1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2009 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
30 * 82571EB Gigabit Ethernet Controller
31 * 82571EB Gigabit Ethernet Controller (Copper)
32 * 82571EB Gigabit Ethernet Controller (Fiber)
33 * 82571EB Dual Port Gigabit Mezzanine Adapter
34 * 82571EB Quad Port Gigabit Mezzanine Adapter
35 * 82571PT Gigabit PT Quad Port Server ExpressModule
36 * 82572EI Gigabit Ethernet Controller (Copper)
37 * 82572EI Gigabit Ethernet Controller (Fiber)
38 * 82572EI Gigabit Ethernet Controller
39 * 82573V Gigabit Ethernet Controller (Copper)
40 * 82573E Gigabit Ethernet Controller (Copper)
41 * 82573L Gigabit Ethernet Controller
42 * 82574L Gigabit Network Connection
43 * 82583V Gigabit Network Connection
48 #define ID_LED_RESERVED_F746 0xF746
49 #define ID_LED_DEFAULT_82573 ((ID_LED_DEF1_DEF2 << 12) | \
50 (ID_LED_OFF1_ON2 << 8) | \
51 (ID_LED_DEF1_DEF2 << 4) | \
54 #define E1000_GCR_L1_ACT_WITHOUT_L0S_RX 0x08000000
56 #define E1000_NVM_INIT_CTRL2_MNGM 0x6000 /* Manageability Operation Mode mask */
58 static s32
e1000_get_phy_id_82571(struct e1000_hw
*hw
);
59 static s32
e1000_setup_copper_link_82571(struct e1000_hw
*hw
);
60 static s32
e1000_setup_fiber_serdes_link_82571(struct e1000_hw
*hw
);
61 static s32
e1000_check_for_serdes_link_82571(struct e1000_hw
*hw
);
62 static s32
e1000_write_nvm_eewr_82571(struct e1000_hw
*hw
, u16 offset
,
63 u16 words
, u16
*data
);
64 static s32
e1000_fix_nvm_checksum_82571(struct e1000_hw
*hw
);
65 static void e1000_initialize_hw_bits_82571(struct e1000_hw
*hw
);
66 static s32
e1000_setup_link_82571(struct e1000_hw
*hw
);
67 static void e1000_clear_hw_cntrs_82571(struct e1000_hw
*hw
);
68 static void e1000_clear_vfta_82571(struct e1000_hw
*hw
);
69 static bool e1000_check_mng_mode_82574(struct e1000_hw
*hw
);
70 static s32
e1000_led_on_82574(struct e1000_hw
*hw
);
71 static void e1000_put_hw_semaphore_82571(struct e1000_hw
*hw
);
72 static void e1000_power_down_phy_copper_82571(struct e1000_hw
*hw
);
75 * e1000_init_phy_params_82571 - Init PHY func ptrs.
76 * @hw: pointer to the HW structure
78 static s32
e1000_init_phy_params_82571(struct e1000_hw
*hw
)
80 struct e1000_phy_info
*phy
= &hw
->phy
;
83 if (hw
->phy
.media_type
!= e1000_media_type_copper
) {
84 phy
->type
= e1000_phy_none
;
89 phy
->autoneg_mask
= AUTONEG_ADVERTISE_SPEED_DEFAULT
;
90 phy
->reset_delay_us
= 100;
92 phy
->ops
.power_up
= e1000_power_up_phy_copper
;
93 phy
->ops
.power_down
= e1000_power_down_phy_copper_82571
;
95 switch (hw
->mac
.type
) {
98 phy
->type
= e1000_phy_igp_2
;
101 phy
->type
= e1000_phy_m88
;
105 phy
->type
= e1000_phy_bm
;
108 return -E1000_ERR_PHY
;
112 /* This can only be done after all function pointers are setup. */
113 ret_val
= e1000_get_phy_id_82571(hw
);
116 switch (hw
->mac
.type
) {
119 if (phy
->id
!= IGP01E1000_I_PHY_ID
)
120 return -E1000_ERR_PHY
;
123 if (phy
->id
!= M88E1111_I_PHY_ID
)
124 return -E1000_ERR_PHY
;
128 if (phy
->id
!= BME1000_E_PHY_ID_R2
)
129 return -E1000_ERR_PHY
;
132 return -E1000_ERR_PHY
;
140 * e1000_init_nvm_params_82571 - Init NVM func ptrs.
141 * @hw: pointer to the HW structure
143 static s32
e1000_init_nvm_params_82571(struct e1000_hw
*hw
)
145 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
146 u32 eecd
= er32(EECD
);
149 nvm
->opcode_bits
= 8;
151 switch (nvm
->override
) {
152 case e1000_nvm_override_spi_large
:
154 nvm
->address_bits
= 16;
156 case e1000_nvm_override_spi_small
:
158 nvm
->address_bits
= 8;
161 nvm
->page_size
= eecd
& E1000_EECD_ADDR_BITS
? 32 : 8;
162 nvm
->address_bits
= eecd
& E1000_EECD_ADDR_BITS
? 16 : 8;
166 switch (hw
->mac
.type
) {
170 if (((eecd
>> 15) & 0x3) == 0x3) {
171 nvm
->type
= e1000_nvm_flash_hw
;
172 nvm
->word_size
= 2048;
174 * Autonomous Flash update bit must be cleared due
175 * to Flash update issue.
177 eecd
&= ~E1000_EECD_AUPDEN
;
183 nvm
->type
= e1000_nvm_eeprom_spi
;
184 size
= (u16
)((eecd
& E1000_EECD_SIZE_EX_MASK
) >>
185 E1000_EECD_SIZE_EX_SHIFT
);
187 * Added to a constant, "size" becomes the left-shift value
188 * for setting word_size.
190 size
+= NVM_WORD_SIZE_BASE_SHIFT
;
192 /* EEPROM access above 16k is unsupported */
195 nvm
->word_size
= 1 << size
;
203 * e1000_init_mac_params_82571 - Init MAC func ptrs.
