */
3488 DPRINTK(DRV
, ERR
, "Detected Tx Unit Hang\n"
3492 " next_to_use <%x>\n"
3493 " next_to_clean <%x>\n"
3494 "buffer_info[next_to_clean]\n"
3495 " time_stamp <%lx>\n"
3496 " next_to_watch <%x>\n"
3498 " next_to_watch.status <%x>\n",
3499 (unsigned long)((tx_ring
- adapter
->tx_ring
) /
3500 sizeof(struct e1000_tx_ring
)),
3501 readl(hw
->hw_addr
+ tx_ring
->tdh
),
3502 readl(hw
->hw_addr
+ tx_ring
->tdt
),
3503 tx_ring
->next_to_use
,
3504 tx_ring
->next_to_clean
,
3505 tx_ring
->buffer_info
[eop
].time_stamp
,
3508 eop_desc
->upper
.fields
.status
);
3509 netif_stop_queue(netdev
);
3512 adapter
->total_tx_bytes
+= total_tx_bytes
;
3513 adapter
->total_tx_packets
+= total_tx_packets
;
3514 netdev
->stats
.tx_bytes
+= total_tx_bytes
;
3515 netdev
->stats
.tx_packets
+= total_tx_packets
;
3516 return (count
< tx_ring
->count
);
3520 * e1000_rx_checksum - Receive Checksum Offload for 82543
3521 * @adapter: board private structure
3522 * @status_err: receive descriptor status and error fields
3523 * @csum: receive descriptor csum field
3524 * @sk_buff: socket buffer with received data
3527 static void e1000_rx_checksum(struct e1000_adapter
*adapter
, u32 status_err
,
3528 u32 csum
, struct sk_buff
*skb
)
3530 struct e1000_hw
*hw
= &adapter
->hw
;
3531 u16 status
= (u16
)status_err
;
3532 u8 errors
= (u8
)(status_err
>> 24);
3533 skb
->ip_summed
= CHECKSUM_NONE
;
3535 /* 82543 or newer only */
3536 if (unlikely(hw
->mac_type
< e1000_82543
)) return;
3537 /* Ignore Checksum bit is set */
3538 if (unlikely(status
& E1000_RXD_STAT_IXSM
)) return;
3539 /* TCP/UDP checksum error bit is set */
3540 if (unlikely(errors
& E1000_RXD_ERR_TCPE
)) {
3541 /* let the stack verify checksum errors */
3542 adapter
->hw_csum_err
++;
3545 /* TCP/UDP Checksum has not been calculated */
3546 if (!(status
& E1000_RXD_STAT_TCPCS
))
3549 /* It must be a TCP or UDP packet with a valid checksum */
3550 if (likely(status
& E1000_RXD_STAT_TCPCS
)) {
3551 /* TCP checksum is good */
3552 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
3554 adapter
->hw_csum_good
++;
3558 * e1000_consume_page - helper function
3560 static void e1000_consume_page(struct e1000_buffer
*bi
, struct sk_buff
*skb
,
3565 skb
->data_len
+= length
;
3566 skb
->truesize
+= length
;
3570 * e1000_receive_skb - helper function to handle rx indications
3571 * @adapter: board private structure
3572 * @status: descriptor status field as written by hardware
3573 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
3574 * @skb: pointer to sk_buff to be indicated to stack
3576 static void e1000_receive_skb(struct e1000_adapter
*adapter
, u8 status
,
3577 __le16 vlan
, struct sk_buff
*skb
)
3579 if (unlikely(adapter
->vlgrp
&& (status
& E1000_RXD_STAT_VP
))) {
3580 vlan_hwaccel_receive_skb(skb
, adapter
->vlgrp
,
3582 E1000_RXD_SPC_VLAN_MASK
);
3584 netif_receive_skb(skb
);
3589 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
3590 * @adapter: board private structure
3591 * @rx_ring: ring to clean
3592 * @work_done: amount of napi work completed this call
3593 * @work_to_do: max amount of work allowed for this call to do
3595 * the return value indicates whether actual cleaning was done, there
3596 * is no guarantee that everything was cleaned
3598 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter
*adapter
,
3599 struct e1000_rx_ring
*rx_ring
,
3600 int *work_done
, int work_to_do
)
3602 struct e1000_hw
*hw
= &adapter
->hw
;
3603 struct net_device
*netdev
= adapter
->netdev
;
3604 struct pci_dev
*pdev
= adapter
->pdev
;
3605 struct e1000_rx_desc
*rx_desc
, *next_rxd
;
3606 struct e1000_buffer
*buffer_info
, *next_buffer
;
3607 unsigned long irq_flags
;
3610 int cleaned_count
= 0;
3611 bool cleaned
= false;
3612 unsigned int total_rx_bytes
=0, total_rx_packets
=0;
3614 i
= rx_ring
->next_to_clean
;
3615 rx_desc
= E1000_RX_DESC(*rx_ring
, i
);
3616 buffer_info
= &rx_ring
->buffer_info
[i
];
3618 while (rx_desc
->status
& E1000_RXD_STAT_DD
) {
3619 struct sk_buff
*skb
;
3622 if (*work_done
>= work_to_do
)
3626 status
= rx_desc
->status
;
3627 skb
= buffer_info
->skb
;
3628 buffer_info
->skb
= NULL
;
3630 if (++i
== rx_ring
->count
) i
= 0;
3631 next_rxd
= E1000_RX_DESC(*rx_ring
, i
);
3634 next_buffer
= &rx_ring
->buffer_info
[i
];
3638 pci_unmap_page(pdev
, buffer_info
->dma
, buffer_info
->length
,
3639 PCI_DMA_FROMDEVICE
);
3640 buffer_info
->dma
= 0;
3642 length
= le16_to_cpu(rx_desc
->length
);
3644 /* errors is only valid for DD + EOP descriptors */
3645 if (unlikely((status
& E1000_RXD_STAT_EOP
) &&
3646 (rx_desc
->errors
& E1000_RXD_ERR_FRAME_ERR_MASK
))) {
3647 u8 last_byte
= *(skb
->data
+ length
- 1);
3648 if (TBI_ACCEPT(hw
, status
, rx_desc
->errors
, length
,
3650 spin_lock_irqsave(&adapter
->stats_lock
,
3652 e1000_tbi_adjust_stats(hw
, &adapter
->stats
,
3654 spin_unlock_irqrestore(&adapter
->stats_lock
,
3658 /* recycle both page and skb */
3659 buffer_info
->skb
= skb
;
3660 /* an error means any chain goes out the window
3662 if (rx_ring
->rx_skb_top
)
3663 dev_kfree_skb(rx_ring
->rx_skb_top
);
3664 rx_ring
->rx_skb_top
= NULL
;
3669 #define rxtop rx_ring->rx_skb_top
3670 if (!(status
& E1000_RXD_STAT_EOP
)) {
3671 /* this descriptor is only the beginning (or middle) */
3673 /* this is the beginning of a chain */
3675 skb_fill_page_desc(rxtop
, 0, buffer_info
->page
,
3678 /* this is the middle of a chain */
3679 skb_fill_page_desc(rxtop
,
3680 skb_shinfo(rxtop
)->nr_frags
,
3681 buffer_info
->page
, 0, length
);
3682 /* re-use the skb, only consumed the page */
3683 buffer_info
->skb
= skb
;
3685 e1000_consume_page(buffer_info
, rxtop
, length
);
3689 /* end of the chain */
3690 skb_fill_page_desc(rxtop
,
3691 skb_shinfo(rxtop
)->nr_frags
,
3692 buffer_info
->page
, 0, length
);
3693 /* re-use the current skb, we only consumed the
3695 buffer_info
->skb
= skb
;
3698 e1000_consume_page(buffer_info
, skb
, length
);
3700 /* no chain, got EOP, this buf is the packet
3701 * copybreak to save the put_page/alloc_page */
3702 if (length
<= copybreak
&&
3703 skb_tailroom(skb
) >= length
) {
3705 vaddr
= kmap_atomic(buffer_info
->page
,
3706 KM_SKB_DATA_SOFTIRQ
);
3707 memcpy(skb_tail_pointer(skb
), vaddr
, length
);
3708 kunmap_atomic(vaddr
,
3709 KM_SKB_DATA_SOFTIRQ
);
3710 /* re-use the page, so don't erase
3711 * buffer_info->page */
3712 skb_put(skb
, length
);
3714 skb_fill_page_desc(skb
, 0,
3715 buffer_info
->page
, 0,
3717 e1000_consume_page(buffer_info
, skb
,
3723 /* Receive Checksum Offload XXX recompute due to CRC strip? */
3724 e1000_rx_checksum(adapter
,
3726 ((u32
)(rx_desc
->errors
) << 24),
3727 le16_to_cpu(rx_desc
->csum
), skb
);
3729 pskb_trim(skb
, skb
->len
- 4);
3731 /* probably a little skewed due to removing CRC */
3732 total_rx_bytes
+= skb
->len
;
3735 /* eth type trans needs skb->data to point to something */
3736 if (!pskb_may_pull(skb
, ETH_HLEN
)) {
3737 DPRINTK(DRV
, ERR
, "pskb_may_pull failed.\n");
3742 skb
->protocol
= eth_type_trans(skb
, netdev
);
3744 e1000_receive_skb(adapter
, status
, rx_desc
->special
, skb
);
3747 rx_desc
->status
= 0;
3749 /* return some buffers to hardware, one at a time is too slow */
3750 if (unlikely(cleaned_count
>= E1000_RX_BUFFER_WRITE
)) {
3751 adapter
->alloc_rx_buf(adapter
, rx_ring
, cleaned_count
);
3755 /* use prefetched values */
3757 buffer_info
= next_buffer
;
3759 rx_ring
->next_to_clean
= i
;
3761 cleaned_count
= E1000_DESC_UNUSED(rx_ring
);
3763 adapter
->alloc_rx_buf(adapter
, rx_ring
, cleaned_count
);
3765 adapter
->total_rx_packets
+= total_rx_packets
;
3766 adapter
->total_rx_bytes
+= total_rx_bytes
;
3767 netdev
->stats
.rx_bytes
+= total_rx_bytes
;
3768 netdev
->stats
.rx_packets
+= total_rx_packets
;
3773 * e1000_clean_rx_irq - Send received data up the network stack; legacy
3774 * @adapter: board private structure
3775 * @rx_ring: ring to clean