204 * @hw: pointer to the HW structure
206 static s32
e1000_init_mac_params_82571(struct e1000_adapter
*adapter
)
208 struct e1000_hw
*hw
= &adapter
->hw
;
209 struct e1000_mac_info
*mac
= &hw
->mac
;
210 struct e1000_mac_operations
*func
= &mac
->ops
;
213 bool force_clear_smbi
= false;
216 switch (adapter
->pdev
->device
) {
217 case E1000_DEV_ID_82571EB_FIBER
:
218 case E1000_DEV_ID_82572EI_FIBER
:
219 case E1000_DEV_ID_82571EB_QUAD_FIBER
:
220 hw
->phy
.media_type
= e1000_media_type_fiber
;
222 case E1000_DEV_ID_82571EB_SERDES
:
223 case E1000_DEV_ID_82572EI_SERDES
:
224 case E1000_DEV_ID_82571EB_SERDES_DUAL
:
225 case E1000_DEV_ID_82571EB_SERDES_QUAD
:
226 hw
->phy
.media_type
= e1000_media_type_internal_serdes
;
229 hw
->phy
.media_type
= e1000_media_type_copper
;
233 /* Set mta register count */
234 mac
->mta_reg_count
= 128;
235 /* Set rar entry count */
236 mac
->rar_entry_count
= E1000_RAR_ENTRIES
;
237 /* Set if manageability features are enabled. */
238 mac
->arc_subsystem_valid
= (er32(FWSM
) & E1000_FWSM_MODE_MASK
)
240 /* Adaptive IFS supported */
241 mac
->adaptive_ifs
= true;
244 switch (hw
->phy
.media_type
) {
245 case e1000_media_type_copper
:
246 func
->setup_physical_interface
= e1000_setup_copper_link_82571
;
247 func
->check_for_link
= e1000e_check_for_copper_link
;
248 func
->get_link_up_info
= e1000e_get_speed_and_duplex_copper
;
250 case e1000_media_type_fiber
:
251 func
->setup_physical_interface
=
252 e1000_setup_fiber_serdes_link_82571
;
253 func
->check_for_link
= e1000e_check_for_fiber_link
;
254 func
->get_link_up_info
=
255 e1000e_get_speed_and_duplex_fiber_serdes
;
257 case e1000_media_type_internal_serdes
:
258 func
->setup_physical_interface
=
259 e1000_setup_fiber_serdes_link_82571
;
260 func
->check_for_link
= e1000_check_for_serdes_link_82571
;
261 func
->get_link_up_info
=
262 e1000e_get_speed_and_duplex_fiber_serdes
;
265 return -E1000_ERR_CONFIG
;
269 switch (hw
->mac
.type
) {
271 func
->set_lan_id
= e1000_set_lan_id_single_port
;
272 func
->check_mng_mode
= e1000e_check_mng_mode_generic
;
273 func
->led_on
= e1000e_led_on_generic
;
277 func
->set_lan_id
= e1000_set_lan_id_single_port
;
278 func
->check_mng_mode
= e1000_check_mng_mode_82574
;
279 func
->led_on
= e1000_led_on_82574
;
282 func
->check_mng_mode
= e1000e_check_mng_mode_generic
;
283 func
->led_on
= e1000e_led_on_generic
;
288 * Ensure that the inter-port SWSM.SMBI lock bit is clear before
289 * first NVM or PHY acess. This should be done for single-port
290 * devices, and for one port only on dual-port devices so that
291 * for those devices we can still use the SMBI lock to synchronize
292 * inter-port accesses to the PHY & NVM.
294 switch (hw
->mac
.type
) {
299 if (!(swsm2
& E1000_SWSM2_LOCK
)) {
300 /* Only do this for the first interface on this card */
302 swsm2
| E1000_SWSM2_LOCK
);
303 force_clear_smbi
= true;
305 force_clear_smbi
= false;
308 force_clear_smbi
= true;
312 if (force_clear_smbi
) {
313 /* Make sure SWSM.SMBI is clear */
315 if (swsm
& E1000_SWSM_SMBI
) {
316 /* This bit should not be set on a first interface, and
317 * indicates that the bootagent or EFI code has
318 * improperly left this bit enabled
320 e_dbg("Please update your 82571 Bootagent\n");
322 ew32(SWSM
, swsm
& ~E1000_SWSM_SMBI
);
326 * Initialze device specific counter of SMBI acquisition
329 hw
->dev_spec
.e82571
.smb_counter
= 0;
334 static s32
e1000_get_variants_82571(struct e1000_adapter
*adapter
)
336 struct e1000_hw
*hw
= &adapter
->hw
;
337 static int global_quad_port_a
; /* global port a indication */
338 struct pci_dev
*pdev
= adapter
->pdev
;
339 int is_port_b
= er32(STATUS
) & E1000_STATUS_FUNC_1
;
342 rc
= e1000_init_mac_params_82571(adapter
);
346 rc
= e1000_init_nvm_params_82571(hw
);
350 rc
= e1000_init_phy_params_82571(hw
);
354 /* tag quad port adapters first, it's used below */
355 switch (pdev
->device
) {
356 case E1000_DEV_ID_82571EB_QUAD_COPPER
:
357 case E1000_DEV_ID_82571EB_QUAD_FIBER
:
358 case E1000_DEV_ID_82571EB_QUAD_COPPER_LP
:
359 case E1000_DEV_ID_82571PT_QUAD_COPPER
:
360 adapter
->flags
|= FLAG_IS_QUAD_PORT
;
361 /* mark the first port */
362 if (global_quad_port_a
== 0)
363 adapter
->flags
|= FLAG_IS_QUAD_PORT_A
;
364 /* Reset for multiple quad port adapters */
365 global_quad_port_a
++;
366 if (global_quad_port_a
== 4)
367 global_quad_port_a
= 0;
373 switch (adapter
->hw
.mac
.type
) {
375 /* these dual ports don't have WoL on port B at all */
376 if (((pdev
->device
== E1000_DEV_ID_82571EB_FIBER
) ||
377 (pdev
->device
== E1000_DEV_ID_82571EB_SERDES
) ||
378 (pdev
->device
== E1000_DEV_ID_82571EB_COPPER
)) &&
380 adapter
->flags
&= ~FLAG_HAS_WOL
;
381 /* quad ports only support WoL on port A */
382 if (adapter
->flags
& FLAG_IS_QUAD_PORT
&&
383 (!(adapter
->flags
& FLAG_IS_QUAD_PORT_A
)))
384 adapter
->flags
&= ~FLAG_HAS_WOL
;
385 /* Does not support WoL on any port */
386 if (pdev
->device
== E1000_DEV_ID_82571EB_SERDES_QUAD
)
387 adapter
->flags
&= ~FLAG_HAS_WOL
;
392 /* Disable ASPM L0s due to hardware errata */
393 e1000e_disable_aspm(adapter
->pdev
, PCIE_LINK_STATE_L0S
);
395 if (pdev
->device
== E1000_DEV_ID_82573L
) {
396 adapter
->flags
|= FLAG_HAS_JUMBO_FRAMES
;
397 adapter
->max_hw_frame_size
= DEFAULT_JUMBO
;
408 * e1000_get_phy_id_82571 - Retrieve the PHY ID and revision
409 * @hw: pointer to the HW structure
411 * Reads the PHY registers and stores the PHY ID and possibly the PHY
412 * revision in the hardware structure.
414 static s32
e1000_get_phy_id_82571(struct e1000_hw
*hw
)
416 struct e1000_phy_info
*phy
= &hw
->phy
;
420 switch (hw
->mac
.type
) {
424 * The 82571 firmware may still be configuring the PHY.