3776 * @work_done: amount of napi work completed this call
3777 * @work_to_do: max amount of work allowed for this call to do
3779 static bool e1000_clean_rx_irq(struct e1000_adapter
*adapter
,
3780 struct e1000_rx_ring
*rx_ring
,
3781 int *work_done
, int work_to_do
)
3783 struct e1000_hw
*hw
= &adapter
->hw
;
3784 struct net_device
*netdev
= adapter
->netdev
;
3785 struct pci_dev
*pdev
= adapter
->pdev
;
3786 struct e1000_rx_desc
*rx_desc
, *next_rxd
;
3787 struct e1000_buffer
*buffer_info
, *next_buffer
;
3788 unsigned long flags
;
3791 int cleaned_count
= 0;
3792 bool cleaned
= false;
3793 unsigned int total_rx_bytes
=0, total_rx_packets
=0;
3795 i
= rx_ring
->next_to_clean
;
3796 rx_desc
= E1000_RX_DESC(*rx_ring
, i
);
3797 buffer_info
= &rx_ring
->buffer_info
[i
];
3799 while (rx_desc
->status
& E1000_RXD_STAT_DD
) {
3800 struct sk_buff
*skb
;
3803 if (*work_done
>= work_to_do
)
3807 status
= rx_desc
->status
;
3808 skb
= buffer_info
->skb
;
3809 buffer_info
->skb
= NULL
;
3811 prefetch(skb
->data
- NET_IP_ALIGN
);
3813 if (++i
== rx_ring
->count
) i
= 0;
3814 next_rxd
= E1000_RX_DESC(*rx_ring
, i
);
3817 next_buffer
= &rx_ring
->buffer_info
[i
];
3821 pci_unmap_single(pdev
, buffer_info
->dma
, buffer_info
->length
,
3822 PCI_DMA_FROMDEVICE
);
3823 buffer_info
->dma
= 0;
3825 length
= le16_to_cpu(rx_desc
->length
);
3826 /* !EOP means multiple descriptors were used to store a single
3827 * packet, if thats the case we need to toss it. In fact, we
3828 * to toss every packet with the EOP bit clear and the next
3829 * frame that _does_ have the EOP bit set, as it is by
3830 * definition only a frame fragment
3832 if (unlikely(!(status
& E1000_RXD_STAT_EOP
)))
3833 adapter
->discarding
= true;
3835 if (adapter
->discarding
) {
3836 /* All receives must fit into a single buffer */
3837 E1000_DBG("%s: Receive packet consumed multiple"
3838 " buffers\n", netdev
->name
);
3840 buffer_info
->skb
= skb
;
3841 if (status
& E1000_RXD_STAT_EOP
)
3842 adapter
->discarding
= false;
3846 if (unlikely(rx_desc
->errors
& E1000_RXD_ERR_FRAME_ERR_MASK
)) {
3847 u8 last_byte
= *(skb
->data
+ length
- 1);
3848 if (TBI_ACCEPT(hw
, status
, rx_desc
->errors
, length
,
3850 spin_lock_irqsave(&adapter
->stats_lock
, flags
);
3851 e1000_tbi_adjust_stats(hw
, &adapter
->stats
,
3853 spin_unlock_irqrestore(&adapter
->stats_lock
,
3858 buffer_info
->skb
= skb
;
3863 /* adjust length to remove Ethernet CRC, this must be
3864 * done after the TBI_ACCEPT workaround above */
3867 /* probably a little skewed due to removing CRC */
3868 total_rx_bytes
+= length
;
3871 /* code added for copybreak, this should improve
3872 * performance for small packets with large amounts
3873 * of reassembly being done in the stack */
3874 if (length
< copybreak
) {
3875 struct sk_buff
*new_skb
=
3876 netdev_alloc_skb_ip_align(netdev
, length
);
3878 skb_copy_to_linear_data_offset(new_skb
,
3884 /* save the skb in buffer_info as good */
3885 buffer_info
->skb
= skb
;
3888 /* else just continue with the old one */
3890 /* end copybreak code */
3891 skb_put(skb
, length
);
3893 /* Receive Checksum Offload */
3894 e1000_rx_checksum(adapter
,
3896 ((u32
)(rx_desc
->errors
) << 24),
3897 le16_to_cpu(rx_desc
->csum
), skb
);
3899 skb
->protocol
= eth_type_trans(skb
, netdev
);
3901 e1000_receive_skb(adapter
, status
, rx_desc
->special
, skb
);
3904 rx_desc
->status
= 0;
3906 /* return some buffers to hardware, one at a time is too slow */
3907 if (unlikely(cleaned_count
>= E1000_RX_BUFFER_WRITE
)) {
3908 adapter
->alloc_rx_buf(adapter
, rx_ring
, cleaned_count
);
3912 /* use prefetched values */
3914 buffer_info
= next_buffer
;
3916 rx_ring
->next_to_clean
= i
;
3918 cleaned_count
= E1000_DESC_UNUSED(rx_ring
);
3920 adapter
->alloc_rx_buf(adapter
, rx_ring
, cleaned_count
);
3922 adapter
->total_rx_packets
+= total_rx_packets
;
3923 adapter
->total_rx_bytes
+= total_rx_bytes
;
3924 netdev
->stats
.rx_bytes
+= total_rx_bytes
;
3925 netdev
->stats
.rx_packets
+= total_rx_packets
;
3930 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
3931 * @adapter: address of board private structure
3932 * @rx_ring: pointer to receive ring structure
3933 * @cleaned_count: number of buffers to allocate this pass
3937 e1000_alloc_jumbo_rx_buffers(struct e1000_adapter
*adapter
,
3938 struct e1000_rx_ring
*rx_ring
, int cleaned_count
)
3940 struct net_device
*netdev
= adapter
->netdev
;
3941 struct pci_dev
*pdev
= adapter
->pdev
;
3942 struct e1000_rx_desc
*rx_desc
;
3943 struct e1000_buffer
*buffer_info
;
3944 struct sk_buff
*skb
;
3946 unsigned int bufsz
= 256 - 16 /*for skb_reserve */ ;
3948 i
= rx_ring
->next_to_use
;
3949 buffer_info
= &rx_ring
->buffer_info
[i
];
3951 while (cleaned_count
--) {
3952 skb
= buffer_info
->skb
;
3958 skb
= netdev_alloc_skb_ip_align(netdev
, bufsz
);
3959 if (unlikely(!skb
)) {
3960 /* Better luck next round */
3961 adapter
->alloc_rx_buff_failed
++;
3965 /* Fix for errata 23, can't cross 64kB boundary */
3966 if (!e1000_check_64k_bound(adapter
, skb
->data
, bufsz
)) {
3967 struct sk_buff
*oldskb
= skb
;
3968 DPRINTK(PROBE
, ERR
, "skb align check failed: %u bytes "
3969 "at %p\n", bufsz
, skb
->data
);
3970 /* Try again, without freeing the previous */
3971 skb
= netdev_alloc_skb_ip_align(netdev
, bufsz
);
3972 /* Failed allocation, critical failure */
3974 dev_kfree_skb(oldskb
);
3975 adapter
->alloc_rx_buff_failed
++;
3979 if (!e1000_check_64k_bound(adapter
, skb
->data
, bufsz
)) {
3982 dev_kfree_skb(oldskb
);
3983 break; /* while (cleaned_count--) */
3986 /* Use new allocation */
3987 dev_kfree_skb(oldskb
);
3989 buffer_info
->skb
= skb
;
3990 buffer_info
->length
= adapter
->rx_buffer_len
;
3992 /* allocate a new page if necessary */
3993 if (!buffer_info
->page
) {
3994 buffer_info
->page
= alloc_page(GFP_ATOMIC
);
3995 if (unlikely(!buffer_info
->page
)) {
3996 adapter
->alloc_rx_buff_failed
++;
4001 if (!buffer_info
->dma
) {
4002 buffer_info
->dma
= pci_map_page(pdev
,
4003 buffer_info
->page
, 0,
4004 buffer_info
->length
,
4005 PCI_DMA_FROMDEVICE
);
4006 if (pci_dma_mapping_error(pdev
, buffer_info
->dma
)) {
4007 put_page(buffer_info
->page
);
4009 buffer_info
->page
= NULL
;
4010 buffer_info
->skb
= NULL
;
4011 buffer_info
->dma
= 0;
4012 adapter
->alloc_rx_buff_failed
++;
4013 break; /* while !buffer_info->skb */
4017 rx_desc
= E1000_RX_DESC(*rx_ring
, i
);
4018 rx_desc
->buffer_addr
= cpu_to_le64(buffer_info
->dma
);
4020 if (unlikely(++i
== rx_ring
->count
))
4022 buffer_info
= &rx_ring
->buffer_info
[i
];
4025 if (likely(rx_ring
->next_to_use
!= i
)) {
4026 rx_ring
->next_to_use
= i
;
4027 if (unlikely(i
-- == 0))
4028 i
= (rx_ring
->count
- 1);
4030 /* Force memory writes to complete before letting h/w
4031 * know there are new descriptors to fetch. (Only
4032 * applicable for weak-ordered memory model archs,
4033 * such as IA-64). */
4035 writel(i
, adapter
->hw
.hw_addr
+ rx_ring
->rdt
);
4040 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4041 * @adapter: address of board private structure
4044 static void e1000_alloc_rx_buffers(struct e1000_adapter
*adapter
,
4045 struct e1000_rx_ring
*rx_ring
,
4048 struct e1000_hw
*hw
= &adapter
->hw
;
4049 struct net_device
*netdev
= adapter
->netdev
;
4050 struct pci_dev
*pdev
= adapter
->pdev
;
4051 struct e1000_rx_desc
*rx_desc
;
4052 struct e1000_buffer
*buffer_info
;
4053 struct sk_buff
*skb
;
4055 unsigned int bufsz
= adapter
->rx_buffer_len
;
4057 i
= rx_ring
->next_to_use
;
4058 buffer_info
= &rx_ring
->buffer_info
[i
];
4060 while (cleaned_count
--) {
4061 skb
= buffer_info
->skb
;
4067 skb
= netdev_alloc_skb_ip_align(netdev
, bufsz
);
4068 if (unlikely(!skb
)) {
4069 /* Better luck next round */
4070 adapter
->alloc_rx_buff_failed
++;
4074 /* Fix for errata 23, can't cross 64kB boundary */
4075 if (!e1000_check_64k_bound(adapter