425 * In this case, we cannot access the PHY until the
426 * configuration is done. So we explicitly set the
429 phy
->id
= IGP01E1000_I_PHY_ID
;
432 return e1000e_get_phy_id(hw
);
436 ret_val
= e1e_rphy(hw
, PHY_ID1
, &phy_id
);
440 phy
->id
= (u32
)(phy_id
<< 16);
442 ret_val
= e1e_rphy(hw
, PHY_ID2
, &phy_id
);
446 phy
->id
|= (u32
)(phy_id
);
447 phy
->revision
= (u32
)(phy_id
& ~PHY_REVISION_MASK
);
450 return -E1000_ERR_PHY
;
458 * e1000_get_hw_semaphore_82571 - Acquire hardware semaphore
459 * @hw: pointer to the HW structure
461 * Acquire the HW semaphore to access the PHY or NVM
463 static s32
e1000_get_hw_semaphore_82571(struct e1000_hw
*hw
)
466 s32 sw_timeout
= hw
->nvm
.word_size
+ 1;
467 s32 fw_timeout
= hw
->nvm
.word_size
+ 1;
471 * If we have timedout 3 times on trying to acquire
472 * the inter-port SMBI semaphore, there is old code
473 * operating on the other port, and it is not
474 * releasing SMBI. Modify the number of times that
475 * we try for the semaphore to interwork with this
478 if (hw
->dev_spec
.e82571
.smb_counter
> 2)
481 /* Get the SW semaphore */
482 while (i
< sw_timeout
) {
484 if (!(swsm
& E1000_SWSM_SMBI
))
491 if (i
== sw_timeout
) {
492 e_dbg("Driver can't access device - SMBI bit is set.\n");
493 hw
->dev_spec
.e82571
.smb_counter
++;
495 /* Get the FW semaphore. */
496 for (i
= 0; i
< fw_timeout
; i
++) {
498 ew32(SWSM
, swsm
| E1000_SWSM_SWESMBI
);
500 /* Semaphore acquired if bit latched */
501 if (er32(SWSM
) & E1000_SWSM_SWESMBI
)
507 if (i
== fw_timeout
) {
508 /* Release semaphores */
509 e1000_put_hw_semaphore_82571(hw
);
510 e_dbg("Driver can't access the NVM\n");
511 return -E1000_ERR_NVM
;
518 * e1000_put_hw_semaphore_82571 - Release hardware semaphore
519 * @hw: pointer to the HW structure
521 * Release hardware semaphore used to access the PHY or NVM
523 static void e1000_put_hw_semaphore_82571(struct e1000_hw
*hw
)
528 swsm
&= ~(E1000_SWSM_SMBI
| E1000_SWSM_SWESMBI
);
533 * e1000_acquire_nvm_82571 - Request for access to the EEPROM
534 * @hw: pointer to the HW structure
536 * To gain access to the EEPROM, first we must obtain a hardware semaphore.
537 * Then for non-82573 hardware, set the EEPROM access request bit and wait
538 * for EEPROM access grant bit. If the access grant bit is not set, release
539 * hardware semaphore.
541 static s32
e1000_acquire_nvm_82571(struct e1000_hw
*hw
)
545 ret_val
= e1000_get_hw_semaphore_82571(hw
);
549 switch (hw
->mac
.type
) {
555 ret_val
= e1000e_acquire_nvm(hw
);
560 e1000_put_hw_semaphore_82571(hw
);
566 * e1000_release_nvm_82571 - Release exclusive access to EEPROM
567 * @hw: pointer to the HW structure
569 * Stop any current commands to the EEPROM and clear the EEPROM request bit.
571 static void e1000_release_nvm_82571(struct e1000_hw
*hw
)
573 e1000e_release_nvm(hw
);
574 e1000_put_hw_semaphore_82571(hw
);
578 * e1000_write_nvm_82571 - Write to EEPROM using appropriate interface
579 * @hw: pointer to the HW structure
580 * @offset: offset within the EEPROM to be written to
581 * @words: number of words to write
582 * @data: 16 bit word(s) to be written to the EEPROM
584 * For non-82573 silicon, write data to EEPROM at offset using SPI interface.
586 * If e1000e_update_nvm_checksum is not called after this function, the
587 * EEPROM will most likely contain an invalid checksum.
589 static s32
e1000_write_nvm_82571(struct e1000_hw
*hw
, u16 offset
, u16 words
,
594 switch (hw
->mac
.type
) {
598 ret_val
= e1000_write_nvm_eewr_82571(hw
, offset
, words
, data
);
602 ret_val
= e1000e_write_nvm_spi(hw
, offset
, words
, data
);
605 ret_val
= -E1000_ERR_NVM
;
613 * e1000_update_nvm_checksum_82571 - Update EEPROM checksum
614 * @hw: pointer to the HW structure
616 * Updates the EEPROM checksum by reading/adding each word of the EEPROM
617 * up to the checksum. Then calculates the EEPROM checksum and writes the
618 * value to the EEPROM.
620 static s32
e1000_update_nvm_checksum_82571(struct e1000_hw
*hw
)
626 ret_val
= e1000e_update_nvm_checksum_generic(hw
);
631 * If our nvm is an EEPROM, then we're done
632 * otherwise, commit the checksum to the flash NVM.
634 if (hw
->nvm
.type
!= e1000_nvm_flash_hw
)
637 /* Check for pending operations. */
638 for (i
= 0; i
< E1000_FLASH_UPDATES
; i
++) {
640 if ((er32(EECD
) & E1000_EECD_FLUPD
) == 0)
644 if (i
== E1000_FLASH_UPDATES
)
645 return -E1000_ERR_NVM
;
647 /* Reset the firmware if using STM opcode. */
648 if ((er32(FLOP
) & 0xFF00) == E1000_STM_OPCODE
) {
650 * The enabling of and the actual reset must be done
651 * in two write cycles.
653 ew32(HICR
, E1000_HICR_FW_RESET_ENABLE
);
655 ew32(HICR
, E1000_HICR_FW_RESET
);
658 /* Commit the write to flash */
659 eecd
= er32(EECD
) | E1000_EECD_FLUPD
;
662 for (i
= 0; i
< E1000_FLASH_UPDATES
; i
++) {
664 if ((er32(EECD
) & E1000_EECD_FLUPD
) == 0)
668 if (i
== E1000_FLASH_UPDATES
)
669 return -E1000_ERR_NVM
;
675 * e1000_validate_nvm_checksum_82571 - Validate EEPROM checksum
676 * @hw: pointer to the HW structure
678 * Calculates the EEPROM checksum by reading/adding each word of the EEPROM
679 * and then verifies that the sum of the EEPROM is equal to 0xBABA.
681 static s32
e1000_validate_nvm_checksum_82571(struct e1000_hw
*hw
)
683 if (hw
->nvm
.type
== e1000_nvm_flash_hw
)
684 e1000_fix_nvm_checksum_82571(hw
);
686 return e1000e_validate_nvm_checksum_generic(hw
);
690 * e1000_write_nvm_eewr_82571 - Write to EEPROM for 82573 silicon
691 * @hw: pointer to the HW structure
692 * @offset: offset within the EEPROM to be written to
693 * @words: number of words to write
694 * @data: 16 bit word(s) to be written to the EEPROM
696 * After checking for invalid values, poll the EEPROM to ensure the previous
697 * command has completed before trying to write the next word. After write
698 * poll for completion.
700 * If e1000e_update_nvm_checksum is not called after this function, the
701 * EEPROM will most likely contain an invalid checksum.
703 static s32
e1000_write_nvm_eewr_82571(struct e1000_hw
*hw
, u16 offset
,
704 u16 words
, u16
*data
)
706 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
711 * A check for invalid values: offset too large, too many words,
712 * and not enough words.