, skb
->data
, bufsz
)) {
4076 struct sk_buff
*oldskb
= skb
;
4077 DPRINTK(RX_ERR
, ERR
, "skb align check failed: %u bytes "
4078 "at %p\n", bufsz
, skb
->data
);
4079 /* Try again, without freeing the previous */
4080 skb
= netdev_alloc_skb_ip_align(netdev
, bufsz
);
4081 /* Failed allocation, critical failure */
4083 dev_kfree_skb(oldskb
);
4084 adapter
->alloc_rx_buff_failed
++;
4088 if (!e1000_check_64k_bound(adapter
, skb
->data
, bufsz
)) {
4091 dev_kfree_skb(oldskb
);
4092 adapter
->alloc_rx_buff_failed
++;
4093 break; /* while !buffer_info->skb */
4096 /* Use new allocation */
4097 dev_kfree_skb(oldskb
);
4099 buffer_info
->skb
= skb
;
4100 buffer_info
->length
= adapter
->rx_buffer_len
;
4102 buffer_info
->dma
= pci_map_single(pdev
,
4104 buffer_info
->length
,
4105 PCI_DMA_FROMDEVICE
);
4106 if (pci_dma_mapping_error(pdev
, buffer_info
->dma
)) {
4108 buffer_info
->skb
= NULL
;
4109 buffer_info
->dma
= 0;
4110 adapter
->alloc_rx_buff_failed
++;
4111 break; /* while !buffer_info->skb */
4115 * XXX if it was allocated cleanly it will never map to a
4119 /* Fix for errata 23, can't cross 64kB boundary */
4120 if (!e1000_check_64k_bound(adapter
,
4121 (void *)(unsigned long)buffer_info
->dma
,
4122 adapter
->rx_buffer_len
)) {
4123 DPRINTK(RX_ERR
, ERR
,
4124 "dma align check failed: %u bytes at %p\n",
4125 adapter
->rx_buffer_len
,
4126 (void *)(unsigned long)buffer_info
->dma
);
4128 buffer_info
->skb
= NULL
;
4130 pci_unmap_single(pdev
, buffer_info
->dma
,
4131 adapter
->rx_buffer_len
,
4132 PCI_DMA_FROMDEVICE
);
4133 buffer_info
->dma
= 0;
4135 adapter
->alloc_rx_buff_failed
++;
4136 break; /* while !buffer_info->skb */
4138 rx_desc
= E1000_RX_DESC(*rx_ring
, i
);
4139 rx_desc
->buffer_addr
= cpu_to_le64(buffer_info
->dma
);
4141 if (unlikely(++i
== rx_ring
->count
))
4143 buffer_info
= &rx_ring
->buffer_info
[i
];
4146 if (likely(rx_ring
->next_to_use
!= i
)) {
4147 rx_ring
->next_to_use
= i
;
4148 if (unlikely(i
-- == 0))
4149 i
= (rx_ring
->count
- 1);
4151 /* Force memory writes to complete before letting h/w
4152 * know there are new descriptors to fetch. (Only
4153 * applicable for weak-ordered memory model archs,
4154 * such as IA-64). */
4156 writel(i
, hw
->hw_addr
+ rx_ring
->rdt
);
4161 * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4165 static void e1000_smartspeed(struct e1000_adapter
*adapter
)
4167 struct e1000_hw
*hw
= &adapter
->hw
;
4171 if ((hw
->phy_type
!= e1000_phy_igp
) || !hw
->autoneg
||
4172 !(hw
->autoneg_advertised
& ADVERTISE_1000_FULL
))
4175 if (adapter
->smartspeed
== 0) {
4176 /* If Master/Slave config fault is asserted twice,
4177 * we assume back-to-back */
4178 e1000_read_phy_reg(hw
, PHY_1000T_STATUS
, &phy_status
);
4179 if (!(phy_status
& SR_1000T_MS_CONFIG_FAULT
)) return;
4180 e1000_read_phy_reg(hw
, PHY_1000T_STATUS
, &phy_status
);
4181 if (!(phy_status
& SR_1000T_MS_CONFIG_FAULT
)) return;
4182 e1000_read_phy_reg(hw
, PHY_1000T_CTRL
, &phy_ctrl
);
4183 if (phy_ctrl
& CR_1000T_MS_ENABLE
) {
4184 phy_ctrl
&= ~CR_1000T_MS_ENABLE
;
4185 e1000_write_phy_reg(hw
, PHY_1000T_CTRL
,
4187 adapter
->smartspeed
++;
4188 if (!e1000_phy_setup_autoneg(hw
) &&
4189 !e1000_read_phy_reg(hw
, PHY_CTRL
,
4191 phy_ctrl
|= (MII_CR_AUTO_NEG_EN
|
4192 MII_CR_RESTART_AUTO_NEG
);
4193 e1000_write_phy_reg(hw
, PHY_CTRL
,
4198 } else if (adapter
->smartspeed
== E1000_SMARTSPEED_DOWNSHIFT
) {
4199 /* If still no link, perhaps using 2/3 pair cable */
4200 e1000_read_phy_reg(hw
, PHY_1000T_CTRL
, &phy_ctrl
);
4201 phy_ctrl
|= CR_1000T_MS_ENABLE
;
4202 e1000_write_phy_reg(hw
, PHY_1000T_CTRL
, phy_ctrl
);
4203 if (!e1000_phy_setup_autoneg(hw
) &&
4204 !e1000_read_phy_reg(hw
, PHY_CTRL
, &phy_ctrl
)) {
4205 phy_ctrl
|= (MII_CR_AUTO_NEG_EN
|
4206 MII_CR_RESTART_AUTO_NEG
);
4207 e1000_write_phy_reg(hw
, PHY_CTRL
, phy_ctrl
);
4210 /* Restart process after E1000_SMARTSPEED_MAX iterations */
4211 if (adapter