714 if ((offset
>= nvm
->word_size
) || (words
> (nvm
->word_size
- offset
)) ||
716 e_dbg("nvm parameter(s) out of bounds\n");
717 return -E1000_ERR_NVM
;
720 for (i
= 0; i
< words
; i
++) {
721 eewr
= (data
[i
] << E1000_NVM_RW_REG_DATA
) |
722 ((offset
+i
) << E1000_NVM_RW_ADDR_SHIFT
) |
723 E1000_NVM_RW_REG_START
;
725 ret_val
= e1000e_poll_eerd_eewr_done(hw
, E1000_NVM_POLL_WRITE
);
731 ret_val
= e1000e_poll_eerd_eewr_done(hw
, E1000_NVM_POLL_WRITE
);
740 * e1000_get_cfg_done_82571 - Poll for configuration done
741 * @hw: pointer to the HW structure
743 * Reads the management control register for the config done bit to be set.
745 static s32
e1000_get_cfg_done_82571(struct e1000_hw
*hw
)
747 s32 timeout
= PHY_CFG_TIMEOUT
;
751 E1000_NVM_CFG_DONE_PORT_0
)
757 e_dbg("MNG configuration cycle has not completed.\n");
758 return -E1000_ERR_RESET
;
765 * e1000_set_d0_lplu_state_82571 - Set Low Power Linkup D0 state
766 * @hw: pointer to the HW structure
767 * @active: true to enable LPLU, false to disable
769 * Sets the LPLU D0 state according to the active flag. When activating LPLU
770 * this function also disables smart speed and vice versa. LPLU will not be
771 * activated unless the device autonegotiation advertisement meets standards
772 * of either 10 or 10/100 or 10/100/1000 at all duplexes. This is a function
773 * pointer entry point only called by PHY setup routines.
775 static s32
e1000_set_d0_lplu_state_82571(struct e1000_hw
*hw
, bool active
)
777 struct e1000_phy_info
*phy
= &hw
->phy
;
781 ret_val
= e1e_rphy(hw
, IGP02E1000_PHY_POWER_MGMT
, &data
);
786 data
|= IGP02E1000_PM_D0_LPLU
;
787 ret_val
= e1e_wphy(hw
, IGP02E1000_PHY_POWER_MGMT
, data
);
791 /* When LPLU is enabled, we should disable SmartSpeed */
792 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CONFIG
, &data
);
793 data
&= ~IGP01E1000_PSCFR_SMART_SPEED
;
794 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CONFIG
, data
);
798 data
&= ~IGP02E1000_PM_D0_LPLU
;
799 ret_val
= e1e_wphy(hw
, IGP02E1000_PHY_POWER_MGMT
, data
);
801 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
802 * during Dx states where the power conservation is most
803 * important. During driver activity we should enable
804 * SmartSpeed, so performance is maintained.
806 if (phy
->smart_speed
== e1000_smart_speed_on
) {
807 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
812 data
|= IGP01E1000_PSCFR_SMART_SPEED
;
813 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
817 } else if (phy
->smart_speed
== e1000_smart_speed_off
) {
818 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
823 data
&= ~IGP01E1000_PSCFR_SMART_SPEED
;
824 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
835 * e1000_reset_hw_82571 - Reset hardware
836 * @hw: pointer to the HW structure
838 * This resets the hardware into a known state.
840 static s32
e1000_reset_hw_82571(struct e1000_hw
*hw
)
842 u32 ctrl
, extcnf_ctrl
, ctrl_ext
, icr
;
847 * Prevent the PCI-E bus from sticking if there is no TLP connection
848 * on the last TLP read/write transaction when MAC is reset.
850 ret_val
= e1000e_disable_pcie_master(hw
);
852 e_dbg("PCI-E Master disable polling has failed.\n");
854 e_dbg("Masking off all interrupts\n");
855 ew32(IMC
, 0xffffffff);
858 ew32(TCTL
, E1000_TCTL_PSP
);
864 * Must acquire the MDIO ownership before MAC reset.
865 * Ownership defaults to firmware after a reset.
867 switch (hw
->mac
.type
) {
871 extcnf_ctrl
= er32(EXTCNF_CTRL
);
872 extcnf_ctrl
|= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP
;
875 ew32(EXTCNF_CTRL
, extcnf_ctrl
);
876 extcnf_ctrl
= er32(EXTCNF_CTRL
);
878 if (extcnf_ctrl
& E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP
)
881 extcnf_ctrl
|= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP
;
885 } while (i
< MDIO_OWNERSHIP_TIMEOUT
);
893 e_dbg("Issuing a global reset to MAC\n");
894 ew32(CTRL
, ctrl
| E1000_CTRL_RST
);
896 if (hw
->nvm
.type
== e1000_nvm_flash_hw
) {
898 ctrl_ext
= er32(CTRL_EXT
);
899 ctrl_ext
|= E1000_CTRL_EXT_EE_RST
;
900 ew32(CTRL_EXT
, ctrl_ext
);
904 ret_val
= e1000e_get_auto_rd_done(hw
);
906 /* We don't want to continue accessing MAC registers. */
910 * Phy configuration from NVM just starts after EECD_AUTO_RD is set.
911 * Need to wait for Phy configuration completion before accessing
915 switch (hw
->mac
.type
) {
925 /* Clear any pending interrupt events. */
926 ew32(IMC
, 0xffffffff);
929 /* Install any alternate MAC address into RAR0 */
930 ret_val
= e1000_check_alt_mac_addr_generic(hw
);
934 e1000e_set_laa_state_82571(hw
, true);
936 /* Reinitialize the 82571 serdes link state machine */
937 if (hw
->phy
.media_type
== e1000_media_type_internal_serdes
)
938 hw
->mac
.serdes_link_state
= e1000_serdes_link_down
;
944 * e1000_init_hw_82571 - Initialize hardware
945 * @hw: pointer to the HW structure
947 * This inits the hardware readying it for operation.
949 static s32
e1000_init_hw_82571(struct e1000_hw
*hw
)
951 struct e1000_mac_info
*mac
= &hw
->mac
;
954 u16 i
, rar_count
= mac
->rar_entry_count
;
956 e1000_initialize_hw_bits_82571(hw
);
958 /* Initialize identification LED */
959 ret_val
= e1000e_id_led_init(hw
);
961 e_dbg("Error initializing identification LED\n");
962 /* This is not fatal and we should not stop init due to this */
964 /* Disabling VLAN filtering */
965 e_dbg("Initializing the IEEE VLAN\n");
966 mac
->ops
.clear_vfta(hw
);
968 /* Setup the receive address. */
970 * If, however, a locally administered address was assigned to the
971 * 82571, we must reserve a RAR for it to work around an issue where
972 * resetting one port will reload the MAC on the other port.