->smartspeed
++ == E1000_SMARTSPEED_MAX
)
4212 adapter
->smartspeed
= 0;
4222 static int e1000_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
, int cmd
)
4228 return e1000_mii_ioctl(netdev
, ifr
, cmd
);
4241 static int e1000_mii_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
,
4244 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4245 struct e1000_hw
*hw
= &adapter
->hw
;
4246 struct mii_ioctl_data
*data
= if_mii(ifr
);
4250 unsigned long flags
;
4252 if (hw
->media_type
!= e1000_media_type_copper
)
4257 data
->phy_id
= hw
->phy_addr
;
4260 spin_lock_irqsave(&adapter
->stats_lock
, flags
);
4261 if (e1000_read_phy_reg(hw
, data
->reg_num
& 0x1F,
4263 spin_unlock_irqrestore(&adapter
->stats_lock
, flags
);
4266 spin_unlock_irqrestore(&adapter
->stats_lock
, flags
);
4269 if (data
->reg_num
& ~(0x1F))
4271 mii_reg
= data
->val_in
;
4272 spin_lock_irqsave(&adapter
->stats_lock
, flags
);
4273 if (e1000_write_phy_reg(hw
, data
->reg_num
,
4275 spin_unlock_irqrestore(&adapter
->stats_lock
, flags
);
4278 spin_unlock_irqrestore(&adapter
->stats_lock
, flags
);
4279 if (hw
->media_type
== e1000_media_type_copper
) {
4280 switch (data
->reg_num
) {
4282 if (mii_reg
& MII_CR_POWER_DOWN
)
4284 if (mii_reg
& MII_CR_AUTO_NEG_EN
) {
4286 hw
->autoneg_advertised
= 0x2F;
4289 spddplx
= SPEED_1000
;
4290 else if (mii_reg
& 0x2000)
4291 spddplx
= SPEED_100
;
4294 spddplx
+= (mii_reg
& 0x100)
4297 retval
= e1000_set_spd_dplx(adapter
,
4302 if (netif_running(adapter
->netdev
))
4303 e1000_reinit_locked(adapter
);
4305 e1000_reset(adapter
);
4307 case M88E1000_PHY_SPEC_CTRL
:
4308 case M88E1000_EXT_PHY_SPEC_CTRL
:
4309 if (e1000_phy_reset(hw
))
4314 switch (data
->reg_num
) {
4316 if (mii_reg
& MII_CR_POWER_DOWN
)
4318 if (netif_running(adapter
->netdev
))
4319 e1000_reinit_locked(adapter
);
4321 e1000_reset(adapter
);
4329 return E1000_SUCCESS
;
4332 void e1000_pci_set_mwi(struct e1000_hw
*hw
)
4334 struct e1000_adapter
*adapter
= hw
->back
;
4335 int ret_val
= pci_set_mwi(adapter
->pdev
);
4338 DPRINTK(PROBE
, ERR
, "Error in setting MWI\n");
4341 void e1000_pci_clear_mwi(struct e1000_hw
*hw
)
4343 struct e1000_adapter
*adapter
= hw
->back
;
4345 pci_clear_mwi(adapter
->pdev
);
4348 int e1000_pcix_get_mmrbc(struct e1000_hw
*hw
)
4350 struct e1000_adapter
*adapter
= hw
->back
;
4351 return pcix_get_mmrbc(adapter
->pdev
);
4354 void e1000_pcix_set_mmrbc(struct e1000_hw
*hw
, int mmrbc
)
4356 struct e1000_adapter
*adapter
= hw
->back
;
4357 pcix_set_mmrbc(adapter
->pdev
, mmrbc
);
4360 void e1000_io_write(struct e1000_hw
*hw
, unsigned long port
, u32 value
)
4365 static void e1000_vlan_rx_register(struct net_device
*netdev
,
4366 struct vlan_group
*grp
)
4368 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4369 struct e1000_hw
*hw
= &adapter
->hw
;
4372 if (!test_bit(__E1000_DOWN
, &adapter
->flags
))
4373 e1000_irq_disable(adapter
);
4374 adapter
->vlgrp
= grp
;
4377 /* enable VLAN tag insert/strip */
4379 ctrl
|= E1000_CTRL_VME
;
4382 /* enable VLAN receive filtering */
4384 rctl
&= ~E1000_RCTL_CFIEN
;
4385 if (!(netdev
->flags
& IFF_PROMISC
))
4386 rctl
|= E1000_RCTL_VFE
;
4388 e1000_update_mng_vlan(adapter
);
4390 /* disable VLAN tag insert/strip */
4392 ctrl
&= ~E1000_CTRL_VME
;
4395 /* disable VLAN receive filtering */
4397 rctl
&= ~E1000_RCTL_VFE
;
4400 if (adapter
->mng_vlan_id
!= (u16
)E1000_MNG_VLAN_NONE
) {
4401 e1000_vlan_rx_kill_vid(netdev
, adapter
->mng_vlan_id
);
4402 adapter
->mng_vlan_id
= E1000_MNG_VLAN_NONE
;
4406 if (!test_bit(__E1000_DOWN
, &adapter
->flags
))
4407 e1000_irq_enable(adapter
);
4410 static void e1000_vlan_rx_add_vid(struct net_device
*netdev
, u16 vid
)
4412 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4413 struct e1000_hw
*hw
= &adapter
->hw
;
4416 if ((hw
->mng_cookie
.status
&
4417 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT
) &&
4418 (vid
== adapter
->mng_vlan_id
))
4420 /* add VID to filter table */