974 if (e1000e_get_laa_state_82571(hw
))
976 e1000e_init_rx_addrs(hw
, rar_count
);
978 /* Zero out the Multicast HASH table */
979 e_dbg("Zeroing the MTA\n");
980 for (i
= 0; i
< mac
->mta_reg_count
; i
++)
981 E1000_WRITE_REG_ARRAY(hw
, E1000_MTA
, i
, 0);
983 /* Setup link and flow control */
984 ret_val
= e1000_setup_link_82571(hw
);
986 /* Set the transmit descriptor write-back policy */
987 reg_data
= er32(TXDCTL(0));
988 reg_data
= (reg_data
& ~E1000_TXDCTL_WTHRESH
) |
989 E1000_TXDCTL_FULL_TX_DESC_WB
|
990 E1000_TXDCTL_COUNT_DESC
;
991 ew32(TXDCTL(0), reg_data
);
993 /* ...for both queues. */
998 e1000e_enable_tx_pkt_filtering(hw
);
999 reg_data
= er32(GCR
);
1000 reg_data
|= E1000_GCR_L1_ACT_WITHOUT_L0S_RX
;
1001 ew32(GCR
, reg_data
);
1004 reg_data
= er32(TXDCTL(1));
1005 reg_data
= (reg_data
& ~E1000_TXDCTL_WTHRESH
) |
1006 E1000_TXDCTL_FULL_TX_DESC_WB
|
1007 E1000_TXDCTL_COUNT_DESC
;
1008 ew32(TXDCTL(1), reg_data
);
1013 * Clear all of the statistics registers (clear on read). It is
1014 * important that we do this after we have tried to establish link
1015 * because the symbol error count will increment wildly if there
1018 e1000_clear_hw_cntrs_82571(hw
);
1024 * e1000_initialize_hw_bits_82571 - Initialize hardware-dependent bits
1025 * @hw: pointer to the HW structure
1027 * Initializes required hardware-dependent bits needed for normal operation.
1029 static void e1000_initialize_hw_bits_82571(struct e1000_hw
*hw
)
1033 /* Transmit Descriptor Control 0 */
1034 reg
= er32(TXDCTL(0));
1036 ew32(TXDCTL(0), reg
);
1038 /* Transmit Descriptor Control 1 */
1039 reg
= er32(TXDCTL(1));
1041 ew32(TXDCTL(1), reg
);
1043 /* Transmit Arbitration Control 0 */
1044 reg
= er32(TARC(0));
1045 reg
&= ~(0xF << 27); /* 30:27 */
1046 switch (hw
->mac
.type
) {
1049 reg
|= (1 << 23) | (1 << 24) | (1 << 25) | (1 << 26);
1056 /* Transmit Arbitration Control 1 */
1057 reg
= er32(TARC(1));
1058 switch (hw
->mac
.type
) {
1061 reg
&= ~((1 << 29) | (1 << 30));
1062 reg
|= (1 << 22) | (1 << 24) | (1 << 25) | (1 << 26);
1063 if (er32(TCTL
) & E1000_TCTL_MULR
)
1073 /* Device Control */
1074 switch (hw
->mac
.type
) {
1086 /* Extended Device Control */
1087 switch (hw
->mac
.type
) {
1091 reg
= er32(CTRL_EXT
);
1094 ew32(CTRL_EXT
, reg
);
1100 if (hw
->mac
.type
== e1000_82571
) {
1101 reg
= er32(PBA_ECC
);
1102 reg
|= E1000_PBA_ECC_CORR_EN
;
1106 * Workaround for hardware errata.
1107 * Ensure that DMA Dynamic Clock gating is disabled on 82571 and 82572
1110 if ((hw
->mac
.type
== e1000_82571
) ||
1111 (hw
->mac
.type
== e1000_82572
)) {
1112 reg
= er32(CTRL_EXT
);
1113 reg
&= ~E1000_CTRL_EXT_DMA_DYN_CLK_EN
;
1114 ew32(CTRL_EXT
, reg
);
1118 /* PCI-Ex Control Registers */
1119 switch (hw
->mac
.type
) {
1127 * Workaround for hardware errata.
1128 * apply workaround for hardware errata documented in errata
1129 * docs Fixes issue where some error prone or unreliable PCIe
1130 * completions are occurring, particularly with ASPM enabled.
1131 * Without fix, issue can cause tx timeouts.
1145 * e1000_clear_vfta_82571 - Clear VLAN filter table
1146 * @hw: pointer to the HW structure
1148 * Clears the register array which contains the VLAN filter table by
1149 * setting all the values to 0.
1151 static void e1000_clear_vfta_82571(struct e1000_hw
*hw
)
1155 u32 vfta_offset
= 0;
1156 u32 vfta_bit_in_reg
= 0;
1158 switch (hw
->mac
.type
) {
1162 if (hw
->mng_cookie
.vlan_id
!= 0) {
1164 * The VFTA is a 4096b bit-field, each identifying
1165 * a single VLAN ID. The following operations
1166 * determine which 32b entry (i.e. offset) into the
1167 * array we want to set the VLAN ID (i.e. bit) of
1168 * the manageability unit.
1170 vfta_offset
= (hw
->mng_cookie
.vlan_id
>>
1171 E1000_VFTA_ENTRY_SHIFT
) &
1172 E1000_VFTA_ENTRY_MASK
;
1173 vfta_bit_in_reg
= 1 << (hw
->mng_cookie
.vlan_id
&
1174 E1000_VFTA_ENTRY_BIT_SHIFT_MASK
);
1180 for (offset
= 0; offset
< E1000_VLAN_FILTER_TBL_SIZE
; offset
++) {
1182 * If the offset we want to clear is the same offset of the
1183 * manageability VLAN ID, then clear all bits except that of
1184 * the manageability unit.
1186 vfta_value
= (offset
== vfta_offset
) ? vfta_bit_in_reg
: 0;
1187 E1000_WRITE_REG_ARRAY(hw
, E1000_VFTA
, offset
, vfta_value
);
1193 * e1000_check_mng_mode_82574 - Check manageability is enabled
1194 * @hw: pointer to the HW structure
1196 * Reads the NVM Initialization Control Word 2 and returns true
1197 * (>0) if any manageability is enabled, else false (0).
1199 static bool e1000_check_mng_mode_82574(struct e1000_hw
*hw
)
1203 e1000_read_nvm(hw
, NVM_INIT_CONTROL2_REG
, 1, &data
);
1204 return (data
& E1000_NVM_INIT_CTRL2_MNGM
) != 0;
1208 * e1000_led_on_82574 - Turn LED on
1209 * @hw: pointer to the HW structure
1213 static s32
e1000_led_on_82574(struct e1000_hw
*hw
)
1218 ctrl
= hw
->mac
.ledctl_mode2
;
1219 if (!(E1000_STATUS_LU
& er32(STATUS
))) {
1221 * If no link, then turn LED on by setting the invert bit
1222 * for each LED that's "on" (0x0E) in ledctl_mode2.
1224 for (i
= 0; i
< 4; i
++)
1225 if (((hw
->mac
.ledctl_mode2
>> (i
* 8)) & 0xFF) ==
1226 E1000_LEDCTL_MODE_LED_ON
)
1227 ctrl
|= (E1000_LEDCTL_LED0_IVRT
<< (i
* 8));
1235 * e1000_setup_link_82571 - Setup flow control and link settings
1236 * @hw: pointer to the HW structure
1238 * Determines which flow control settings to use, then configures flow
1239 * control. Calls the appropriate media-specific link configuration
1240 * function. Assuming the adapter has a valid link partner, a valid link
1241 * should be established. Assumes the hardware has previously been reset
1242 * and the transmitter and receiver are not enabled.