4421 index
= (vid
>> 5) & 0x7F;
4422 vfta
= E1000_READ_REG_ARRAY(hw
, VFTA
, index
);
4423 vfta
|= (1 << (vid
& 0x1F));
4424 e1000_write_vfta(hw
, index
, vfta
);
4427 static void e1000_vlan_rx_kill_vid(struct net_device
*netdev
, u16 vid
)
4429 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4430 struct e1000_hw
*hw
= &adapter
->hw
;
4433 if (!test_bit(__E1000_DOWN
, &adapter
->flags
))
4434 e1000_irq_disable(adapter
);
4435 vlan_group_set_device(adapter
->vlgrp
, vid
, NULL
);
4436 if (!test_bit(__E1000_DOWN
, &adapter
->flags
))
4437 e1000_irq_enable(adapter
);
4439 /* remove VID from filter table */
4440 index
= (vid
>> 5) & 0x7F;
4441 vfta
= E1000_READ_REG_ARRAY(hw
, VFTA
, index
);
4442 vfta
&= ~(1 << (vid
& 0x1F));
4443 e1000_write_vfta(hw
, index
, vfta
);
4446 static void e1000_restore_vlan(struct e1000_adapter
*adapter
)
4448 e1000_vlan_rx_register(adapter
->netdev
, adapter
->vlgrp
);
4450 if (adapter
->vlgrp
) {
4452 for (vid
= 0; vid
< VLAN_GROUP_ARRAY_LEN
; vid
++) {
4453 if (!vlan_group_get_device(adapter
->vlgrp
, vid
))
4455 e1000_vlan_rx_add_vid(adapter
->netdev
, vid
);
4460 int e1000_set_spd_dplx(struct e1000_adapter
*adapter
, u16 spddplx
)
4462 struct e1000_hw
*hw
= &adapter
->hw
;
4466 /* Fiber NICs only allow 1000 gbps Full duplex */
4467 if ((hw
->media_type
== e1000_media_type_fiber
) &&
4468 spddplx
!= (SPEED_1000
+ DUPLEX_FULL
)) {
4469 DPRINTK(PROBE
, ERR
, "Unsupported Speed/Duplex configuration\n");
4474 case SPEED_10
+ DUPLEX_HALF
:
4475 hw
->forced_speed_duplex
= e1000_10_half
;
4477 case SPEED_10
+ DUPLEX_FULL
:
4478 hw
->forced_speed_duplex
= e1000_10_full
;
4480 case SPEED_100
+ DUPLEX_HALF
:
4481 hw
->forced_speed_duplex
= e1000_100_half
;
4483 case SPEED_100
+ DUPLEX_FULL
:
4484 hw
->forced_speed_duplex
= e1000_100_full
;
4486 case SPEED_1000
+ DUPLEX_FULL
:
4488 hw
->autoneg_advertised
= ADVERTISE_1000_FULL
;
4490 case SPEED_1000
+ DUPLEX_HALF
: /* not supported */
4492 DPRINTK(PROBE
, ERR
, "Unsupported Speed/Duplex configuration\n");
4498 static int __e1000_shutdown(struct pci_dev
*pdev
, bool *enable_wake
)
4500 struct net_device
*netdev
= pci_get_drvdata(pdev
);
4501 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4502 struct e1000_hw
*hw
= &adapter
->hw
;
4503 u32 ctrl
, ctrl_ext
, rctl
, status
;
4504 u32 wufc
= adapter
->wol
;
4509 netif_device_detach(netdev
);
4511 if (netif_running(netdev
)) {
4512 WARN_ON(test_bit(__E1000_RESETTING
, &adapter
->flags
));
4513 e1000_down(adapter
);
4517 retval
= pci_save_state(pdev
);
4522 status
= er32(STATUS
);
4523 if (status
& E1000_STATUS_LU
)
4524 wufc
&= ~E1000_WUFC_LNKC
;
4527 e1000_setup_rctl(adapter
);
4528 e1000_set_rx_mode(netdev
);
4530 /* turn on all-multi mode if wake on multicast is enabled */
4531 if (wufc
& E1000_WUFC_MC
) {
4533 rctl
|= E1000_RCTL_MPE
;
4537 if (hw
->mac_type
>= e1000_82540
) {
4539 /* advertise wake from D3Cold */
4540 #define E1000_CTRL_ADVD3WUC 0x00100000
4541 /* phy power management enable */
4542 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4543 ctrl
|= E1000_CTRL_ADVD3WUC
|
4544 E1000_CTRL_EN_PHY_PWR_MGMT
;
4548 if (hw
->media_type
== e1000_media_type_fiber
||
4549 hw
->media_type
== e1000_media_type_internal_serdes
) {
4550 /* keep the laser running in D3 */
4551 ctrl_ext
= er32(CTRL_EXT
);
4552 ctrl_ext
|= E1000_CTRL_EXT_SDP7_DATA
;
4553 ew32(CTRL_EXT
, ctrl_ext
);
4556 ew32(WUC
, E1000_WUC_PME_EN
);
4563 e1000_release_manageability(adapter
);
4565 *enable_wake
= !!wufc
;
4567 /* make sure adapter isn't asleep if manageability is enabled */
4568 if (adapter
->en_mng_pt
)
4569 *enable_wake
= true;
4571 if (netif_running(netdev
))
4572 e1000_free_irq(adapter
);
4574 pci_disable_device(pdev
);
4580 static int e1000_suspend(struct pci_dev
*pdev
, pm_message_t state
)
4585 retval
= __e1000_shutdown(pdev
, &wake
);
4590 pci_prepare_to_sleep(pdev
);
4592 pci_wake_from_d3(pdev
, false);
4593 pci_set_power_state(pdev
, PCI_D3hot
);
4599 static int e1000_resume(struct pci_dev
*pdev
)
4601 struct net_device
*netdev
= pci_get_drvdata(pdev
);
4602 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4603 struct e1000_hw
*hw
= &adapter
->hw
;
4606 pci_set_power_state(pdev
, PCI_D0
);
4607 pci_restore_state(pdev
);
4608 pci_save_state(pdev
);
4610 if (adapter
->need_ioport
)
4611 err
= pci_enable_device(pdev
);
4613 err
= pci_enable_device_mem(pdev
);
4615 printk(KERN_ERR
"e1000: Cannot enable PCI device from suspend\n");
4618 pci_set_master(pdev
);
4620 pci_enable_wake(pdev
, PCI_D3hot
, 0);
4621 pci_enable_wake(pdev
, PCI_D3cold
, 0);
4623 if (netif_running(netdev
)) {
4624 err
= e1000_request_irq(adapter
);
4629 e1000_power_up_phy(adapter
);
4630 e1000_reset(adapter
);
4633 e1000_init_manageability(adapter
);
4635 if (netif_running(netdev
))
4638 netif_device_attach(netdev
);
4644 static void e1000_shutdown(struct pci_dev
*pdev
)
4648 __e1000_shutdown(pdev
, &wake
);
4650 if (system_state
== SYSTEM_POWER_OFF
) {
4651 pci_wake_from_d3(pdev
, wake
);
4652 pci_set_power_state(pdev
, PCI_D3hot
);
4656 #ifdef CONFIG_NET_POLL_CONTROLLER
4658 * Polling 'interrupt' - used by things like netconsole to send skbs
4659 * without having to re-enable interrupts. It's not called while
4660 * the interrupt routine is executing.
4662 static void e1000_netpoll(struct net_device
*netdev
)
4664 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4666 disable_irq(adapter
->pdev
->irq
);
4667 e1000_intr(adapter
->pdev
->irq
, netdev
);
4668 enable_irq(adapter
->pdev
->irq
);
4673 * e1000_io_error_detected - called when PCI error is detected
4674 * @pdev: Pointer to PCI device
4675 * @state: The current pci connection state
4677 * This function is called after a PCI bus error affecting
4678 * this device has been detected.
4680 static pci_ers_result_t
e1000_io_error_detected(struct pci_dev
*pdev
,
4681 pci_channel_state_t state
)
4683 struct net_device
*netdev
= pci_get_drvdata(pdev
);
4684 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4686 netif_device_detach(netdev
);
4688 if (state
== pci_channel_io_perm_failure
)
4689 return PCI_ERS_RESULT_DISCONNECT
;
4691 if (netif_running(netdev
))
4692 e1000_down(adapter
);
4693 pci_disable_device(pdev
);
4695 /* Request a slot slot reset. */
4696 return PCI_ERS_RESULT_NEED_RESET
;
4700 * e1000_io_slot_reset - called after the pci bus has been reset.
4701 * @pdev: Pointer to PCI device
4703 * Restart the card from scratch, as if from a cold-boot. Implementation
4704 * resembles the first-half of the e1000_resume routine.
4706 static pci_ers_result_t
e1000_io_slot_reset(struct pci_dev
*pdev
)
4708 struct net_device
*netdev
= pci_get_drvdata(pdev
);
4709 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4710 struct e1000_hw
*hw
= &adapter
->hw
;
4713 if (adapter
->need_ioport
)
4714 err
= pci_enable_device(pdev
);
4716 err
= pci_enable_device_mem(pdev
);
4718 printk(KERN_ERR
"e1000: Cannot re-enable PCI device after reset.\n");
4719 return PCI_ERS_RESULT_DISCONNECT
;
4721 pci_set_master(pdev
);
4723 pci_enable_wake(pdev
, PCI_D3hot
, 0);
4724 pci_enable_wake(pdev
, PCI_D3cold
, 0);
4726 e1000_reset(adapter
);
4729 return PCI_ERS_RESULT_RECOVERED
;
4733 * e1000_io_resume - called when traffic can start flowing again.
4734 * @pdev: Pointer to PCI device
4736 * This callback is called when the error recovery driver tells us that
4737 * its OK to resume normal operation. Implementation resembles the
4738 * second-half of the e1000_resume routine.
4740 static void e1000_io_resume(struct pci_dev
*pdev
)
4742 struct net_device
*netdev
= pci_get_drvdata(pdev
);
4743 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4745 e1000_init_manageability(adapter
);
4747 if (netif_running(netdev
)) {
4748 if (e1000_up(adapter
)) {
4749 printk("e1000: can't bring device back up after reset\n");
4754 netif_device_attach(netdev
);