1244 static s32
e1000_setup_link_82571(struct e1000_hw
*hw
)
1247 * 82573 does not have a word in the NVM to determine
1248 * the default flow control setting, so we explicitly
1251 switch (hw
->mac
.type
) {
1255 if (hw
->fc
.requested_mode
== e1000_fc_default
)
1256 hw
->fc
.requested_mode
= e1000_fc_full
;
1262 return e1000e_setup_link(hw
);
1266 * e1000_setup_copper_link_82571 - Configure copper link settings
1267 * @hw: pointer to the HW structure
1269 * Configures the link for auto-neg or forced speed and duplex. Then we check
1270 * for link, once link is established calls to configure collision distance
1271 * and flow control are called.
1273 static s32
e1000_setup_copper_link_82571(struct e1000_hw
*hw
)
1279 ctrl
|= E1000_CTRL_SLU
;
1280 ctrl
&= ~(E1000_CTRL_FRCSPD
| E1000_CTRL_FRCDPX
);
1283 switch (hw
->phy
.type
) {
1286 ret_val
= e1000e_copper_link_setup_m88(hw
);
1288 case e1000_phy_igp_2
:
1289 ret_val
= e1000e_copper_link_setup_igp(hw
);
1292 return -E1000_ERR_PHY
;
1299 ret_val
= e1000e_setup_copper_link(hw
);
1305 * e1000_setup_fiber_serdes_link_82571 - Setup link for fiber/serdes
1306 * @hw: pointer to the HW structure
1308 * Configures collision distance and flow control for fiber and serdes links.
1309 * Upon successful setup, poll for link.
1311 static s32
e1000_setup_fiber_serdes_link_82571(struct e1000_hw
*hw
)
1313 switch (hw
->mac
.type
) {
1317 * If SerDes loopback mode is entered, there is no form
1318 * of reset to take the adapter out of that mode. So we
1319 * have to explicitly take the adapter out of loopback
1320 * mode. This prevents drivers from twiddling their thumbs
1321 * if another tool failed to take it out of loopback mode.
1323 ew32(SCTL
, E1000_SCTL_DISABLE_SERDES_LOOPBACK
);
1329 return e1000e_setup_fiber_serdes_link(hw
);
1333 * e1000_check_for_serdes_link_82571 - Check for link (Serdes)
1334 * @hw: pointer to the HW structure
1336 * Reports the link state as up or down.
1338 * If autonegotiation is supported by the link partner, the link state is
1339 * determined by the result of autonegotiation. This is the most likely case.
1340 * If autonegotiation is not supported by the link partner, and the link
1341 * has a valid signal, force the link up.
1343 * The link state is represented internally here by 4 states:
1346 * 2) autoneg_progress
1347 * 3) autoneg_complete (the link successfully autonegotiated)
1348 * 4) forced_up (the link has been forced up, it did not autonegotiate)
1351 static s32
e1000_check_for_serdes_link_82571(struct e1000_hw
*hw
)
1353 struct e1000_mac_info
*mac
= &hw
->mac
;
1360 status
= er32(STATUS
);
1363 if ((rxcw
& E1000_RXCW_SYNCH
) && !(rxcw
& E1000_RXCW_IV
)) {
1365 /* Receiver is synchronized with no invalid bits. */
1366 switch (mac
->serdes_link_state
) {
1367 case e1000_serdes_link_autoneg_complete
:
1368 if (!(status
& E1000_STATUS_LU
)) {
1370 * We have lost link, retry autoneg before
1371 * reporting link failure
1373 mac
->serdes_link_state
=
1374 e1000_serdes_link_autoneg_progress
;
1375 mac
->serdes_has_link
= false;
1376 e_dbg("AN_UP -> AN_PROG\n");
1380 case e1000_serdes_link_forced_up
:
1382 * If we are receiving /C/ ordered sets, re-enable
1383 * auto-negotiation in the TXCW register and disable
1384 * forced link in the Device Control register in an
1385 * attempt to auto-negotiate with our link partner.
1387 if (rxcw
& E1000_RXCW_C
) {
1388 /* Enable autoneg, and unforce link up */
1389 ew32(TXCW
, mac
->txcw
);
1390 ew32(CTRL
, (ctrl
& ~E1000_CTRL_SLU
));
1391 mac
->serdes_link_state
=
1392 e1000_serdes_link_autoneg_progress
;
1393 mac
->serdes_has_link
= false;
1394 e_dbg("FORCED_UP -> AN_PROG\n");
1398 case e1000_serdes_link_autoneg_progress
:
1399 if (rxcw
& E1000_RXCW_C
) {
1401 * We received /C/ ordered sets, meaning the
1402 * link partner has autonegotiated, and we can
1403 * trust the Link Up (LU) status bit.
1405 if (status
& E1000_STATUS_LU
) {
1406 mac
->serdes_link_state
=
1407 e1000_serdes_link_autoneg_complete
;
1408 e_dbg("AN_PROG -> AN_UP\n");
1409 mac
->serdes_has_link
= true;
1411 /* Autoneg completed, but failed. */
1412 mac
->serdes_link_state
=
1413 e1000_serdes_link_down
;
1414 e_dbg("AN_PROG -> DOWN\n");
1418 * The link partner did not autoneg.
1419 * Force link up and full duplex, and change
1422 ew32(TXCW
, (mac
->txcw
& ~E1000_TXCW_ANE
));
1423 ctrl
|= (E1000_CTRL_SLU
| E1000_CTRL_FD
);
1426 /* Configure Flow Control after link up. */
1427 ret_val
= e1000e_config_fc_after_link_up(hw
);
1429 e_dbg("Error config flow control\n");
1432 mac
->serdes_link_state
=
1433 e1000_serdes_link_forced_up
;
1434 mac
->serdes_has_link
= true;
1435 e_dbg("AN_PROG -> FORCED_UP\n");
1439 case e1000_serdes_link_down
:
1442 * The link was down but the receiver has now gained
1443 * valid sync, so lets see if we can bring the link
1446 ew32(TXCW
, mac
->txcw
);
1447 ew32(CTRL
, (ctrl
& ~E1000_CTRL_SLU
));
1448 mac
->serdes_link_state
=
1449 e1000_serdes_link_autoneg_progress
;
1450 e_dbg("DOWN -> AN_PROG\n");
1454 if (!(rxcw
& E1000_RXCW_SYNCH
)) {
1455 mac
->serdes_has_link
= false;
1456 mac
->serdes_link_state
= e1000_serdes_link_down
;
1457 e_dbg("ANYSTATE -> DOWN\n");
1460 * We have sync, and can tolerate one invalid (IV)
1461 * codeword before declaring link down, so reread
1466 if (rxcw
& E1000_RXCW_IV
) {
1467 mac
->serdes_link_state
= e1000_serdes_link_down
;
1468 mac
->serdes_has_link
= false;
1469 e_dbg("ANYSTATE -> DOWN\n");
1478 * e1000_valid_led_default_82571 - Verify a valid default LED config
1479 * @hw: pointer to the HW structure
1480 * @data: pointer to the NVM (EEPROM)
1482 * Read the EEPROM for the current default LED configuration. If the
1483 * LED configuration is not valid, set to a valid LED configuration.
1485 static s32
e1000_valid_led_default_82571(struct e1000_hw
*hw
, u16
*data
)
1489 ret_val
= e1000_read_nvm(hw
, NVM_ID_LED_SETTINGS
, 1, data
);
1491 e_dbg("NVM Read Error\n");
1495 switch (hw
->mac
.type
) {
1499 if (*data
== ID_LED_RESERVED_F746
)
1500 *data
= ID_LED_DEFAULT_82573
;
1503 if (*data
== ID_LED_RESERVED_0000
||
1504 *data
== ID_LED_RESERVED_FFFF
)
1505 *data
= ID_LED_DEFAULT
;
1513 * e1000e_get_laa_state_82571 - Get locally administered address state
1514 * @hw: pointer to the HW structure
1516 * Retrieve and return the current locally administered address state.
1518 bool e1000e_get_laa_state_82571(struct e1000_hw
*hw
)
1520 if (hw
->mac
.type
!= e1000_82571
)
1523 return hw
->dev_spec
.e82571
.laa_is_present
;
1527 * e1000e_set_laa_state_82571 - Set locally administered address state
1528 * @hw: pointer to the HW structure
1529 * @state: enable/disable locally administered address
1531 * Enable/Disable the current locally administered address state.
1533 void e1000e_set_laa_state_82571(struct e1000_hw
*hw
, bool state
)
1535 if (hw
->mac
.type
!= e1000_82571
)
1538 hw
->dev_spec
.e82571
.laa_is_present
= state
;
1540 /* If workaround is activated... */
1543 * Hold a copy of the LAA in RAR[14] This is done so that
1544 * between the time RAR[0] gets clobbered and the time it
1545 * gets fixed, the actual LAA is in one of the RARs and no
1546 * incoming packets directed to this port are dropped.
1547 * Eventually the LAA will be in RAR[0] and RAR[14].
1549 e1000e_rar_set(hw
, hw
->mac
.addr
, hw
->mac
.rar_entry_count
- 1);
1553 * e1000_fix_nvm_checksum_82571 - Fix EEPROM checksum
1554 * @hw: pointer to the HW structure
1556 * Verifies that the EEPROM has completed the update. After updating the
1557 * EEPROM, we need to check bit 15 in work 0x23 for the checksum fix. If
1558 * the checksum fix is not implemented, we need to set the bit and update
1559 * the checksum. Otherwise, if bit 15 is set and the checksum is incorrect,
1560 * we need to return bad checksum.
1562 static s32
e1000_fix_nvm_checksum_82571(struct e1000_hw
*hw
)
1564 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
1568 if (nvm
->type
!= e1000_nvm_flash_hw
)
1572 * Check bit 4 of word 10h. If it is 0, firmware is done updating
1573 * 10h-12h. Checksum may need to be fixed.
1575 ret_val
= e1000_read_nvm(hw
, 0x10, 1, &data
);
1579 if (!(data
& 0x10)) {
1581 * Read 0x23 and check bit 15. This bit is a 1
1582 * when the checksum has already been fixed. If
1583 * the checksum is still wrong and this bit is a
1584 * 1, we need to return bad checksum. Otherwise,
1585 * we need to set this bit to a 1 and update the
1588 ret_val
= e1000_read_nvm(hw
, 0x23, 1, &data
);
1592 if (!(data
& 0x8000)) {
1594 ret_val
= e1000_write_nvm(hw
, 0x23, 1, &data
);
1597 ret_val
= e1000e_update_nvm_checksum(hw
);
1605 * e1000_read_mac_addr_82571 - Read device MAC address
1606 * @hw: pointer to the HW structure
1608 static s32
e1000_read_mac_addr_82571(struct e1000_hw
*hw
)
1613 * If there's an alternate MAC address place it in RAR0
1614 * so that it will override the Si installed default perm
1617 ret_val
= e1000_check_alt_mac_addr_generic(hw
);
1621 ret_val
= e1000_read_mac_addr_generic(hw
);
1628 * e1000_power_down_phy_copper_82571 - Remove link during PHY power down
1629 * @hw: pointer to the HW structure
1631 * In the case of a PHY power down to save power, or to turn off link during a
1632 * driver unload, or wake on lan is not enabled, remove the link.
1634 static void e1000_power_down_phy_copper_82571(struct e1000_hw
*hw
)
1636 struct e1000_phy_info
*phy
= &hw
->phy
;
1637 struct e1000_mac_info
*mac
= &hw
->mac
;
1639 if (!(phy
->ops
.check_reset_block
))
1642 /* If the management interface is not enabled, then power down */
1643 if (!(mac
->ops
.check_mng_mode(hw
) || phy
->ops
.check_reset_block(hw
)))
1644 e1000_power_down_phy_copper(hw
);
1650 * e1000_clear_hw_cntrs_82571 - Clear device specific hardware counters
1651 * @hw: pointer to the HW structure
1653 * Clears the hardware counters by reading the counter registers.
1655 static void e1000_clear_hw_cntrs_82571(struct e1000_hw
*hw
)
1657 e1000e_clear_hw_cntrs_base(hw
);
1695 static struct e1000_mac_operations e82571_mac_ops
= {
1696 /* .check_mng_mode: mac type dependent */
1697 /* .check_for_link: media type dependent */
1698 .id_led_init
= e1000e_id_led_init
,
1699 .cleanup_led
= e1000e_cleanup_led_generic
,
1700 .clear_hw_cntrs
= e1000_clear_hw_cntrs_82571
,
1701 .get_bus_info
= e1000e_get_bus_info_pcie
,
1702 .set_lan_id
= e1000_set_lan_id_multi_port_pcie
,
1703 /* .get_link_up_info: media type dependent */
1704 /* .led_on: mac type dependent */
1705 .led_off
= e1000e_led_off_generic
,
1706 .update_mc_addr_list
= e1000e_update_mc_addr_list_generic
,
1707 .write_vfta
= e1000_write_vfta_generic
,
1708 .clear_vfta
= e1000_clear_vfta_82571
,
1709 .reset_hw
= e1000_reset_hw_82571
,
1710 .init_hw
= e1000_init_hw_82571
,
1711 .setup_link
= e1000_setup_link_82571
,
1712 /* .setup_physical_interface: media type dependent */
1713 .setup_led
= e1000e_setup_led_generic
,
1714 .read_mac_addr
= e1000_read_mac_addr_82571
,
1717 static struct e1000_phy_operations e82_phy_ops_igp
= {
1718 .acquire
= e1000_get_hw_semaphore_82571
,
1719 .check_polarity
= e1000_check_polarity_igp
,
1720 .check_reset_block
= e1000e_check_reset_block_generic
,
1722 .force_speed_duplex
= e1000e_phy_force_speed_duplex_igp
,
1723 .get_cfg_done
= e1000_get_cfg_done_82571
,
1724 .get_cable_length
= e1000e_get_cable_length_igp_2
,
1725 .get_info
= e1000e_get_phy_info_igp
,
1726 .read_reg
= e1000e_read_phy_reg_igp
,
1727 .release
= e1000_put_hw_semaphore_82571
,
1728 .reset
= e1000e_phy_hw_reset_generic
,
1729 .set_d0_lplu_state
= e1000_set_d0_lplu_state_82571
,
1730 .set_d3_lplu_state
= e1000e_set_d3_lplu_state
,
1731 .write_reg
= e1000e_write_phy_reg_igp
,
1732 .cfg_on_link_up
= NULL
,
1735 static struct e1000_phy_operations e82_phy_ops_m88
= {
1736 .acquire
= e1000_get_hw_semaphore_82571
,
1737 .check_polarity
= e1000_check_polarity_m88
,
1738 .check_reset_block
= e1000e_check_reset_block_generic
,
1739 .commit
= e1000e_phy_sw_reset
,
1740 .force_speed_duplex
= e1000e_phy_force_speed_duplex_m88
,
1741 .get_cfg_done
= e1000e_get_cfg_done
,
1742 .get_cable_length
= e1000e_get_cable_length_m88
,
1743 .get_info
= e1000e_get_phy_info_m88
,
1744 .read_reg
= e1000e_read_phy_reg_m88
,
1745 .release
= e1000_put_hw_semaphore_82571
,
1746 .reset
= e1000e_phy_hw_reset_generic
,
1747 .set_d0_lplu_state
= e1000_set_d0_lplu_state_82571
,
1748 .set_d3_lplu_state
= e1000e_set_d3_lplu_state
,
1749 .write_reg
= e1000e_write_phy_reg_m88
,
1750 .cfg_on_link_up
= NULL
,
1753 static struct e1000_phy_operations e82_phy_ops_bm
= {
1754 .acquire
= e1000_get_hw_semaphore_82571
,
1755 .check_polarity
= e1000_check_polarity_m88
,
1756 .check_reset_block
= e1000e_check_reset_block_generic
,
1757 .commit
= e1000e_phy_sw_reset
,
1758 .force_speed_duplex
= e1000e_phy_force_speed_duplex_m88
,
1759 .get_cfg_done
= e1000e_get_cfg_done
,
1760 .get_cable_length
= e1000e_get_cable_length_m88
,
1761 .get_info
= e1000e_get_phy_info_m88
,
1762 .read_reg
= e1000e_read_phy_reg_bm2
,
1763 .release
= e1000_put_hw_semaphore_82571
,
1764 .reset
= e1000e_phy_hw_reset_generic
,
1765 .set_d0_lplu_state
= e1000_set_d0_lplu_state_82571
,
1766 .set_d3_lplu_state
= e1000e_set_d3_lplu_state
,
1767 .write_reg
= e1000e_write_phy_reg_bm2
,
1768 .cfg_on_link_up
= NULL
,
1771 static struct e1000_nvm_operations e82571_nvm_ops
= {
1772 .acquire
= e1000_acquire_nvm_82571
,
1773 .read
= e1000e_read_nvm_eerd
,
1774 .release
= e1000_release_nvm_82571
,
1775 .update
= e1000_update_nvm_checksum_82571
,
1776 .valid_led_default
= e1000_valid_led_default_82571
,
1777 .validate
= e1000_validate_nvm_checksum_82571
,
1778 .write
= e1000_write_nvm_82571
,
1781 struct e1000_info e1000_82571_info
= {
1783 .flags
= FLAG_HAS_HW_VLAN_FILTER
1784 | FLAG_HAS_JUMBO_FRAMES
1786 | FLAG_APME_IN_CTRL3
1787 | FLAG_RX_CSUM_ENABLED
1788 | FLAG_HAS_CTRLEXT_ON_LOAD
1789 | FLAG_HAS_SMART_POWER_DOWN
1790 | FLAG_RESET_OVERWRITES_LAA
/* errata */
1791 | FLAG_TARC_SPEED_MODE_BIT
/* errata */
1792 | FLAG_APME_CHECK_PORT_B
,
1793 .flags2
= FLAG2_DISABLE_ASPM_L1
, /* errata 13 */
1795 .max_hw_frame_size
= DEFAULT_JUMBO
,
1796 .get_variants
= e1000_get_variants_82571
,
1797 .mac_ops
= &e82571_mac_ops
,
1798 .phy_ops
= &e82_phy_ops_igp
,
1799 .nvm_ops
= &e82571_nvm_ops
,
1802 struct e1000_info e1000_82572_info
= {
1804 .flags
= FLAG_HAS_HW_VLAN_FILTER
1805 | FLAG_HAS_JUMBO_FRAMES
1807 | FLAG_APME_IN_CTRL3
1808 | FLAG_RX_CSUM_ENABLED
1809 | FLAG_HAS_CTRLEXT_ON_LOAD
1810 | FLAG_TARC_SPEED_MODE_BIT
, /* errata */
1811 .flags2
= FLAG2_DISABLE_ASPM_L1
, /* errata 13 */
1813 .max_hw_frame_size
= DEFAULT_JUMBO
,
1814 .get_variants
= e1000_get_variants_82571
,
1815 .mac_ops
= &e82571_mac_ops
,
1816 .phy_ops
= &e82_phy_ops_igp
,
1817 .nvm_ops
= &e82571_nvm_ops
,
1820 struct e1000_info e1000_82573_info
= {
1822 .flags
= FLAG_HAS_HW_VLAN_FILTER
1824 | FLAG_APME_IN_CTRL3
1825 | FLAG_RX_CSUM_ENABLED
1826 | FLAG_HAS_SMART_POWER_DOWN
1828 | FLAG_HAS_SWSM_ON_LOAD
,
1830 .max_hw_frame_size
= ETH_FRAME_LEN
+ ETH_FCS_LEN
,
1831 .get_variants
= e1000_get_variants_82571
,
1832 .mac_ops
= &e82571_mac_ops
,
1833 .phy_ops
= &e82_phy_ops_m88
,
1834 .nvm_ops
= &e82571_nvm_ops
,
1837 struct e1000_info e1000_82574_info
= {
1839 .flags
= FLAG_HAS_HW_VLAN_FILTER
1841 | FLAG_HAS_JUMBO_FRAMES
1843 | FLAG_APME_IN_CTRL3
1844 | FLAG_RX_CSUM_ENABLED
1845 | FLAG_HAS_SMART_POWER_DOWN
1847 | FLAG_HAS_CTRLEXT_ON_LOAD
,
1849 .max_hw_frame_size
= DEFAULT_JUMBO
,
1850 .get_variants
= e1000_get_variants_82571
,
1851 .mac_ops
= &e82571_mac_ops
,
1852 .phy_ops
= &e82_phy_ops_bm
,
1853 .nvm_ops
= &e82571_nvm_ops
,
1856 struct e1000_info e1000_82583_info
= {
1858 .flags
= FLAG_HAS_HW_VLAN_FILTER
1860 | FLAG_APME_IN_CTRL3
1861 | FLAG_RX_CSUM_ENABLED
1862 | FLAG_HAS_SMART_POWER_DOWN
1864 | FLAG_HAS_CTRLEXT_ON_LOAD
,
1866 .max_hw_frame_size
= ETH_FRAME_LEN
+ ETH_FCS_LEN
,
1867 .get_variants
= e1000_get_variants_82571
,
1868 .mac_ops
= &e82571_mac_ops
,
1869 .phy_ops
= &e82_phy_ops_bm
,
1870 .nvm_ops
= &e82571_nvm_ops
,